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Electrohydrodynamic instability of miscible
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This paper investigates the electrohydrodynamical instability of two miscible flows
in a micro-pipe subject to an axial electric field. There is an electrical conductivity
stratification between the two layers. A weak shear flow arises from a constant axial
pressure gradient. The three-dimensional linear stability analysis is studied under
the assumption of a quasi-steady state. The influences of the conductivity ratio η,
the interface location a, the interface thickness δ, the Reynolds number Re and the
Schmidt number Sc on the linear stability of the flows are investigated. The flow
becomes more unstable for a larger conductivity contrast. When the conductivity in
the inner layer is larger, the critical unstable mode can be dominated by either the
corkscrew mode (the azimuthal wavenumber m=1) or the axisymmetric mode (m=0),
which is dependent on the interface location a. It is observed that, when the interface
is proximal to pipe’s wall, the critical unstable mode shifts from the corkscrew mode
to the axisymmetric mode. When the conductivity is larger in the outer layer, the
instability is dominated by the axisymmetric mode. A detailed parametric study shows
that the flow is least stable when the interface between the two liquids is located
at approximately a = 0.3 and a = 0.2 for conductivity ratios of η = 0.5 and η = 2
respectively. The flow becomes more stable as the interface becomes thicker, and
the shear flow and ionic diffusion are found to have a stabilizing effect due to the
enhancement of dissipation mechanisms.

Key words: instability, MHD and electrohydrodynamics, micro-/nano-fluid dynamics

1. Introduction

For many years, electrohydrodynamics has attracted extensive research due to its
wide applications in microfluidic devices, such as in ink jetting, drug delivery and
chemical analysis. One favourable application of the use of an electric field is to pump
liquids in micro-channels as it will not induce mechanical noise. Another potential use
of an electric field is to enhance the mixing in microfluidic devices (Lin 2009). When
an external electric field is applied across a liquid layer, the Maxwell stress can initiate
flow instability in the liquid layer with spatial changes in the electrical properties. In
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Electrohydrodynamic instability of miscible core–annular flows 489

previous studies, the instability of flow systems could be triggered by an electric field
due to abrupt changes (Melcher & Schwartz 1968; Melcher & Smith 1969) or spatial
gradients in electrical properties (Melcher & Firebaugh 1967).

In the former case, the liquids are usually assumed to be immiscible and the
interfacial instability is of particular interest (Saville 1997; Ozen et al. 2006).
It is assumed that there is no electrical charge within the bulk region, while
electrical charges accumulate on the interface. One such model proposed was the
leaky-dielectric model by Taylor (1966). Recently, Wang (2012) discussed the
influence of surface charge transportation on the breakup of a poorly conducting
liquid thread surrounded by an insulating liquid layer in a radial electric field. Ding,
Wong & Li (2013) investigated the instability of two leaky-dielectric co-flows in an
annulus duct in a radial electric field. There was an abrupt change in the electrical
conductivity as well as the electrical permittivity, such that the Maxwell stress could
either enhance or impede the interfacial deformation. Their results demonstrated that
the electric field may inhibit the capillary instability caused by surface tension and
interfacial wave instability due to viscosity stratification (Ding et al. 2013).

The latter study of liquids with spatial electrical property gradients focused on the
influence of electrical body force on the stability of electro-convection. The gradients
may be caused by non-isothermal heating (Yoshikawa, Crumeyrolle & Mutabazi
2013) or due to the non-uniform distribution of ionic concentration (Lin 2009). To
the best of our knowledge, previous studies of electro-convection in a liquid layer
with electrical conductivity gradients in an isothermal environment have been focused
on flows in a square duct in past decades.

Pioneering work on electro-convection in a planar liquid layer with an electrical
conductivity gradient was carried out by Baygents & Baldessari (1998). A wall-normal
electric field was imposed between two parallel plates. They proposed that the
occurrence of instability was triggered by the dielectrophoretic effect (Baygents &
Baldessari 1998). They found that the lower conductivity boundary had a strong
stabilizing effect when the conductivity gradient was large. It should be noted that
the assumption of exchange of stability made by them was incorrect because the
critical unstable mode may be oscillatory (Baygents & Baldessari 1998). Chang, Ruo
& Chen (2009) dropped the assumption of exchange of stability and considered the
influence of an imposed shear flow wherein the oscillatory and stationary unstable
modes were discovered. It was found that the instability could be enhanced by a
very weak shear flow, and the transverse mode (zero spanwise wavenumber) became
critical rather than the longitudinal model (zero streamwise wavenumber). However,
as the shear flow became stronger, they found that the longitudinal mode became
critical and the critical mode was independent of the shear flow (Chang et al. 2009).
Ruo, Chang & Chen (2010) extended the study of Chang et al. (2009) and considered
the rotating effect. Their results showed that rotation played a stabilizing role in the
system while the electric field was the major cause of instability (Ruo et al. 2010).
Recently, Ding & Wong (2014) investigated the instability of an annular liquid layer
with electrical conductivity gradients. Their results showed that the critical unstable
mode depended on the geometry of the duct and the critical unstable mode may be
either stationary or oscillatory (Ding & Wong 2014).

