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Abstract

The notion of θ-congruent numbers is a generalisation of congruent numbers where one considers triangles

with an angle θ such that cos θ is a rational number. In this paper we discuss a criterion for a natural number

to be θ-congruent over certain real number fields.
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1. Introduction

A natural number n ∈ N is called a congruent number if it occurs as the area of a

rational right triangle, that is, there exist rational numbers a, b and c such that

a2
+ b2

= c2, ab = 2n. (1.1)

For example, 6 is a congruent number given by the Pythagorean triple (3, 4, 5). Fermat

showed that n = 1 is not a congruent number; this is equivalent to Fermat’s Last

Theorem for the exponent 4. Euler was the first to show that n = 7 is a congruent

number (see [12]). It is known that the numbers 1, 2, 3 and 4 are not congruent

numbers, but 5, 6 and 7 are. However, a straightforward criterion to tell whether or

not a given n is a congruent number remains elusive. This is the classical congruent

number problem. As n is a congruent number if and only if nα2 is congruent for any

α ∈ Z \ {0}, it is enough to consider the problem for square-free natural numbers.

If n is a congruent number then it follows from (1.1) that there exist three rational

squares in arithmetic progression with gap n, namely x − n, x, x + n where x = c2/4.

Therefore we obtain the rational point (c2/4, c(a2 − b2)/8) on the elliptic curve

En : y2
= x(x2 − n2). (1.2)

Here, En is called the congruent number elliptic curve. It is well known that

the torsion subgroup En(Q)tors of the Mordell–Weil group En(Q) consists only of

points of order dividing 2, namely (0, 0), (±n, 0) and the point at infinity O (see
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[12, Proposition 17]). So the rational point (c2/4, c(a2 − b2)/8) obtained from the

Pythagorean triple (a, b, c) must be of infinite order. Conversely, a point P of infinite

order on En(Q) gives a rational point 2P = (x, y) where x − n, x and x + n are rational

squares (see Proposition 2.4). Taking a =
√

x + n −
√

x − n, b =
√

x + n +
√

x − n, and

c = 2
√

x, it can be easily checked that n is a congruent number from (1.1). This

argument leads to the following well-known criterion.

CRITERION 1.1. A positive integer n is a congruent number if and only if En(Q) has a

point of infinite order.

This criterion led to significant progress on the congruent number problem by

Tunnel [20], Monsky [13] and very recently by Tian [19], among several others.

If n is not a congruent number a natural question arises whether n appears as the

area of a right triangle whose sides belong to some real number field, leading to the

following generalisation. A positive integer n is called a congruent number over a

number field K (or in short, a K-congruent number) if there exist a, b, c ∈ K such

that (1.1) holds. Study of the congruent number problem over algebraic number fields

dates back at least to Tada [18] who considered real quadratic fields. Jędrzejak [9] gave

some results for congruent numbers over certain other real number fields. Fujiwara [3]

and Kan [10] considered another variant of congruent numbers called θ-congruent

numbers and defined as follows.

DEFINITION 1.2. Let 0 < θ < π be an angle with rational cosine cos θ = s/r where

0 < |s| < r and gcd(r, s) = 1. Let (u, v, w)θ denote a triangle with an angle θ between

the sides u and v.

A positive integer n is called a θ-congruent number if there exists a triangle

(u, v, w)θ with sides in Q having area nαθ, where αθ =
√

r2 − s2. In other words, n

is a θ-congruent number if it satisfies

2rn = uv, w2
= u2

+ v2 − 2uv · s

r
. (1.3)

The θ-congruent numbers with θ = π/2 are just the classical congruent numbers.

For θ-congruent numbers we have a similar criterion to (1.1) in terms of the associated

θ-congruent number elliptic curve given by

En,θ : y2
= x
(

x + (r + s)n
)(

x − (r − s)n
)

, (1.4)

where r and s are defined as above. The following criterion is due to Fujiwara [3].

CRITERION 1.3. Let θ ∈ (0, π) be an angle such that cos θ is rational and let n be a

square-free natural number.

(1) n is θ-congruent if and only if En,θ has a point of order greater than 2.

(2) If n , 1, 2, 3, 6, then n is θ-congruent if and only if En,θ has positive rank.

