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Flows in channels exposed to spatially distributed heating were investigated. Such
flows are of interest as theoretical analyses suggest that heating leads to the reduction
of pressure losses. A special apparatus providing the means for the creation of
well-controlled spatially periodic heating with the desired intensity as well as precise
control of the flow rate in flows with small Reynolds numbers was constructed.
The apparatus works with air and provides optical access to the flow interior. The
relevant theory has been generalized to handle the temperature fields measured in the
experiments. The experiments were carried out for Reynolds numbers Re < 20 and
at a single Rayleigh number based on the peak-to-peak temperature difference and
channel half-height of Rap = 3500. Flow visualization and particle image velocimetry
measurements demonstrated the formation of two-dimensional steady rolls whose
size was dictated by Re, with the largest rolls observed for the smallest Re and the
roll size being gradually reduced as Re increased until their complete elimination
at the largest Re used in the experiment. An excellent agreement between the
theoretically and experimentally determined complex flow fields was found. Wall
shear stresses extracted from the velocity measurements agree with their theoretical
counterparts within the expected accuracy. The agreement between the experimental
and theoretical velocity fields and their unique relation with the corresponding pressure
fields indirectly verify the heating-induced pressure-gradient-reducing effect.

Key words: drag reduction

1. Introduction
The increased cost of energy and the environmental impact of its use have resulted

in a renewed interest in the search for drag reduction techniques. Drag results from
motion-induced changes in the pressure field and from friction between fluid and
bounding surfaces, with the former typically subdivided into the form drag and the
interaction drag (Mohammadi & Floryan 2012). The form drag is created by the
asymmetry of the pressure field between the upstream and downstream sides of a
moving object and its origins are well understood. The interaction drag results from
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the projection of the pressure field onto the surface topography and its origins are
poorly understood. The mechanisms responsible for the shear drag are well understood
and this analysis focused on the development of techniques suitable for its reduction.

The magnitude of wall shear is proportional to the fluid viscosity and the
wall-normal velocity gradient. If the fluid type cannot be altered, shear can be
reduced only by altering the character of the fluid motion near the wall. Modifications
of either the laminar or turbulent flows lead to a direct change of the shear with the
expectation that the modified flow produces less friction. The indirect change involves
delay of the laminar–turbulent transition as the laminar shear is always smaller than
the turbulent shear. The latter approach has been explored primarily in the context
of the development of laminar flow airfoils (Arnal, Perraud & Séraudie 2008). The
desired flow changes can be created using either passive or active means. Surface
topography (Ou, Perot & Rothstein 2004), surface transpiration (Min et al. 2006;
Bewley 2009; Hœpffner & Fukagata 2009; Mamori, Iwamoto & Marata 2014) and
plasma- (Inasawa, Ninomiya & Asai 2013), sound- (Kato, Fukunishi & Kobayashi
1997) or piezo-driven actuators (Fukunishi & Ebina 2001) represent commonly used
techniques. Biological systems provide additional intriguing directions for further
developments as natural evolution must have led to their optimization (Martin &
Bhushan 2014).

Reduction of laminar shear drag is the focus of the present work. One of the
ways to achieve this goal is the development of appropriate surface topography. If
a smooth surface is viewed as the reference case, all its alterations will increase
the wetted area and, thus, the reduction of the wall shear must be large enough
so as to overcome the potential drag increase due to the increase of this area. It
is known that longitudinal grooves (grooves parallel to the flow direction) can lead
to a significant drag reduction through changes in the distribution of the bulk flow
(Szumbarski, Blonski & Kowalewski 2011; Mohammadi & Floryan 2013a, 2014,
2015; Moradi & Floryan 2013; Raayai-Ardakani & McKinley 2017; Yadav, Gepner
& Szumbarski 2017, 2018). The grooves can be optimized (Mohammadi & Floryan
2013b) with their most effective forms depending on the constraints used. In the case
of grooves of equal height and depth, the optimal shape has the form of a golden
trapezoid, while in the case of grooves with different depth and height the shape
is well approximated by the Gaussian function. The grooves are effective only if
the flow remains laminar and the required estimates of stability limits are available
(Szumbarski 2007; Moradi & Floryan 2014; Mohammadi, Moradi & Floryan 2015;
Yadav et al. 2017, 2018).

The second group of techniques relies on the so-called super-hydrophobic effect
(Rothstein 2010) and is limited to applications in moving liquids. The essence of this
effect is the ability of surface topography to trap gas bubbles in micropores. The direct
contact between liquid and solid is partially replaced by the contact between liquid
and gas, reducing the shear stress acting on the liquid. This effect is counteracted
by the simultaneous creation of pressure drag by surface irregularities. Experimental
evidence shows that it is possible nevertheless to create systems with overall drag
reduction (Ou et al. 2004; Ou & Rothstein 2005; Joseph et al. 2006; Truesdell et al.
2006; Park, Park & Kim 2013; Park, Sun & Kim 2014; Srinivasan et al. 2013). The
effectiveness of this method can be increased by reshaping the surface pores (Samaha,
Tafreshi & Gad-El-Hak 2011) and by increasing hydrophobicity through changes in
the surface chemistry (Quéré 2008; Reyssat, Yeomans & Quéré 2008; Zhou et al.
2011). The stability characteristics of flows over super-hydrophobic surfaces are yet
to be established, including conditions which guarantee the existence of laminar flows.
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Other system limitations are associated with the integrity of the gas–liquid interface,
which depends on the surface tension and shear-driven interfacial instabilities, and
on the hydrostatic pressure which can lead to the collapse of gas bubbles leaving
liquid directly exposed to rough surface (Poetes et al. 2010; Bocquet & Lauga 2011;
Samaha, Tafreshi & Gad-El Hak 2012; Aljallis et al. 2013).