Unlike the studies of Baygents & Baldessari (1998), Chang et al. (2009), Ruo
et al. (2010) and Ding & Wong (2014), in which the electro-convection was
triggered due to a spatial gradient in the electrical conductivity, Lin et al. (2004)
considered two miscible flows with an electrical conductivity stratification. To achieve
such a conductivity stratification flow in experiments, Lin et al. (2004) used two
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electrolytes with different ionic concentrations. The liquids were pumped into the
channel using a syringe pump. A Couette flow arose from a tangential electric field
due to the electro-osmosis phenomenon after removing the pressure gradient. The
electro-osmosis phenomenon was treated as a slippery boundary condition and the
slip velocity was related to the zeta potential in the electrical double layer. However,
it should be noted that the electro-osmosis flow was rather weak. They investigated
the linear stability by assuming a quasi-steady base flow and verified their results via
a direct numerical simulation. A depth-averaged model was proposed by Storey, Lin
& Santiago (2005) to investigate the electrohydrodynamical instability in a square
pipe. The depth-averaged model simplified the problem to a two-dimensional flow,
but showed good agreement with the three-dimensional results (Storey et al. 2005).
The convective and absolute electrokinetic instability with a conductivity stratification
was extended by Chen et al. (2005). Chen et al. (2005) used aqueous electrolytes of
10:1 conductivity ratio and applied a streamwise electric field. The two-dimensional
instability was studied via a thin-layer assumption that the channel width was much
larger than the channel depth. Santos & Storey (2008) extended the studies to a flow
with streamwise conductivity gradients and investigated the linear instability as well
as the nonlinear evolution. Notably, in these studies (Baygents & Baldessari 1998;
Chang et al. 2009; Ruo et al. 2010) non-slippery conditions were adopted, while
in other studies (Lin et al. 2004; Chen et al. 2005; Storey et al. 2005; Santos &
Storey 2008) a slippery boundary condition was considered. The latter focused on
the stability of electro-osmosis flow.

Previously, investigations of the electrohydrodynamical instability of multi-
immiscible electrolyte flows in a circular pipe have mainly focused on the interfacial
instability. Georgiou et al. (1991) investigated the influence of an electro-double-layer
on the long-wave instability of a core–annular electrolyte film. They found that double
layer repulsion can impede the capillary instability, while double layer attraction
enhances the capillary instability. Extension of such a flow was performed by Conroy
et al. (2010, 2011, 2012). They considered a two-electrolyte flow in a pipe. The
interfacial instability and dynamics were studied in the framework of long-wave theory
in which the system was reduced asymptotically (Conroy et al. 2010, 2011, 2012).
When an axial electric field is applied, most previous studies have been focused on
the stability of a liquid jet. Theoretical and experimental studies have shown that the
electric field has a stabilizing (Melstel 1996) or destabilizing (Hohman et al. 2001)
effect in electrified jets. For miscible flows in a circular pipe, we note that previous
studies focused on the problem of viscosity stratification flows (Selvam et al. 2007;
d’Olce et al. 2008, 2009). The core–annular flows were driven by two coaxial pumps
(Selvam et al. 2007; d’Olce et al. 2008, 2009). Water–natrosol mixtures were used
in experiments which could provide a large viscosity contrast but small variations in
densities (Selvam et al. 2007; d’Olce et al. 2008, 2009). Experiments by d’Olce et al.
(2008, 2009) demonstrated that perfect core–annular flows can be observed in such
flow systems. For a single fluid flow in a circular micro-pipe, experimental study
showed that the fluid was laminar and the electro-osmotic moving speed was very
small (Sinton & Li 2003). A careful look at the literature indicates that studies on
electrohydrodynamic instability of miscible liquid flows in a pipe are very limited. In
this paper, our aim is to extend the electrohydrodynamical instability of immiscible
flows in a circular pipe to miscible flows. In addition, in micro-channel flows, the
Reynolds number is usually very small, therefore mixing due to turbulence will not
occur (Sinton & Li 2003). This paper provides a potential method that can facilitate
the mixing in a micro-pipe through electrohydrodynamic instability.
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FIGURE 1. (Colour online) The geometry of the system. σ1 and σ2 represent the electrical
conductivity in the inner and outer layers respectively.

