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We propose a generalized extreme shock model with a possibly increasing failure
threshold. Although standard models assume that the crucial threshold for the system
might only decrease over time, because of weakening shocks and obsolescence, we
assume that, especially at the beginning of the system’s life, some strengthening
shocks might increase the system tolerance to large shock. This is, for example, the
case of turbines’ running-in in the field of engineering. On the basis of parametric
assumptions, we provide theoretical results and derive some exact and asymptotic
univariate and multivariate distributions for the model. In the last part of the article
we show how to link this new model to some nonparametric approaches proposed in
the literature.

1. INTRODUCTION

The setup in extreme shock models is a family {(Xk , Yk), k ≥ 0} of independent iden-
tically distributed (i.i.d.) two-dimensional random vectors, with Xk the magnitude of
the kth shock and Yk the time between the (k − 1)st and the kth shock. The main object
of interest is the lifetime/failure time of the system by assuming certain schemes for
the failure. These models are motivated by the possible breakdown of a material or of
a system subject to random shocks of random magnitude, as it occurs in engineering.
It is easy to see useful applications also in other fields, such as economics, medicine,
and biology.

Cumulative shock models and extreme shock models are discussed, as well as
mixtures of both models, in Gut and Hüsler [8,9] and the references therein.
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In the cumulative shock model, we consider

Tn =
∑
k≤n

Yk and Sn =
∑
k≤n

Xk

for n ≥ 1, with T0 = S0 = 0. The failure of the system occurs if Sn > α for some n
and α. Here, α denotes the critical threshold of the system. The time until the system
fails the first time or the failure time Tτ with τ = min{n : Sn > α} are then of interest.
For results, see Gut [6].

In the simple extreme shock model, one large or extreme shock, larger than a
given failure (or crucial) threshold γ , might cause the default of the system. The
lifetime of the system is, in this case, defined as Tν , where

ν = min{n : Xn > γ }. (1)

This model was dealt with in Gut and Hüsler [8], and Gut [7].
Gut and Hüsler [9] extended this simple model to a more realistic framework by

assuming that the failure threshold is not constant but that it might vary with time,
depending on the experienced shocks. In detail, they assume that a large but not fatal
shock might effect the system’s tolerance to subsequent shocks, because of cracks in
the structure, for example. To be more exact, for a fixed α0 > 0 a shock Xi can damage
the system if it is larger than a certain boundary value β < α0.1 As long as Xi < α0, the
system does not fail. The crucial hypothesis is the following: If a first nonfatal shock
comes with values in [β, α0], the maximum load limit of the system is no longer α0 but
decreases to α1 ∈ [β, α1].At this point, if another large but not too strong shock occurs
in [β, α0], the new crucial threshold is lowered again to α2 ∈ [β, α1] and so on until
the system fails. We could call all this “the risky threshold mechanism.” Naturally,
for ∀t

α0 ≥ α1 ≥ α2 ≥ · · · ≥ β. (2)

Hence, one can define the stopping time ν = min
{
n : Xn ≥ αL(n−1)

}
with L(n) =∑n

i=1 1{Xi≥β} and L(0) = 0. Gut and Hüsler [9] have shown that the results for gen-
eralized extreme shock models (GESMs) are identical to the simple extreme case for
nonrandom αk , whereas this is not true in the random case. We refer to the original
article for more details.

Even if the modeling of GESMs is surely sensible, sometimes it can be worth
considering a default threshold α that might even increase, at least initially, say in
particular for a running-in period of some equipment. This is, for example, the case of
turbines’ breaking-in in the field of engineering, but other applications can be found
in electric networks and biology (e.g., Siphonophora in their growing process, Dunn,
Pugh, and Haddock [3]). We present in the following section this more general model
with some theoretical results, which are based on parametric assumptions.

1 The value β can also vary over time. The only requirement is that always be lower than the corresponding
failure threshold.
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In Section 3 we derive some exact and asymptotic univariate and multivariate
distributions of the parametric model.

Generalized extreme shock models can even be studied using nonparametric
techniques. In Cirillo and Hüsler [1] a nonparametric urn-based approach to extreme
shock models is proposed. In Section 4 we briefly show how the same approach could
be used to model the increasing threshold. Section 5 concludes the article.