There is an extension of θ-congruent numbers over a number field K similar to that

of congruent numbers over a number field K.
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DEFINITION 1.4. With notation as in Definition 1.2, we call a natural number n a

(K, θ)-congruent number if there is a triangle (u, v, w)θ with sides in a number field K

satisfying (1.3). We refer to the triangle (u, v, w)θ as a (K, θ, n)-triangle.

Janfada and Salami [8] studied θ-congruent number over real quadratic fields. It

is easy to see that when n = 1 and θ = 2π/3, we have r = 2, s = −1,αθ =
√

3 and

there is a (Q(
√

3), θ, 1)-triangle with sides (2, 2, 2
√

3) of area
√

3. But we know that

rank(E1,θ(Q(
√

3))) = 0, hence we can conclude that 1 occurs as a 2π/3-congruent

number for only finitely many triangles with sides in Q(
√

3). This motivates the

following definition, which is analogous to the notion of properly K-congruent

numbers defined in [4] and [9].

DEFINITION 1.5. We say that a (K, θ)-congruent number n is properly (K, θ)-congruent

if (1.3) has infinitely many solutions u, v, w ∈ K.

For example, all (Q, θ)-congruent numbers not equal to 1, 2, 3 or 6 are properly

(Q, θ)-congruent by Criterion 1.3. The question whether n is a θ-congruent number

is intimately connected with the torsion subgroup of the corresponding θ-congruent

number elliptic curve En,θ over Q. Much progress has been made concerning the

torsion of base change of elliptic curves (defined overQ) over number fields, especially

when the degree of the number field is small (see [2, 5–7, 14]). When the elliptic curve

has complex multiplication, more information is available for the torsion subgroup

over number fields (see, for example, [15]). The congruent number elliptic curve has

complex multiplication but the θ-congruent number elliptic curve in (1.4) does not

have complex multiplication for θ , π/2 (Proposition 2.11). Hence the study of the

torsion subgroup of the latter requires somewhat more care. Motivated by [9], this

paper provides a criterion for determining whether a square-free positive integer n is

a θ-congruent number over certain classes of real number fields (Theorems 2.2, 2.12

and 2.14).

2. Main results

2.1. θ-congruent numbers over real multi-quadratic fields. For a number field K

let En,θ(K)tors denote the group of K-rational torsion points of En,θ defined in (1.4),

where n is a square-free natural number and r, s are as defined in Definition 1.2. The

rational torsion points on En,θ(Q)tors are well known by the following result of Fujiwara

[3, Proposition 4].

PROPOSITION 2.1. For n , 1, 2, 3, 6,

En,θ(Q)tors = Z/2Z ⊕ Z/2Z.

Let K2,d denote a real number field of type (2, . . . , 2), that is,

K2,d = Q(
√

m1, . . . ,
√

md),

where mi are distinct square-free natural numbers such that any two distinct mi, mj

are coprime. It follows that [K2,d : Q] = 2d. We prove the following analogue of
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Criterion 1.1 for a θ-congruent number over K2,d. For a positive integer a, let sqf(a)

denote the square-free part of a. We take n to be a square-free natural number and

keep the same notation as in Definition 1.4 for the rest of the paper.

THEOREM 2.2. Consider the number field K2,d = Q(
√

m1, . . . ,
√

md) as above. Assume

that:

(1) n and sqf(nmi) do not divide 6 for all i ∈ {1, 2, . . . , d};
(2) 2r(r − s) is not a square in K2,d.

Then n is θ-congruent number over K2,d if and only if En,θ(K2,d) has a point of infinite

order.

It is standard notation to denote the group of all 2-torsion points defined over K on

the elliptic curve En,θ by En,θ(K)[2]. We need the following lemma for the proof of the

theorem.

LEMMA 2.3. For every subfield K of R, a natural number n is θ-congruent over K if

and only if En,θ(K) \ En,θ(K)[2] , ∅.

The essential argument for the proof of the lemma above is contained in Tada [18,

Theorem 1] who considered the case θ = π/2 for real quadratic fields K. The analogue

for real quadratic fields for any θ with rational cosine in [8] adopts the same approach

as in [18]. In the case of real multi-quadratic fields, the proof similarly follows from

the following well-known result on elliptic curves.