The rest of this paper is organized as follows. In § 2, the mathematical formulation
is constructed. Section 3 presents the base state and non-dimensional governing
system. In § 4, the linear stability analysis is implemented and the normal mode
analysis is considered. In § 5, the energy analysis is carried out to interpret the
instability mechanism. Section 6 presents the parametric studies of the dimensionless
parameters. In the last section, our conclusion is given.

2. Mathematical formulation
We consider a pipe flow system as shown in figure 1. The radius of the pipe is b.

The two liquids are miscible dilute electrolyte solutions. The liquids are Newtonian
and the values of the density ρ, kinematic viscosity ν and dynamic viscosity µ= ρν
of the two liquids are assumed to be the same (Lin et al. 2004). There is a sharp
change in the ionic concentration where the two liquids meet at r = a. Therefore, a
sharp change in the electrical conductivity occurs at r = a. A constant electric field
is imposed in the axial direction. A constant pressure gradient is imposed along the
axis.

In this paper, the three-dimensional hydrodynamical problem is considered.
Cylindrical coordinates (r, θ, z) are chosen; gravity is neglected. The motion of
the liquids is governed by the continuity equation and the momentum equation,

∇ · v = 0, (2.1)

ρ
Dv

Dt
=−∇p+µ∇2v + f , (2.2)

where v= uer + veθ +wez is the velocity and D/Dt= ∂/∂t+ u(∂/∂r)+ (v/r)(∂/∂θ)+
w(∂/∂z) is the material derivative operator. Here, f is the electrical force which can
be related to the Maxwell stress tensor T M by

f =∇ · T M. (2.3)

Usually, analysis of (2.2) is difficult because the electric field is coupled to the
free charge density ρe according to Maxwell’s equations. Moreover, the free charge
density is coupled to the flow field. In this paper, we assume that the electrical
current density Je and the induced current density (∂εE/∂t) are modest, such that
the induced magnetic field is negligible. Therefore, the electrostatic problem is
considered in this paper,

∇× E= 0. (2.4)
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Hence, the Maxwell stress T M= εEE− (1/2)ε‖E‖2I . The parameter ε is the dielectric
permittivity and E is the electric field. Here, ‖E‖2= E · E and I is the identity tensor.
The charge density is given by Gauss’s law,

ρe =∇ · (εE). (2.5)

Hence, the momentum equation (2.2) is now written as

ρ
Dv

Dt
=−∇p+µ∇2v + ρe E− 1

2
‖E‖2
∇ε. (2.6)

In isothermal and dilute electrolyte solution conditions, the electrical permittivity ε is
approximately that of the solvent (Lin et al. 2004). In some non-isothermal conditions,
this term (‖E‖2∇ε)/2 is crucial since there is a gradient of permittivity due to the
non-isothermal condition which causes a circulation flow in the system (Yoshikawa
et al. 2013). In this paper, we consider isothermal conditions and the electrical
permittivity is assumed to be constant for dilute electrolyte solutions. Therefore, the
term (‖E‖2∇ε)/2 is ignored. In previous studies by Chang et al. (2009) and Ding
et al. (2013), this term (‖E‖2∇ε)/2 was also neglected under the assumptions of
dilute electrolyte solution and an isothermal environment. The term ρe E is called the
electrical body force.

Because the electrostatics is considered, the electric field E can be related to the
electrical potential by

E=−∇φ. (2.7)

Hence, Gauss’s law (2.5) is expressed by the following Poisson equation:

∇2φ =−ρe

ε
. (2.8)

Conservation of electrical charge gives

∂ρe

∂t
+∇ · Je = 0. (2.9)

In this paper, the electrolyte solution is considered as an ohmic conductor, which
means that diffusion of the charge can be neglected. Then, the current density Je is
given by

Je = σ E+ ρev, (2.10)

where σ is the electrical conductivity. Substituting (2.10) into the current conservative
law, we obtain

Dρe

Dt
+∇ · (σ E)= 0. (2.11)

