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Laboratory experiments and direct numerical simulations are employed to investigate
lock-exchange gravity currents propagating over close-packed, fixed porous beds of
monodisperse spherical particles, and to quantify the mass and momentum transfer
between the currents and the bed. The simulations show that the mass exchange of the
current with the bed involves two separate steps that operate on different time scales. In a
first step, the dense current front rapidly sweeps away the resident fluid in the exposed pore
spaces between the top layer of spheres, while in a second step, a buoyancy-driven vertical
exchange flow between the current and the deeper pores is set up that takes significantly
longer to develop. This process depends on the permeability of the bed, which in turn is
a function of the particle diameter. The momentum exchange between the current and the
bed strongly depends on the ratio of the particle size to the viscous sublayer of the current.
The bottom friction is moderate when the particle size is smaller than or comparable to
the thickness of the viscous sublayer, but it jumps for particles that strongly protrude from
the sublayer, leading to a more rapid deceleration of the flow.

Key words: gravity currents, topographic effects

1. Introduction

Density differences associated with lateral temperature, salinity or sediment
concentration gradients frequently trigger the formation of gravity currents, a class of
predominantly horizontal flows that are ubiquitous in the natural environment. Examples
concern such phenomena as thunderstorm outflows, haboobs, sea-breeze fronts, flows over
sills, turbidity currents and plumes from desalination plants (Simpson 1999; Ungarish
2009; Meiburg & Kneller 2010).

The central role that gravity currents play in a wide range of environmental settings
and technical applications has motivated an extensive body of theoretical, computational
and laboratory studies, along with detailed field measurements. A majority of these
have focused on flows propagating over smooth, horizontal boundaries, such as the
lock-exchange experiments by Huppert & Simpson (1980), Shin, Dalziel & Linden
(2004), Marino, Thomas & Linden (2005) and Adduce, Sciortino & Proietti (2011),
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as well as corresponding large-scale simulations by Härtel, Meiburg & Necker (2000),
Cantero, Balachandar & Garcia (2007), Oezgoekmen, Iliescu & Fischer (2009), Ooi,
Constantinescu & Weber (2009) and Rocca et al. (2012), among others. These studies
demonstrate the existence of different stages in the life of a gravity current. Following the
initial collapse, the current undergoes a slumping phase characterized by a constant front
velocity. Once there is insufficient fluid left in the lock to maintain this front speed, the
current decelerates, until eventually viscous effects become dominant and slow the current
down further.

Motivated by applications in which gravity currents propagate over a complex bottom
topography, several recent studies have addressed the effects of rough boundaries in such
flows. The experiments by Peters & Venart (2000), in which dense fluid is injected
through an inlet entry box, show a slower slumping phase velocity as compared to a
smooth bed, along with an earlier onset of the viscous phase. The authors, furthermore,
observe enhanced fluid mixing close to the bottom boundary. These findings are consistent
with the large-eddy simulations (LES) of Tokyay, Constantinescu & Meiburg (2011),
who find that the current speed decays more quickly when the bottom roughness
exerts an increased drag force on the current. Nasr-Azadani & Meiburg (2014) employ
direct numerical simulations to investigate the three-dimensional vortical flow structures
generated when a turbidity current propagates over topographical features such as a
Gaussian bump, along with their effects on mixing and entrainment. The recent LES
simulations by Bhaganagar & Pillalamarri (2017) address lock-exchange currents over
square and triangular roughness elements, with a special emphasis on the role of the
friction Reynolds number. Ozan, Constantinescu & Hogg (2015) highlight the role of
dilution in gravity currents propagating over arrays with horizontal axes. Wilson, Friedrich
& Stevens (2017) find that a rectangular obstacle initially increases the entrainment of
ambient fluid into the current, whereas during the subsequent re-establishment phase this
entrainment rate decreases below that of a smooth bed current.

Qualitatively different behaviour is observed for high Reynolds number flows
propagating over terrain that is both rough and porous. Several investigations address
stratified and homogeneous flows through emergent canopies (Huq et al. 2007; Belcher,
Harman & Finnigan 2012; Nepf 2012). These exert increased drag on the current and
significantly modify its turbulence properties. Cenedese, Nokes & Hyatt (2018) explore the
role of arrays of vertical circular cylinders on gravity currents. For large periodic spacings
between the cylinders they find that the currents travel through the cylinder arrays, while
for dense arrays they propagate over the top. Ottolenghi, Cenedese & Adduce (2017) find
that similar regimes exist when the rough boundary is sloping and with the presence of
rotation. They additionally note that both the roughness and the slope of the bed increase
entrainment of ambient fluid into the current. Zhou et al. (2017) identify additional flow
regimes when the cylinders are non-equidistant. Zhang & Nepf (2011) and Yuksel-Ozan,
Constantinescu & Nepf (2016) find similar behaviour in the context of buoyant gravity
currents interacting with floating cylinders.

The present investigation focuses on lock-exchange gravity currents propagating over
fixed porous granular beds with rough surfaces and regular matrix structures that impede
vertical fluid motion. We are particularly interested in exploring the mechanisms that
govern the fluid exchange and momentum transfer between the gravity current and the
underlying porous bed, and in how this current/bed interaction will modify the height and
velocity of the front, as well as the bottom friction it experiences. These flow properties,
along with the mixing of current and ambient fluid, will be analysed as a function of
the bed structure. Some preliminary guidance is provided by previous numerical (Fang
et al. 2018; Leonardi et al. 2018) and experimental (Manes et al. 2009; Pokrajac &
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Manes 2009) studies of constant-density flows over beds of fixed spherical particles. These
demonstrate that the bed structure can significantly affect the flow resistance, consistent
with findings by Nogueira et al. (2013) and Jiang & Liu (2018) for gravity currents over
gravel beds of different sizes. These authors observe a reduction in the slumping phase
velocity for all cases except the largest gravel size. Further, Nogueira et al. (2014) observe
repeated stretching and breaking cycles in the head of the current with the breaking
period increasing with roughness of this type. Kyrousi et al. (2018) extend this line of
inquiry to gravity currents propagating over erodible beds, and find that particle erosion
is strongest near the head of the current. This is also observed by Zordan et al. (2018)
and Zordan, Schleiss & Franca (2019) who show the significance of initial conditions and
bed material size. They observe a feedback loop where the bed shear stress and the bed
material mutually affect one another.

We employ model porous sediment beds consisting of layers of close-packed, fixed,
monodisperse spherical particles, whose diameters are unaltered at 10 mm. The depth
of the bed will be modified by considering one, two or three layers of spheres. By
combining laboratory experiments with direct numerical simulations, we are able to obtain
insight into the governing mechanisms over a wide range of spatial and temporal scales,
with a particular focus on the detailed flow properties at the current/bed interface. The
experimental set-up and the simulation framework are described in depth in § 2. Section 3
presents the primary experimental and numerical findings with regard to front height and
speed, as well as the structure of the concentration and velocity profiles within the current.
Experimental measurements and simulation results are compared in detail and, where
applicable, reasons for discrepancies are discussed. Section 4 aims to provide explanations
for the observations of § 3, by analysing the mass and momentum transfer between the
current and the bed in detail. The key findings and main conclusions are presented in § 5.

2. Methods

2.1. Experiments
Experiments were conducted in a clear Perspex channel as shown in figure 1, with
streamwise and spanwise dimensions L̃x × L̃z = 6.2 m × 0.25 m. The left end consisted
of a 1 m long lock containing dense fluid, sealed off from the lighter, ambient fluid to the
right by an approximately 1 mm thick stainless steel gate in plastic foam. The lock was
followed by a 3 m long porous bed of d̃p = 10 mm glass spheres arranged in a hexagonal
close-packed structure. The number of sphere layers Nl was varied between one and three,
and total free surface fluid depths L̃y of 100, 150, 200 and 270 mm were employed, with
the depth of the fluid in the lock being equal to the depth of the ambient fluid. The above
depths represent the target values, which differed somewhat from the actual measured
values as listed in table 1.