2. EXTREME SHOCK MODELS WITH A POSSIBLE INCREASING
THRESHOLD

In some applications, a system has a running-in period during which the critical load
can increase and the structure is strengthened because, at the beginning, the loads or
shocks are large but nonfatal. This might happen, in particular, until the first damage
or crack. After such an event, the system can only be weakened. Such a pattern can
be modeled as follows.

We let the arrival times Ti of the shocks Xi be, as mentioned, a partial sum of i.i.d.
interarrival times Yj with distribution G. The loads Xi, i ≥ 1, are an i.i.d. sequence of
random variables (r.v.s) with distribution F. A shock or stroke Xi is strengthening the
material if Xi ∈ [γ , β). At the beginning, the material supports a maximal load α, the
critical threshold. After a strengthening stroke, the maximal load becomes larger, say
α1 = α + b1 with b1 > 0. This boundary increases with each strengthening stroke,
inducing boundaries αj = α + bj, j ≥ 1 with bj ↑. After the first harmful stroke larger
than β, but smaller than the critical level at this time point, the load boundary decreases
because of possible cracks or some weakening of the material. If it has reached the
level αk (because of k strengthening strokes before the first harmful stroke), the critical
level now becomes αk − c1 and decreases further by the next harmful, nonfatal strokes
to αk − c2, αk − c3, . . ., with cj ↑ (≥ 0). This is shown in Figure 1. There might be
an upper load limit α∗ for the αk , as well a lower load limit α∗ for the αk − cl. We
set α∗ ≥ β. It is convenient to set b0 = c0 = 0. For notational reasons we define the

FIGURE 1. Realization of a sequence of shocks with strengthening and weakening
load limits, depending on the values Xi. Here, we have ν = 32, W = 16, N+(ν) = 2,
and N−(ν) = 2.
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number N−(n) of weakening shocks Xi, i < n, before the nth shock:

N−(n) =
∑
i<n

1(Xi ∈ [β, α + bN+(i) − cN−(i))

with N−(0) = 0; and define the number N+(n) of strengthening strokes Xi, i < n,
before the n-th shock and before the first weakening or fatal shock:

N+(n) =
∑
i<n

1(Xi ∈ [γ , β), N−(i) = 0)

with N+(0) = 0. Note that the critical boundary for Xi is αi = α + bN+(i) − cN−(i).
Additionally let W be the index of the first harmful shock larger than β. It could

indicate even a fatal shock being larger than the critical boundary at this time point.
Hence, if such a shock occurs,

W = inf{i : Xi ≥ β} ≤ ∞.

If the set is empty, we set W = ∞. Hence, the shock Xi has no impact if Xi ≤ γ ;
it induces a strengthening of the material if i < W and Xi ∈ [γ , β) and it is fatal if
Xi ≥ αi = α + bN+(i) − cN−(i). Note, also, that N+(k) = N+(W) for all k ≥ W(< ∞).

First, we analyze in Section 3 the distribution of the number ν of shocks until the
first fatal shock:

ν = min{i : Xi ≥ α + bN+(i) − cN−(i)},
where we use b0 = 0 and c0 = 0. The time until the fatal shock is thus Tν . Its
distribution depends on the distribution of ν and G.

We consider the asymptotic behavior of these random variables by letting the
parameters α = α(t), β = β(t), and γ = γ (t) tend to xF ≤ ∞ as t → ∞, where xF

denotes the upper end point of the distribution F. We assume that xF is a continuity
point of F. For the limit distributions, certain additional restrictions will be imposed
also on the bk and ck , being also dependent on t. Hence, ν = ν(t) will tend to ∞, in
general, depending on the underlying distribution F.