Because the electrolyte solution is considered to be an ionic conductor, the
conductivity depends on the local ion concentration. Accordingly, the conductivity
can be described by the following diffusion equation (Melcher 1981; Baygents &
Baldessari 1998; Chang et al. 2009):

Dσ
Dt
=Keff∇2σ , (2.12)
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where Keff is an effective diffusivity due to the Brownian motion of the ions. Equation
(2.12) is valid if the local electrical time is much shorter than the fluid time and the
time for ion electromigration,

ε

σ
� b2

ν
� b
ωE

and
b2

ωkBT
, (2.13a,b)

in which kBT is the Boltzmann temperature and ω is the characteristic mobility of
the charge-carrying solutes. The conditions imply that the ions are carried by a fluid
parcel. Typical values of these parameters can be found in Melcher’s book (Melcher
1981) and Lin et al.’s work (Lin et al. 2004): ε≈ 10−10 C V−1, ω≈ 10−8 m2 V−1 s−1,
kinematic viscosity ν ≈ 10−6 m2 s−1, conductivity σ ≈ 10−4 S m−1, strength of a
typical electric field E =O(103) V m−1 and pipe radius b= 10−3 m. A similar form
to (2.12) was also derived by Lin et al. (2004) from the species conservation law if
the electromigration was neglected. Baygents & Baldessari (1998) indicated that the
diffusion term Keff∇2σ is responsible for the existence of a threshold electric field
and cannot be neglected. This was also mentioned in the following works of Lin
et al. (2004), Chang et al. (2009) and Ding & Wong (2014).

At the initial time, the electrical conductivity in each layer is σ = σ1|r<a,
σ2|a<r<b (σ1 6= σ2). The subscript i = 1, 2 denotes the inner layer and outer layer
respectively. This can be achieved by using two aqueous electrolytes with different
ionic concentrations (Lin et al. 2004; Chen et al. 2005).

In this paper, we apply the non-slip and non-penetration boundary conditions at r=
b:

u= v =w= 0. (2.14)

Here, the basic flow is driven by pressure, and the maximum speed occurring at the
centreline is approximately 10−4–10−2 m s−1. Usually, the electro-osmosis flow is very
weak and the flow velocity can be estimated by the Helmholtz–Smoluchowski formula
UE = −εEζ/µ, where ζ is the zeta potential which is responsible for the electro-
osmosis flow. This velocity usually has an order of O(10−6) m s−1 provided ζ =
−10−2 V, ε = 10−10 C V−1 m−1, µ= 10−3 kg m−1 s−1 and E = 103 V m−1. Clearly,
the electro-osmotic velocity is much weaker than the pressure driven flow in this paper.
Hence, in what follows, the non-slip and non-penetration boundary conditions in (2.14)
are applied so that the electro-osmosis phenomenon is neglected.

There is no flux of the ions at r= b; therefore,

∂σ

∂r
= 0. (2.15)

The circular pipe is non-conducting,

∂φ

∂r
= 0. (2.16)

3. Base state and scalings
At the base state, the flow field and the electric field are decoupled because the

electrolyte solution is initially neutral, i.e. the net charge density is zero. The flow is
driven by a constant pressure gradient ∂zp̄. Therefore, the base velocity profile is

w̄= ∂zp̄
4µ
(r2 − b2). (3.1)
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We assume that the interface between the two liquids has grown diffusively to a
finite thickness δ. Moreover, we assume that the diffusion is sufficiently slow to allow
us to employ a quasi-steady base state for the linear stability analysis. Provided δ� 1,
the profile of the conductivity can be approximated by the error function:

σ̄ = σ1 + σ2

2
+ σ2 − σ1

2
erf
(

r− a
δ

)
. (3.2)

Equation (3.2) was used by Selvam et al. (2007) in their study to describe the profile
of the viscosity of a viscosity stratified flow in a circular pipe.

The base electrical conductivity profile can also be obtained via solution of the
following equation (Lin et al. 2004):

∂σ

∂t
=Keff

(
∂2σ

∂r2
+ 1

r
∂σ

∂r

)
. (3.3)

In experiments, Keff ranges from 10−9 to 10−12 m2 s−1.
The charge density ρe is zero, and the electric field exists only in the axial direction.

This gives the base state of the electrical potential:

φ̄ = φ0 − Ez, (3.4)

where E is the strength of the imposed electric field and φ0 is the reference electrical
potential.