PROPOSITION 2.4 [11]. Let E be an elliptic curve over a field k (of characteristic

, 2, 3) given by

E : y2
= (x − a1)(x − a2)(x − a3) with a1, a2, a3 ∈ k.

Let (x0, y0) be a k-rational point of E \ {O}. Then there exists a k-rational point (x1, y1)

of E with 2(x1, y1) = (x0, y0) if and only if x0 − a1, x0 − a2 and x0 − a3 are squares in k.

PROOF OF LEMMA 2.3. Let K be a real number field. For a positive integer n and θ

such that cos θ = s/r with s, r ∈ Z, consider the two sets

S =

{

(u, v, w) ∈ K3 : 0 < u ≤ v < w, uv = 2rn, u2
+ v2 − 2uv · s

r
= w2
}

and

T =
{

(x, y) ∈ 2En,θ(K) \ {O} : y ≥ 0
}

.

Define

φ : S→ T , (u, v, w) 7→
(

w2

4
,

w(v2 − u2)

8

)

,

and let ψ : T → S be the map sending (x, y) to the tuple

( √

x + (r + s)n −
√

x − (r − s)n,
√

x + (r + s)n +
√

x − (r − s)n, 2
√

x
)

.
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Using Proposition 2.4, it is easy to see that the maps φ and ψ are well defined, and that

φ ◦ ψ = 1T and ψ ◦ φ = 1S. It follows that n is θ-congruent over K if and only if T is

nonempty. �

The following corollary is immediate from Lemma 2.3.

COROLLARY 2.5. Assume that En,θ(K)tors = En,θ(K)[2] for the real number field K.

Then n is a θ-congruent number over K if and only if En,θ(K) has positive rank.

LEMMA 2.6. If n and sqf(nmi) do not divide 6 for all i ∈ {1, 2, . . . , d}, then En,θ(K2,d)tors

is a 2-group.

PROOF. By the remark below Theorem 2 and Lemma 3 in [16], En,θ(K2,d)tors must be

a 2-group if the torsion subgroup of the quadratic mi-twist E
mi

n,θ
over Q is a 2-group for

each i. Hence it suffices to show that

E
mi

n,θ
(Q)tors � Z/2Z ⊕ Z/2Z.

Observe that the quadratic mi-twist of the θ-congruent number elliptic curve is

E
mi

n,θ
: y2
= x(x − min(r − s))(x + min(r + s)). (2.1)

Thus E
mi

n,θ
is isomorphic to Enmi,θ. By Proposition 2.1,

E
mi

n,θ
(Q)tors � Enmi,θ(Q)tors � Esqf(nmi),θ(Q)tors � Z/2Z ⊕ Z/2Z.

Therefore, we can conclude that En,θ(K2,d)tors is a 2-group. �

While Lemma 2.6 rules out torsion points of odd order, we still need to show that

there is no torsion point of order 4 or a higher power of 2.

LEMMA 2.7. Under the assumption of Theorem 2.2,

En,θ(K2,d)tors = En,θ(K2,d)[2].

PROOF. It is enough to show that En,θ(K2,d)tors � Z/2Z ⊕ Z/2Z. Since we know that

there are exactly three elements of order 2 and En,θ(K2,d)tors is a 2-group by Lemma 2.6,

it suffices to show that En,θ(K2,d)tors has no point of order 4. Suppose, if possible, P has

order 4. Then 2P has order 2 and

2P ∈ {(0, 0), (−(r + s)n, 0), ((r − s)n, 0)}.
By Proposition 2.4,

(1) 2P = (0, 0) if and only if both −(r + s)n and (r − s)n are squares in K2,d, which is

not possible because K2,d is a real subfield.

(2) 2P = (−(r + s)n, 0) if and only if both −(r + s)n and −2rn are squares in K2,d,

which is not possible for same reason as in (1).

(3) 2P = ((r − s)n, 0) if and only if both (r − s)n and 2rn are squares in K2,d. Then

2r(r − s) is a square in K2,d, contrary to our assumption. �
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Theorem 2.2 follows immediately from Corollary 2.5 and Lemma 2.7. We have the

following consequences of Theorem 2.2.