3. THE DISTRIBUTION OF ν

The distribution of ν can be derived in this more general model as in the basic
generalized extreme shock model of Gut and Hüsler (2005). First we derive the
exact distribution and then analyze the asymptotic distributions which depend on
the behaviour of the sequences bk and ck . For the derivation we use the notation

αk,l = α + bk − cl

for any k, l ≥ 0.
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3.1. The Exact Distribution

To derive P{ν > m}, we have to condition on the other random variables. If N−
(m + 1) = 0, then W > m and, simply, P{ν > m, N−(m + 1) = 0} = Fm(β). If l > 0
with k < j and m ≥ j + l − 1, we consider the joint distribution

P{ν > m, N+(m) = k, N−(m + 1) = l, W = j}

=
(

j − 1

k

)
Fj−1−k(γ ) [F̄(γ ) − F̄(β)]k

×
(

m − j

l − 1

)
Fm−j−l+1(β)

l∏
h=1

[F̄(β) − F̄(αk,h−1)] (3)

or, for m ≥ j + l and k < j,

P{ν = m, N+(m) = k, N−(m) = l, W = j}

=
(

j − 1

k

)
Fj−1−k(γ ) [F̄(γ ) − F̄(β)]k

×
(

m − j − 1

l − 1

)
Fm−j−l(β)

l∏
h=1

[F̄(β) − F̄(αk,h−1)]F̄(αk,l) . (4)

If k ≥ j or m ≤ j + l − 1, the latter probabilities are zero.
By summing the appropriate terms, we get the exact univariate and multivariate

distributions for ν, N+(m), N−(l), and W as well as for N+(ν) and N−(ν). For instance,
the joint distribution of N+(ν), N−(ν) with l ≥ 1 is

P{N+(ν) = k, N−(ν) = l}
=

∑
m

P{ν = m, N+(m) = k, N−(m) = l}

=
∑
m, j

(
j − 1

k

)(
m − j − 1

l − 1

)
Fj−k−1(γ )[F̄(γ ) − F̄(β)]kFm−j−l(β)

×
l−1∏
h=0

{1 − F̄(αk, h)/F̄(β)}F̄l(β)F̄(αk, l)

=
∑

j≥k+1

(
j − 1

k

)
Fj−k−1(γ )

∑
m≥j+l

(
m − j − 1

l − 1

)
Fm−j−l(β)F̄l(β)

× [F̄(γ ) − F̄(β)]k
l−1∏
h=0

{1 − F̄(αk, h)/F̄(β)}F̄(αk, l). (5)
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Note that the sums are summing all of the probabilities of a negative binomial
distribution, hence,

P{N+(ν) = k, N−(ν) = l}

=
∑
h≥0

(
h + k

k

)
Fh(γ )

× [F̄(γ ) − F̄(β)]k
l−1∏
h=0

{1 − F̄(αk,h)/F̄(β)}F̄(αk,l)

= F̄−k−1(γ )[F̄(γ ) − F̄(β)]k
l−1∏
h=0

{1 − F̄(αk,h)/F̄(β)}F̄(αk,l)

= [1 − F̄(β)/F̄(γ )]k
l−1∏
h=0

{1 − F̄(αk,h)/F̄(β)}[F̄(αk,l)/F̄(γ )]. (6)

For the case l = 0, we obtain in the same way

P{N+(ν) = k, N−(ν) = 0}
=

∑
m>k

P{ν = m, N+(m) = k, N−(m) = 0, W = m}

=
∑
m>k

(
m − 1

k

)
Fm−k−1(γ )[F̄(γ ) − F̄(β)]kF̄(αk,0)

= [1 − F̄(β)/F̄(γ )]k[F̄(αk,0)/F̄(γ )]. (7)

Other exact distributions can be derived in the same way by appropriate summation.
Sometimes, for the derivation of the asymptotic distributions, we have to approximate
these sums to simplify the formulas.

We give, for later use, the following exact distribution:

P{ν > m, N−(ν) > 0}
=

∑
k≥0,l>0,j≥1

P{ν > m, N+(m) = k, N−(m + 1) = l, W = j}

=
∑

k≥0,l>0,j≥1

(
j − 1

k

)
Fj−1−k(γ ) [F̄(γ ) − F̄(β)]k

×
(

m − j

l − 1

)
Fm−j−l+1(β)

l∏
h=1

[F̄(β) − F̄(αk,h−1)]. (8)
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3.2. The Asymptotic Distribution

