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Abstract. This article presents a new (multivalued) semantics for classical propositional logic.
We begin by maximally extending the space of sequent proofs so as to admit proofs for any logical
formula; then, we extract the new semantics by focusing on the axiomatic structure of proofs. In
particular, the interpretation of a formula is given by the ratio between the number of identity axioms
out of the total number of axioms occurring in any of its proofs. The outcome is an informational
refinement of traditional Boolean semantics, obtained by breaking the symmetry between tautologies
and contradictions.

§1. Introduction. The purpose of this article is to design and explore an alternative
semantics for classical propositional logic set by pure proof-theoretic considerations. We
call the new (multivalued) semantics “fractional” to refer to the fact that truth-values
become elements of the set of rational numbers Q within the interval [0, 1]. The basic
idea is that truth-values exhaust their function in decorating axioms and rules of a suitable
classical sequent calculus: they keep record along proofs of the number of occurrences
of identity axioms, which encode the primitive logical fact that anything implies itself.
Since (i) the set of formulas interpreted by the value 1 coincides with the set of classical
tautologies and (ii) we refer exclusively to a proof system which proves to be sound and
complete with respect to the set of classically valid sequents, we think it is legitimate to
present our fractional semantics as a semantics for classical logic.

In particular, we focus on the sequent system GS4 which is the right-sided version
of Kleene’s G4 (see Figure 1) [10, 11, 20]. The choice of concentrating on right-sided
sequents is in the interests of simplicity and clarity to the extent that our results can be
straightforwardly applied to G4. The GS4 calculus is here maximally extended to the

system GS4 by adding the complementary axiom schema which enables the introduction
of whatsoever clause � �, provided that no pair of dual literals occurs in � [3, 9, 17, 19,

21]. The system GS4 is deductively trivial as it proves any sequent and it satisfies cut-
elimination à la Gentzen to the extent that its axioms introduce only clauses.
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FRACTIONAL SEMANTICS 811

Fig. 1. The GS4 sequent calculus

Like GS4, the system GS4 is characterized by the invertibility of its logical rules: for
any logical rule, the provability of the conclusion implies the provability of (each one of) its
premise(s). This property yields two specific features of the calculus which prove crucial
for our discourse:

(i) any two cut-free proofs of the same sequent display the same top-sequents (cfr.
Theorem 2.9);

(ii) if � �1, � �2, . . . , � �n are the top-sequents of a GS4 proof ending in � A, then
∨

�1 ∧ ∨
�2 ∧ · · · ∧ ∨

�n is equivalent to A. In other words, since GS4 proves
anything, it provides a general algorithm to decompose any logical formula into an
equivalent formula in conjunctive normal form.

Specifically, we are in position to interpret any formula A as the ratio between the
number of identity top-sequents—i.e., sequents introduced by the standard axiom and so
displaying a pair of dual axioms—out of the total number of top-sequents in any of its

GS4 proofs. The upshot is a multivalued interpretation function � · � whose range is the set
of rational numbers comprised in the interval [0, 1].

EXAMPLE 1.1. Take the GS4-proof of the truth-functional contingency (r ∧ q) ∨
(q⊥ ∧ t):

ax.� r, q⊥ ax.� q, q⊥
∧� r ∧ q, q⊥

ax.� r, t
ax.� q, t ∧� r ∧ q, t ∧� r ∧ q, q⊥ ∧ t ∨� (r ∧ q) ∨ (q⊥ ∧ t)

The proof contains one identity axiom out of four axioms in total and so � (r ∧ q) ∨ (q⊥ ∧
t) � = 1

4
= 0.25.

What exactly do we want to accomplish? The beginner in logic, very early on, learns that
a deductive system is designed to be sound and complete with respect to a well-determined
set of true formulas. Which formulas have to count as true are set by a semantic structure
fixed in advance. In this article, we explore the merits and potentialities of a reverse
methodology, according to which proofs gain the status of semantic sources by themselves
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812 MARIO PIAZZA AND GABRIELE PULCINI

as the truth-values of formulas are established through derivations. More pointedly, our
approach may be articulated in three stages:

(i) we extend the space of sequent proofs so as to include proofs for any sequent;

(ii) we extract a multivalued interpretation function by surveying the axiomatic
structure of proofs;

(iii) we establish that our interpretation function is semantically adequate by showing
that any two proofs of the same formula A confer to A the same interpretation.

The lesson, then, is this: the deductive engine of classical logic in the backward con-
struction of proofs can be regimented in such a way as to measure the quantity of identities
in a logical formula. The locution “quantity of identities” carries here a precise logical
meaning: if � A � = q, then

• there are m, n ∈ N such that
m

n
= q;

• the conjunctive normal form of A—unfolded by means a GS4-proof of A—contains
m tautological conjuncts out of n conjuncts in total. In the previous example,

(r ∨ q⊥) ∧ (q ∨ q⊥) ∧ (r ∨ t) ∧ (q ∨ t)

exhibits one tautological conjunct out of four in total.

Fractional semantics may be understood as an informational refinement with respect to the
standard Boolean view. It tracks the intuition that the distinction between tautologies and
nontautologies (or, if you like, between theorems and non-theorems) is too rigid and it can
be relaxed in a conservative way. As already remarked, for any formula A:

� A � = 1 if and only if A is a tautology.

Yet, the symmetry between tautologies and contradictions is broken, as two contradictions
may now receive two different semantic values.