Bubble collapse can be avoided by working with two liquids leading to the concept
of liquid-infused surfaces (Wong et al. 2011). The infusing liquid has much higher
viscosity than the gas, but drag reduction is nevertheless possible (Rosenberg et al.
2016; Solomon, Khalil & Varanasi 2014, 2016). Substantial drag reduction has been
reported recently (Van Buren & Smits 2017). This technique is subject to limitations
associated with variations of pressure along the surface which causes migration of
infusing liquid.

The third group of methods relies on the use of spatial heating patterns leading
to the formation of convection rolls. The fluid rotation inside the rolls is driven
by horizontal density gradients and, thus, provides a propulsive force assisting fluid
movement. The rolls isolate the stream from direct contact with the bounding walls
reducing friction opposing fluid movement. This effect, sometimes referred to as
the super-thermohydrophobic effect (Floryan 2012), operates in single-phase fluids,
is independent of the surface topography and, thus, offers advantages over the
super-hydrophobic effect. The net result is difficult to predict as the stream needs
to meander between convection rolls potentially increasing friction. The heat transfer
consequences of such an arrangement have been discussed in Hossain & Floryan
(2013a). The strength of this effect is increased by combining spatially distributed
and uniform heating (Floryan & Floryan 2015), and by periodically heating both
walls with the proper phase difference between the upper and lower heating patterns
(Hossain & Floryan 2016). The effect is resilient as it can be generated by heating
applied at either the lower or upper wall (Hossain & Floryan 2014). The flow must
remain laminar for the method to work and the relevant stability characteristics
are available (Hossain & Floryan 2015a). The method remains effective for small
Reynolds numbers (Hossain, Floryan & Floryan 2012) as stronger flows eliminate
convection bubbles. It can also be used to reduce forces between plates in relative
motion (Floryan, Shadman & Hossain 2018).

The main objective of this study is to analyse experimentally flows in channels
exposed to spatially distributed heating, to confirm their theoretically predicted
properties including the structure of the velocity field and to examine if such
flows can bring about a reduction of pressure losses. Section 2 presents the model
problem generalized to arbitrary but spatially periodic heating such as that found in
experiments. In this model, the lower wall is heated in a periodic manner while the
upper wall is isothermal. This same section provides a description of the numerical
algorithm used to solve the field equations. Section 3 provides a description of the
specially constructed experimental apparatus as well as the measurement procedures.
Section 4 provides a discussion of the results including comparisons of numerical
and experimental data. Section 5 presents a short summary of the main conclusions.

2. Problem formulation

Consider the steady, two-dimensional flow of a fluid confined in a channel bounded
by two parallel walls extending to ±∞ in the x-direction and driven by a pressure
gradient (see figure 1). The gravitational acceleration g∗ is acting in the negative
y-direction, the fluid is incompressible, Newtonian, and has thermal conductivity k∗,
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FIGURE 1. Schematic diagram of the flow system.

specific heat c∗, thermal diffusivity κ∗ = k∗/ρ∗c∗, kinematic viscosity ν∗, dynamic
viscosity µ∗ and thermal expansion coefficient Γ ∗ and variations of the density ρ∗

follow the Boussinesq approximation. Here asterisks denote dimensional quantities.
The velocity field, pressure field and flow rate in the isothermal channel have the
form

v0(x, y)= [u0(y), 0] = [1− y2, 0], p0(x, y)=−2x/Re, Q0 = 4/3, (2.1a−c)

where the channel half-height h∗ has been used as the length scale, v0(x, y)= [u0, v0]

denotes the velocity vector scaled with the maximum of the x-velocity U∗max, p0
stands for the pressure scaled with ρ∗U∗2max and the Reynolds number is defined as
Re=U∗maxh

∗/ν∗.
The lower wall is heated resulting in its temperature T∗L varying periodically in x∗

with wavelength λ∗ = 2π/α∗, where α∗ is the wavenumber, while the upper wall is
isothermal and kept at temperature T∗U. We define the relative temperature θ∗ = T∗ −
T∗U, resulting in boundary temperatures of the form

θ∗L (x
∗)= θ∗uni + θ

∗

p

n=+∞∑
n=−∞,n 6=0

[θ (n)∗p /θ∗p ]e
inα∗x∗, θU(x∗)= 0, (2.2a,b)

where L and U refer to the lower and upper walls, respectively, θ∗uni= T∗mean,L− T∗U, θ∗p
is the difference between the maximum and minimum of the lower-wall temperature
and θ (n)∗p are the complex amplitudes of the Fourier modes required to describe spatial
temperature variations. These amplitudes satisfy the reality condition, which requires
that θ (n)∗p and θ (−n)∗

p are complex conjugates. Use of κ∗ν∗/(g∗Γ ∗h∗3) as the temperature
scale results in the following dimensionless expressions for the wall temperatures:

θL(x)= Rauni + Rap

n=+∞∑
n=−∞,n6=0

θ (n)p einαx, θU(x)= 0, (2.3a,b)

where Rauni = g∗Γ ∗h∗3θ∗uni/(κ
∗ν∗) and Rap = g∗Γ ∗h∗3θ∗p /(κ

∗ν∗) are the uniform and
periodic Rayleigh numbers. All material properties used in these expressions are to
be evaluated at the upper-wall temperature T∗U.

