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Experimental evidence of vortex-induced
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Shedding of vortices can be observed in the wake of a fixed cylinder at Reynolds numbers
larger than Re = 47. This might give the impression that a vortex-induced vibration (VIV),
which occurs when the frequency of vortex shedding in the wake of a flexibly mounted
cylinder synchronizes with the natural frequency of the structure, could be observed only
at Reynolds numbers larger than Re = 47. Recent numerical simulations and theoretical
work, however, have shown that it is possible to observe VIV at subcritical Reynolds
numbers, i.e. Reynolds numbers smaller than Re = 47. In these studies, a VIV has been
observed numerically at Reynolds numbers as low as Re = 22. In the present work, the
first experimental evidence of VIV at subcritical Reynolds number is presented. We
have designed and built an experimental set-up that makes it possible to conduct VIV
experiments at subcritical Reynolds numbers, and at a constant Reynolds number over
the entire lock-in range (i.e. the range for which oscillations are observed). Using this
experimental set-up, we have confirmed experimentally that VIV can indeed be observed
at subcritical Reynolds numbers, by observing VIV at Reynolds numbers as low as
Re = 19. We have observed subcritical VIV both when the Reynolds number stays constant
over the entire lock-in range, and when the Reynolds number increases with increasing
reduced velocity, while staying within the subcritical range.

Key words: flow-structure interactions, vortex shedding, separated flows

1. Introduction

When the frequency of vortex shedding in the wake of a flexibly mounted cylinder free
to oscillate in a direction perpendicular to the direction of incoming flow becomes equal
to its natural frequency, the cylinder oscillates. These oscillations are observed for a range
of reduced velocities (defined as U∗ = U/fnD, where U is the incoming flow velocity,

† Email address for correspondence: modarres@engin.umass.edu

© The Author(s), 2021. Published by Cambridge University Press 922 R3-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

54
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:modarres@engin.umass.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.549&domain=pdf
https://doi.org/10.1017/jfm.2021.549


P.R. Boersma, J. Zhao, J.P. Rothstein and Y. Modarres-Sadeghi

fn is the natural frequency of the structure and D is the cylinder’s diameter), in which the
oscillation frequency and the shedding frequency are synchronized. This range is called
the lock-in range, and the oscillations that are observed within the lock-in range are called
vortex-induced vibration (VIV). The vortex-induced vibration has been studied extensively
both numerically and experimentally (Sarpkaya 2004; Williamson & Govardhan 2004;
Païdoussis, Price & De Langre 2010), and over a wide range of Reynolds numbers, defined
as Re = UD/ν, where ν is the kinematic viscosity. Experimental studies on VIV of a
cylinder have been conducted at Reynolds numbers larger than Re = 47, mainly because
(i) for a fixed cylinder placed in flow, shedding of vortices starts at Re = 47 (Mathis,
Provansal & Boyer 1984), and since VIV occur as a result of shedding of vortices in the
wake of a cylinder, one would expect to observe VIV at Reynolds numbers larger than
Re = 47, and (ii) conducting VIV experiments at relatively large Reynolds numbers (larger
than Re = 47) is easier from a practical point of view. Recent numerical and theoretical
studies, however, have shown that VIV can be observed at Reynolds numbers smaller than
Re = 47. Buffoni (2003) showed experimentally that vortex shedding can be induced in
the wake of a cylinder at Reynolds numbers as low as Re = 25 if the cylinder is forced
to oscillate. Following this observation, Mittal & Singh (2005) conducted a numerical
study on a cylinder in flow which is free to oscillate in both the cross-flow (CF) and inline
(IL) directions, and observed VIV for Reynolds numbers as low as Re = 20. They used a
global linear stability analysis and reported lock-in for both fixed and varying subcritical
Reynolds numbers. Kou et al. (2017) used the dynamic mode decomposition approach
and showed that the stable von Kármán mode almost completely vanishes for Re < 18,
indicating that this could be the lower bound of the Reynolds number to observe VIV.
Dolci & Carmo (2019) showed the subcritical nature of the bifurcation from steady to time
periodic flow for reduced velocities within the lock-in range of a cylinder undergoing VIV,
as opposed to the supercritical bifurcation observed for a fixed cylinder or for reduced
velocities outside the lock-in range. They showed that the mass ratio and the number
of degrees of freedom in the system do not influence this conclusion. Bourguet (2020)
extended the numerical observation of VIV in subcritical Reynolds numbers to flexible
cylinders, by observing VIV in a simply supported cylinder at Reynolds numbers as low
as Re = 20, where higher modes of the flexible cylinder were excited as well.