COROLLARY 2.8. Under the assumption of Theorem 2.2, n is a θ-congruent number

over K2,d if and only if at least one of the 2d numbers nm
e1

1
· · ·med

d
(ei = 0, 1) is a

θ-congruent number over Q.

We require the following well-known result to establish this corollary.

PROPOSITION 2.9 [1]. Suppose E is an elliptic curve over a number field k. Suppose

D ∈ k \ k2 and ED is the quadratic D-twist of E. Then

rank(E(k)) + rank(ED(k)) = rank(E(k(
√

D))). (2.2)

PROOF OF COROLLARY 2.8. Using (2.2) inductively and noting that E
mi

n,θ
is isomor-

phic to Enmi,θ, we obtain

rank(En,θ(K2,d)) =
∑

rank(Enm
e1
1
···med

d
,θ(Q)),

where the summation is over all d-tuples ei ∈ {0, 1}. By Theorem 2.2 and Criterion 1.3,

if n is a θ-congruent number then

rank(En,θ(K2,d)) > 0 ⇐⇒ rank(Enm
e1
1
···med

d
,θ(Q)) > 0 for some (e1, . . . , ed),

which proves the corollary. �

COROLLARY 2.10. Under the assumption of Theorem 2.2, n is a θ-congruent number

over K2,d if and only if n is a θ-congruent number over Q or over some real quadratic

field Q
(

√

m
e1

1
· · ·med

d

)

contained in K2,d.

PROOF. Suppose n is not a θ-congruent number over Q. By Corollary 2.8, one of the

2d numbers nm
e1

1
· · ·med

d
, say nr ( , n), is a θ-congruent number over Q. Then

rank(Enr,θ(Q)) > 0 =⇒ rank(Er
n,θ(Q)) > 0 =⇒ rank(En,θ(Q(

√
r))) > 0

by (2.1) and (2.2). Thus, n is θ-congruent number over Q(
√

r). The converse is

trivial. �

2.2. θ-congruent numbers over real number fields of degree coprime to 6.

We now look for analogues of Theorem 2.2 for real number fields K other than

multi-quadratic fields. We need to ensure that the torsion subgroup En,θ(K)tors does

not grow bigger than En,θ(Q)tors. When the degree of K over Q is not divisible by small

primes, it is possible to restrict the torsion and obtain similar criteria for θ-congruent

numbers over K as stated in Theorem 2.12 below.

In [9], it has been proved that n is a congruent number over K if and only if En(K)

has a point of infinite order, under the assumptions that (i) K is a real number field

such that [K : Q] is odd or 2p, where p is prime, and (ii)
√

2,
√

3 and
√

5 < K. The

proof depends crucially on the fact that congruent number elliptic curves have complex

multiplication, hence their torsion groups over such number fields are well understood
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due to work of Silverberg [17] and Prasad et al. [15]. But the torsion of a θ-congruent

number elliptic curve poses somewhat more difficulty due to the next proposition.

PROPOSITION 2.11. The θ-congruent number elliptic curve En,θ does not have complex

multiplication for θ , π/2.

PROOF. Given any number field F, there are only finitely many C-isomorphism classes

of elliptic curves over F with complex multiplication, and each isomorphism class has

a distinct j-invariant which must be an algebraic integer in F. By using SAGE, one

can show that the j-invariant of a rational elliptic curve with complex multiplication

must be one of the 13 integers −262537412640768000, −147197952000, −884736000,

−12288000, −884736, −32768, −3375, 0, 1728, 8000, 54000, 287496 or 16581375. The

j-invariant of the elliptic curve En,θ given by equation (1.4) is

j(En,θ) = 26 (3r2
+ s2)3

r2(r2 − s2)2
.

It is clear that j(En,θ) > 0. By considering the numerator of j(En,θ) modulo 5, we find

that it is not divisible by 5 and hence it cannot be 8000, 54000 or 16581375 for any

two coprime integers r and s. By considering the numerator of j(En,θ) modulo 11, we

find that it is not divisible by 11 and hence it cannot be 287496 for any two coprime

integers r and s. Finally, j(En,θ) = 1728 if and only if s = 0, that is, θ = π/2. �

Exploiting recent work of González-Jiménez and Najman on the torsion subgroup

of rational elliptic curves, we show that a generalised criterion for θ-congruent

numbers can still be obtained.