EXAMPLE 1.2. The contradictions p ∧ p⊥ and (p ∧ p⊥) ∧ (p ∨ p⊥) in the system GS4
(see Definition 2.1) have these proofs:

ax.� p
ax.� p⊥
∧� p ∧ p⊥

ax.� p
ax.� p⊥
∧� p ∧ p⊥

ax.� p, p⊥
∨� p ∨ p⊥
∧� (p ∧ p⊥) ∧ (p ∨ p⊥)

In terms of Boolean semantics, the foregoing contradictions are described as identifying
the same logical entity, since they get the same value 0 for any valuation. Nonetheless,
in the contradiction on the right one conjunct out of three is a tautology, so there is
an intuitive pull that such a contradiction as a whole is “less false” (or, if you prefer,
“more true”) than the contradiction on the left, in which no tautology is present. In our
setting, such a difference is captured by � p ∧ p⊥ � = 0 and � (p ∧ p⊥) ∧ (p ∨ p⊥) � =
0.3.

This is the roadmap. In §2, we present the logical system GS4 as our ur-calculus

as well as its extension GS4 with a further axiom introducing any (consistent) multiset
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of atoms. We show that the calculus GS4, though inconsistent, is a useful device for
decomposing logical formulas into an equivalent set of disjunctive clauses. §3 describes

the multivalued system mv-GS4 driven by proof-theoretic considerations modulo GS4.

The system mv-GS4 serves as a decorated version of GS4’s sequent calculus, whereby
decorations keep track of the number of identity axioms in the proof, out of the total
number of top-sequents. In §4, we map out a new class of supraclassical logics—that we
term bounded supraclassical logics—achieved by restricting and constraining the truth-
values of their theorems. Moreover, we prove that bounded consequence relations satisfy
reflexivity, monotonicity, and structurality (although not always transitivity). Finally, §6
contains some concluding remarks about our perspective, providing less “endogenous”
motivations for its adoption. We sketch how it may be regarded as a slide to the theory of
belief revision, the project of a proof-theoretic semantics for classical logic, as well as a
gainful handling of truth-theoretic paradoxes.

§2. Decomposing by proving.

2.1. Notational preliminaries. We shall be concerned with the system GS4 as
displayed in Figure 1 [10, 13, 20]. In GS4 the two structural rules weakening and con-
traction do not appear explicitly, due to their absorption in the other rules [14]. More point-
edly, weakening rule is operative via the generalized formulation of the axiom, whereas
contraction rule is implicit in the additive, context-sharing version of the conjunction
rule.

Typically, in right-sided sequent systems, negation ( · )⊥ is attached to atomic sentences
and it extends to compound formulas by De Morgan duality. This means that we shall
be dealing with a language made up of an extended set of atoms AT = {p, q, . . .} ∪
{p⊥, q⊥, . . .} and only two binary operators ∧ and ∨; the implication operator can be
recovered by defining it as usual, i.e., A → B ::= A⊥ ∨ B. In what follows F denotes
the set of all formulas.

Lowercase Greek letters π, ρ, . . . stand for sequent proofs, while uppercase Greek letters
�, �, . . . indicate logical contexts, alias finite multisets of formulas [A1, A2, . . . , An]. To
lighten notation, we write �, A to mean the multiset � 
 [A]. Moreover, for any context
� = A1, A2, . . . , An, we denote by

∧
� and

∨
� the conjunction of n arguments A1 ∧A2 ∧

· · · ∧ An and the disjunction of n arguments A1 ∨ A2 ∨ · · · ∨ An, respectively. The negation
of a whole context � is the multiset �⊥ = [A⊥ | A ∈ �].

Finally, we demand that the axiom rule introduces exclusively clauses, namely sequents
involving only atomic sentences. The reason for this restriction and for the very adoption
of GS4 as logical framework will emerge clearly in the next section.

2.2. From GS4 to GS4. The system GS4 can be maximally extended into the trivial

system GS4 defined as follows.

DEFINITION 2.1 (The sequent system GS4). The calculus GS4 is obtained from GS4 by
adding the complementary axiom ax.� � which allows one to introduce any multiset
whatsoever of atoms � with the proviso that A⊥ /∈ �, if A ∈ �.
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REMARK 2.2. Any sequent turns out to be provable in GS4 by dint of the application of
the logical rules in their bottom-up reading till the leaves of the proof-tree are all clauses.

EXAMPLE 2.3. The truth-functional contingency (r ∧q)∨ (q⊥ ∧ t) is derivable in GS4.

ax.� r, q⊥ ax.� q, q⊥
∧� r ∧ q, q⊥

ax.� r, t
ax.� q, t ∧� r ∧ q, t ∧� r ∧ q, q⊥ ∧ t ∨� (r ∧ q) ∨ (q⊥ ∧ t)

DEFINITION 2.4 (Identity and complementary top-sequents). The top-sequents of a GS4-
proof π are the leaves of the proof-tree, i.e., those sequents directly introduced as instances
of the axiom rules. Top1(π) (resp. top0(π)) denotes the multiset of all and only π ’s top-
sequents introduced by an identity (resp. complementary) axiom. Moreover, top(π) refers
to the whole multiset of π ’s top-sequents, i.e., top(π) = top1(π) 
 top0(π).

From Definition 2.4, we immediately get the following remark:

REMARK 2.5. Let π be a GS4-proof ending with the sequent � � and such that
top(π) = [ � �1, . . . , � �n

]
. One readily sees that the two formulas

∨
� and

∨
�1 ∧

· · · ∧ ∨
�n are logically equivalent. Such an equivalence is an immediate consequence

of the invertibility of GS4’s logical rules, the property telling that the provability of their
conclusion implies the provability of their premise(s) [1].