Although numerical results and stability analyses have shown VIV in subcritical
Reynolds numbers, no experimental work exists yet to confirm the existence of VIV
at Reynolds numbers smaller than Re = 47. Also, in experimental studies, typically the
reduced velocity is varied by increasing the flow velocity over a desired range, thus
changing the Reynolds number as the reduced velocity is varied. In the current work, we
report the results of a series of experiments that we have conducted to provide experimental
evidence on the existence of VIV at subcritical Reynolds numbers, for both fixed and
variable Reynolds numbers.

2. The experimental set-up

In order to be able to conduct a series of experiments to observe VIV at subcritical
Reynolds numbers, we designed and built a rotating water channel with the goal of
obtaining low flow velocities (figure 1a). The walls of this water channel consisted of
two concentric acrylic cylinders with radii of R1 = 30 cm and R2 = 25.4 cm that were
bonded to a flat circular acrylic plane. This plane was attached to a turntable which could
rotate at a low angular velocity by a high torque electric motor attached to the centre
of the plane. The rotational velocity of the motor was controlled by a variable voltage
motor controller. The concentric cylinders created a channel with a width of W = 4.6 cm.
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Figure 1. (a) A schematic of the water channel, the flexibly mounted cylinder, and the locations of the
measurement devices, and samples of the measured flow profile at a flow velocity of U = 3.3 cm s−1,
corresponding to Re = 33 in the (b) horizontal and (c) vertical directions.

The use of clear acrylic for the sides and bottom of the channel allowed for the flow and
the structure placed in the test section to be observed from any angle. Flow was created by
rotating the water channel at given angular velocities. The water channel was capable of
producing flow velocities in a range of U = 1.5 to 9.1 cm s−1 in increments of 0.1 cm s−1.
The flow velocity profiles at different flow velocities were measured using particle image
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velocimetry (PIV), and it was found that the flow profiles were uniform, with a flow
uniformity index (|U − Uave|/Uave, where Uave is the mean value of the measured flow
velocity) of around 0.037 ± 0.021 for the horizontal flow profiles and 0.003 ± 0.002 for
the vertical flow profiles. Sample horizontal and vertical flow profiles for one of the
flow velocities used in the present experiments, 3.3 cm s−1 (Re = 33), are shown in
figure 1(b,c). These flow profiles were calculated by averaging the flow velocity at fixed
points along the channel’s width or height for 500 PIV frames.

To obtain a low Reynolds number, we placed a relatively small rigid cylinder with a
diameter of D = 1 mm at the centre of the channel. The cylinder was held by a long
thin piece of steel with a 13 mm × 0.2 mm rectangular cross-section, which acted as
a spring. The rectangular cross-section of the spring resulted in a 1 degree of freedom
(1DOF) system, which could oscillate in the direction perpendicular to the incoming flow
(CF direction). The upper end of the spring was clamped to a fixed support. This design
made it possible to obtain 1DOF oscillations without any need for an air bearing system,
which would add to the moving mass of the system, and would have made it impossible to
observe any oscillations at low Reynolds numbers. The submerged length of the cylinder
and the distance from the free end of the cylinder to the bottom of the water channel
were 107D and 3D, respectively. These distances were kept constant for all experiments.
The reduced velocity of the system was changed by changing the natural frequency of
the system, instead of changing the flow velocity. The natural frequency of the system
was changed by changing the length of the spring. This length was adjusted by fixing a
collar that could move on a vertical column placed next to the spring at desired locations
(figure 1a). The obtained natural frequency was inversely proportional to the square of the
spring’s length.

The amplitude of oscillations was measured using a high-resolution distance measuring
laser (Panasonic HL-G112) which recorded displacements at a known location on the
spring close to the point where the spring was attached to the cylinder. Then based on
these measurements, the displacement at the tip of the cylinder was determined using
similar triangles that were created with the measured displacement and the fixed upper
end of the spring, and the tip displacement and the fixed upper end of the spring.
These measurements were also validated by comparing the amplitude of tip oscillations
with the amplitude obtained based on tracking the lower end of the cylinder during its
oscillations using the high-speed camera footage. These measurements were reported as
the dimensionless oscillation amplitude, A∗ = A/D. The oscillation amplitude, A, was
found as the magnitude of the peak of the fast Fourier transform (FFT) of the displacement
time histories.