THEOREM 2.12. Suppose n is a square-free natural number other than 1, 2, 3 or 6.

Let K be a real number field such that [K : Q] is coprime to 6 and not divisible by 55.

Then n is a θ-congruent number over K if and only if En,θ(K) has a point of infinite

order.

The result of González-Jiménez and Najman in [6] that we use is as follows.

PROPOSITION 2.13. Let B be a positive integer. Let E/Q be an elliptic curve and K/Q

a number field of degree d, where the smallest prime divisor of d is ≥ B. Let E(K)[p∞]

denote the p-primary torsion subgroup of E(K)tors, that is, the p-Sylow subgroup

of E(K).

(i) If B ≥ 11, then E(K)[p∞] = E(Q)[p∞] for all primes. In particular, we have

E(K)tors = E(Q)tors.

(ii) If B ≥ 7, then E(K)[p∞] = E(Q)[p∞] for all primes p , 7.

(iii) If B ≥ 5, then E(K)[p∞] = E(Q)[p∞] for all primes p , 5, 7, 11.

(iv) If B > 2, then E(K)[p∞] = E(Q)[p∞] for all primes p , 2, 3, 5, 7, 11, 13, 19, 43,

67, 163.

PROOF OF THEOREM 2.12. By Proposition 2.1, En,θ(Q)tors ≃ Z/2Z ⊕ Z/2Z. Sup-

pose K is a real number field satisfying the assumptions of Theorem 2.12. By
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Proposition 2.13(iii), we need only rule out torsion points of order 5, 7 or 11 in

En,θ(K)tors. We consider the following cases.

5-torsion. Suppose, if possible, R = (x, y) is a point of order 5 in En,θ(K)tors. We

consider the possibilities for the degree of the subextension Q(R) of K over Q. The

Galois group of the normal closure of Q(R) can be identified with a subgroup of

GL2(F5), the general linear group over the finite field of order 5. By the fundamental

theorem of Galois theory, [Q(R) : Q] must divide #GL2(F5) = 25 · 3 · 5. By assump-

tion, [K : Q] is coprime to 6, but [Q(R) : Q] must divide 5 since Q(R) ⊂ K. Further,

[Q(R) : Q] , 1 as En,θ(Q)tors ≃ Z/2Z ⊕ Z/2Z. Therefore, Q(R) is a quintic extension

over Q and Z/2Z ⊕ Z/10Z is a subgroup of En,θ(Q(R))tors. But González-Jiménez

showed that Z/2Z ⊕ Z/10Z cannot appear as a torsion subgroup of a rational elliptic

curve over a quintic field [5, Theorem 2]. Therefore, 5-torsion cannot occur over K.

7-torsion. Suppose En,θ(K)tors contains a point of order 7, say R = (x, y). By a similar

argument to that above, [Q(R) : Q] = 7. It follows that Z/2Z ⊕ Z/14Z appears as a

subgroup of En,θ(Q(R))tors. But González-Jiménez and Najman showed that Z/2Z ⊕
Z/14Z cannot appear as a torsion subgroup of a rational elliptic curve over a number

field of degree 7 [6, Proposition 7.1]. Therefore, 7-torsion cannot occur over K.

11-torsion. Suppose En,θ(K)tors contains a point of order 11, say R = (x, y). By arguing

as before, we find that [Q(R) : Q] divides 52 · 11. Theorem 5.8 of [6] provides a

complete list of possibilities for the degree of a number field generated by 11-torsion

on a rational elliptic curve, and that list does not include 11, 52 and 52 · 11. So we must

have either [Q(R) : Q] = 5 or [Q(R) : Q] = 55. If [Q(R) : Q] = 5 then Z/2Z ⊕ Z/22Z

would appear as a subgroup of En,θ(Q(R))tors. But González-Jiménez has shown that

a quintic field cannot have Z/2Z ⊕ Z/22Z as a subgroup of the torsion of a rational

elliptic curve [5, Theorem 2]. If [Q(R) : Q] = 55 then [K : Q] is divisible by 55, which

contradicts our assumption on the degree of K.