EXAMPLE 2.6. Let π be the proof in Example 2.3. In this case top0(π) = [ � r, q⊥ ; �
r, t ; � q, t

]
, top1(π) = [ � q, q⊥]

, thus top(π) = [ � r, q⊥ ; � r, t ; � q, t ; � q, q⊥]
.

In accordance with the previous remark, we have that the formula (r ∧ q) ∨ (q⊥ ∧ t) is
actually equivalent to (r ∨ q⊥) ∧ (r ∨ t) ∧ (q ∨ t) ∧ (q ∨ q⊥).

Remark 2.5 tells us that GS4 can be employed and justified as a syntactic device in
spite of its deductive triviality. Indeed, this formalism serves the purpose of framing an
algorithm for decomposing each sequent into an equivalent set of clauses or, equivalently,
for turning any formula into its conjunctive normal form.

REMARK 2.7. Standardly, the height h(π) of a tree-like sequent proof π is taken to
be the number of sequents featuring in one of its maximally long branches. It is easy to

see, then, that the height h(π) of any GS4-proof π equals the number of occurrences of
connectives in its end-sequent, plus one.

LEMMA 2.8. For any GS4-proof π of � �, A@B, with @ ∈ {∧, ∨}, there exists a proof
ρ of the same sequent, and such that:

• ρ’s last rule is the specific application of the @-rule introducing the formula A@B,

• top(π) = top(ρ).

Proof. By induction over the height of π . It suffices to show that it is possibile to
commute downwards the specific application of the @-rule for A@B till it becomes the
very last rule. �
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To our knowledge, the next theorem has been claimed for the first time in [13] with
respect to G3cp, alias the two-sided version of GS4. The proof provided there consists
of a single phrase (“by nothing that successive application of any two logical rules in
G3cp commutes” [13, p. 51]). Such a proof, as it stands, is too evasive to exempt us from
supplying an alternative demonstration, which can be straightforwardly applied to G3cp
as well.

THEOREM 2.9 (unicity). If π and ρ are two GS4-proofs with the same end-sequent, then
top(π) = top(ρ).

Proof. We proceed by induction over h(π). By Remark 2.7, we know that h(π) = h(ρ).
Base case: If h(π) = h(ρ) = 1, then π and ρ are straightforward instances of one of the
two kinds of axioms and so they are the very same proof.
Inductive step: we distinguish two cases depending on π ’s last rule.

• (∨-rule) Let π be the proof ending with � �, A∨B whose last rule is the ∨-application
forming A ∨ B:

π
...

� �, A, B ∨.� �, A ∨ B

Consider now the proof ρ also ending with � �, A ∨ B. By Lemma 2.8, it can be
rewritten into a proof ρ′:

ρ′
...

� �, A, B ∨� �, A ∨ B

such that top(ρ′) = top(ρ). Let ρ′
1 (resp. π1) the subproof of ρ′ (resp. π ) ending

with � �, A, B. By Remark 2.7, we have that h(π1) = h(ρ′
1) and so, by inductive

hypothesis, top(π ′) = top(ρ′
1), from which it follows that top(π) = top(ρ′) =

top(ρ).

• Similar to the previous case. �

Theorem 2.9 enables us to broaden quite painlessly our notation to apply the functions
top1( · ), top0( · ), and top( · ) directly to logical contexts. We shall directly write top1(�)

(resp. top0(�)) to indicate the identity (resp. complementary) top-sequents occurring in

any GS4-proof of � �. According to Definition 2.4, top(�) = top1(�) 
 top0(�).

THEOREM 2.10. For any context � and any two formulas A and B:

(i) top(�, A ∨ B) = top(�, A, B),

(ii) top(�, A ∧ B) = top(�, A) 
 top(�, B).

Proof. Easy, by combining Lemma 2.8 and Theorem 2.9. �
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§3. The multi-valued system mv-GS4. The concern is now to investigate the multi-

valued semantics induced by GS4 through simple proof-theoretic considerations. Accord-
ing to this semantic account, the interpretation of a formula A, relative to one of its proofs
π , is determined by the ratio between π ’s identity axioms and the totality of π ’s axioms. By
Theorem 2.9, the litmus test of our semantics lies in its ability to provide an interpretation
invariant for any proof π of A.

Let us denote with #top(�), #top1(�), and #top0(�), the cardinality of the multisets
top(�), top1(�), and top0(�), respectively. Moreover, we stipulate that Q∗ = [0, 1] ∩ Q,
i.e., Q∗ is the set of the rational numbers comprised in the interval [0, 1]. The next definition
captures the desired semantic property more formally.

DEFINITION 3.1 (Fractional interpretation). For any formula A ∈ F , the interpretation

mapping � · � : F �→ Q∗ is defined as �A� = #top1(A)

#top(A)
.

The mv-GS4 sequent system comes as a decorated version of GS4 specifically designed
to keep record, along proofs, of the number of identity axioms out of the total number of

top-sequents (cfr. Figure 2). In this manner, mv-GS4 sequents come indexed by ordered
pairs of natural numbers. Specifically:

• identity axioms are indexed with the ordered pair 〈1, 1〉 to mean that there is 1 identity
axiom out of 1 axiom in total;

• complementary axioms are instead indexed with 〈0, 1〉 to express the presence of 0
identity axioms out of 1 axiom in total.