For the asymptotic behavior, let α(t) → ∞, β(t) → ∞, and γ (t) → ∞ as t → ∞.
The asymptotic behavior depends also on the assumptions of the sequences bk and
ck , which might depend also on the parameter t. However, we do not indicate the
dependence on the parameter t. From the above finite distributions, it is reasonable to
use the conditions F̄(β(t)) → 0 as t → ∞:

lim
t

F̄(β(t))

F̄(γ (t))
= g ∈ [0, 1] (9)

and

lim
t

F̄(α(t) + bk(t) − cl(t))

F̄(β(t))
= lim

t

F̄(αk,l(t))

F̄(β(t))
= ak,l ∈ [0, 1]. (10)

Obviously, the ak,l are monotone by the assumed monotonicity of the sequences bk

and ck (i.e., monotone decreasing in k with l fixed, and monotone increasing in l with
k fixed). We consider only the interesting cases with g, ak,l ∈ (0, 1). The simplest case
occurs if ak,l = a ∈ (0, 1) for all k and l. This implies that

l∏
h=1

[F̄(β) − F̄(α + bk − ch−1)] ∼ [F̄(β)(1 − a)]l

for each l ≥ 1. However, in general, we approximate

l∏
h=1

[F̄(β) − F̄(α + bk − ch−1)] ∼ F̄l(β)

l∏
h=1

(1 − ak,h)

for each l ≥ 1. We use for notational reason also
∏0

h=1(1 − ak,h) = 1. To simplify the
notation, we do not indicate the dependence on t in the following (e.g., we write ν

instead of ν(t)).

Theorem 1: If (9) and (10) hold with g, ak,l ∈ [0, 1], then for any k ≥ 0, l ≥ 0

P{N+(ν) = k, N−(ν) = l} → g(1 − g)k
l−1∏
h=0

(1 − ak,h)ak,l

as t → ∞.

Proof: Use (6) for l ≥ 1 and (7) for l = 0, with assumptions (9) and (10) to
immediately derive the claim, as t → ∞. �
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For the particular simple case that ak,h = a for all k and h, this limit distribution
is the product of two geometric distributions:

P{N+(ν) = k, N−(ν) = l} → g(1 − g)k(1 − a)la.

Because of the particular assumptions, the number of strengthening strokes does not
have an influence on the number of weakening strokes asymptotically, which shows
the asymptotic independence of N+(ν) and N−(ν) in this case.

Theorem 2: If (9) and (10) hold with ak,l ∈ (0, 1] for each k and l, we have the
following:

(i) For k ≥ 0 = l,

lim
t→∞ P{ν ≥ z/F̄(β), N+(ν) = k, N−(ν) = 0}=

∫ ∞

z/g
vke−vdv g (1 − g)kak,0/k! .

(ii) For l ≥ 1 and k ≥ 0,

lim
t→∞ P{ν ≥ z/F̄(β), N+(ν) = k, N−(ν) = l}

=
∫ ∞

z

∫ 1

0
yk(1 − y)l−1 exp{−yu(g−1 − 1)}dy exp{−u} uk+l du

× ((1 − g)/g)k
l−1∏
h=0

(1 − ak,h)ak,l/(k!(l − 1)!)

as t → ∞.

Proof: Let k ≥ 0 = l and zβ = z/F̄(β).

P{ν ≥ zβ , N+(ν) = k, N−(ν) = 0} =
=

∑
m≥zβ

P{ν = m, N+(m) = k, N−(m) = 0}

=
∞∑

m=zβ

(
m − 1

k

)
Fm−k−1(γ )[F̄(γ ) − F̄(β)]kF̄(αk,0)

∼
∞∑

m=zβ

mk

k! Fm(γ )[F̄(γ ) − F̄(β)]kF̄(αk,0)

∼ 1

k!
∫ ∞

z
vk exp{−vF̄(γ )/F̄(β)} dv (F̄(β))−k−1[F̄(γ ) − F̄(β)]kF̄(αk,0)

→ 1

k!
∫ ∞

z/g
yke−y dy (1 − g)kg ak,0

as t → ∞. If k = 0, then the integral is simply e−z/g.
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Now, let l > 0. By (4) we have