Thus we can conclude that En,θ(K)tors ≃ Z/2Z ⊕ Z/2Z. The theorem now follows

from Corollary 2.5. �

2.3. θ-congruent numbers over real cubic fields. After θ = π/2, the next natural

values to be considered are θ = π/3 and 2π/3, since they are rational multiples of

π with rational cosine. Fujiwara [3] proved that a prime p is not π/3-congruent if

p ≡ 5, 7, 19 (mod 24). Kan [10] showed that a prime p is not 2π/3-congruent in case

p ≡ 7, 11, 13 (mod 24) and that primes p ≡ 23 (mod 24) are π/3- and 2π/3-congruent

over Q. In this subsection we consider angles θ where cos θ = s/r and r, s belong to

certain congruence classes modulo 5 and obtain the following criterion over real cubic

fields.

THEOREM 2.14. Suppose n is a square-free natural number other than 1, 2, 3 or 6.

Let K be a real cubic number field. Suppose s is divisible by 5 or (r, s) ≡ (±2,±1) or

(±1,±2) (mod 5). Then n is a θ-congruent number over K if and only if En,θ(K) has a

point of infinite order.
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In order to prove the theorem, we need to consider the growth of torsion on base

change from Q to a cubic field K. Let d be a positive integer. Let Φ(d) be the set

of possible torsion structures E(K)tors, where K runs through all number fields K of

degree d and E runs through all elliptic curves over K. Mazur established that

Φ(1) = {Cn : n = 1, . . . , 10, 12} ∪ {C2 × C2m : m = 1, . . . , 4},
where Cn denotes the cyclic group of order n. Let ΦQ(d) be the set of possible torsion

structures over a number field of degree d of an elliptic curve defined over Q. Clearly,

ΦQ(1) = Φ(1). For each G ∈ Φ(1), let ΦQ(d, G) denote the set
{

E(K)tors : E/Q is an elliptic curve, E(Q)tors ≃ G, [K : Q] = d
}

.

In order to identify θ-congruent numbers over a number field of degree d, we need to

examine ΦQ(d,Z/2Z ⊕ Z/2Z). We use the following result for a cubic extension of Q.

PROPOSITION 2.15 [7]. For G = C2 × C2,

ΦQ(3, G) =
{C2 × C2, C2 × C6

}

.

PROOF OF THEOREM 2.14. The Weierstrass form of a θ-congruent number elliptic

curve En,θ is given by

y2
= x3 − 33(3r2

+ s2)n2x + 2 · 33n3s(9r2 − s2) where cos θ =
s

r
.

For a cubic number field K,

En,θ(K)tors ≃ C2 × C2 or En,θ(K)tors ≃ C2 × C6

by Proposition 2.15. Our objective is to rule out En,θ(K)tors ≃ C2 × C6 under the

assumptions on r, s in Theorem 2.14. Suppose, if possible, En,θ(K)tors ≃ C2 × C6. Then

there is an element in En,θ(K) of order 3, say P = (X, Y), where X is a root of the third

division polynomial given by

φ(x) = 3x4 − 162n2(3r2
+ s2)x2

+ 648n3s(9r2 − s2)x − 729n4(3r2
+ s2)2. (2.3)

It is not difficult to observe that φ(3nx) = 35n4 f (x), where

f (x) = x4 − 6(3r2
+ s2)x2

+ 8s(9r2 − s2)x − 3(3r2
+ s2)2 ∈ Z[x].