Accordingly, if the sequent n
m

� is provable in mv-GS4, then:

• any GS4-proof π of � � is such that #top1(π) = m and #top(π) = n;

• �
∨

�� = m

n
∈ Q∗.

EXAMPLE 3.2. We report below the mv-GS4 version of the GS4-proof in earlier
Example 2.3.

Fig. 2. The mv-GS4 sequent calculus
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ax.
1
0

r, q⊥
ax.

1
1

q, q⊥
∧

2
1

r ∧ q, q⊥

ax.
1
0

r, t
ax.

1
0

q, t ∧
2
0

r ∧ q, t ∧
4
1

r ∧ q, q⊥ ∧ t ∨
4
1

(r ∧ q) ∨ (q⊥ ∧ t)

According to Definition 3.1, �(r ∧ q) ∨ (q⊥ ∧ t)� = 0.25.

LEMMA 3.3 (Basic semantic properties). Let @ ∈ {∧, ∨}. For any three formulas A, B,
and C, the fractional interpretation mapping � · � satisfies these properties:

(i) �A@B� = �B@A�

(ii) �(A@B)@C� = �A@(B@C)�

(iii) �A ∨ (B ∧ C)� = �(A ∨ B) ∧ (A ∨ C)�.

Proof. Properties (i) and (ii) come straightforwardly. Property (iii) is established by
observing that the two proofs below convey the same semantic evaluation, and so applying
Theorem 2.9.

π1

...

n1

m1
A, B

π2

...

n2

m2
A, C ∧

n1+n2

m1+m2
A, B ∧ C ∨

n1+n2

m1+m2
A ∨ (B ∧ C)

π1

...

n1

m1
A, B ∨

n1

m1
A ∨ B

π2

...

n2

m2
A, C ∨

n2

m2
A ∨ C ∧

n1+n2

m1+m2
(A ∨ B) ∧ (A ∨ C) �

REMARK 3.4. Semantically speaking, conjunction doesn’t necessarily distribute over
disjunction. Example: � p ∧ (q ∨ q⊥) � �= � (p ∧ q) ∨ (p ∧ q⊥) �.

For q ∈ Q∗, let Fq ::= {A | �A� = q}. Clearly, F1 exactly coincides with the set
of tautologies, albeit the set F0 doesn’t coincide with the set of contradictions. Indeed,
from Definition 1 it follows immediately that two classical contradictions are amenable to
different fractional interpretations. Roughly speaking, such a semantic divergence happens
because within a contradiction of the form A ∧ A⊥ either the conjunct A or its dual A⊥ may
“contain” some identities.

EXAMPLE 3.5. Take p ∧ p⊥ and (p ∧ p⊥) ∧ (p ∨ p⊥).

• � p ∧ p⊥ � = 0
ax.

1
0

p
ax.

1
0

p⊥
∧

2
0

p ∧ p⊥

• � (p ∧ p⊥) ∧ (p ∨ p⊥) � = 0.3
ax.

1
0

p
ax.

1
0

p⊥
∧

2
0

p ∧ p⊥

ax.

1
1

p, p⊥
∨

1
1

p ∨ p⊥
∧

3
1

(p ∧ p⊥) ∧ (p ∨ p⊥)
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Unlike the identity-free formula p ∧ p⊥, the formula (p ∧ p⊥) ∧ (p ∨ p⊥) contains the
identity p ∨ p⊥ along with two nonidentical components p and p⊥. Therefore, the final
sequent comes decorated with 〈1, 3〉 as meaning that this formula contains one identical
component out of three components in total, and so the assigned semantic value turns out
to be 0.3.

REMARK 3.6. In this article, we take the collection of axioms top(A) as a multiset so
that its cardinality function #top(A) counts possible repetitions of the same axiom. This
entails, for instance, the fact that

� (p ∨ p⊥) ∧ q � �= � (p ∨ p⊥) ∧ q ∧ q �.

One could object that, in the domain of classical logic, repetitions should not matter
and soundness and completeness should refer to optimal conjunctive normal forms, i.e.,
those with a minimal number of conjuncts. Of course, such a requirement can be met by
taking top(A) to be a set, instead of a multiset, because this variant does not affect our
achievements. However, the objection suffers from circularity inasmuch as it refers back to
Boolean semantics, whereas our aim here is to manufacture a semantics based on proofs
and independent of any prior semantical intuition.

THEOREM 3.7. For any two contexts �, A and �, B:

� �, A ∧ B � = #top1(�, A) + #top1(�, B)

#top(�, A) + #top(�, B)
.

Proof. Straightforwardly by Theorem 2.10(ii). �

REMARK 3.8 (Non-truth functionality). In the system mv-GS4, disjunction and
conjunction aren’t truth-functional connectives.

• (Disjunction). Consider p, p⊥ and p ∧ p⊥. We have � p � = � p⊥ � = � p ∧ p⊥ � = 0,
but � p ∨ p⊥ � = 1 and � p ∨ (p ∧ p⊥) � = 0.5.

• (Conjunction). By Theorem 3.7, non-truth functionality follows by considering two
formulas A and B such that � A � = � B �, but #top(A) �= #top(B). Such a divergence

is due to the fact that the
m1

n1
⊕ m2

n2
::= m1 + m2

n1 + n2
is not an operation on Q. To take

an easy example, � p � = � p ∧ p �, but � p ∧ (p ∨ p⊥) � �= � (p ∧ p) ∧ (p ∨ p⊥) �.