P{ν ≥ zβ , N+(ν) = k, N−(ν) = l}
=

∑
m≥zβ

P{ν = m, N+(m) = k, N−(m) = l}

=
∞∑

m=zβ

m−l∑
j=k+1

(
j − 1

k

)(
m − j − 1

l − 1

)
Fj−k−1(γ )Fm−j−l(β)

× F̄k(γ )(1 − g + o(1))kF̄l+1(β)

l−1∏
h=0

(1 − ak,h + o(1))(ak,l + o(1))

Split the inner sum into three parts, with j ≤ εm, εm < j < (1 − ε)m, and j ≥
(1 − ε)m, where we used W = j in the summands. The first and the third sum are
asymptotically negligible as ε → 0. This can be shown through derivations similar to
the following ones for the second sum. In fact, for the second sum, we have

P{ν ≥ zβ , N+(ν) = k, N−(ν) = l, εm < W < (1 − ε)m}

=
∞∑

m=zβ

(1−ε)m∑
j>εm

(
j − 1

k

)(
m − j − 1

l − 1

)
Fj−k−1(γ )Fm−j−l(β)

× F̄k(γ )F̄l+1(β)(1 − g + o(1))k
l−1∏
h=0

(1 − ak,h + o(1))(ak,l + o(1))

∼
∞∑

m=zβ

[(1−ε)m]∑
j>εm

(j − 1)!(m − j − 1)!
k!(j − 1 − k)!(l − 1)!(m − j − l)!Fj−k−1(γ )Fm−j−l(β)

× F̄k(γ )F̄l+1(β)(1 − g)k
l−1∏
h=0

(1 − ak,h)ak,l

∼
∞∑

m=zβ

[(1−ε)m]∑
j>εm

jk(m − j)l−1

k!(l − 1)! Fj−k−1(γ )Fm−j−l(β)

× F̄k(γ )F̄l+1(β)(1 − g)k
l−1∏
h=0

(1 − ak,h)ak,l =: Pt .

Now, we approximate the sums by integrals:

Pt ∼
∞∑

m=zβ

∫ 1−ε

ε

(ym)k(m(1 − y))l−1Fym(γ )Fm(1−y)(β) dy (m/k!(l − 1)!)

× F̄k(γ )F̄l+1(β)(1 − g)k
l−1∏
h=0

(1 − ak,h)ak,l
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=
∞∑

m=zβ

∫ 1−ε

ε

yk(1 − y)l−1Fym(γ )Fm(1−y)(β) dy mk+l

× F̄k(γ )F̄l+1(β)(1 − g)k
l−1∏
h=0

(1 − ak,h)ak,l/(k!(l − 1)!)

∼
∫ ∞

z

∫ 1−ε

ε

yk (1 − y)l−1Fyu/F̄(β)(γ )F(1−y)u/F̄(β)(β) dy uk+l du

× F̄k(γ )F̄−k(β)(1 − g)k
l−1∏
h=0

(1 − ak,h)ak,l/(k!(l − 1)!)

∼
∫ ∞

z

∫ 1−ε

ε

yk(1 − y)l−1Fyu/F̄(β)(γ )F(1−y)u/F̄(β)(β) dy uk+l du

× g−k(1 − g)k
l−1∏
h=0

(1 − ak,h)ak,l/(k!(l − 1)!).

The factor Fyu/F̄(β)(γ )F(1−y)u/F̄(β)(β) can be approximated for large t by

exp(−(1 + o(1))yuF̄(γ )/F̄(β) − (1 + o(1))(1 − y)u) ∼ exp(−[yu(g−1 − 1) − u])
uniformly for u bounded. Hence, by the dominated convergence, we get

Pt ∼
∫ ∞

z

∫ 1−ε

ε

yk(1 − y)l−1 exp{−yu(g−1 − 1)}dy exp{−u} uk+ldu

× ((1 − g)/g)k
l−1∏
h=0

(1 − ak,h)ak,l/(k!(l − 1)!)

→
∫ ∞

z

∫ 1

0
yk(1 − y)l−1 exp{−yu(g−1 − 1)}dy exp{−u} uk+ldu

× ((1 − g)/g)k
l−1∏
h=0

(1 − ak,h)ak,l/(k!(l − 1)!)

as ε → 0. �

If we set z = 0, the integrals of both statements can be determined explicitly,
which implies the result of Theorem 1 in both cases l = 0 and l > 0.