A relative density difference Δρ = ρ2 − ρ1 of approximately 0.5 % between the lock
and ambient fluids was generated by mixing salt into the lock with a concentration of
4 g l−1, giving a density ρ2 ≈ 1001.5 kg m−3, and by adding 14.7 ml l−1 of denatured
alcohol to the ambient fluid, which resulted in a density ρ1 ≈ 996.5 kg m−3. At these
concentrations the two fluids had matching refractive indices of n = 1.3336. The exact
fluid densities, as measured with an Anton Parr density meter, are given in table 1. The
Anton Parr density meter measured density with an accuracy of ±0.004 g l−1. The table
furthermore provides the experimental bed height η̃, which is defined by the top of the
uppermost layer of spheres, and the unobstructed water depth H̃ = L̃y − η̃ (free depth).
Symbols that occur both in dimensional and non-dimensional form include a tilde when
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FIGURE 1. Sketch of the experimental apparatus. Initially, the dense fluid in the lock on the left
is separated from the lighter, ambient fluid on the right by a gate. These have identical depths
from the base of the channel to a free surface. Upon removal of the gate, a dense gravity current
forms that propagates over a fixed porous bed consisting of layers of close-packed, monodisperse
spherical particles.

Name NC L̃y (cm) η (cm) H̃ (cm) Δρ (g l−1) UH (cm s−1) ReH Fr|t/TH=20

E1L10 3 10.5 1.00 9.50 5.52 7.19 6827 0.424
E1L15 4 15.2 1.00 14.2 5.6 8.85 12 567 0.428
E1L20 3 20.0 1.00 19.00 5.58 10.2 19 411 0.441
E1L27 3 27.6 1.00 26.60 5.14 11.60 30 863 0.447
E2L10 3 11.4 1.82 9.58 5.20 7.06 6764 0.4
E2L15 3 15.8 1.82 13.98 5.87 8.99 12 574 0.415
E2L20 3 20.2 1.82 18.38 5.45 9.93 18 255 0.418
E2L27 3 27.5 1.82 25.68 5.36 11.64 29 907 0.439
E3L10 4 10.2 2.63 7.57 5.42 6.35 4808 0.375
E3L15 4 15.2 2.63 12.57 5.66 8.37 10 520 0.413
E3L20 4 20.4 2.63 17.77 5.46 9.77 17 367 0.429
E3L27 4 27.2 2.63 24.57 5.20 11.21 27 547 0.444
E0L20 4 20.0 0 20.0 5.51 10.42 20 840 0.463

TABLE 1. Parameters of the experiments that measure the width-averaged density field via the
LA technique. The naming convention ‘EaLb’, where a, b are numbers, is as follows: E indicates
an experimental run, a represents the number of particle layers and b is the targeted total water
depth in cm.

dimensional. We obtain characteristic scales in the form of a buoyancy velocity UH and
convective time TH as

UH =
√

ΔρgH̃
ρ0

, TH = H̃/UH, (2.1a,b)

where g = 9.81 m s−2 indicates the gravitational acceleration. For simplicity, we take as
the reference density ρ0 = 1000 kg m−3. The above scales will be referred to as free depth
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scales. A Reynolds number based on H̃ is calculated accordingly as

ReH = UHH̃/ν, (2.2)

where the kinematic viscosity is taken as ν = 10−6 m2 s−1. By interpolating values
from Khattab et al. (2012) it was calculated that the denatured alcohol mixture at room
temperature had a kinematic viscosity of 1.05 × 10−6 m2 s−1, which was negligibly
different to that of fresh water.

At 25 ◦C the diffusivities of ethanol in water, κ = 1.24 × 10−9 m s−1, and of salt in
water, κ ≈ 1.6 × 10−9 m s−1 are approximately equal (Lide 2003), so that we can combine
them into one effective concentration field c on which the density depends in a linear
fashion

ρ = ρ1 + Δρ

ρ1
c. (2.3)

For simplicity, we will refer to c as salinity from here on.
Flow data were captured by four JAI GO-5101C-PGE cameras with zoom lenses and

frame rates of 22.701 Hz. The locations of these cameras are shown in figure 1. The
cameras captured images with resolutions of 2464 × 2056 pixels, which were transferred
directly to a fast hard drive on a PC during image capture. The regions within the bed were
excluded from the experimental analysis because of the difference between the refractive
indices of the fluid and the spheres, and the resulting optical distortion. The distance from
the removable gate to the end of the last viewing window was 2.85 m. Some of the early
experiments used only three cameras, as viewing window 0 was added later to the set-up.
We remark that while information about the flow inside the bed could not be obtained
from the experiments, such information was obtained from the simulations, highlighting
the value of the combined study. Repeats of some of these experiments were carried out
using single camera windows in order to identify errors associated with the measured
variables.

Velocity fields were measured using the particle tracking velocimetry (PTV) technique,
implemented in our in-house software Streams (Nokes 2019). Towards this end the flow
was seeded with particles of pliolite resin (d = 180 − 250 μm) that remained suspended
in, and moved with, the flow. The particles were illuminated from above by a 10 mm wide
light sheet generated by an array of LED lights shining through a slot along the centre line
(at z = 125 mm) of the channel. A width of 10 mm was slightly larger than the width
of lasers commonly used for measuring velocities through particle image velocimetry
experiments, for example by Zhang & Nepf (2011). The larger light sheet meant that
the resulting velocity fields were slightly more averaged in the z direction than other
experimental studies. The wider light sheet is also preferable for PTV experiments as
it ensures particles being tracked between frames are retained within the light sheet for
longer. Two-dimensional velocity fields were obtained by tracking the paths of the particles
through time and interpolating particle-based velocities onto a rectangular Eulerian grid
of Nx × Ny = 4 mm × 2 mm.

Two dimensional, width-averaged density fields were generated using a light attenuation
(LA) technique, using Streams. These experiments were carried out separately from
the PTV experiments because for LA, illumination was provided from the rear side of
the flume by a bank of LED lights, placed behind a diffuser sheet. The system was
calibrated by filling the flume with seven different red dye/salt solutions and recording
the ratio of red to green light at each pixel in the measurement region. Pixel-by-pixel
calibration enabled conversion from the measured red-to-green light ratios to density in
the actual experiments. These were finally interpolated onto a rectangular Eulerian grid of
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Name L̃y (cm) η (cm) H̃ (cm) Δρ (g l−1) UH (cm s−1) ReH ReL

E1L10 10.5 1.00 9.5 5.62 7.25 6900 8006
E1L15 14.8 1.00 13.8 5.32 8.50 11 729 13 027
E1L20 19.3 1.00 18.3 5.58 10.02 18 344 19 868
E1L27 27.2 1.00 26.2 5.54 11.95 31 314 33 124
E2L10 10.6 1.82 8.78 5.53 6.91 6073 8050
E2L15 15.3 1.82 13.48 6.00 8.93 12 038 14 550
E2L20 20.4 1.82 15.58 5.55 10.08 18 724 21 535
E2L27 27.3 1.82 25.48 5.54 11.79 30 056 33 325
E3L10 10.4 2.63 7.77 5.58 6.54 5078 7867
E3L15 15.2 2.63 12.57 6.24 8.79 11 053 14 701
E3L20 20.5 2.63 17.87 5.76 10.07 17 984 22 101
E3L27 25.2 2.63 22.57 6.13 11.6 26 360 31 103

TABLE 2. Experiments carried out with PTV.

Nx × Ny = 4 mm × 2 mm. The experiments listed in tables 1 and 2 were carried out
employing the LA and PTV techniques, respectively. Because some of the LA experiments
involved an additional camera, an extra column showing number of cameras, Nc, is
included in the table to note whether or not the camera with viewing window 0 was
employed.

2.2. Mathematical model
Since the simulations consider the flow both above and inside the bed, i.e. across the entire
flume height, they employ the total water depth in the flume L̃y as the characteristic length
scale. The time TL, velocity UL and pressure PL scales are chosen accordingly as

UL =
√

gL̃yΔρ/ρ0, TL = L̃y/UL, PL = U 2
Lρ0. (2.4a–c)

We will refer to these as flume scales, as they are based on L̃y . Since the non-dimensional
free depth is given as H = H̃/L̃y , the flume-scale velocity and the free depth velocity are
related to each other as

UH = UH/UL = H1/2, (2.5)

while for the corresponding time scales we have

TH = TH/TL = H1/2. (2.6)

The initial lock-release configuration is sketched in figure 2, using the non-dimensional
notation. On the left, dense fluid of salinity c = 1 is located in a lock of length x0. The
fluid is at rest initially. To facilitate the evolution of three-dimensional flow structures,
we perturb the initial density field slightly with random numbers distributed evenly in the
interval between −5 × 10−3 and 5 × 10−3.