As we said, negation (·)⊥ is not a connective in our language. When it is treated as a
meta-connective, its non-truth functionality comes to the fore by taking p and p ∧ p⊥, for
instance. Although � p � = � p ∧ p⊥ � = 0, the interpretation of their negations diverges
since � p⊥ � = 0 and � (p ∧ p⊥)⊥ � = � p⊥ ∨ p � = 1.

DEFINITION 3.9 (Formulas pn and �n
p). For each atom p and any n ∈ N\{0} the formulas

pn and �n
p are recursively defined as follows:

• p1 ≡ p and pn ≡ pn−1 ∧ p.

• �1
p ≡ p ∨ p⊥ and �n

p ≡ �n−1
p ∧ �1

p.
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EXAMPLE 3.10. • p3 ≡ p ∧ p ∧ p

• �3
p ≡ (p ∨ p⊥) ∧ (p ∨ p⊥) ∧ (p ∨ p⊥)

The next theorem reveals that any semantic value comprised in Q∗ is the interpretation
of some formulas of the language.

THEOREM 3.11. For any q ∈ Q∗, there is a formula A such that � A � = q.

Proof. The proof consists in showing that for any m, n ∈ N such that n � m and n �= 0

there is a formula A such that the sequent n
m

A is provable in mv-GS4. To this aim, notice
that, for each atom p:

#top1(�n
p) = #top(�n

p) = n and #top0(pn) = #top(pn) = n.

Now top1(�m
p ∧ pn−m) = m and top(�m

p ∧ pn−m) = n, hence � �m
p ∧ pn−m � = m

n
. �

EXAMPLE 3.12. Take the formula �1
p ∧ p2 ≡ (p ∨ p⊥) ∧ (p ∧ p). The proof below

establishes that � �1
p ∧ p2 � = 0.3.

ax.

1
1

p, p⊥
∨

1
1

p ∨ p⊥

ax.
1
0

p
ax.

1
0

p ∧
2
0

p ∧ p ∧
3
1

(p ∨ p⊥) ∧ (p ∧ p)

3.1. Why GS4. The reader can now better understand why the sequent system GS4
is the best possible one for our purposes. There are indeed two main reasons. The first one
is technical to the extent that a sequent formulation with a multiplicative conjunction rule
would not allow us to prove the unicity of interpretations as guaranteed by Theorem 2.9.
For instance, these two cut-free proofs of the same formula yield two different interpreta-
tions:

ax.
1
0

q⊥, p
ax.

1
0

q
(mult. ∧)

2
0

q⊥, p ∧ q ∨
2
0

q⊥ ∨ (p ∧ q)

ax.
1
0

p
ax.

1
1

q, q⊥
(mult. ∧)

2
1

q⊥, p ∧ q ∨
2
1

q⊥ ∨ (p ∧ q)

The second reason for adopting GS4 is that its generalized axiom and conjunction rule
are so formulated as to be able to maximize the number of atoms in axiomatic clauses
and hence the number of identity top-sequents in GS4-proofs. This is to say, for any

formula A the value � A � which GS4 assigns to A is always the maximal one with respect
to that assigned via proofs of alternative sequent formulations such as Gentzen’s original
LK [7]. This specific feature of GS4 is required for the correctness of interpretations. As
illustrative example, we may look at these two proofs:

ax.
1
0

q⊥, p
ax.

1
0

q
(mult. ∧)

2
0

q⊥, p ∧ q ∨
2
0

q⊥ ∨ (p ∧ q)

ax.
1
0

q⊥, p
ax.

1
1

q, q⊥
(add. ∧)

2
1

q⊥, p ∧ q ∨
2
1

q⊥ ∨ (p ∧ q)
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The decorated proof on the left resorts to the multiplicative (i.e., context-mixing) version
of the conjunction rule and it displays 0 identity top-sequents out of 2 top-sequents in total.

The proof on the right is instead a mv-GS4-proof with 1 identity top-sequent out of 2
top-sequents in total. Clearly, the correct semantic interpretation of q⊥ ∨ (p ∧ q) — whose
conjunctive normal form is (q⊥ ∨ p) ∧ (q ∨ q⊥) — is not expected to be 0, but 0.5. In
summary, then: Gentzen systems including a multiplicative version of the conjunction rule
may produce different interpretations of the same formulas and, obviously, at most only
one of them can be the correct one. Finally, it is worth observing that G4’s logical rules

(and so GS4’s rules) when taken in their backward reading, i.e., as decomposition rules,
corresponds to tableau rules for classical logic [5].

§4. Bounded supraclassical logics. Supraclassical logics are extensions of classical
propositional logic via proper axioms. They have been introduced by David Makinson with
the purpose of “bridging the gap” between classical and nonmonotonic reasoning through
a “logical continuous” [12, 15]. In this section we direct attention to an alternative way of

deductively expanding classical logic, whereby one considers proper subsystems of GS4
obtained by establishing a lower bound to the fractional truth-values of logical formulas.
We term these systems bounded supraclassical logics.

DEFINITION 4.1 (Bounded supraclassical systems). For any q ∈ Q∗, we indicate with

mv-GS4q the system whose set of theorems is {A | � A � � q}.
EXAMPLE 4.2. From Definition 4.1, mv-GS40.3’s theorems are all those formulas A

such that � A � � 0.3. For instance, the formula (p∨p⊥)∧q∧r is a theorem of mv-GS40.3,
whilst (p ∨ p⊥) ∧ q ∧ r ∧ s is not because � (p ∨ p⊥) ∧ q ∧ r ∧ s � = 0.25.