Taking the velocity scale W =−(∂zp̄b2)/4µ, the length scale b, the time scale b/W,
the pressure scale ρW2, the electrical potential scale Eb and the conductivity scale
σ2 − σ1, we non-dimensionalize the system (2.1)–(2.16):

∇ · v = 0, (3.5)
Dv

Dt
=−∇p+ 1

Re
∇2v + Q

Re2Sc
∇2φ∇φ, (3.6)

1
Rt

D(∇2φ)

Dt
+∇ · {[(η− 1)σ + 1]∇φ} = 0, (3.7)

Dσ
Dt
= 1

ReSc
∇2σ , (3.8)

where Re=ρWb/µ is the Reynolds number, Q= (εE2b2/µKeff ) is the scaled electrical
energy and is defined as the electrical number in this paper, η = σ2/σ1 denotes the
conductivity ratio and Sc = ν/Keff is the electrical Schmidt number. Baygents &
Baldessari (1998) proposed that Sc ∈ [103, 106]. In the study of Chang et al. (2009),
Sc was assumed to vary in [102, 105]. The parameter Rt = (d/W)/(ε/σ1) measures
the ratio of fluid time to electrical time. We assume that Rt is very large so that
the electric time is significantly smaller than the fluid time. Therefore, (3.7) can be
simplified to

[(η− 1)σ + 1]∇2φ + (η− 1)∇σ · ∇φ = 0. (3.9)

The dimensionless boundary conditions at r= 1 are

u= v =w= ∂σ
∂r
= ∂φ
∂r
= 0. (3.10)
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FIGURE 2. (Colour online) The base electrical conductivity profile. The lines are obtained
by numerical experiments on the dimensionless form of (3.3) and the circles and
diamonds are obtained from the error function (3.12). The relevant parameters are a= 0.5,
ReSc= 1000.

The dimensionless base state is defined as follows:

w̄= 1− r2, (3.11)

σ̄ = 1
2
+ 1

2
erf
(

r− a
δ

)
, (3.12)

φ̄ =−z, (3.13)

in which a is scaled on the length scale b which falls in the range of (0, 1). It should
be noted that ∇2φ̄= 0 and ∂σ̄ /∂r= 1/δ

√
π exp(−(r− a)2/δ2). In this paper, the range

of δ is fixed, δ ∈ [0.05, 0.15]. To verify (3.12), we assume that the concentration
has a Heaviside profile initially, the conductivity profile at time instant t is solved
numerically by the dimensionless form of (3.3) and a regular condition is imposed at
the centreline dσ/dr= 0.

The base conductivity profile is shown in figure 2. It is obvious that the electrical
conductivity profile can be approximated by the error function in (3.12) by adjusting
the value of δ at an instant t. In the following study, we use (3.12) as the profile
of the electrical conductivity at the base state for convenience in the study of linear
stability.

4. Linear stability analysis
The linear stability analysis of the flow system is implemented by perturbing the

base state with infinitesimal disturbances:

[u, v,w, p, σ , φ] = [0, 0, w̄, p̄, σ̄ , φ̄] + [u′, v′,w′, p′, σ ′, φ′], (4.1)

where the primed variables are the infinitesimal disturbances. In a standard way, we
consider the normal mode analysis:

[u′, v′,w′, p′, σ ′, φ′] = [û, v̂, ŵ, p̂, σ̂ , φ̂] exp(i(mθ + αz)+ λt), (4.2)

in which [û, v̂, ŵ, p̂, σ̂ , φ̂] is the Fourier amplitude, m is the azimuthal wavenumber,
α is the streamwise wavenumber and λ is the complex temporal growth rate.
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On substituting (4.1) with the normal mode analysis into (3.5), (3.6), (3.8) and (3.9)
and after linearizing, we obtain the governing equations of the eigenvalue problem:

Dû+ û+ imv̂
r
+ iαŵ= 0, (4.3)

λû=−Dp̂− iαw̄û+ 1
Re

(
L û− û+ 2imv̂

r2

)
, (4.4)

λv̂ =− imp̂
r
− iαw̄v̂ + 1

Re

(
L v̂ − v̂ − 2imû

r2

)
, (4.5)

λŵ=−iαp̂− iαw̄ŵ− Dw̄û+ 1
Re

L ŵ− Q
PeRe

L φ̂, (4.6)

Peλσ̂ =−PeDσ̄ û− iPeαw̄σ̂ +L σ̂ , (4.7)
[(η− 1)σ̄ + 1]L φ̂ + (η− 1)Dσ̄Dφ̂ − iα(η− 1)σ̂ = 0, (4.8)

where L = D2 + (1/r)D − (m2/r2) − α2, D = d/dr. The Péclet number Pe = ReSc. It
should be noted that the value of Pe cannot be small because diffusion of conductivity
is slow.