The bottom of the computational domain is covered with Nl layers of fixed spheres
(dark grey) of diameter dp arranged in closest hexagonal packing, giving rise to a bed
height of η = dp + (Nl − 1)

√
6/3dp. In contrast to the experiments, the particle layers in

the simulations also cover the bottom of the lock, in order to avoid the presence of an
effective forward-facing step at the gate location.
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H

c = 1 c = 0
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x0 g
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η
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FIGURE 2. Sketch of the numerical set-up for simulating lock-exchange gravity currents over
fixed porous beds of monodisperse spherical particles arranged in periodic, close-packed
configurations.

We employ the Navier–Stokes equation in the Boussinesq approximation

∇ · u = 0, (2.7)

∂tu + u · ∇u = −∇p + Re−1
L Δu + egξf c + f , (2.8)

where the Reynolds number ReL is defined as

ReL = ULL̃y/ν. (2.9)

The non-dimensional velocity and dynamic pressure are denoted by u and p. Furthermore,
(2.8) employs the indicator function of the fluid phase ξ f (x) , i.e.

ξf (x) =
{

1 if x ∈ Ωf

0 if x ∈ Ωp
, (2.10)

where Ωf ⊂ R
3 and Ωp ⊂ R

3 denote the volumes occupied by the fluid and particle
phases, respectively. We solve (2.7) and (2.8) throughout the whole numerical domain
Ω = Ωf

⋃
Ωp = [0, Lx ] × [0, Ly] × [0, Lz] and represent the fixed spherical particles by

an immersed boundary method (IBM). The IBM method enforces the no-slip condition at
the particle surfaces

u(x) = 0 for x ∈ ∂Ωp, (2.11)

via the force density term f in (2.8) (Biegert, Vowinckel & Meiburg 2017).
The salinity field c is governed by the transport equation

∂tc + u · ∇c = Pe−1
L ∇ · ξf ∇c, (2.12)

where the Péclet number

PeL = ULL̃y/κ, (2.13)

measures the ratio of salinity advection to diffusion, with κ denoting the diffusivity. The
Schmidt number

Sc = PeL/ReL = ν/κ, (2.14)

takes a value of 700 for salt in water as in the experiments. In order to save computational
resources, most simulations employ Sc = 7, so that the effective diffusivity of salt in the
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simulations is larger than in the experiments. However, several previous investigations
found that for large Re-values the effects of Sc are minimal, as long as it is greater than
one (Necker et al. 2005; Bonometti & Balachandar 2008)

The particle phase Ωp is impermeable to salt, so that

n · ∇c = 0 for x ∈ ∂Ωp, (2.15)

where n denotes the outward normal to the particle boundary.
The left and bottom walls of the flume are treated as no-slip boundaries while

the spanwise direction is periodic, except simulation S0L15A, where no-slip boundary
conditions are employed in the spanwise direction.

The water surface is assumed to be rigid and stress free

∂yux(x, t) = ∂yuz(x, t) = uy(x, t) = 0 for y = Ly. (2.16)

Since the channel length in the simulations is shorter than in the experiments, we treat the
end wall at x = Lx as a stress-free boundary

∂x uy(x, t) = ∂x uz(x, t) = ux(x, t) = 0 for x = Lx , (2.17)

which mimics a longer channel more closely than a no-slip condition. Table 3 provides the
parameter values for the various simulations.

Three of the simulations provide close matches for the experimental Reynolds number
values and bed geometries: E3L15 ↔ S3L15B, E1L15 ↔ S1L15A and E3L10 ↔ S3L10A.
We also compare the experiments with water depth of 20 cm against simulations with
lower Reynolds numbers: E0L20 ↔ S0L15A as well as E3L20 ↔ S3L20A, respectively.
All of these have sufficiently large Reynolds numbers so that the flow properties do not
depend strongly on this parameter. Simulations S0L15C and S3L20B explore the effect
of a lowered Schmidt number value Sc = 1. For the experimental configuration with the
shallowest water depth and three layers of spheres we simulate two additional cases with
increased Reynolds number, viz. S3L10B and S3L10C, cf. table 3.

2.3. Numerical method
The simulation domain is discretized by a Cartesian grid of Nx × Ny × Nz equidistant
cells, with the variables arranged according to the marker-and-cell approach (Ferziger
& Peric 2012). All derivatives are obtained with second-order central finite differences,
except for the advection term in the salinity transport equation (2.12), which is discretized
by the third-order accurate quadratic upstream interpolation for convective kinematics
(QUICK) scheme (Leonard 1979). Thus the overall spatial accuracy of the numerical
approach is of second order. Time integration is performed with a third-order Runge–Kutta
method. The surface of the particles is represented by discrete Lagrangian markers, at
which the no-slip condition is enforced by the IBM, as described in detail by Biegert et al.
(2017).

In the transport equation for the salinity field, the diffusive flux vanishes inside the
particles. This is implemented via the fluid phase indicator function ξf , by employing a
volume of fluid approach (Prosperetti & Tryggvason 2009) along the lines of Ardekani
et al. (2018). We validated our implementation by comparing with test problems such
as the heat transfer problem of Ardekani et al. (2018), settling of a sphere in a stratified
environment (Doostmohammadi, Dabiri & Ardekani 2014) and the effective diffusivity of
a random suspension of fixed spheres (Jeffrey 1973).
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Name dp Lx × Ly × Lz η Nx × Ny × Nz ReL PeL ReH 〈vF〉τ /UH [τ0, τ1] Fr|t=20TH

S0L15A — 21 × 1 × 1.2 0 11 000 × 500 × 600 10 000 70 000 10 000 0.429 [12.5,24] 0.429
S0L15B — 16 × 1 × 1.2 0 8000 × 500 × 600 10 000 70 000 10 000 0.434 [12.5,24] 0.434
S0L15C — 16 × 1 × 1.2 0 8000 × 500 × 600 10 000 10 000 10 000 0.426 [12.5,24] 0.426
S1L15A 0.066 16 × 1 × 1.2 0.066 9600 × 600 × 720 11 893 83 251 10 724 0.423 [13,25] 0.422
S3L10A 0.1 12.5 × 1 × 1.25 0.2633 4500 × 360 × 450 7004 70 000 4429 0.400 [13.5,18.5] 0.400
S3L10B 0.1 16 × 1 × 1.2 0.2633 8000 × 500 × 600 12 652 88 563 8000 0.381 [13.5,25] 0.384
S3L10C 0.1 16 × 1 × 1.2 0.2633 9600 × 600 × 720 17 397 121 774 11 000 0.376 [13.5,25] 0.380
S3L15A 0.066 12.5 × 1 × 1.2 0.1755 6250 × 500 × 600 10 000 70 000 7486 0.424 [13,17] 0.440
S3L15B 0.066 16 × 1 × 1.2 0.1755 9600 × 600 × 720 13 832 96 824 10 355 0.420 [13,25] 0.423
S3L15C 0.066 16 × 1 × 1.2 0.1755 9600 × 600 × 720 13 832 13 832 10 355 0.418 [13,25] 0.419
S3L20A 0.05 16 × 1 × 1.2 0.1316 8000 × 500 × 600 10 000 70 000 8092 0.428 [13,25] 0.427

TABLE 3. Physical and numerical simulation parameters. Similar to the experiments, the naming convention ‘SaLb’, where a, b are numbers, is as
follows: S indicates a simulation run, a represents the number of particle layers and b is the target value of total water depth L̃y in cm, which includes
the height of the particles. All simulations employ periodic spanwise boundary conditions with the exception of simulation S0L15A, which uses
no-slip conditions. Simulation S0L15C is initialized with the data of simulation S0L15B at t = 10. The last three columns show quantities related to
the linear fit, (3.7), applied to the time interval [τ0, τ1]. These are the averaged front velocity 〈vF〉τ , and the densimetric Froude number evaluated at
t = 20TH .
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3. Experimental and numerical results

3.1. Definitions and metrics
We will employ the notation of § 2.2, as sketched in figure 2, with dimensionless quantities
based on the flume scales (2.4a–c). Here, the bottom wall of the flume is located at y = 0,
and y = η denotes the top of the bed. However, at times it will be more meaningful to
compare dimensionless quantities based on the free depth scales, which can be obtained
by normalizing the dimensionless quantities based on the flume scales with TH and UH , as
defined in (2.6) and (2.5), respectively. The origin is defined in space as the position of the
lock gate in and in time as the original lock lift time. The experiments are only analysed
while they are in the slumping phase, i.e. before the lock runs out of fluid to constantly
drive the currents.