The flow in the heated channel is described by the continuity, Navier–Stokes and
energy equations of the form

∂u
∂x
+
∂v

∂y
= 0, u

∂u
∂x
+ v

∂u
∂y
=−

∂p
∂x
+∇

2u, (2.4a,b)
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u
∂v

∂x
+ v

∂v

∂y
=−

∂p
∂y
+∇

2v + Pr−1θ, u
∂θ

∂x
+ v

∂θ

∂y
= Pr−1

∇
2θ, (2.4c,d)

where (u, v) are the velocity components in the (x, y) directions, respectively, scaled
with U∗v = ν

∗/h∗ as the velocity scale, p stands for the pressure scaled with ρ∗U∗2v
as the pressure scale and Pr = ν∗/κ∗ is the Prandtl number. The relevant boundary
conditions have the form

u(x,−1)= u(x, 1)= 0, v(x,−1)= v(x, 1)= 0, θ(x,−1)= θL(x), θ(x, 1)= 0.
(2.5a−d)

The relation between the heating and the pressure losses is quantified by comparing
pressure gradients required to drive the same flow rate through the isothermal and
heated channels. This gradient in the case of the heated channel can be written as

∂p
∂x

∣∣∣∣
mean

= Re(−2+ A/Re), (2.6)

where a positive value of the correction A identifies reduction of pressure losses. To
make this comparison meaningful, one must impose the fixed flow rate constraint of
the form

Q=
∫ 1

−1
u dy=

4
3

Re (2.7)

on the solution of the flow problem.
System (2.3)–(2.6) can be expressed in terms of the stream function defined in the

usual manner, i.e. u= ∂ψ/∂y, v=−∂ψ/∂x, and normalized with condition ψ(−1)= 0,
resulting in a problem of the form

∇
4ψ − Pr−1 ∂θ

∂x
=NVV, ∇

2θ = Pr NVθ , (2.8a,b)

ψ(x,−1)= 0, ψ(x, 1)=
4
3

Re,
∂ψ

∂y

∣∣∣∣
(x,y=±1)

= 0, θ(x,−1)= θL(x), θ(x, 1)= 0,

(2.8c−g)
where the nonlinear terms NVV and NVθ have the following definitions:

NVV =
∂

∂y

(
∂

∂x
ûu+

∂

∂y
ûv
)
−
∂

∂x

(
∂

∂x
ûv +

∂

∂y
v̂v

)
, NVθ =

∂

∂x
ûθ +

∂

∂y
v̂θ, (2.9a,b)

with symbol âb denoting a product of functions a and b. The x-dependence of the
flow quantities is captured by expressing them as Fourier expansions of the form

ψ(x, y)=
n=+∞∑
n=−∞

ϕ(n)(y)einαx, u(x, y)=
n=+∞∑
n=−∞

u(n)(y)einαx, v(x, y)=
n=+∞∑
n=−∞

v(n)(y)einαx,

(2.10a−c)

θ(x, y)=
n=+∞∑
n=−∞

∅
(n)(y)einαx, p(x, y)= Ax+

n=+∞∑
n=−∞,

p(n)(y)einαx, (2.10d,e)

NVV(x, y)=
n=+∞∑
n=−∞

N(n)
VV (y)e

inαx, NVθ(x, y)=
n=+∞∑
n=−∞

N(n)
Vθ (y)e

inαx (2.10f ,g)
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subject to a proper truncation. These expansions are substituted into the field equations
and the Fourier modes are separated leading to a system of ordinary differential
equations for the modal functions. This system is solved using the Chebyshev
collocation method (Hossain & Floryan 2015a,b). As a part of the verification
process, the same system is solved using the variable-step-size finite-difference
approximation (Hossain & Floryan 2013b). The numerical parameters were adjusted
during the codes’ calibration stage to guarantee at least six-digit agreement between
both methods. Use of 30 Fourier modes and 51 Chebyshev polynomials is sufficient
in the former case. The same number of Fourier modes is used in the latter case
while the error in the solution of the modal equations is controlled through automatic
selection of the number and distribution of grid points to meet the prescribed error
bounds. The pressure field, with the exception of the pressure gradient correction A,
is determined as a part of the post-processing by substituting the calculated velocity
components into the momentum equations and solving them for the pressure modal
functions.

The mean horizontal pressure gradient is required to overcome frictional resistance.
The shear stresses as well as the shear forces per unit length and width of the channel
acting on the fluid at the walls have the forms

τL= −
du
dy

∣∣∣∣
y=−1

, τU =
du
dy

∣∣∣∣
y=1

, FL= λ
−1
∫ λ

0
τL dx, FU = λ

−1
∫ λ

0
τU dx, (2.11a−d)

where τ stands for the shear stress scaled with ρ∗U∗2v , F stands for the shear force
scaled in the same manner and subscripts U and L refer to the upper and lower walls,
respectively. The shear and pressure forces must balance each other, i.e.

(FL + FU)= 2
∂p
∂x

∣∣∣∣
mean

. (2.12)

It remains to be determined if heating leads to a reduction of the mean pressure
gradient or, in other words, a reduction of the mean shear stress.