The system’s natural frequency in air and its corresponding damping ratio were
measured using a decay test. An initial displacement of approximately 5D was given to the
cylinder and the oscillations were recorded for over 30 seconds. The natural frequency was
then determined by finding the peak frequency of the resulting oscillations. The damping
ratio, ζ , was calculated by fitting an exponentially decaying curve to the peak amplitudes of
the measured oscillations. For the tests at a constant Reynolds number, the mass ratio, m∗,
defined as the ratio between the moving mass and the mass of displaced water, was varied
from 3.8 to 5.1 over the lock-in range, and ζ decreased from 0.003 to 0.002, resulting in
a mass-damping coefficient of m∗ζ = 0.01 for the entire lock-in range. For the tests with
a variable Reynolds number, the mass ratio stayed constant at m∗ = 6.9, and the damping
ratio was ζ = 0.003, resulting in a mass-damping coefficient of m∗ζ = 0.021.

The flow around the cylinder was visualized using PIV. Neutrally buoyant glass spheres
with a diameter of 50 microns were added to the water in the water channel and mixed until
the spheres were evenly distributed. A laser plane was then created parallel to the bottom
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Figure 2. The wake of a fixed cylinder at (a) Re = 33 and (b) Re = 60.

of the water channel and located close to the tip of the cylinder. This plane illuminated
a 2-D cross-section of the flow around and in the wake of the cylinder. A high-speed
camera (Phantom V4.2 at 300 f.p.s. and 1280 × 960 resolution) was used to record the
flow around the cylinder through the clear bottom of the water channel (figure 1a). An
open source PIV analysis tool for MATLAB, PIVlab v2.38, was used to analyse images
recorded by the camera and calculate the flow velocities and vorticities.

3. Results

3.1. The wake of a fixed cylinder
In order to validate our experimental set-up, we conducted flow visualizations to
observe the wake of a fixed cylinder at Reynolds numbers below and above the critical
Reynolds number, Recr = 47. Figure 2 shows two sample cases for Re = 33 (smaller than
Recr = 47), and Re = 60 (larger than Recr = 47). In the case of Re = 33 (figure 2a), the
shear layers are observed in the wake; however, they do not interact with each other and
as a result, no shedding of vortices is observed, as expected. For the case of Re = 60
(figure 2b), the shear layers that are observed in the wake do interact, and vortex shedding
is observed in the wake, as expected for a case with a Reynolds number larger than the
critical.

3.2. Subcritical VIV at a constant Reynolds number
We conducted experiments using our flexibly mounted cylinder set-up at four different
constant Reynolds numbers: Re = 17, 19, 22 and 33. For each Reynolds number, we varied
the reduced velocity by changing the length of the spring, while keeping the flow velocity
constant. This method of changing the stiffness resulted in change in the system’s mass
ratio, m∗. As the spring became longer to decrease the natural frequency (and increase
the reduced velocity), the moving mass was increased, and as a result the added mass was
increased over the lock-in range from m∗ = 3.8 to m∗ = 5.1. For each test, the cylinder was
given an initial displacement of approximately 1D. After waiting for 3 min for the transient
response to decay, the steady-state response of the system was measured for 2 min.

Figure 3 shows the dimensionless amplitude and frequency of the response vs the
reduced velocity for all four cases. The error bars shown in the plots of figure 3, and in the
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Figure 3. (a) The dimensionless amplitude and (b) the dimensionless frequency of the response for a flexibly
mounted cylinder at constant subcritical Reynolds numbers. The error bars are standard deviations of the
calculated values from at least three independent runs of each test.

similar plots that will follow, are standard deviations of the calculated values from at least
three independent runs of each test. As observed in figure 3(a), except for Re = 17, which
does not exhibit any steady-state oscillatory motion, at all other Reynolds numbers VIV is
observed. At Re = 19, VIV starts at U∗ ≈ 6.5 and ends at U∗ ≈ 8.6, and the maximum
amplitude of oscillations observed is A∗ ≈ 0.12. As the Reynolds number is increased, the
range of reduced velocities over which VIV is observed and the amplitude of oscillations
increase. The widest lock-in range is observed at Re = 33 for a reduced velocity range
of U∗ = 5.8–9.2. The largest amplitude of oscillations observed in these series of tests is
A∗ ≈ 0.32 and is observed for Re = 33. For all three Reynolds numbers where oscillations
are observed, the frequency of oscillations stays slightly lower than the natural frequency
of the system (figure 3b). This is similar to what Mittal & Singh (2005) observed in their
numerical results. As discussed by Mittal & Singh (2005) and Williamson & Govardhan
(2004), this difference between the two frequencies is due to the small mass ratio of
the system. Mittal & Singh (2005) showed numerically that for small mass ratios, the
oscillation frequency during the lock-in range remains lower than the natural frequency
of the system, and as the mass ratio is increased, the oscillation frequency approaches the
natural frequency.