We define the buoyant height h by the integral over the concentration above the bed
(Shin et al. 2004)

h(x, t) =
∫ 1

η

〈c〉z dy, (3.1)

where the angled brackets denote the average in the direction of the subscript, i.e. 〈c〉z
is the concentration averaged in the spanwise z-direction. This height is indicative of the
buoyant driving force within the current, depending on both the salinity within the current
and the vertical extent of the current. The front location xF(t) of the gravity current is
then determined as the rightmost location at which h(x, t) = 0.1, so that we subsequently
obtain the front speed vF(t) as

vF(t) = dxF(t)
dt

. (3.2)

We furthermore define the current envelope hc(x, t) via the maximum y-locations where
the spanwise-averaged density has the value 0.02. We observed repeat experiments
utilizing single camera windows to identify the errors associated with these parameters. It
was found for trends in these parameters the range of these repeats did not exceed 3 %.

3.2. Overview of the gravity current development
The c = 0.1 salinity contours shown in figure 3 demonstrate the spatio-temporal
development of the flow for the representative simulation S3L15B, with dp = 0.066 and
ReH = 10 355. At t/TH = 3.3, the current displays coherent spanwise Kelvin–Helmholtz
vortices, along with regular, small frontal lobes that move along the grooves between
the top layer of spheres and hence reflect the periodicity of the bed arrangement. At
t/TH = 7.7 these lobes remain nearly periodic, although their wavelength has doubled,
while the tail is already fully three-dimensional. By t/TH = 16.5 the entire current has
transitioned to a turbulent state.

Figure 4(a) displays the instantaneous salinity field in the plane z = 0.4825 for t/TH =
17.6, along with the projected velocity vectors. The current is seen to mix vigorously with
the ambient fluid along the upper interface. The close-ups in (b,c) focus on the detailed
flow features near the top of the particle bed, and indicate the numerical resolution of 40
grid cells per particle diameter, by showing the velocity vectors and salinity values at every
grid point. The close-ups furthermore visualize the fluid exchange between the current and
the bed, as dense current fluid leaks through the gaps between the spheres into the pore
spaces. In addition, they show that the flow separates from the top of the spheres, which
results in the strong deformation and folding of the fluid interface and thereby promotes
mixing.
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FIGURE 3. The c = 0.1 salinity isosurface for simulation S3L15B at times t/TH = 3.3, 7.7 and
16.5. While the early stage of the current is dominated by coherent spanwise vortices, the flow
transitions to a fully turbulent state later on.

Figure 5 displays the salinity concentration field averaged in the spanwise z-direction
over the fluid region only, 〈c〉z/〈ξf 〉z, for simulation S3L15B at times t/TH = 7.7, 12.1
and 26.4. The current front propagating above the particle bed is qualitatively similar to
that advancing over a flat bottom (Härtel et al. 2000). In addition, we observe a second
front inside the porous bed that moves much more slowly, which is consistent with earlier
experimental observations by Cenedese et al. (2018). This second, slower front is driven
by the dense fluid that leaks into the bed along the entire length of the current. The small
difference between the salinity concentration values above and inside the bed in the lock
region is due to numerical errors associated with the volume-of-fluid method, which cause
a slight diffusive salinity flux into the particles.

During the early stages of the flow, the spanwise coherent Kelvin–Helmholtz vortices
mentioned earlier mix the two fluids across nearly the entire free depth of the flow, cf.
figure 5(a). Later on, after the flow has become fully three-dimensional and turbulent,
the most intense mixing is restricted to a narrower region around the interface. Visual
inspection of the c = 0.1 concentration isosurfaces at various intermediate times (not
shown) indicates that the simulation with ReH = 10 355 (case S3L15C) transitions to
turbulence somewhat earlier than the one for ReH = 7486.2 (case S1L15A), in line with
our expectation that higher Reynolds numbers should promote more vigorous turbulence.
We note that the dense current fluid quickly enters the spaces between the upper half
of the top layer of spheres, as the resident light fluid in these exposed pores is easily
carried away by the current. The infiltration of the current fluid into the lower layers of the
sediment bed takes much longer, however, as the dense current fluid has to displace the
lighter, resident fluid via a Rayleigh–Taylor-like instability in an effective porous medium.
With time, both the buoyant height h (long–short dashed line) and the current envelope hc
(dashed line) tend to become more uniform along the length of the current, see figure 5(c)
for t/TH = 26.4.
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FIGURE 4. Concentration c (in blue) and velocity vectors in the plane z = 0.4825, for
simulation S3L15B at t/TH = 17.6. Panel (a) demonstrates that the current mixes vigorously
with the ambient fluid along the upper interface, while it also exchanges fluid with the porous
bed. The close-ups in (b,c), indicated by black rectangles in (a), highlight details of this
current–bed interaction. Panel (b) shows every grid cell, so that it provides a measure of the
spatial resolution.

Figure 6 displays the salinity concentration field averaged in the spanwise z-direction
over the fluid region only, 〈c〉z/〈ξf 〉z, for the experiment E3L15 at times t/TH = 7.7, 12.1,
and 26.4. The current front propagating above the particle bed is qualitatively similar to
the simulations shown in figure 5. The simulations show a less uniform buoyant height and
current envelope at earlier times because the experiments transitioned to a fully turbulent
state at earlier times.

Occasionally, it is preferable to analyse the flow in the reference frame moving with the
front, with the front location at the origin of the coordinate system

c+(x − ex xF(t), t) = c(x, t), (3.3)

u+(x − ex xF(t), t) = u(x, t) − vF(t)ex . (3.4)

We denote variables in this reference frame by a +-superscript. Figure 7 shows the
spanwise-averaged concentration 〈c+〉z for experiment 3L15 at two different times. In
addition to averaging in the spanwise direction, which is inherent to the LA method,
we average the distribution around the given times by ±1TH in order to smooth out
fluctuations. For comparison, we display the corresponding simulation results for t/TH =
22 in (c).

We note that the early experimental salinity field at t/TH = 5.3 does not indicate the
presence of the strong, spanwise coherent Kelvin–Helmholtz vortices that we had observed
during the initial simulation stages of the simulation, cf. figure 5(a). This is likely a result
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FIGURE 5. Spanwise-averaged salinity 〈c〉z/〈ξf 〉z in the head region of simulation S3L15B, at
times t/TH= 7.7 (a), 12.1 (b) and 26.4 (c). A conventional gravity current front propagates above
the bed, while a second front advances more slowly inside the bed. With time, both the buoyant
height h (long–short dashed line) and the envelope hc (dashed line) of the current become more
uniform along the length of the current.
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FIGURE 6. Spanwise-averaged salinity 〈c+〉z in the head region for experiment E3L15, at times
t/TH= 7.7 (a), 12.1 (b) and 26.4 (c). Current propagates above bed similarly to the simulation
counterparts in figure 5; however, with a more uniform buoyant height h (long–short dashed
line) and the envelope hc (dashed line).
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FIGURE 7. Spanwise-averaged salinity 〈c〉z in the head region for experiment E3L15, at times
t/TH = 5.3 (a) and 22 (b). The panels also include the buoyant height h (long–short dashed
line) and the current envelope hc (dashed line). Corresponding simulation results for t/TH =
22, shown in (c), are seen to agree closely with the experimental values. All distributions are
averaged around the given time for ±1TH .

of the much stronger initial perturbation introduced in the experiment by the removal of
the gate, which causes the flow to transition to a fully three-dimensional turbulent state
more rapidly than in the simulation. Nevertheless, by t/TH = 22 the experimental and
computational concentration fields agree closely, especially with regard to the buoyant
height as a function of the streamwise coordinate.