Hence φ(x) has a solution in K if and only if f (x) has a solution in K. Reducing the

polynomial f (x) modulo 5, we find that f (x) is equivalent to either x4
+ 2x2

+ 3 or

x4
+ 3x2

+ 3 ∈ Z/5Z[x] under the assumption of Theorem 2.14. One can easily check

that x4
+ 2x2

+ 3 and x4
+ 3x2

+ 3 are irreducible polynomials over Z/5Z. Therefore

f (x) is irreducible over Q, hence Equation (2.3) does not possess a solution in K as 4

does not divide [K : Q]. The theorem now follows from Corollary 2.5. �

EXAMPLE 2.16. To illustrate the theorem above, let us take cos θ = 5/6 where r = 6

and s = 5 ≡ 0 (mod 5). The corresponding θ-congruent number curve with n = 7 is

E7,θ : y2
= x3
+ 70x2 − 539x.
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We can verify by using MAGMA that the rank of E7,θ(Q) is 0, therefore 7 is not a

θ-congruent number over Q. By putting y = 1, we find that the polynomial x3
+ 70x2 −

539x − 1 has three real roots. If we denote the largest real root by α ≈ 7.0017, then

K = Q(α) is a real cubic field. The point (α, 1) ∈ E7,θ(K) is clearly not a 2-torsion point

and hence 7 is θ-congruent over K. By Proposition 2.15,

E7,θ(K)tors = Z/2Z ⊕ Z/2Z or Z/2Z ⊕ Z/6Z.

Theorem 2.15 rules out the latter possibility, which we directly verify now. Clearly,

E7,θ(K)[2] = E7,θ(Q) = {(0, 0), (7, 0), (−77, 0),O}.
If the point (α, 1) were a 6-torsion point, then one of P = (α, 1), Q = (α, 1) + (0, 0),

R = (α, 1) + (−77, 0) or S = (α, 1) + (7, 0) must be a 3-torsion point. By considering

the x-coordinates of the points, it can be easily checked that

x(2P) > 208 > x(−P) = α,

x(2Q) = x(2P) > 208 > 0 > x(−Q),

x(2R) = x(2P) > 208 > 0 > x(−R),

x(2S) = x(2P) < 303 < 24000 < x(−S).

Therefore, 2P , −P, 2Q , −Q, 2R , −R or 2S , −S, and none of P, Q, R or S is a

3-torsion point. Therefore, P = (α, 1) cannot be a 6-torsion on E7,θ(K) and it must have

infinite order.

REMARK 2.17. Suppose K is a real sextic field. It has been conjectured in [2] that

ΦQ(6, Z/2Z ⊕ Z/2Z) is a subset of

{

Z/2Z ⊕ Z/2tZ : t = 1, 2, 3, 4, 6} ∪ {Z/6Z ⊕ Z/6Z, Z/4Z ⊕ Z/12Z
}

.

If we put restrictions on (r, s) such that 2r(r − s) is a not a square element in K, we

can rule out a 4-torsion point on En,θ(K)tors by Lemma 2.7. If we further assume

that s is divisible by 5 or (r, s) ≡ (±2,±1) or (±1,±2) mod 5, we can rule out a

3-torsion point on En,θ(K)tors as in Theorem 2.14, noting that 4 does not divide [K : Q].

Therefore, we have En,θ(K)tors ≃ Z/2Z ⊕ Z/2Z, and by Corollary 2.5 a square-free

integer n , 1, 2, 3, 6 will be a θ-congruent number over a real sextic field K under

the above restrictions over r, s if and only if En,θ(K) has positive rank assuming the

conjecture.

COROLLARY 2.18. If a real number field satisfies the assumptions of Theorem 2.2,

2.12 or 2.14, then a number n is (K, θ)-congruent if and only if n is properly

(K, θ)-congruent.

PROOF. For such a field K, by our results, a number n is (K, θ)-congruent if and only

if rank(En,θ(K)) is positive. Moreover, n is properly (K, θ)-congruent if and only if En,θ

has a point of infinite order. The corollary follows immediately. �
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2.4. Questions.

(1) Must a θ-congruent number be properly θ-congruent for all real number fields of

degree coprime to 6, if the assumption in Theorem 2.12 that the number field is a

Galois extension over Q when its degree is divisible by 55 is dropped?

(2) For cos θ = s/r ∈ Q×, must a θ-congruent number be properly θ-congruent for

all real cubic fields, without the congruence conditions on r and s assumed in

Theorem 2.14?

(3) Must θ-congruent numbers be properly θ-congruent over a number field K when

the degree is not coprime to 6 (not covered by Theorem 2.12)?

(4) Explore the cases n = 1, 2, 3, 6 which are not covered by Theorems 2.2, 2.12

and 2.14.
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