Other limit distributions are determined by summing the terms P{ν = m,
N+(m) = k, N−(ν) = l, W = j}. Only under additional assumptions can these distri-
butions be simplified. Let us deal with such a particular case that generalizes Theorem
5.1 in Gut and Hüsler [9]. The formulas and the sums or integrals can be simplified,
for instance, if the impact of the strengthening strokes is asymptotically negligible
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(i.e., when ak,h = ah for all k and h). In this case, we consider the limit distribution of
ν and Tν .

Theorem 3: If (9) and (10) hold with ak,h = ah ∈ [0, 1] for each k and h ≥ 1, then
for zβ = z/F̄(β) with z > 0,

P{ν > zβ} →
∞∑

l=0

zl

l! e−z
l−1∏
h=0

(1 − ah)

= 1 − H(z)

and

P{Tν > zβ} → 1 − H(z/μ)

as t → ∞, where μ = E(Y1) < ∞.

Proof: The assumptions imply that
∏l−1

h=0(1 − ak,h) = ∏l−1
h=0(1 − ah) =: ãl. Let

ã0 = 1.

(i) For the first statement, we start with (8) and apply assumptions (9) and (10)
to derive the limiting distribution:

P{ν > m, N−(m) > 0}

=
m∑

j=1

m−j+1∑
l=1

j−1∑
k=0

(
j − 1

k

)
Fj−1−k(γ ) [F̄(γ ) − F̄(β)]k

×
(

m − j

l − 1

)
Fm−j−l+1(β)

l∏
h=1

[F̄(β) − F̄(αk,h−1)]

∼
m∑

j=1

m−j+1∑
l=1

j−1∑
k=0

(
j − 1

k

)
Fj−1−k(γ ) [F̄(γ ) − F̄(β)]k

×
(

m − j

l − 1

)
Fm−j−l+1(β) F̄l(β)ãl.

Now, using that the sum on k can be simplified because it is a binomial sum,
we get for this sum,

(F(γ ) + F̄(γ ) − F̄(β))j−1 = (F(β))j−1

=
m∑

j=1

m−j+1∑
l=1

Fj−1(β)

(
m − j

l − 1

)
Fm−j−l+1(β)F̄l(β)ãl

=
m∑

l=1

m−l+1∑
j=1

(
m − j

l − 1

)
Fm−l(β)F̄l(β)ãl
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=
m∑

l=1

(
m

l

)
Fm−l(β)F̄l(β)ãl

→
∞∑

l=1

zl

l! exp(−z)ãl

using the normalization m = z/F̄(β), which tends to ∞.

(ii) The second statement is immediate by applying the weak law of large

numbers for Tν/ν
p→ μ, as t → ∞. �

In other more general cases we have to sum the terms of Theorem 2 to get the
limit distribution of ν and Tν . Notice also that the dependence between Xk and Yk has
no influence on the limit distribution of Tν .

4. A LINKTO URN-BASED SHOCK MODELS

A nonparametric approach to shock models has been recently proposed in Cirillo and
Hüsler [1,2]. These nonparametric models are based on combinatorial processes and,
in particular, on combinations of Polya-like urn schemes. Extreme shock models are
modeled in Cirillo and Hüsler [2] using a special version of the reinforced urn process
of Muliere, Secchi, and Walker [10], which allows for a Bayesian nonparametric
treatment of shock models.

Generalized extreme shock models are instead modeled in Cirillo and Hüsler [1]
by the means of a particular triangular Polya-like urn. This new model is called the
urn-based generalized extreme shock model (UbGESM). In the following we aim to
show that a similar construction could also be applied, with some modifications, to
the increasing threshold shock model we have introduced in Section 2.

For completeness, let us briefly recall the UbGESM. The basic characteristic of
the UbGESM construction is to get around the definition of the decreasing threshold
mechanism of GESMs, as developed in Gut and Hüsler [9], by creating three different
risk areas for the system (no risk or safe, risky, and default), by linking every area to
a particular color, and by working with the probability for the process to enter each
area. If every time the process enters the risky area the probability of failing increases,
this can be obtained with a triangular reinforcement matrix—such a modeling can
be considered a sort of intuitive approach to GESMs. In some sense, reinforcing the
probability for the system to fail is like making the risky threshold move down and
vice versa.