3.3. Front position and velocity
A key question concerns the influence of the porous bed on the front velocity of the
current. Figure 8 presents experimental results for the non-dimensional front location
(xF − x0)/H as function of time, where the value of zero corresponds to the front being
at the position of the lock. While (a) shows values for the single-layer flows and the
flat bottom, (b) provides corresponding data for the three-layer flows. The two-layer case
behaves qualitatively similar, so that it is not shown. Within each panel the water depth L̃y

is varied in order to assess its influence. Table 1 lists all experimental parameters.
The experimental time t̃ was normalized with the free depth time TH , and the front

position with the free depth H̃. The time t̃ = 0 corresponds to the moment when the lock
is opened. For a constant number of layers, this scaling causes the curves for the front
locations to collapse approximately, although the shallower cases still propagate somewhat
more slowly even when scaled with these free depth units, reflecting their effectively lower
Reynolds numbers. In particular, we note that the current advancing over a smooth bottom
travels only a few percentage points faster than the one propagating over a single layer of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

55
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.550


Gravity currents over fixed beds of monodisperse spheres 901 A32-15

0

0.35

0.40

0.45

0.50

0.35

0.40

0.45

0.50

10

E1L10
E1L15
E1L20
E1L27
E0L20

E3L10
E3L15

E3L27
E3L20

20 30
t/TH

v
F

/U
H

(x
F
 –

 x
0)

/H

t/TH

40 50 0 10 20 30 40 50

10 20 30 40 500

5

10

15

20

25

0

5

10

15

20

25

10 20 30 40 50

(b)(a)

(c) (d )

FIGURE 8. Front location and velocity as functions of time, for the experiments listed in
table 1. The left (right) column shows results for a single layer (three layers) of spheres. The
upper (lower) row presents the front locations (front velocities) in free depth scales.

spheres. This indicates that during the early stages of the flow, the bottom roughness and
the loss of current fluid into the porous bed of a single layer of spheres do not significantly
retard the current.

Differentiation of the location values in (a,b) yields the front velocities, shown in (c,d),
normalized with UH , as a function of time. For all water depths the front velocity ṽF/UH
decreases with time, although this trend is most pronounced for the shallow water depths,
which indicates that over time the bed roughness and porosity have a relatively larger
influence on shallower currents.

Very prominent features of the front velocity data are their strong oscillations in time,
which to the best of our knowledge had not been reported in earlier laboratory experiments.
We hypothesize that these front velocity oscillations are caused by the presence of seiche
waves generated by the removal of the lock gate. In order to test this hypothesis, let us
consider the first seiche mode in a channel, which has a wavelength λ of twice the channel
length. For our experiments this wavelength is large compared to the water depth, so that

we can consider the seiche a shallow, linear wave with a phase speed c̃w =
√

gH̃. The

period T̃w of the wave, and the maximum speed ũw of a fluid particle beneath the surface
are given by

T̃w = λ̃

c̃w
= 2L̃x√

gH̃
, (3.5)

ũw = gχ̃w

c̃w
= gχ̃w√

gH̃
, (3.6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

55
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.550


901 A32-16 T. Köllner, A. Meredith, R. Nokes and E. Meiburg

where χ̃w denotes the maximum free surface deflection of the wave, which is small
enough to be hardly visible in the experiment. For experiment E3L15 (H̃ = 0.126 m and
Lx = 6.2 m) (3.5) gives a period of T̃ = 11.2 s, or T̃/TH = 7.4. This value closely matches
the oscillation period observed for E3L15 in figure 8. For the other experiments we found
a similar level of agreement. For E3L15 the maximum velocity was 0.5 cm s−1 greater
than the mean. We employ this value as an estimate for the maximum velocity of a fluid
particle beneath the surface in the absence of the current. Equation (3.6) then yields a
maximum free surface deflection of 0.6 mm, which is small enough not to be noticed in
most laboratory set-ups. In the following discussion, we assume that the seiche waves did
not impact the mean current behaviour, beyond causing the current velocity to oscillate.
We furthermore remark that the simulations do not generate seiche modes, as they assume
a rigid upper surface.

Figure 8(c,d) includes linear fits to the front velocity data over the entire time T̃exp of
the experiments in order to better visualize the trends in the data. We fit (by means of
minimizing the squared error ε2) the slope α to the experimental data, which formally
reads as

ṽF/UH = 〈ṽF〉t/UH + α(t̃ − T̃exp/2 − t̃0)/TH + ε. (3.7)

In (3.7), the average front velocity is obtained as 〈ṽF〉t = (x̃F(T̃exp) − x̃F(t̃0))/T̃exp, where
t̃0 is the time when the front is detected initially. Moreover, we define the densimetric
Froude number

Fr(t) = ṽF(t)/UH. (3.8)

Column 9 of table 1 provides the average dimensionless front speeds. For most
experiments the front velocity decreases with time, although for the deeper cases with
only one particle layer, we observe a small increase during the analysed time interval. In
general, the currents slow down more rapidly for larger relative bed heights η̃/H̃.

We perform a corresponding fit for the simulations, although there we exclude the initial
laminar phase of the flow. The time interval t ∈ τ = [τ0, τ1] over which we evaluate the
linear fit is given in table 3. In order to conduct meaningful comparisons, we evaluate the
linear fit (3.7) at identical times t/TH = 20 for all experiments and simulations, to obtain
Fr|t/TH=20. When plotting Fr|t/TH=20 against dp/H, see figure 9, with error bars included
based on the range of repeat experiments, we find that the Froude number is primarily a
function of the relative particle size dp/H, whereas the number of layers generally plays
only a secondary role. An obvious exception to this rule is the single-layer case (square
symbol) for large dp/H, which differs substantially from the two- and three-layer cases
with a similar dp/H (star and diamond symbol), in line with the observations reported in
§ 3.4.

Cenedese et al. (2018) carried out lock-exchange experiments with similar depths to
those in the experiments reported here. They found Froude numbers similar to ours for
currents propagating over smooth beds. These are also similar to other experimental
studies of gravity currents over smooth beds (Simpson 1999; Shin et al. 2004; Cantero
et al. 2007). Cenedese et al. (2018) also carried out experiments with staggered beds of
vertically arranged circular cylinders and when these were densely distributed the currents
propagated atop the roughness. With cylinder heights of 10 mm, the same roughness
height as our experiments with 1 layer of particles, they observed Froude numbers
consistently lower than ours. We explain this by their experiments having a larger and
more unobstructed volume of fluid within the bed such that the vertical exchange of fluid
between the bed and the current head was larger than in our experiments.
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diameter dp/H and Froude number evaluated at t/TH = 20, Fr|t/TH=20. Different symbol
shapes represent different numbers of layers, with red (black) symbols representing experiments
(simulations). Error bars for experiments are based on the range of repeat experiments.
Simulations for constant dp/H but changing Reynolds and Schmidt numbers are included. The
precise parameter values can be found in table 3 (simulations) and table 1 (experiments). As a
general trend, the front velocity decreases with increasing particle size, whereas the number of
layers plays a secondary role.
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FIGURE 10. Comparison of experimental and numerical results for the front velocities/
densimetric Froude numbers. In (a) the evolution for experiment E3L15 is compared to different
simulations showing a close fit between the experiment and simulations. Panel (b) compares
experiments E0L20, E3L20, E1L15, E3L15 and E3L10 with simulations S0L15B, S3L20A,
S3L15B and S3L10A in terms of time-averaged densimetric Froude numbers 〈vF/UH〉τover ,
where cases are categorized by the non-dimensional particle diameters dp/H. For the exact
values, see table 4. These show experiments to generally have a larger front speed than the
simulations with this difference being more prominent when dp/H is small.