The maximum amplitude of oscillations and the width of lock-in range observed by
Mittal & Singh (2005) for Re = 33 are A∗ = 0.43 and U∗ = 5.5–10.5, respectively, which
are comparable with the values we have observed in the present experiments: a maximum
amplitude of oscillations of A∗ = 0.32 and a lock-in range of U∗ = 5.8–9.2. The slight
differences in these values could be due to several differences between the numerical
and experimental set-ups: the numerical results have zero structural damping, while the
experimental results do have small but non-zero structural damping; the mass ratios of the
experimental and numerical results are similar, but not exactly the same, and the cylinder
used in the experiments had pendulum-like oscillations, while the numerical results have
been for a two-dimensional case.
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Figure 4. The wake of a flexibly mounted cylinder at a fixed reduced velocity, U∗ = 7.5, and three sample
subcritical Reynolds numbers: (a) Re = 17, (b) Re = 22 and (c) Re = 33.

The wake of the flexibly mounted cylinder is shown in figure 4 at a constant reduced
velocity of U∗ = 7.5, and for three different Reynolds numbers: Re = 17, 22 and 33.
Recall from figure 3 that oscillations are observed for Re = 22 and 33, but not for Re = 17.
It is clear in figure 4 that vortex shedding is observed for Re = 22 and 33, but not
for Re = 17, confirming that vortex shedding is observed in the wake of the cylinder
when oscillations are observed. The shedding frequencies at Re = 22 and 33 are equal
to 2.6 ± 0.1 Hz and 4.3 ± 0.1 Hz, respectively, which are the same as the oscillation
frequencies at these Reynolds numbers, as expected for reduced velocities within the
lock-in range where synchronization has occurred between the cylinder’s oscillations and
the shedding of vortices in its wake. The differences in the wake between figures 2(a) and
4(c) clearly show how, for Re = 33, no shedding is observed in the wake of a fixed cylinder,
and shedding is observed when the cylinder undergoes VIV. For Re = 17 (figure 4a), on
the other hand, two shear layers are observed in the wake, with no interaction between
them, and as a result no shedding is observed. The wake of a flexibly mounted cylinder at
Re = 17 (figure 4a) is similar to the wake of a fixed cylinder at any subcritical Reynolds
number, such as that shown in figure 2(a) for Re = 33.

3.3. Increasing the Reynolds number at a constant reduced velocity
A question that arises after observing the results of figure 3 is: Up to which Reynolds
number will the amplitude of the observed VIV response increase? Since the amplitude of
the VIV response at postcritical Reynolds numbers does not depend significantly on the
Reynolds number, it is expected that by increasing the Reynolds number in the subcritical
range, at some point, the amplitude reaches a plateau. To investigate the existence of a
plateau in these experimental results, we held the reduced velocity constant at U∗ = 7.5
and varied the Reynolds number within the subcritical range. This choice of the reduced

922 R3-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

54
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.549


P.R. Boersma, J. Zhao, J.P. Rothstein and Y. Modarres-Sadeghi

0.4

0.3

0.2

0.1

0
15 20 25 30 35 40 45

A∗

Re
Figure 5. Dimensionless amplitude response of a flexibly mounted cylinder at a constant reduced velocity of

U∗ = 7.5 for varying Reynolds numbers.

velocity was because at U∗ = 7.5 we have observed VIV at all three Reynolds numbers of
figure 3, and also the observed amplitude at U∗ = 7.5 is close to the maximum amplitude
observed for each constant-Reynolds-number case. Figure 5 shows that the VIV amplitude
increases initially with increasing Reynolds numbers, as also observed in the results of
figure 3(a), but then reaches a plateau for Re > 33, where the VIV amplitude remains
close to a value of A∗ ≈ 0.31 for higher subcritical Reynolds numbers.

3.4. Subcritical VIV for variable Reynolds numbers
Besides the experiments at constant subcritical Reynolds numbers, we conducted a series
of experiments in which we varied the reduced velocity in the way that is typically done
in experimental studies on VIV: by keeping the natural frequency of the system constant
and increasing the flow velocity, and therefore increasing the Reynolds number within the
lock-in range. In these experiments, we selected the natural frequency such that at Re = 22,
the reduced velocity would be equal to the critical reduced velocity at which oscillations
began for the constant-Reynolds-number case of Re = 22. This means that the reduced
velocity that corresponds to the beginning of the lock-in range is the same for the tests
with constant Reynolds number at Re = 22 and this series of variable-Reynolds-number
tests. We selected Re = 22 as the Reynolds number at the onset of the lock-in range to
ensure that the Reynolds number for the entire lock-in range stays within the subcritical
range.