The boundary conditions at r= 1 are

û= v̂ = ŵ= Dσ̂ = Dφ̂ = 0. (4.9)

At the centreline r = 0, the singular nature of the cylindrical coordinate system
requires special treatment. To deal with the singular point of the system (4.3)–(4.8),
we use the fact that the velocity vector and the other scalar variables have a vanishing
azimuthal dependence as they approach the centreline, i.e.

lim
r=0

∂v′

∂θ
= lim

r=0

∂p′

∂θ
= lim

r=0

∂σ ′

∂θ
= lim

r=0

∂φ′

∂θ
= 0, (4.10)

where v′ = u′er + v′eθ +w′ez is the velocity disturbance.
In the form of Fourier modes, the regular boundary conditions are

imû− v̂ = û+ imv̂ =mŵ=mp̂=mσ̂ =mφ̂ = 0. (4.11)

If m= 0, the boundary conditions are

û= v̂ = Dŵ= Dp̂= Dσ̂ = Dφ̂ = 0. (4.12)

If m= 1, the boundary conditions are

Dû= Dv̂ = ŵ= p̂= σ̂ = φ̂ = 0. (4.13)

The velocity conditions of m = 1 agree with the boundary conditions given by
Khorrami (1991) for a single fluid flow in a circular pipe.

When m > 2, the boundary conditions are

û= v̂ = ŵ= p̂= σ̂ = φ̂ = 0. (4.14)

A Chebyshev collocation method is implemented to solve the eigenvalue problem,
and the physical domain is transformed into the Chebyshev domain,

ζ = 2r− 1. (4.15)
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The variables û, v̂, ŵ, p̂, σ̂ , φ̂ are expanded as

û=
N∑
0

anTn(ζ ), v̂ =
N∑
0

bnTn(ζ ), ŵ=
N∑
0

cnTn(ζ ), (4.16a−c)

p̂=
N∑
0

dnTn(ζ ), σ̂ =
N∑
0

fnTn(ζ ), φ̂ =
N∑
0

enTn(ζ ), (4.17a−c)

where Tn(ζ ) denotes the nth Chebyshev polynomial.
In order to modify the computation near the interface r = a, the Chebyshev

collocation points are clustered in the mixing region at r = a using the following
stretching function (Govindarajan 2004):

ξ = a
sinh( fbr0)

[sinh[(r− r0)] + sinh( fba)], (4.18)

where r0 = 1/2fb ln[(1+ (exp( fb − 1)a)/1+ (exp(−fb)− 1)a)]. The coefficient fb

determines the degree of clustering, and fb = 6 in this paper. The parameter a
represents the location of the interface around which clustering is desired.

After clustering the Chebyshev collocation points into the diffusion region, we need
to calculate the eigenvalue problem via the clustered grid. Therefore, a transformation
on the derivatives between the clustered grid and the Chebyshev grid should be made,

df
dξ
= df

dr
dr
dξ
= 1

G′(r)
df
dr
, (4.19)

where G(r)= ξ and f stands for the variable û, v̂, ŵ, p̂, σ̂ or φ̂. It should be noted
that the derivative df /dr= 2(df /dζ ).

For the second derivative of f , using the chain rule, the transformation is written

d2f
dξ 2
= 1
(G′)2

d2f
dr2
− G′′

(G′)3
df
dr
. (4.20)

The derivative d2f /dr2= 4(d2f /dζ 2). Numerical validation of our method will be made
in the following discussion.

5. Energy analysis

In order to understand the physical mechanism, we apply the energy analysis
(Govindarajan, L’vov & Procaccia 2001). We multiply the conjugates of the variables
û∗, v̂∗ ŵ∗ on both sides of (4.4)–(4.6). The real part of the equation obtained by
summing these equations and integrating over the cross-sectional area gives the
energy balance:

Ėk = I + V + Ee. (5.1)

Here, the kinetic energy growth rate is

Ėk = λr

∫ 1

0
r(|û|2 + |v̂|2 + |ŵ|2)dr, (5.2)
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c (m= 0, α = 1) c (m= 1, α = 0.5) λ′ (m= 1, α = 0)