Figure 10(a) displays the front velocities of experiment E3L15 and the corresponding
simulation S3L15C as functions of time.

The experimental data again show the pronounced seiche oscillations, while the
simulation results exhibit somewhat smaller, more random-like variations. Nevertheless,
experimental and numerical front velocities are seen to fluctuate around comparable mean
values, and they show similar rates of decline. For a quantitative comparison, we average
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the experimental and computational front velocities over the time interval τover from
2 < t/TH < 28, in order to obtain 〈vF/UH〉τover shown in figure 10(b). The experimental
front velocities are generally slightly higher than the computational values. This difference
tends to increase as dp/H decreases, such that the difference is largest for the smooth case.
We need to keep in mind, however, that for the smooth case the experimental Reynolds
number was about twice that of the corresponding simulation, which may account for
much of this difference.

In order to assess the influence of Re and Sc on the front velocity, we carried out
two additional simulations for the smooth case. While S0L15B uses the standard set-up,
S0L15A employs no-slip sidewalls, and S0L15C has a reduced Schmidt number value of
Sc = 1. We found that the lower Sc-value slightly reduced the front velocity, while the
no-slip sidewall affected the front velocity by much less than one per cent.

3.4. Current height
The velocity of a gravity current, along with its destructive potential, are largely functions
of the buoyant height. This height, in turn, depends on the net exchange of fluid between
the frontal region and the tail section of the current, as well as on the leakage of current
fluid into the porous bed. In this section, we will present results for the buoyant height
of the current front as a function of time, and subsequently analyse the respective fluid
exchange of the front with the tail section and the bed.

Let us consider the average height hM of a current within a distance 4H behind the
front. Figure 11 presents experimental results for hM/H as a function of time for different
parameter combinations. While all experiments show a decline of hM/H with time, the rate
of this decline depends on the specific experimental conditions. Panel (a) demonstrates
that, when the number of sphere layers is held constant at three, the buoyant height
decreases more slowly in deeper water, i.e. for a larger ratio of buoyant height to bed
height, hM/η. In (b), we recognize that, in deep water, one, two and three layers of spheres
result in approximately identical buoyant heights with similar rates of decline. However,
this rate of decline is significantly larger than for a current over a flat bottom (E0L20,
orange line).

Panels (c,d) suggest that, for shallower total water depth, the difference between currents
propagating over one, two or three layers increases. Taken together, these observations
indicate that currents over porous beds behave in a fundamentally different way from those
over flat beds, and that the exact depth of the porous bed becomes influential only in
relatively shallow water. This suggests that a thick current traveling in deep water moves
so fast that only fluid from the uppermost pores gets mixed into the current front. Shallower
currents that travel more slowly, on the other hand, are more likely to allow fluid from the
lower pores to rise and become mixed into the current front. The fluid exchange between
the current and the bed will be analysed in more detail below.

Figure 12 compares the buoyant front height hM for the simulations to the corresponding
experimental values. The time-averaged values 〈hM〉τover are provided in table 4. We
note that, early on, the simulations tend to have larger buoyant front heights than the
corresponding experiments, whereas the agreement improves at later times. This may at
least partially be due to the perturbations introduced in the experiments by the removal of
the gate and by the step in the sediment bed height, which are likely to promote an earlier
transition to a fully turbulent state. Furthermore, the current height is seen to decrease for
larger Reynolds number in the shallow simulations, which may again reflect the earlier
transition to turbulence, cf. simulations S3L10A and S3L10B in figure 12(c). Finally,
(d) shows that for smooth currents a lower Schmidt number is associated with a decrease
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FIGURE 11. The spatially averaged current height hM as a function of time for four groups of
experiments: (a) constant number of particle layers, but varying water depth; (b) constant water
depth, but different numbers of layers; (c) water depth of 15 cm, varying number of layers; and
(d) water depth of 10 cm, varying number of layers.

in hM/H, while for rough beds panel (b) shows no significant difference between the
simulations for Sc = 7 and Sc = 1.

The decrease in hM indicates that the current head loses salinity either into the bed or
into the tail section of the current. This issue will be discussed in more detail below. In
order to further analyse the dilution of the current front, we calculate the height hr as the
maximum y-value where 〈c〉z = 0.1, at the fixed streamwise location x = −2H relative to
the front location of the current. Figure 13(a) shows that for the three-layer experiments
and the smooth bottom case, respectively, hr decreases with time. Figure 13(b) indicates
that hM decreases even more rapidly than hr, so that the currents not only see a reduced
height, but also become more dilute.

3.5. Streamwise velocity profiles
Figure 14 compares the streamwise velocity profiles for experiments and simulations of
gravity currents over a smooth wall, as well as over one or three layers of spherical
particles. The velocity profiles are evaluated at a distance 2H behind the front, and they are
averaged both in the spanwise direction and over the time interval 13 ≤ t/TH ≤ 15. The
peak velocities in both simulations and experiments are somewhat larger for the smooth
wall, suggesting that rough sediment beds enhance the vertical mixing of streamwise
momentum. Near the smooth wall, the velocity is smaller than near the surface of the
sediment beds, which indicates that gravity currents propagating over rough beds see a
small effective slip velocity at the bed surface. The above velocity profiles are similar to
those observed by Zhou et al. (2017) in what the authors refer to as the overflowing regime.
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FIGURE 12. Comparison of experimental and numerical results for the front height hM . The
agreement generally improves with time, which suggests that the discrepancy is mainly due to
differences in the initialization of the currents.

Name ReH η/H dp/H 〈vf 〉τover/UH 〈hM〉τover/H

E0L20 20 840 0 0 0.465 0.364
S0L15Aa 10 000 0 0 0.434 0.397
S0L15B 10 000 0 0 0.434 0.403
S0L15Cb 10 000 0 0 0.428 0.362
E1L15 12 567 0.07 0.07 0.4397 0.348
S1L15A 10 724 0.07 0.07 0.422 0.363
E3L15 10 520 0.21 0.08 0.429 0.341
S3L15B 10 355 0.21 0.08 0.423 0.358
S3L15C 10 355 0.21 0.08 0.419 0.357
E3L10 4808 0.35 0.13 0.393 0.356
S3L10A 4429 0.36 0.14 0.403 0.395
S3L10B 8000 0.36 0.14 0.393 0.351
S3L10C 11 000 0.36 0.14 0.387 0.355

TABLE 4. Experimental and simulation values of front velocities and averaged buoyant heights.
The averages are taken over τover, which is the time interval for which we have both experimental
and simulation data in figures 10 and 12, respectively.

aSimulation S0L15A was carried out with no-slip boundaries at z = 0, Lz.
bSimulations S0L15C and S3L15C were performed with Sc = 1, as compared to the standard value

of Sc = 7.
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FIGURE 13. Experimental measurements for hr/H (a), and hM/hr (b) indicate that as their
height decreases, the currents also become more dilute.
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FIGURE 14. Streamwise velocity profiles, averaged in the spanwise direction, for zero, one and
three layers of spheres. The profiles are evaluated at location x = xF − 2H, and they are averaged
over the time interval 13 ≤ t/TH ≤ 15. When employing the PTV technique, the velocity values
within approximately 3 mm of the bottom and the top of the flume are affected by reflections, so
that we do not show any experimental data in those regions.

4. Analysis of mass and momentum transfer

4.1. Mass transfer
The experimental and simulation results presented in the preceding section show several
interesting findings regarding the influence of the porous particle bed on the overall gravity
current properties. Among them are the exchange of fluid between the current and the bed,
a somewhat reduced front velocity that depends mostly on the particle size, a more rapid
decrease of the current height and front velocity with time, and a modified velocity profile
within the current due to enhanced vertical mixing of streamwise momentum. In order to
obtain more detailed insight into the mechanisms by which the particle bed effects these
changes, we now proceed to analyse the mass and momentum transfer between the current
and the bed in depth.