Figure 6 shows the dimensionless amplitudes of oscillations for the constant-Reynolds-
number and variable-Reynolds-number cases vs reduced velocity. The Reynolds number
in the case of the variable Re varies from Re = 22 to 34 within the lock-in range. While the
width of the lock-in range does not change, the amplitudes of oscillations for the case of
the variable Reynolds number are consistently larger than those for the constant Reynolds
number, except for the very first point in the lock-in range for which Re = 22 for both
sets of data. This increase in the amplitude is expected, as we previously observed in
figures 3 and 5 that increasing Reynolds number over this range results in an increase in
the amplitude of oscillations. Despite this difference, the results of figure 6 confirm that
subcritical VIV can be observed for variable Reynolds numbers as well, as also observed
numerically by Mittal & Singh (2005).

3.5. The influence of mass ratio
In the experiments with a constant Reynolds number (figure 3), the mass ratio did not stay
constant. In order to investigate whether or not this increase in the added mass influences
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Figure 6. Dimensionless amplitude response of a flexibly mounted cylinder vs reduced velocity for a constant
Reynolds number of Re = 22, as well as a case of variable Reynolds number within the lock-in range.
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Figure 7. Dimensionless amplitude response of a flexibly mounted cylinder at a constant Reynolds number of
Re = 33 with varying or constant mass ratios.

the observed results, we conducted a series of tests in which we kept the mass ratio
constant, while keeping the Reynolds number constant as well at Re = 33. In order to
keep the mass ratio constant, we attached several pieces of magnet close to the clamped
end of the spring. Each of these magnetic pieces had a mass equal to the change in moving
mass every time the length of the spring was varied to adjust the natural frequency. As
a result, for each step, when the collar was moved to a new location, we removed one of
these magnetic pieces and kept the total moving mass constant for all reduced velocities.
This ensured that the mass ratio remained constant at m∗ = 6.9.

Figure 7 shows the amplitude plots for the VIV response of the system with a constant
mass ratio and the system that we discussed earlier in figure 3 with a variable mass ratio,
both at the same Reynolds number of Re = 33. The mass ratio for the variable-mass-ratio
case varied from m∗ = 3.7 to m∗ = 5.1 within the lock-in range. It is clear from the
results shown in figure 7 that very similar amplitudes of oscillations and lock-in ranges
are observed for both cases, implying that the change in the mass ratio over the lock-in
range does not influence the observed VIV response.

4. Conclusions

We have presented experimental evidence of the existence of VIV in subcritical
Reynolds numbers for the first time, confirming what had been obtained numerically and
theoretically in the past (Mittal & Singh 2005; Kou et al. 2017; Dolci & Carmo 2019).
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To be able to conduct these experiments, we designed and built a rotating water channel
together with a mounting mechanism that enabled conducting VIV experiments at low and
constant Reynolds numbers.

In these experiments, the VIV is observed at fixed subcritical Reynolds numbers as
low as Re = 19. This Reynolds number is very close to what was shown previously (Kou
et al. 2017) to be the minimum Reynolds number for observing subcritical von Kármán
shedding in the wake of a cylinder (i.e. Re = 18). The amplitude of oscillations as well
as the width of the lock-in range increase with increasing Reynolds number. For a fixed
reduced velocity, the amplitude of oscillations increases with increasing Reynolds number
and approaches a plateau for Re > 33. This is in agreement with the previous results
of VIV experiments at larger Reynolds numbers, for which the amplitude of observed
oscillations was shown to be independent from the Reynolds number. Wake visualizations
reveal that while, in agreement with previous studies, no shedding is observed in the wake
of a fixed cylinder at subcritical Reynolds number in our experiments, for the case of a
flexibly mounted cylinder, shedding is observed at all subcritical Reynolds numbers for
which oscillations are observed. The shedding frequency for all these cases is equal to the
oscillation frequency, suggesting that lock-in has occurred. These experimental results also
confirm that subcritical VIV can be observed for the case where the Reynolds number is
varied within the lock-in range, while staying within the subcritical range, as well. Despite
slight quantitative differences between the amplitudes of oscillations in subcritical VIV at
constant Reynolds number and subcritical VIV with variable Reynolds number, the main
features of a VIV response are observed in both cases.
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