SH 0.93675536− 0.06374551i 0.84646970− 0.07176332i −0.00734099
Present work 0.93675536− 0.06374551i 0.846469697− 0.07176332i −0.007340985

TABLE 1. The first leading eigenvalues of the system for Re= 2000, Pe=Q= 0. We have
utilized 51 points for the eigenvalue problem and related the eigenvalues to those of SH
by defining λ′ = iλ and c= λ′/α.

the work done by the Reynolds stress is

I =−
∫ 1

0
rRe(Dw̄ŵ∗û)dr (5.3)

and the viscous dissipation is

V = − 1
Re

∫ 1

0
r
{
(|Dû|2 + |Dv̂|2 + |Dŵ|2)+

(
m2

r2
+ α2

)
(|û|2 + |v̂|2 + |ŵ|2)

+ |û|
2 + |v̂|2

r2
− 4m

Im(û∗v̂)
r2

}
dr. (5.4)

The work done by the electrical force is

Ee = Q
PeRe

∫ 1

0
rRe

(
Dŵ∗Dφ̂ + m2ŵ∗φ

r2
+ α2ŵ∗φ

)
dr. (5.5)

Since the magnitude of the eigenfunction is arbitrary, we normalize the eigenfunction
by its maximum absolute value. The terms in the energy analysis are rescaled with
respect to the total kinetic energy

∫ 1
0 r(|û|2 + |v̂|2 + |ŵ|2)dr. For an unstable flow, Ė

should be positive. The energy analysis will be applied to interpret the instability
mechanism in the following discussion.

6. Results and discussion
6.1. Validation of numerical methods

We examine the validation of our numerical method by setting Q= Pe= 0; therefore,
the electric field is turned off and ionic advection is absent. Since we are setting Q=0
and (4.8) does not produce any eigenvalues, the conductivity profile has no influence
on the spectrum of the problem and the eigenvalue problem should be identical to a
single fluid flowing in a circular pipe. We compare our numerical results with those of
Schmid & Henningson (2001) (hereafter referred to as SH) for Re=2000. The leading
eigenvalue is listed in table 1. Excellent agreement between our numerical results and
those of SH demonstrates the validity of our numerical method.

It should be noted that, when Re→ 0, i.e. the inertia of the fluid is negligible,
the growth rate is determined by the ionic diffusion equation (4.7). In a viscosity
stratified plane-Poiseuille flow (Talon & Meiburg 2011), the eigenspectrum of the
diffusion equation presents a similar structure to the Orr–Sommerfeld problem. Hence,
the diffusion equation will produce more eigenvalues in the stratified flow than a
single fluid flow (Talon & Meiburg 2011). Similarly, in pipe flow with conductivity
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FIGURE 3. (Colour online) Eigenspectra for Re = 2000, m = 0, α = 1. (a) The
eigenspectrum for Hagen–Poiseuille flow which is identical to that of SH. (b) A
comparison of conductivity stratified pipe flow (triangular points) and Hagen–Poiseuille
flow (circles). The conductivity ratio η = 2 and the parameters are Q = 0, a = 0.5,
δ= 0.05. It is obvious that when Pe> 0, there are some extra eigenvalues compared with
Hagen–Poiseuille flow. The parameter c= iλ/α.

stratification, the eigenspectrum structure will be different from the result of SH, as
demonstrated in figure 3. In the following discussion, we consider that the base flow
in the pipe is weak and focus on the instability caused by the electrical force in
microfluidic channels.

6.2. Parametric study
6.2.1. Effect of the conductivity ratio

The influence of the conductivity ratio on the linear stability analysis is of particular
interest and will be investigated in this section. Before presenting the numerical study,
let us consider the case of two liquids with the same electrical conductivity, i.e. η= 1.
The linearized electrical current conservation (4.8) reduces to

L φ̂ = 0. (6.1)

Hence, in the linearized momentum equation (4.6), the electrical force that can trigger
instability is absent. Therefore, the system will be linearly stable. Numerical study
also indicates that the eigenvalue λ is not influenced by the electrical number Q for
η= 1 and λr < 0 (see table 3 in appendix A). We can obtain a useful result here: the
system becomes more stable as η increases when η < 1, while the system becomes
more unstable as η increases when η > 1. To study the influence of the conductivity
ratio on the linear stability, the other parameters are fixed: Re= 1, Sc= 1000, a= 0.5
and δ= 0.1. To study the linear stability problem, 51 collocation points are sufficient
to provide satisfying accuracy.