3. Experimental set-up and procedure
A special experimental facility using air as the working medium (see figure 2) was

developed to investigate heating effects. The test rig has the form of a 3 m long
rectangular channel with a height of 2h∗ = 20 mm and width s∗ = 420 mm giving
a cross-sectional aspect ratio of s∗/(2h∗)= 21. The channel is tall enough to provide
optical access required for non-intrusive velocity measurements. A Cartesian reference
system consisting of the streamwise x-, transverse y- and spanwise z-coordinates with
the origin at the middle of the channel at the x-location corresponding to the middle
of the first heating element is used to describe the system geometry. The channel
is mounted horizontally using a laser level. The flow is driven by a piston installed
upstream of the test section whose motion is controlled using a ball screw driven by
a servo-motor. The speed of the piston can be adjusted digitally, permitting reaching
the target velocity with an accuracy of 0.41 %.

The piston creates a plug flow with a well-defined mass flow rate which is then
converted through viscous friction into fully developed Poiseuille flow downstream
from the piston. Formation of Poiseuille flow is analogous to that found in the channel
entrance flow problem. It is known that the entry length is minimal for low-Re flows
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FIGURE 2. Sketch of the experimental apparatus (all dimensions are in mm).
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FIGURE 3. Streamwise velocity profiles in the isothermal channel at x= 75, z= 0.

(Sadri & Floryan 2002a,b; Asai & Floryan 2004). The proper establishment of
Poiseuille flow has been verified experimentally using the test facility with heating
turned off, as illustrated in figure 3. The maximum (centre) velocity was found to
be U∗max = 1.6, 3.3, 4.9, 8.1, 11.4, 16.3, 24.4 mm s−1 at Re = 1, 2, 3, 5, 7, 10, 15,
respectively.

The lower wall is equipped with a set of transverse aluminium pipes carrying
hot and cold water coming from baths whose temperatures can be controlled with
a resolution of 0.1 K. These pipes are covered with 0.2 mm thick stone paper and
provide means for the establishment of a streamwise-periodic temperature distribution
at the surface. The wavelength of temperature variations is λ∗ = 66 mm, giving a
wavenumber α = 2πh∗/λ∗ = 0.95. A total of 16 heating periods was used, with most
of the observations made around the 11th period (70 6 x 6 81). The upper wall
was made of 5 mm thick aluminium plate with transverse aluminium pipes carrying
water of a specified temperature attached to its external surface providing means for
maintaining isothermal conditions. The apparatus creates a two-dimensional x-periodic
temperature of the lower wall as illustrated in figures 4 and 5, with the spanwise
temperature variations being within ±0.5 K at x= 72.6.

The lower-surface temperature was measured using an infrared thermal imaging
camera (Nippon Avionics H2640). Its temperature was also monitored during
experiments using sheet-form thermocouples (Chino C060, Type T). Velocity
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FIGURE 4. Contour map of the lower-wall temperature for Rap = 3500.
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FIGURE 5. Streamwise variations of the bottom-wall temperature for Rap = 3500.
(a) Experimental data for three spanwise locations (E, z = 0; @, z = 10; A, z = −10).
(b) Temperature distribution at 72.6 6 x 6 79.2 and z = 0, and its Fourier representation
(E, experiments; solid line, Fourier representation).

measurements were carried out using a particle image velocimetry (PIV) system
(Dantec Dynamic Studio) consisting of a double-pulsed Nd : YAG laser (Quantel
Ever Green) and a CCD camera with a resolution of 2048 × 2048 pixels (Dantec
FlowSense EO 4M). A laser light sheet with a thickness of approximately 1 mm was
used to illuminate 1 µm diameter seeding in the (x, y)-plane. The photographed area
had a size of (x∗, y∗)= (100 mm, 25 mm). The least squares matching algorithm was
employed in post-processing. The interrogation size and overlap in the y-direction
were (x, y)= (33, 22) pixels and 50 %, respectively, giving (37, 37) velocity vectors
in the (x, y)-directions per one period of heating.

In order to determine the sample size N necessary to achieve statistical convergence,
preliminary measurements were made for an isothermal channel using different sample
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n 1 2 3 4 5 6 7 8 9 10

Real (θ (n)p ) 0.2048 0.0074 0.0326 0.0004 0.0209 −0.0005 −0.0077 −0.0008 0.0001 −0.0001
Imag (θ (n)p ) −0.0077 0.0046 0.0033 −0.0026 −0.0007 0.0003 −0.0001 0 0.0005 −0.0011

TABLE 1. Fourier coefficients of expansion (2.3) corresponding to the experimental
conditions.

sizes in the range of 10 6 N 6 100 (see figure 3). It was found that the velocity
profiles were independent of the sample size and the flow rate was within 1 % of
the theoretical value of Q/Re= 4/3 for N > 30. Thus, N = 50 was employed in the
experiment. The uncertainty of velocity measurements was estimated for each step
of the measurement sequence. The accuracy of PIV is limited by several factors, e.g.
particle response to fluid motion, position of light sheet, jitter associated with camera
and laser response to controlling pulse, distortion of lens and image sensor, size of
the interrogation area and image-matching algorithm. The biased error is estimated to
be about 0.1 pixels, which is 5 % of typical particle displacement (2 pixels). However,
the excellent agreement for the isothermal flow suggests that the biased error in the
instrumentation used is smaller than that. The random uncertainty is mainly due
to scatter of the measured velocity resulting from particle distribution and/or flow
conditions. When we use a 95 % confidence interval, the value of the time-averaged
mean streamwise velocity u∗ is within the interval of u∗ ± 1.96(

√
su∗/N), where su∗

is the variance of u∗. The relative uncertainties were found to be about ±1 % of u∗
for all measurements which approximately correspond to the size of plotted symbols.