The authors consider an urn containing balls of three different colors: x (safe),
y (risky), and w (default). The process evolves as follows:

1. At time n, a ball is sampled from the urn. The probability of sampling a
particular ball depends on the urn composition after time n − 1,
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2. According to the color of the sampled ball, the process enters (or remains in)
one of the three states of risk. For example, if the sampled ball is of type x,
the process is in a safe state, whereas it fails if the chosen ball is w,

3. The urn is then reinforced according to its reinforcement matrix RM (balanced
and constant over time). It means that if the sampled ball is of type x, then (it
is replaced and) θ x-balls are added to the urn; if the sampled ball is of type
y, then δ y-balls, and λ z-balls are added, and if the sampled ball is of type z,
then θ z-balls are added.

RM =
x
y
w

x y w⎡
⎣ 1 + θ 0 0

0 1 + δ λ

0 0 1 + θ

⎤
⎦, (11)

where λ = θ − δ.

The distribution and the main properties of the urn process can be described
analytically through the analysis of its generating function2; see the details in Cirillo
and Hüsler [2]. In particular, we can state the following theorem.

Theorem 4 (Cirillo and Hüsler [1]): Let Xn, Yn, and Wn represent the number of
x-, y-, and w-balls in the urn at time n. Their moments show to be hypergeometric
functions (i.e., finite linear combinations of products and quotients of Euler Gamma
functions). In particular, the moments of order l are given by

E [(Xn)l] = θ l (a0/θ)(l)

(t0/θ)(l)
nl + O(nl−1),

E [(Yn)l] = δl (b0/δ)
(l)

(t0/θ)(lδ/θ)
nlδ/θ + O(n(l−1)δ/θ ),

E [(Wn)l] = λl (t0 − a0/θ)(l)

(t0/θ)(lλ/θ)
nlδ/θ + O(n(l−1)δ/θ ),

where t0 = a0 + b0 + c0, λ = θ − δ, and (·)(n) = �(x + n)/�(x) represents the
standard Pochhammer formula.

Other results about the limit law of Xn, Yn, and Wn can be found in Cirillo and
Hüsler [1], together with results about the asymptotic exchangeability of the triangular
urn process and its use from a Bayesian point of view.

The UbGESM is shown to be very flexible and it is able to indirectly reproduce
all the main results of Gut and Hüsler [9]. For example, computing the probability

2 The generating function of urn histories (gfuhs) is a generating function of the form H(z; x, y, w) =∑∞
n=0 fn(x, y, w)(zn/n!), where fn(x, y, w) is a counting function that counts the number of x-, y-, and

w-balls in sampling sequences of length n. The gfuh is then that generating function which enumerates all
the possible compositions of the urn at time n, given its reinforcement matrix and initial composition.
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that Y10 = b0 + 1 is like asking which is the probability for the system to overcome
the risky threshold for the first time in n = 10. In the same way, P [Wn = c0 + 1]
represents the probability for the model to fail at time n.

To model the possibly increasing threshold using the urn-based approach, we
need to introduce a four-color (x, u, y, w) urn, with initial composition (a0, d0, b0, c0).
A possible reinforcement matrix3 can be the following:

RM2 =
x
u
y
w

x u y w⎡
⎢⎢⎣

1 + θ 0 0 0
θ 1 0 0
0 0 1 + δ λ

0 0 0 1 + θ

⎤
⎥⎥⎦. (12)

This matrix tells us that the balls of color x, y, and w behave as in the standard
UbGESM, whereas balls of color u represent the strengthening shock. In fact, every
time a u-ball is sampled, the ball is not replaced in the urn and θ x-balls are added
instead. For what concerns the process, it remains in the state it is actually visiting.
In this way, some strengthening shocks might increase the probability of entering or
remaining in the safe state, indirectly reproducing the increasing threshold mechanism
for running-in. If we want all of the u-balls to be removed sooner or later, in order
to avoid further strengthening shocks, we can, for example modify the second row of
the RM2 matrix by a changing θ with θ + 1 and 1 with 0.