We begin by analysing the transport of salinity into and out of the current head, in
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FIGURE 15. Mass balance terms according to (4.2), averaged over a moving window of two
time units. The loss of current fluid into the bed (green line) increases with particle size,
while the loss of head fluid to the tail (blue dash-dotted line) decreases for larger particles.
(a) S0L15B, dp/H = 0; (b) S3L20A, dp/H = 0.056; (c) S3L15B, dp/H = 0.081; (d) S3L10B,
dp/H = 0.14.

the reference frame moving with the front. Towards this end, we focus on the control
volume M(t) = [xF(t) − xML, xF(t) + xMR] × [η, Ly] × [0, Lz], with xML = 4H and xMR =
0.5H. Integrating transport equation (2.12) over this volume and dividing by its size VM =
Mx HLz, where Mx = xML + xMR = 4.5H, yields

∂t
1

VM

∫
M

c dV = 1
VM

∫
∂M

[
vFcex − uc + Pe−1

L ∇c
] · n dA, (4.1)

with n representing the outward normal to the boundary ∂M of control volume M. By
introducing the streamwise velocity in the moving reference frame u+

x = ux − vF and
neglecting the small contributions due to diffusion, we obtain

∂t〈c〉M = 〈u+
x c+〉∂M,W

1
Mx

+ 〈u+
y c+〉∂M,S

1
H

. (4.2)

Here, the volume average over M is denoted by 〈〉M, while 〈〉∂M,W and 〈〉∂M,S indicate the
surface averages of the fluxes across the western and southern boundaries, used to define
the boundaries at x+ = −4H and y = η, respectively.
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FIGURE 16. Streamwise salinity flux in the moving reference frame 〈u+
x c+〉z,τ across the

western boundary at x+ = −4H as a function of the vertical coordinate, shown on a log scale.
Compared to a flow over a smooth wall, the flows with particle beds exhibit reduced salinity
fluxes from the head into the tail near the lower boundary, and from the tail into the head further
away from the boundary.

Figure 15 presents the temporal variation of the terms in the mass balance equation
(4.2), for one flow over a smooth wall and three flows over three particle layers of different
size. We observe that over time all current heads lose salinity, although the loss rate tends
to decrease with time for all flows except the one with the largest particles. The relatively
large temporal fluctuations in the rate of loss to the current tail may be related to vortical
structures as well as variations in the interface height. Interestingly, the loss of current
fluid into the bed increases with particle size dp/H, whereas the loss of salinity to the tail
(blue dashed-dotted line) decreases. The reasons behind this influence of the particle size
will be discussed below.

Figure 16 presents simulation results in the moving reference frame for the averaged
salinity flux 〈c+u+

x 〉z,τ across the western boundary at x+ = −4H. The profiles shown
are averaged over a time interval τ = [τ0, τ1] that excludes the initial laminar evolution,
with the specific time values provided in table 3. Compared to the flow over a smooth
wall, the flows with particle layers exhibit lower salinity fluxes from the head into the tail
just above y = η, and from the tail into the head further away from the lower boundary.
This observation is consistent with the velocity profiles shown in figure 14, and it reflects
the influence of the effective slip velocity at y = η mentioned earlier for the flows over
particle beds, along with increased vertical mixing in those flows. We will further explore
the vertical mixing of momentum in § 4.2.

Figure 17 analyses the time-averaged salinity flux from the current head into the bed,
again in the moving reference frame. At the level of the bed surface, y = η, (a) shows
that this flux has a pronounced maximum over the interval 0 > x+/H > −1, while it
levels off thereafter. This indicates that the current front is very effective at sweeping
the ambient fluid out of the primary pore spaces and replacing it with current fluid. Here
we define the primary pore spaces as the exposed pore spaces between the upper halves of
the topmost layer of spheres. Larger particle sizes are associated with a larger primary pore
space volume, and thus result in an increased vertical flux. The high-frequency oscillations
reflect the periodicity of the bed arrangement.
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FIGURE 17. Time-averaged vertical salinity flux from the current head into the bed. (a) Flux
at the top of the bed, y = η, and (b) flux at the centre of the first particle layer, y = η − dp/2.
The different lines correspond to simulations S3L20A, S3L15B, S3L10B, S3L10C and S1L15A
(top to bottom of the legend). The brown short–long dashed line corresponds to a single layer of
particles, whereas all other simulations have three layers. The small salinity flux into the bed for
x > 0 results from our definition of the front as the location where the current height h = 0.1,
so that the current extends slightly beyond x = 0.

The subsequent transport of current fluid into the deeper pore layers occurs more slowly.
This is demonstrated by figure 17(b), which shows that the vertical flux at the centre of
the first particle layer, y = η − dp/2, ramps up only gradually behind the current front.
A comparison of (a,b) indicate that for x/H < −1 this flux into the deeper pore spaces
roughly equals the flux at the bed surface, which suggests that by then the ambient fluid
has largely been removed from the primary pore volume. The effective permeability of
the bed increases with the particle size, which explains the enhanced salinity flux into the
deeper layers of the bed for larger particles, as seen in (b). Interestingly, the ReH = 11 000
simulation (beige solid line) transports more salinity into the bed than the ReH = 8000
one, which may reflect the mobility increase due to the lower viscosity resistance. The
single-layer simulation (brown line) shows a reduced flux due to a lower volume of bed
fluid that can be exchanged, as compared to an equivalent three-layer simulation (green
line).

From geometric considerations, it follows that the primary pore space volume Vinter per
x, z-base area A is

Vinter/A = Kinterdp, where Kinter =
√

3 − π/3

2
√

3
= 0.1977, (4.3)

so that the current front overruns primary pore space volume per unit width at the rate
〈vF〉τ Kinterdp. Within the distance H behind the front, current fluid enters the bed at the
rate

∫ 0
−H〈u+

y c+〉z,τ dx . Hence

σ =
∫ 0

−H〈u+
y c+〉z,τ dx

−〈vF〉τ Kinterdp
, (4.4)

denotes the fraction of primary pore space fluid that is swept out within the distance
H behind the front. Figure 18 indicates that σ increases with the particle diameter,
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FIGURE 18. Fraction σ of the primary pore space fluid that is flushed out by the current within
a distance H behind the front.

and typically lies in the range of 0.5 ± 0.1. This confirms our earlier hypothesis that a
significant fraction of the primary pore fluid gets flushed out within a distance H behind
the front.

4.2. Momentum transfer
To analyse the momentum budget, we integrate the momentum balance

∂tu + ∇ · (uu) = −∇p + Re−1∇ · (∇u + (∇u)T
) − eyc (4.5)

over the moving control volume M̂ = [xF − 4H, xF + 0.5H] × [η, η + ζ ] × [0, Lz] and
divide by the spanwise domain width Lz. Note that M̂ does not cover the entire vertical
extent of the domain, but only the region from the bed surface at y = η to the distance
ζ above the bed where the streamwise velocity in the moving reference frame vanishes.
Hence y = η + ζ can be viewed as the boundary between the current and the ambient
counterflow. Figure 19 displays the spanwise-averaged value of ζ at different times,
relative to the front position. It shows that both for a smooth wall and a rough bed ζ/H
fluctuates around the value of 0.3 in the tail, so that we pick ζ/H = 0.3 as the upper
boundary of the control volume for the momentum balance.

In compact notation, we can write the x-component of the integrated (4.5) as

ζMx∂t〈ux〉M̂ = ζωf + ζ τp + Mxτh + Mxτb, (4.6)

where the individual terms on the right-hand side are defined as

ωf (t) = 〈ux ux − vFux〉M̂,W − 〈ux ux − vFux〉M̂,E,

τp(t) = 〈 p〉M̂,W − 〈 p〉M̂,E,

τh(t) = −〈uyux〉M̂,N + 1
ReL

〈∂yux〉M̂,N,

τb(t) = +〈uyux〉M̂,S − 1
ReL

〈∂yux〉M̂,S.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)
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FIGURE 19. Boundary between the current and the counterflow for evaluating the momentum
balance, as defined in the text. (a) Flow simulation S0L15B over a smooth wall, and (b) flow
simulation S3L20A over a bed of three particle layers.