REMARK 4.3. By Theorem 3.11, if q, q′ ∈ Q∗ and q′ < q, then mv-GS4q ⊂ mv-GS4q′ .
This means that bounded supraclassical logics form a dense hierarchy of supraclassical
systems whose extremes are GS4 (all and only the classical tautologies are provable) and

GS4 (anything is provable) (see Figure 3).

From now on, mv-GS4q will refer to a generic bounded supraclassical system. For the

sake of simplicity, by saying that the sequent � � is valid in mv-GS4q we mean the

provability in mv-GS4 of the decorated sequent n
m

� with
m

n
� q.

4.1. Weakening admissibility.

LEMMA 4.4. For any two clauses � � and � �, �
∨

� ∨ ∨
� � � �

∨
� �.

Proof. To begin with, observe that, for any clause � �, either �
∨

� � = 1 or
�
∨

� � = 0. Then, consider the following three cases.

• � � is an identity clause. Then � �, � is an identity clause as well, and so �
∨

� ∨∨
� � = �

∨
� �.

• � � is an identity clause, and so is � �, �. Thence, �
∨

� ∨ ∨
� � � �

∨
� �.
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Fig. 3

• If neither � � nor � � is an identity clause, it suffices to observe that the inclusion of
new atoms in a complementary clause may transform it into an identity clause. This
means that it will be either �

∨
� ∨ ∨

� � = 0 or �
∨

� ∨ ∨
� � = 1. In both cases:

�
∨

� ∨ ∨
� � � �

∨
� �. �

The following is a consequence.

THEOREM 4.5. For any context �, A : �
∨

� ∨ A � � �
∨

� �.

Proof. We prove by induction on the complexity of the formula A that, for any context
�, �

∨
� ∨ A � � �

∨
� �.

Base case: Let top(�) = [ � �1, . . . , � �n
]

and � ∈ AT . If A ≡ �, then top(�, �) =[ � �1, �, . . . , � �n, �
]
, By Lemma 4.4, for any 1 � i � n, �

∨
�i ∨ � � � �

∨
�i �, and so

�
∨

� ∨ � � � �
∨

� � comes straightforwardly.
Inductive step: we distinguish two cases.

• (A ≡ B ∧ C). By Theorem 2.10 (ii), top(�, B ∧ C) = top(�, B) 
 top(�, C). By
inductive hypothesis, �

∨
� ∨ B � � �

∨
� � and �

∨
� ∨ C � � �

∨
� �. By Theorem

3.7, �
∨

� ∨ (B ∧ C) � � �
∨

� ∨ B � or �
∨

� ∨ (B ∧ C) � � �
∨

� ∨ C � and so
�
∨

� ∨ (B ∧ C) � � �
∨

� �.

• (A ≡ B ∨ C). By Theorem 2.10 (i), top(�, A ∨ B) = top(�, A, B). By
inductive hypothesis, for any context �, �

∨
� � � �

∨
� ∨ B �. By replacing �

with �, A, we finally get the inequality �
∨

� ∨ A � � � (
∨

� ∨ A) ∨ B � = �
∨

� ∨
(A ∨ B) �. �

COROLLARY 4.6. For any two formulas A and B:

(i) if A is a mv-GS4q’s theorem, so is A ∨ B,

(ii) if A and B are both mv-GS4q’s theorems, A ∧ B is also a theorem.

Proof. Immediate, by Theorem 4.5. �
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REMARK 4.7. The disjunction and conjunction rules are clearly invertible in GS4: if
the lower sequent is provable, so does the upper sequent(s). However, it is easy to check

that conjunction does not admit the same in bounded systems mv-GS4q. Example: the

formula (p ∧ p⊥) ∧ (p ∨ p⊥) is a theorem of mv-GS4 0.5, whereas p ∧ p⊥ is not.

4.2. Cut-Elimination. As Arnon Avron noted [1], Jean-Yves Girard was the first point-
ing out that Gentzen’s standard cut-elimination algorithm can be easily upgraded in the
propositional case so as to cover stronger systems with a set of complementary clauses as
proper axioms (provided that the set is closed under cut-applications) [8]. The following
theorem is nothing else but an adaption of Girard’s observation.

THEOREM 4.8 (Strong cut-elimination). The cut rule � �, A � �, A⊥
� �

is redundant

when added to GS4.

Proof. This clearly follows from the fact that GS4 proves anything.
In computational terms, recall that Gentzen’s cut-elimination algorithm pushes the ap-

plications of the cut rule upwards along the proof-tree. Whenever one of the cut-formulas
is an atom within a clause introduced by a complementary axiom, the cut is immediately
reducible as follows:

...
� �, A

ax.� �, A⊥
cut� �

−→ ax.� �

�

In the context of the multivalued system mv-GS4, and for mere combinatorial reasons,
the cut rule has to be decorated in the following manner:

n
m

�, A
n′
m′

�, A⊥
cut,

n+n′
m+m′

�

and, then, the foregoing cut reduction becomes:

...

n
m

�, A
ax.

1
0

�, A⊥
cut

n+1
m

�

−→ ax.
1
0

�

Let’s call mv-GS4
+

(resp. mv-GS4
+
q ) the system obtained by adding the cut rule to

mv-GS4 (resp. mv-GS4q). The point to stress here is that applications of the cut rule may
distort the correct semantic evaluation of proofs by artificially increasing or decreasing it.
Inspect for instance the following proof:

ax.