4. Discussion of results
In the experiments reported in this paper, the cold/hot water supplies were adjusted

to keep the upper wall at a constant temperature T∗U = 303.2 K, a constant peak-to-
peak amplitude of temperature variations along the bottom wall at θ∗p = 39.8 K and
mean temperature at T∗mean,L=302.8 K. Since matching of the mean temperature of the
lower wall with the temperature of the upper wall was difficult, the experiments were
carried out with the mean temperature of the bottom wall lower than the temperature
of the upper wall giving θ∗uni = T∗mean,L − T∗U =−0.4 K. This arrangement resulted in a
periodic Rayleigh number of Rap = 3500 and a uniform Rayleigh number of Rauni =

−35. In the following discussion, the temperature maxima and minima are referred to
as hot and cold spots, respectively. It was sufficient to use the first 10 modes in (2.3)
to describe the streamwise variations of the bottom-wall temperature (see figure 5b).
The corresponding Fourier expansion coefficients are given in table 1.

Fluid movement results from an interaction/competition between two types of forces,
i.e. the externally imposed horizontal pressure gradient and the buoyancy forces. The
resulting flow topologies change significantly depending on the relative magnitudes of
these forces, as illustrated in figure 6, which displays both experimental and theoretical
results. In this figure, the hot spots are always located at x= 72.6 and 79.2, and the
cold spot at x= 75.9.

In the case of Re = 0, the fluid movement is driven only by buoyancy forces,
resulting in a topology consisting of counter-rotating rolls with the fluid moving
upwards above the hot spots and downwards above the cold spots (see figure 6a).
The upward movement of the warm plumes is stronger than the downward movement
of the cold plumes resulting in the roll centres being attracted towards the hot spots.
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FIGURE 6. For caption see page 12.

Heating rather than cooling dominates as the fluid temperature throughout most of
the flow domain increases above the mean lower-wall temperature, except in a small
zone around the cold spot where the temperature dips below the mean temperature.

A piston forces the fluid to move in the positive x-direction with the flow rate and
the Reynolds number dictated by the piston velocity. The velocity field has a typical
Poiseuille form upstream of the heated section, as illustrated in figure 3. Figure 6(b)
displays the flow topology resulting from the Poiseuille flow with Re = 1 exposed
to heating. One can look at this flow field as resulting from the convection field
shown in figure 6(a) modified by the horizontal pressure gradient. The rolls persist
in the same locations trapping in their interiors a certain volume of fluid while the
remaining fluid, which is pushed to the right by the piston, finds its way through a
well-defined stream tube which meanders around the rolls, moving upwards above the
hot spots and downwards above the cold spots. The position of the stream tube is
kinematically consistent with the rolls’ rotation. The question of interest is whether the
pressure gradient required to generate this particular flow rate is larger or smaller than
in the isothermal case. The contact between the stream tube and the walls has been
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FIGURE 6 (cntd). For caption see next page.

largely eliminated which suggests potential reduction of pressure losses, similar to the
case of the super-hydrophobic effect (Rothstein 2010), and this has led to referring
to this effect as the super-thermohydrophobic effect (Floryan 2012). The rolls act
as ‘bearings’ carrying the stream tube and this should lead to a further reduction
of the pressure gradient. The bearings’ rotation is partially driven by the buoyancy
force, which should contribute to the reduction of pressure losses, and partially by the
shear between the fluid in the stream tube and in the rolls, which should increase the
pressure losses. The complex form of the stream tube as well as its length suggests
the formation of high shear forces which would increase the drag. The rolls reduce
the cross-sectional area available to the flow and this should increase pressure losses.
Since all these effects are simultaneously present and oppose each other, determining
whether the drag decreases or increases requires detailed analysis. Before proceeding
with the rest of the discussion, we point out an excellent agreement between the
theoretically and experimentally determined flow fields (see figure 6).

An increase of the horizontal mean pressure gradient while keeping the same
heating conditions (the same buoyancy forces) results in an increase of the horizontal
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FIGURE 6 (cntd). Comparisons of the theoretical (upper panels) and experimental (lower
panels) flow fields for Re= (a) 0, (b) 1, (c) 2, (d) 3, (e) 5, ( f ) 7, (g) 10, (h) 15. Locations
of the hot spots (x = 72.6 and 79.2) are identified using solid arrows while location of
the cold spot (x = 75.9) is identified using dotted arrows. Shading in the experimental
panels results from smoke visualization. Shading in the theoretical panels changes from the
local minimum (darkest) to the local maximum (lightest) of the stream function. For the
theoretical results, the thick solid lines represent streamlines, the thin solid lines represent
the positive isotherms while the thin dotted lines represent the negative isotherms. For
Re= 0, 1, the plotted isotherms correspond to θ/θmax=−0.65, −0.45, −0.2, −0.1, 0, 0.01,
0.02, 0.04, 0.1, 0.2, 0.3, 0.5, 0.8; for Re= 2, 3, θ/θmax =−0.97, −0.65, −0.33, −0.1, 0,
0.02, 0.04, 0.1, 0.2, 0.3, 0.4, 0.65; for Re= 5, 7, θ/θmax =−0.45, −0.2, −0.06, 0, 0.01,
0.04, 0.1, 0.2, 0.3, 0.4, 0.55, 0.8; for Re = 10, θ/θmax = −0.45, −0.2, −0.06, 0, 0.01,
0.013, 0.06, 0.1, 0.2, 0.3, 0.4, 0.8; for Re = 15, θ/θmax = −0.45, −0.2, −0.06, 0, 0.01,
0.02, 0.06, 0.1, 0.2, 0.3, 0.8. The thick dashed lines identify isotherms corresponding to
θ = 0.