The terms in (4.6) represent, from left to right, the time rate of change of x-momentum
within the control volume, the net convective momentum flux across the east and west
boundaries (ωf ), the net pressure stress (τp), the momentum flux through the top boundary
of the current at a distance ζ above the bed (τh) and the bed stress (τb) due to viscous stress
and the convection of momentum. Note that we neglect the viscous stresses at the west and
east boundaries, along with the x-derivative of the vertical velocity at the south and north
boundaries, as these terms are small.

Figure 20 displays the terms of (4.6) for the representative simulation S3L10B. We
observe that the bottom friction τb represents the main stress retarding the current,
with a smaller contribution coming from the top friction τh. These retarding forces are
largely balanced by the convective momentum inflow ωf and the streamwise pressure
drop τp, although the current still experiences a slight overall net deceleration. A detailed
comparison with results from other simulations (not shown) indicates that the relative
magnitude of the terms is similar for all simulations, although the absolute values can
vary significantly, as will now be discussed for the bottom friction term.

4.2.1. Bottom friction
In order to explore the dependence of the bottom friction on the particle size, we define

the friction coefficient Cf as

Cf (x, z, t) = −uyux − Re−1
L ∂yux

v2
F/2

for y = η. (4.8)

Here, we included the convective transport of momentum as well, because a potential
simplified model of the bed might assume an impermeable surface at y = η and then Cf
could be used to represent the full momentum transport.

Time-averaged friction coefficient data (the averaging interval is given in table 3) are
provided in figure 21. These demonstrate that the friction coefficient increases with the
particle size. Even for the smallest particles, the bottom friction is substantially larger than
for the smooth wall. Closer inspection of the results shows that most of this increase stems
from the convective term 〈uyux〉z,τ , which increases significantly for the largest particles
with dp = 0.1.
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FIGURE 20. Contributions to the streamwise momentum balance in the control volume for
simulation S3L10B, according to (4.6). The data have been smoothed by employing a moving
average extending over two time units. The retarding influence of the bottom and top friction is
largely balanced by the convective inflow of momentum and the streamwise pressure drop.
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FIGURE 21. Time-averaged bottom friction coefficient 〈Cf 〉z,τ according to definition (4.8),
for simulations S0L15B, S3L20A, S3L15B, S3L10C and S1L15A (from top to bottom in the
legend).

Figure 22(a) displays the mean vertical velocity at the top of the bed as a function of
the streamwise coordinate for selected simulations. The figure demonstrates that ahead of
the front fluid is ejected out of the bed, while it is pushed into the bed below the current
head. Panel (b) shows the variance of the vertical velocity at y = η for the same set of
simulations sharing the line style with (a). We find that its value increases with the particle
size and the Reynolds number, as a result of the increased fluid mobility within the bed.

Based on Darcy’s law, we can estimate the magnitude of the vertical velocity uD into
the porous bed as

uD
μ

K̃
= ∇p, (4.9)
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FIGURE 22. (a) Mean vertical velocity component at the top of the bed for five simulations of
flows over particle beds (S3L20A, S3L15B, S1L15A, S3L10B, S3L10C) (from top to bottom in
the legend). Fluid is ejected out of the bed ahead of the front, and into the bed below the gravity
current head. (b) Variance of the vertical velocity. This quantity increases with the particle size
and the Reynolds number, reflecting the increased mobility of the fluid within the bed.

where K̃ denotes the permeability of the bed. Carman (1997) showed empirically for flow
through glass spheres with a porosity φf that the permeability can be approximated by

K̃ = d2
pφ

3
f

180(1 − φf )2
. (4.10)

For a densely packed bed with φf = 0.26 and dp = 0.01 m, this results in a permeability
of K̃ = 1.8 × 10−8 m2. For a current height of approximately half the depth and negligible
dilution, we can write (4.9) as

uD =
1
2ΔρgH̃K̃

ρ1H̃ν
= 1

2
UH

K̃

H̃2
ReH, (4.11)

or

uD/UH = 1
2

K̃

H̃2
ReH. (4.12)

We find that this predicts the correct order of magnitude for the downward velocities in
figure 22(a). However, it significantly underpredicts the increasing velocities into the bed
with increasing dp, and overpredicts the increase in velocity with Reynolds number. The
imperfections in applying the Darcy model to the flow into the bed are not unexpected
because of the shallow depth of the rough bed, the relatively large size of the grains, and
the sidewalls adding complexity to the flow. Due to the large pore size a Darcy–Brinkman
formulation may be more applicable to the problem. The empirical constants in such a
model are less accurately predictable and the model would still experience imperfections
due to the sidewalls and the shallow depth of the bed.

Based on classical investigations of turbulent flows over rough walls (Nikuradse 1931;
Schlichting 1936; Pope 2000), we expect the bottom friction to depend on the ratio of the
particle radius to the thickness of the viscous sublayer. In order to be able to estimate the
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FIGURE 23. (a) Spanwise- and time-averaged streamwise velocity profiles, evaluated 2H
behind the front and scaled with wall units, cf. (4.13) and (4.14). Panel (b) shows the averaged
friction coefficient, (4.8), as a function of the particle size scaled with the wall length LW .
The values of the wall lengths are LW = 2.2 × 10−3, 2.2 × 10−3, 1.9 × 10−3, 2.2 × 10−3,
1.8 × 10−3 and 2.0 × 10−3, respectively, for simulations S0L15B, S3L20A, S3L15B, S3L10B,
S3L10C and S1L15A. Note that the friction coefficient increases significantly when the particle
radius exceeds approximately twenty wall units.

latter, we introduce the friction velocity

uτ =
√

ν∂ỹ ũx

UL
= √

∂yux/ReL, (4.13)

and a length scale LW for the near-wall region

LW = ν

ũτ L̃y

= (∂yux ReL)
−1/2 = u−1

τ Re−1
L . (4.14)

Figure 23(a) displays streamwise velocity profiles in wall units (solid line) at x − xF =
−2H, for three different simulations. A comparison with the linear profiles uτ y/LW +
ux( y = η)/uτ (dashed line) demonstrates that the viscous sublayer extends to the typical
value of five wall units, i.e. y − η ≈ 5Lw. Panel (b) shows the mean friction coefficient
as a function of the particle radius normalized by the wall unit LW . All of the cases with
particle layers are seen to fall into the transitional roughness regime 10 < dp/(2LW) < 30,
indicating that the particle radius is slightly to substantially larger than the viscous sublayer
thickness. Interestingly, the friction coefficient strongly increases once the particle radius
exceeds about twenty wall units, as a result of the increased advective momentum mixing
seen earlier in figure 22. This observation is consistent with the work of Fang et al. (2018)
and Manes et al. (2009), who investigated open channel pressure-driven flows over fixed
beds of spheres, finding enhanced momentum mixing for larger bed permeabilities.

5. Discussion and conclusion

We have presented a detailed experimental and computational study into gravity
currents propagating over fixed beds of monodisperse spherical particles. The investigation
provides insight into how the number of particle layers and the ratio of particle size to
water depth affect the exchange of mass and momentum between the current and the bed,
and hence the decay of current height and velocity with time.
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We find that the mass exchange between the current and the bed involves two separate
steps that operate on different time scales. In a first step, the dense current front rapidly
sweeps away the resident fluid in the exposed pore spaces between the top layer of spheres.
We develop a conceptually simple quantitative model for this process that compares well
with experimental and simulation data. As a second step, a buoyancy-driven vertical
exchange flow between the current and the deeper pores is set-up that takes significantly
longer to develop. This process depends on the permeability of the bed, which in turn is a
function of the particle diameter, and it plays an important role mostly for shallow currents
that travel relatively slowly.

The momentum exchange between the current and the bed strongly depends on the
particle size as well, and especially on its relative magnitude compared to the viscous
sublayer of the current. The bottom friction is moderate when the particle size is smaller
than or comparable to the thickness of the viscous sublayer, but it jumps for particles that
strongly protrude from the sublayer, leading to a more rapid deceleration of the flow. At
the same time, the number of particle layers is seen to affect the front velocity only weakly.

We note that the present lock-exchange experiments and simulations focused primarily
on the early stages of the gravity current development. While we expect that the
current/bed interaction gains in importance during the later stages of the flow, when
the current becomes shallower and slows down as a result of viscous effects, current
experimental and simulation resources did not allow us to address these late stages.
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