1
1

p, p⊥ ax.
1
0

p, p
cut

2
1

p
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Fig. 4

Although this proof attaches to p the value 0.5, the right interpretation is obviously
� p � = 0. An example of proof where the cut rule decreases the semantic value is the
following:

ax.

1
1

p, p⊥
∨

1
1

p ∨ p⊥

ax.
1
0

p

ax.
1
0

p, q
ax.

1
0

p, q
cut

2
0

p ∧
3
0

p ∧ p ∧
4
1

(p ∨ p⊥) ∧ (p ∧ p)

This is an indication that cut-elimination algorithm in mv-GS4
+

is the key to computing
the semantic value of logical formulas to the extent that only cut-free proofs are capable of
leading to the correct semantic value.

EXAMPLE 4.9. In Figure 4 we show how to calculate the value � p � = 0 by imple-

menting the cut-elimination algorithm on a nonanalytic mv-GS4
+

proof ending with the
sequent 3

1
p.

REMARK 4.10 (Non-admissibility of the cut rule). The cut rule is not admissible in
bounded systems. To take an example, the two sequents 3

2
p, (p ∨ p⊥) ∧ (p ∧ p⊥) and

1
1

p, ((p ∨ p⊥) ∧ (p ∧ p⊥))⊥ are both valid in mv-GS4 0.7, whereas 1
0

p is not.

4.3. Structurality. The property of structurality of a logical system refers to the clo-
sure of provability under uniform substitution: if a formula A is provable, it is also provable
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the formula A[B/�], where � is a literal (i.e., � ∈ AT ), achieved by replacing each occur-
rence of � (resp. �⊥) in A with the formula B (resp. B⊥) [22]. Since classical proposi-
tional logic is Post-complete, no consequence relation extending the classical one can be
both Tarskian and satisfy structurality (but the trivial one) (see [4, 18]). While we know
that supraclassical consequence relations à la Makinson are Tarskian at the expense of
structurality, our proof-theoretic approach reverses the outcome. Indeed, the consequence

relation induced by bounded systems mv-GS4q is non-Tarskian to the extent that it satisfies
structurality at the expenses of transitivity.

LEMMA 4.11. Let �[B/�] = {A[B/�] | A ∈ �}. For any clause � �, we have that
� �[B/�] � � �

∨
� �.

Proof. We distinguish two cases.

• Neither � ∈ � nor �⊥ ∈ �. In this case �[B/�] = � and so �
∨

�[B/�] � = �
∨

� �.

• � ∈ � or �⊥ ∈ �. Two subcases.

− � � is an identity clause. Two further subcases.

� If � = �′, �, �⊥, then the sequent � �′[B/�], B, B⊥ is valid as well and so
�

∨
�′[B/�] ∨ B ∨ B⊥ � = 1. Thence: �

∨
�′[B/�] ∨ B ∨ B⊥ � = �

∨
�′ ∨

p ∨ p⊥ �.

� If � = �′, �̂, �̂⊥, with �̂ �= �, then �[B/�] = �′[B/�], �̂, �̂⊥. Thence, as in
the previous point, �

∨
� � = �

∨
�′[B/�] ∨ �̂ ∨ �̂⊥ � = 1.

− � � is a complementary clause. In this case �
∨

� � = 0 and so, trivially,
�

∨
�[B/�] � � �

∨
� �. �

In order to prove structurality, it is necessary to define the concept of open-proof which

further expands that of GS4-proof.

DEFINITION 4.12 (Open-proof, closed open-proof). The notion of open-proof expands the

set of GS4-proofs by including deductions with whatsoever top-sequents, not only clauses.
Notationally, we shall distinguish open-proofs from “closed” ones through the superscript

“↑” (e.g., π↑, ρ↑, . . .). Given an open-proof π↑, its closure π↑↓ is any mv-GS4-proof

constructed by: (i) upwards extending π↑ by means of GS4’s logical rules in such a way

as to afford a complete GS4-proof, and (ii) decorating all the sequents in this proof, from

top-sequents to end-sequent, on the basis of the mv-GS4 rules.

DEFINITION 4.13 (Substitution on proofs). Let π be a mv-GS4-proof ending with n
m

�.

We indicate with π [B/�]↑↓ the closed open-proof ending with
n′
m′

�[B/�] which results from
the closure of the open-proof obtained by replacing in π each occurrence of the literal �

(resp. �⊥) by the formula B (resp. B⊥).

EXAMPLE 4.14. In Figure 5 we consider a mv-GS4-proof π ending with the sequent

2
0

q⊥ ∨ (p ∧ q) and we show how to compute the proof π [ p∨p⊥
/p]↑↓. The five steps in

Figure 5 are commented below.
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STEP 1: remove decorations,
STEP 2: replace everywhere p by p ∨ p⊥,
STEP 3: complete the proof,
STEP 4: attach new decorations.

THEOREM 4.15. For all formulas A, B and all atoms �, � A[B/�] � � � A �.

Proof. We attend to two mv-GS4-proofs π and π [B/�]↑↓ ending with the sequents n
m

A

and
n′
m′

A[B/�], respectively. We need assurance that
m′

n′ � m

n
. Consider then the two

multiset of sequents top(π) = [� �1, . . . , � �n] and top(π [B/�] ↑) = [� �′
1, . . . , � �′

n].
By Lemma 4.11, for each 1 � i � n, �

∨
�′

i � � �
∨

�i �. Thence, we easily get the claim
of the theorem. �

From this theorem, structurality follows as an easy corollary.