flow rate and increase of the Reynolds number. Results for Re = 2 displayed in
figure 6(c) demonstrate the existence of a flow topology qualitatively similar to that
for Re= 1 but with the stream tube becoming wider and straighter as it has to carry
a larger flow rate. This process is continued at Re = 3 (figure 6d) with the size
of the upper rolls decreasing faster than that of the lower rolls. The change in the
character of the temperature field is first noticed for Re = 5 with the colder region
extending further in the downstream direction (see figure 6e). At Re= 10 (figure 6g)
the upper rolls become marginal and the stream tube occupies most of the channel.
At Re= 15 (figure 6h), the upper rolls have been eliminated while the lower rolls still
exist in a residual form. Further increase of Re eliminates the rolls altogether with
the flow topology becoming identical to that found in an isothermal channel (details
not shown). The pressure-gradient-driven flow becomes so strong that the buoyancy
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FIGURE 7. Distributions of the horizontal velocity component every 1/8 of the heating
wavelength starting at the hot spot (location 1) for Re= 0 (a), Re= 5 (b) and Re= 15 (c).
Locations 1, 2, 3, . . . , 8 correspond to x/λ = 0, 1/8, 1/4, 3/8, 1/2, 5/8, 6/8, 7/8,
respectively, where x = 0 corresponds to the left-hand hot spot in the observation area.
Locations 1 and 5 are not shown in (a) as they correspond to the flow moving only
in the vertical direction. Symbols identify experimental points while solid lines illustrate
theoretical results.

forces no longer play any role in the fluid movement. In closing this part of the
discussion, one should note the downstream movement of the separation point at the
lower wall where the stream tube turns upwards; this point moves from x = 72.6,
which represents the limit for Re→ 0 (no pressure gradient effects), to x ≈ 74 at
Re= 15 (buoyancy effects are negligible).

It is known that thermal convection flows are highly unstable and tend to break
into secondary motions. Results presented in figure 6 demonstrate that the flow
is stationary and stable under the conditions used in the experiment and remains
two-dimensional. The critical Rayleigh number for the onset of secondary convective
motion for unimodal periodic heating is Rap ≈ 3000 (Hossain & Floryan 2015b).
Its value rises rapidly when the lower-wall mean temperature decreases below the
upper-wall temperature (Rauni < 0; Hossain & Floryan 2017) as is the case in the
present experiment. Stability conditions in the case of multimodal heating remain
to be determined but, as the current results demonstrate, the flow remains stable at
Rap = 3500.

Measurements of the horizontal velocity component were carried out using the
non-intrusive PIV technique. It is known that the measurements near the walls are
biased due to low-density inhomogeneous seeding, reflection of mirrored images
and other technical challenges, as discussed by Kahler, Scharonowski & Cierpka
(2012). Ideally, the bias errors may be averaged out when the velocity gradient is
constant, and particles are seeded homogeneously. In the present flow configuration,
however, velocity gradients change drastically in the near-wall region. In addition,
the magnitude of the velocity changes significantly as a function of x as u decreases
significantly in locations where the vertical roll motion dominates (see figure 6).
Results displayed in figure 7 for three illustrative cases, i.e. Re = 0, 5 and 15,
demonstrate a very good agreement between experimental and theoretical results in
the bulk of the flow as well as a reduction of the backward flow as Re increases.
The lack of experimental points in the immediate neighbourhoods of the walls is
associated with the limitations of the measurement technique.

Solutions of the field equations for the heating conditions used in the experiment
demonstrate that reduction of pressure losses does occur (see figure 8). The magnitude
of the drag reduction is determined by the interplay between the buoyancy forces
and the externally imposed horizontal pressure forces. The shift from the former
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FIGURE 8. Variations of the pressure gradient correction (A), the pressure gradient for the
isothermal channel (B = −2 × Re) and the ratio A/B as functions of the flow Reynolds
number.

Re 1 2 3 5 7 10 15

∂p/∂x|iso (Pa m−1) 0.605× 10−3 1.21× 10−3 1.815× 10−3 3.025× 10−3 4.235× 10−3 6.05× 10−3 9.075× 10−3

τL,iso = τU,iso −2 −4 −6 −10 −14 −20 −30
τL,mean −0.679 −1.353 −2.05 −3.568 −5.676 −11.198 −23.463
τU,mean −3.045 −6.14 −9.194 −15.079 −20.032 −25.447 −32.159
A 0.138 0.254 0.379 0.677 1.002 1.662 2.189
Reduction (%) 6.9 6.34 6.3 6.76 8.19 8.39 7.3

TABLE 2. Variations of the theoretically determined isothermal mean pressure gradient
(∂p/∂x|iso), isothermal mean shear at the upper (τU,iso) and lower (τU,iso) walls, mean shear
at the lower wall (τL,mean), mean shear at the upper wall (τU,mean), the pressure gradient
correction (A) and the same correction expressed as a fraction of the isothermal pressure
loss for the Reynolds numbers used in the experiments.

dominating flow at small Re to the latter dominating flow at larger Re takes place
at Re ≈ 14. The highest reduction in relative terms is achieved at Re = 11 and it is
about 8.5 %. The elimination of the drag-reducing effect for larger Re correlates well
with the elimination of convection bubbles. The magnitudes of pressure gradients are
extremely small (see table 2) and, thus, the heating-induced changes in pressure drops
over the length of the experimental model are not accessible to direct measurements.
This necessitates the use of an indirect method.