Theorem 5: Consider an urn process characterized by the reinforcement matrix RM2

and with an initial composition (a0, d0, b0, c0) of balls. The five-variable gfuhs is:

H(z; x, u, y, w) = xa0 ud0 yb0 wc0(1 − θxθuz)−(a0+d0/θ)(1 − θwθ z)−c0/θ

×
(

1 − yδw−δ
(

1 − (1 − θwθ z)
δ
θ

))−b0/δ

.

Proof: First, notice that states x and u are not directly dependent on states y and w
through reinforcement and vice versa. Hence matrix RM2 can be seen as a combination
of a records urn (Flajolet et al. [4]) for x and u and a triangular urn for y and w. The
result then comes from a direct application of the isomorphism theorem of Flajolet,
Gabarro, and Pekari [5]. �

Given the gfuhs, we can then study the evolution of the balls in the urn as in
Cirillo and Hüsler [1].

3 We could also think of a sacrificial urn (Flajolet, Dumas, and Puyhaubert [4]), in which w-balls are
removed every time a u-ball is sampled.
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Theorem 6: Let Xn, Un, Yn, and Wn represent the number of x-, u-, y-, and w-balls in
the urn at time n. Their moments of order l are given by

E [(Xn)l] = θ l (a0 + d0/θ)(l)

(t0/θ)(l)
nl + O(nl−1),

E [(Un)l] = d0

E [(Yn)l] = δl (b0/δ)
(l)

(t0/θ)(lδ/θ)
nlδ/θ + O(n(l−1)δ/θ ),

E [(Wn)l] = λl ((t0 − a0/θ))(l)

(t0/θ)(lλ/θ)
nlδ/θ + O(n(l−1)δ/θ ),

where t0 = a0 + b0 + c0 + d0 and λ = θ − δ.

Proof: Matrix RM2 can be seen as a combination of a records urn for x and u and a
triangular urn for y and w. In particular, notice that the number of u-balls does not vary
over time. For what concerns Xn, Yn, and Wn, we only show the proof for y-balls, as
the methodology is always the same. Set Cn = �(n + 1)/(t0/θ)(n). Taking derivatives
of the multivariate generating function, one has

E[(Yn)l] = E [Yn(Yn − 1) · · · (Yn − l + 1)] = Cn
[
zn

] ∂ lH

∂yl
|x=1,w=1,

where [zn] represents the standard notation for the operation of coefficient extraction
(let f (X) = ∑∞

i=0 uizi be a generating function, then [zm] f (z) = [zm]
∑∞

i=0 aizi = am).
With some simple manipulations, we have that

E [(Yn)l] = Cn

[(
b0

δ

)(l)

(1 − θz)−(t0+lθ)δ/θ +
(

b1

δ

)(l)

(1 − θz)−(t0+(l−1)θ)δ/θ + · · ·
]

.

At this point, noting that for γ1 < γ2, [zn] (1 − z)−γ1 = o([zn] (1 − z)−γ2), we discover
that only the first term influences the asymptotic behavior. So, thanks to a coefficient
extraction with respect to z, we get the desired result. �

At this point, as shown in Flajolet et al. [4] or in Cirillo and Hüsler [1], one can
study all of the other properties of the urn process. Such a study goes beyond the scope
of the present section, whose aim is simply to build a bridge between generalized shock
models with increasing threshold and urn-based shock models. It goes without saying
that several different urn processes can be used to develop the alternative modeling.

5. CONCLUSION

We have proposed an extension of the GESM by introducing a possibly increasing
failure threshold. Although standard models assume that the crucial threshold for the
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system might only decrease over time, because of weakening shocks and obsoles-
cence, we have assumed that, in particular at the beginning of the system’s life, some
strengthening shocks might increase the system tolerance to large shock, as it happens
in running-in phases. This is, for example, the case of turbines’breaking-in in the field
of engineering. However, other fields of applications are easily identifiable. On the
basis of parametric assumptions, we have provided theoretical results and derived
some exact and asymptotic univariate and multivariate distributions for the model.

In the last part of the article we have also shown how to link the new model to
some recent urn-based nonparametric approaches proposed in the literature [1].
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