COROLLARY 4.16. If the formula A is a theorem of mv-GS4q, then A[B/�] is also a

mv-GS4q theorem.

4.4. Bounded consequence relation. We conclude this section by framing its results
in terms of the bounded consequence relation denoted with “�∼q” and defined as follows.

DEFINITION 4.17. Let q ∈ Q∗, we say that the relation � �∼q A holds whenever mv-GS4

proves the sequent n
m

�⊥, A and
m

n
� q or, equivalently, �

∨
�⊥ ∨ A � � q.

THEOREM 4.18. For any q ∈ Q∗, the bounded consequence relation �∼q is reflexive,
monotonic, and structural.

Fig. 5
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Proof. We consider each one of the listed properties separately.

• REFLEXIVITY. Immediately by the fact that, for any context �, A, there is a m ∈ N

such that mv-GS4 proves m
m

�⊥, A⊥, A.

• MONOTONICITY. If � �∼q A, then there are m, n ∈ N such that mv-GS4 proves

n
m

�⊥, A with
m

n
� q. By Theorem 4.5, there are m′, n′ ∈ N such that mv-GS4

proves
n′
m′

�⊥, A, B⊥ with
m′

n′ � m

n
. Thence,

m′

n′ � q and so �, B �∼q A.

• STRUCTURALITY. If � �∼q A, then there are m, n ∈ N such that mv-GS4 proves

n
m

�⊥, A and
m

n
� q. By Theorem 4.15, �

∨
�⊥ ∨ A[B/�] � � �

∨
�⊥ ∨ A � and so

�[B/�] �∼q A[B/�]. �

REMARK 4.19. The consequence relation is transitive when the special cases �∼1 and
�∼0 are taken into account. When q ∈ Q∗\{0, 1}, transitivity is lost. To take a very easy
example, whereas p �∼0.5 p ∧ q and p ∧ q �∼0.5 q hold, it is not the case that p �∼0.5 q
because � q ∨ p⊥ � = 0.

§5. Concluding thoughts. We would like to conclude by sketching three themes for
further research. For one thing, we suggest that our proof-theoretic approach may be ap-
plied to traditional issues in the theory of belief revision. The logical machinery developed
in [15] enables to encode a set of propositions B (believed by an ideal doxastic agent) into
a set of complementary clauses CB = {� �1, . . . , � �k}. The next stage is to define an

“extended” multivalued system mv-GS4B such that 1
1

�i for each �i ∈ CB; the semantic
value of the logical formulas can be now recalculated accordingly, so as to express the set
of propositions B believed by the agent at a given time. If � A �B is the value attached to

A by the system mv-GS4B, then it is easy to see that � A �B � � A �; specifically, we have
that {A | � A � = 1} ⊂ {A | � A �B = 1}.

EXAMPLE 5.1. Suppose we supplement GS4 with the formula p → (q ∧ r) as a proper
axiom. According to the method in [15], the extended system GS4 + {� p → (q ∧ r)} is
equivalent to the system GS4+{� p⊥, q}+{� p⊥, r}. Our semantics can be now upgraded
by decorating the added clauses as identity axioms — i.e., 1

1
p⊥, q and 1

1
p⊥, r. For

instance, whereas � p⊥∨(q∧t) � = 0, it is easy to check that � p⊥∨(q∧t) �{p→(q∧r)} = 0.5.

Secondly, we support the idea that fractional semantics can be also regarded as a full-
fledged proof-theoretic semantics for classical logic, alternative to the proposals presented,
for instance, in [6, 16]. According to proof-theoretic semantics, logical rules in their top-
down reading, from premises to the conclusion, are what confer the meaning to logical
operators, whilst semantical definitions via truth-tables are just subsidiary devices. In short,
logical formulas receive their meaning through their derivations, i.e., via finite sequence of
meaning-transmitting inferential steps. Of course, the fact that any proof-theoretic seman-
tics is a semantics in terms of proofs does not imply the converse. Anyway, our semantics
seems to fit the bill by taking the rules of classical calculus as vehicle for meaning in their
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bottom-up reading, namely by considering them as decomposition rules. This backwards
reading of the rules discloses the axiomatic structure of proofs providing the semantic
interpretation of logical formulas.

Finally, another application of bounded supraclassical logics, not being transitive, con-
cerns the possibility they offer of accommodating truth-theoretic paradoxes in an alterna-

tive way. Examine the mv-GS4 version of the usual derivation of the empty sequent � ∅

(i.e., the limiting case of the complementary axiom of GS4) in a system enriched with the
Tarskian truth predicate T with a fixed point λ. In short, T[λ] (resp. T[λ]⊥) and λ⊥ (resp.
λ) are mutually interchangeable in sequent proofs [2]:

1
1

T[λ], T[λ]

1
1

λ, T[λ]

1
1

λ, λ 1
1

λ, λ
cut

2
2

λ

1
1

T[λ], T[λ]

1
1

λ, T[λ]

1
1

λ, λ 1
1

λ, λ
cut

2
2

λ

2
2

T[λ]

2
2

λ
cut

4
4
∅

The point is that �
∨

∅ � �= 1, but �
∨

∅ � = 0. The lesson here seems to be that any

bounded system mv-GS4q with q > 0 furnishes a natural way to block the derivation of
the absurd in logical contexts of this kind.
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