The pressure gradient can be determined from a balance of forces acting on
a convenient control volume, i.e. (2.12). Since pressure losses are generated only
by wall shear, measurements of shear over one heating wavelength should provide
information sufficient for determination of the pressure gradient. The theoretical
shear distributions between two adjacent hot spots determined for the experimental
conditions are displayed in figure 9. Shear at the lower wall changes direction
depending on the position with respect to the convection bubbles. It acts in the
positive x-direction in the zone adjacent to the clockwise-rotating bubble and, thus,
assists with the fluid movement along the channel, and in the opposite direction in the
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FIGURE 9. Variations of the theoretically determined wall shear at the lower (a) and
upper (b) walls between the hot spots determined for the experimental conditions. The thin
dotted lines illustrate the distribution of the lower-wall temperature (not to scale). Here
x= 0 corresponds to the left-hand hot spot in the observation area.

zone adjacent to the counterclockwise-rotating bubble opposing the fluid movement.
The situation at the upper wall is reversed in the sense that shear adjacent to the
clockwise-rotating bubble opposes the fluid movement while shear adjacent to the
counterclockwise-rotating bubble assists with the fluid movement. This situation
is very clear for small Re but becomes more complex with an increase of Re as
bubbles decrease in size and their positions shift downstream. The amplitudes of
shear variations are very large, especially when compared with the isothermal shear
for the upper, τU,iso, and lower, τL,iso, walls (see table 2). The largest magnitudes
are observed for Re= 0 and they decrease with an increase of Re but in a different
manner at the upper and lower walls. The maximum at the lower wall starts at around
119 and decreases to 81 when the Reynolds number increases from Re= 0 to Re= 15,
while the minimum starts at around −123 and increases to −115. At the upper wall,
the maximum starts at 156 and decreases to −5, while the minimum starts at −115
and increases to −66. Heating always increases the mean shear at the upper wall
(τU,mean) while it decreases the mean shear at the lower wall (τL,mean). This decrease
is always larger resulting in an overall reduction of the shear and, thus, reduction of
the pressure gradient (see table 2).

The local values of the wall shear are of the order of 10−4 Pa which make them
difficult to measure directly (Kahler et al. 2012; Dongqing Li 2015). The mean shear
is the difference between the integrals of the local shear over its positive segment,
where the local shear may reach values of up to 100, and the negative segment, where
the local shear may reach values of up to −100 (see figure 9). Accordingly, the local
shear must be evaluated very accurately to make the difference between these two
integrals meaningful. This shear was determined from the velocity profiles such as
those displayed in figure 7.

The experimental velocity data were collected at 37 equally spaced x-locations over
one heating wavelength and were utilized in construction of the Chebyshev expansions
representing velocity profiles at each location. The expansions were then differentiated
analytically to determine velocity derivatives at the walls. This process was tested
using theoretically determined u-velocities at the experimental y-locations and the
velocity derivatives determined in this manner matched the theoretical derivatives
to at least four digits. When the same process is applied to the measured velocities,
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FIGURE 10. Distributions of the wall shear stresses for Re = 0 (a), Re = 5 (b) and
Re= 15 (c). Crosses and circles identify experimental points. Thin dotted lines illustrate
distributions of the lower-wall temperature (not to scale). Here x= 0 corresponds to the
left-hand hot spot in the observation area.

it is affected by the measurement error. Results displayed in figure 10 demonstrate that
the experimentally determined shear distributions match the theoretical distributions
reasonably well in view of the measurement difficulties. The experimental error is
however too large to accurately determine the mean shear. The results nevertheless
match qualitatively the predicted mean shear and, thus, the predicted pressure gradient
reduction. The quantitative differences between the theoretically predicted and the
measured pressure gradient reductions are of the order of 100 % and thus are
not quoted. The overall character of the experimental data and their qualitative
agreement with the theoretical results lead to the conclusion that the experiment
does confirm the existence of the pressure-gradient-reducing effect associated with
periodic heating. A quantitative confirmation requires the development of either more
precise pressure measurement techniques or better velocity measurement techniques
in the near-wall regions. Alternatively, a different experimental apparatus could be
used. One of the possible alternatives involves reducing the height of the channel to
increase pressure losses, but this would lead to challenges with imposing a spatially
distributed wall heating. Another alternative is to use low-Prandtl-number fluids as
the pressure-gradient-reducing effect is much stronger in such systems (Hossain et al.
2012; Floryan & Floryan 2015; Hossain & Floryan 2016).

It is instructive to conclude this discussion with comments about temperature fields
and heat fluxes. The theoretical analysis utilizes the Boussinesq approximation which
is valid when the temperature differences in the flow system are small. This is an
asymptotic statement which does not yield an explicit criterion for determination of
the maximum acceptable temperature difference. The excellent agreement between
the experimental flow fields and the flow fields of the Boussinesq fluid displayed in
figure 6 suggests that the non-Boussinesq effects do not play a major role despite
rather large temperature variations existing along the lower wall. Analysis of the
temperature fields displayed in figure 6 shows that ‘extremely’ hot and ‘extremely’
cold areas occupy a small portion of the overall flow field. The area contained between
isotherms θ/θmax = (1, 0.5) and (−1, −0.5) shows that the fraction of fluid exposed
to extreme temperatures represents less than 5 % of the total volume. The question
of non-Boussinesq effects requires further scrutiny with the proper formulation of the
field equations given in Frőhlich, Laure & Peyret (1992) and Paolucci (1982).

Analysis of heat transfer provides estimates of energy losses associated with the
reduction of the pressure gradient. It is enough to focus on the heat transfer at the
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FIGURE 11. (a) Distributions of the local Nusselt number at the lower wall Nuloc,L.
Variations of (b) the mean Nusselt number Numean and (c) the horizontal Nusselt number
Nuhor as functions of the Reynolds number.

lower wall. The discussion begins with properties of the local heat flux, the magnitude
of which is expressed in terms of the local Nusselt number Nuloc,L defined as

Nuloc,L =−

[
∂θ

∂y

]
y=−1

. (4.1)

Positive values identify areas where the fluid gains energy from the wall while
negative values correspond to areas where the fluid loses energy. Increase of Re
results in a rapid reduction of the magnitude of Nuloc,L near the hot spots while only
a marginal change takes place near the cold spots as shown in figure 11(a). This
explains why the (upstream) separation point moves downstream with increasing Re
(see figure 6), while the position of the (downstream) attachment point remains nearly
unchanged. It may be noted that the direction of the heat flux on the downstream
side of the hot spots changes multiple times as Re increases.

The net heat flux leaving the lower wall and entering the upper wall, which can be
expressed in terms of the average Nusselt number Nuav defined as

Nuav = λ
−1
∫ λ

0
Nuloc,L dx, (4.2)

provides one measure of energy losses. Its variations with Re illustrated in figure 11(b)
demonstrate reduction of this loss as Re increases, in agreement with Hossain &
Floryan (2015b).

Temperature variations along the wall are essential for the creation of convection
rolls, and their maintenance leads to another cost. This cost consists of thermal
conduction along the wall and heat transfer through the fluid between the hot- and
cold-wall segments. The former depends on the wall’s material and structure and,
thus, additional assumptions are needed to determine its magnitude. This problem is
outside the scope of the present work. The latter can be quantified in terms of the
periodic part of the heat flux leaving the wall. Determination of this heat flux, which
we shall refer to as the horizontal heat flux, is complicated as its local direction
depends on the Reynolds number (see figure 11a). Its magnitude can be measured
using the horizontal Nusselt number (Nuhor) defined as

Nuhor =

∫
L

[
−
∂θ

∂y
+

d∅(0)

dy

]
y=−1

dx, (4.3)
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where L denotes the part of the wall where Nuloc,L > 0 and ∅(0) stands for mode
zero in the numerical representation of the temperature field. Integration over the part
of the wall where Nuloc,L < 0 produces the same results but with an opposite sign.
Results displayed in figure 11(c) demonstrate that the ‘horizontal heat losses’ are
always significant; they are nearly constant for Re < 3 but begin to increase when
Re & 7.

5. Summary
Analyses of flows in heated horizontal channels were carried out using theoretical

and experimental methodologies. A specially designed experimental facility was
constructed to realize both well-controlled spatially distributed surface heating and
low-Reynolds-number flows with desired flow rates. The theoretical model was
generalized to handle experimentally realized heating conditions. The field equations
for the Boussinesq fluid were solved with spectral accuracy using Fourier expansions
in the streamwise direction and Chebyshev expansions in the wall-normal direction
for the heating conditions taken from the experiment.

It was shown that the application of heating in the absence of mean horizontal flow
(Re = 0) results in the formation of convection rolls whose topology is dictated by
the heating wavelength. Addition of a mean pressure gradient results in a competition
between the buoyancy-driven and the pressure-gradient-driven flows. When Re is very
small, this competition results in the formation of a narrow stream tube winding
around the convection rolls and separating clockwise-rotating rolls from direct contact
with the upper wall and counterclockwise-rotating rolls from direct contact with the
lower wall. Increase of Re leads to the dominance of the pressure-gradient-driven
effects leading to an increase of the width of this stream tube and eventual elimination
of the rolls. The counterclockwise-rotating rolls are eliminated already at Re ≈ 15
while the clockwise-rotating roll can be identified until Re ≈ 20. The change in the
flow topology was observed using smoke visualization, PIV measurements as well
as theoretical calculations, with the theoretical and experimental results agreeing
remarkably well. Velocity measurements provided the means for determination of the
wall shear stress. This stress has a spatially periodic distribution with amplitudes two
orders of magnitude larger than the isothermal stress. The amplitudes decrease as
Re increases but are still very large at Re= 15, which is the largest Re used in the
experiments. The distributions of shear stresses agree very well with the theoretical
predictions.

The theoretical analysis showed that heating leads to a reduction of pressure losses
for Reynolds numbers up to Re≈ 100. The largest absolute reduction for the heating
conditions used in the experiment is achieved for Re ≈ 14 while the largest relative
reduction with respect to the isothermal conditions is achieved for Re≈11. Limitations
of the existing instrumentation prevented the direct measurement of the very small
pressure drops for the isothermal as well as non-isothermal conditions. The force-
balance approach, where the pressure drop can be predicted from the measured shear
forces, proved unsuccessful due to the error accumulation in the evaluation of the local
shear stress. Accurate measurements of the flow field provide nevertheless indirect
verification of the pressure-gradient-reducing effect as the pressure and velocity fields
form a closely coupled system.
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