First, we consider two typical cases: η = 0.5, η = 2. The electrical number Q is
fixed so as to study the growth rate of the disturbance. The results in figure 4(a)
demonstrate that the azimuthal disturbances make the system more unstable. They also
imply that the azimuthal wavenumber m of the critical mode is m = 1. The results
are different in figure 4(b). They show that the azimuthal wavenumber of the most
unstable mode is m= 0 for η= 2. These results imply that the critical unstable mode
of the system varies with the conductivity ratio η. To elucidate the critical unstable
mode in the system, we investigate the marginal curves in the Q–α plane. Figure 5
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FIGURE 4. (Colour online) The real temporal growth rate λr versus the wavenumber α:
(a) Q= 5× 104, η= 0.5; (b) Q= 104, η= 2.
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FIGURE 5. (Colour online) The marginal stability curves: (a) η= 0.5; (b) η= 2.

demonstrates that the wavenumber m of the critical unstable mode for η = 0.5, 2 is
m = 1, 0 respectively. The azimuthal wavenumber of the critical unstable mode is
defined as the critical azimuthal wavenumber mc. Here, we define Qc as the critical
electrical number and αc as the critical streamwise wavenumber. We have examined
the eigenvalue λ of the critical unstable modes in figure 5 whose imaginary part is
non-zero. It indicates that the critical unstable modes are oscillatory. The perturbed
fields of the charge density and the conductivity in the r–θ plane are shown in figure 6
to illustrate the two different unstable modes. In figure 6(a,b), the unstable mode is
defined as the corkscrew mode, while the unstable mode in 6(c,d) is defined as the
axisymmetric mode. We numerically evaluate the energy contribution of Ee which
is always positive. It demonstrates that the electrical force is the main factor that
destabilizes the system. The instability is referred to as the dielectrophoretic instability
(Baygents & Baldessari 1998; Chang et al. 2009; Ding & Wong 2014).

In order to reveal the influence of the conductivity ratio on the critical unstable
mode, i.e. in what range of η the critical unstable mode is the corkscrew mode or
the axisymmetric mode, we investigate the behaviour of (Qc, mc, c) versus the value
of η. The wave speed c of the critical mode is defined as

c=−λi/αc. (6.2)

The results in figure 7(a) indicate that the system becomes more unstable for
a larger contrast in the electrical conductivity between the two layers. A similar
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(a) (b) (c) (d)

FIGURE 6. (Colour online) (a,b) The perturbed field of the electrical charge ρe and the
perturbed field of the conductivity σ for η = 0.5, Qc = 4505.8, mc = 1, αc = 1.75 in the
r–θ plane. (c,d) The perturbed field of the electrical charge ρe and the perturbed field of
the conductivity σ for η= 2, Qc = 6197.0, mc = 0, αc = 2.75 in the r–θ plane.

phenomenon has been observed by Lin et al. (2004) in a liquid layer with conductivity
stratification in a square channel. Experimental observation and stability analysis
suggested that the flow became more unstable for a larger conductivity contrast (Lin
et al. 2004). However, they focused on the two-dimensional instability, and the way
in which the conductivity ratio influenced the three-dimensional stability was not
investigated (Lin et al. 2004). In this paper, we investigate the three-dimensional
instability and our results in figure 7(c) show that the critical wavenumber mc jumps
from 1 to 0 as the conductivity ratio increases to η = 1. This figure indicates that,
for the selected input values of other dimensionless parameters, the critical unstable
mode is dominated by the corkscrew mode when the inner conductivity is larger,
while the axisymmetric mode dominates the instability when the outer conductivity
is larger. Moreover, in a square-duct flow system, Lin et al. (2004) gave the physical
properties of the flow system for a conductivity ratio η = 10, which are applied to
estimate the critical strength of the applied electric field in our present system. Our
results show that, for η = 10, the critical value electrical number Qc ≈ 103. This
gives the critical electrical strength E ≈ 2 × 103 V m−1 provided that the electrical
permittivity ε = 6.9× 10−10 C V−1 m−1, the dynamic viscosity µ= 10−3 kg m−1 s−1,
the effective diffusivity Keff = 2× 10−9 m2 s−1 and the pipe radius b= 10−3 m. Hence,
it is possible to achieve electromixing in a circular pipe at small Reynolds flow by
an electric field in experiments. Figure 7(b) shows that λi 6= 0, which demonstrates
that the unstable mode is oscillatory. Figure 7(d) shows that the critical wave speed c
increases with increasing η. Figure 7(d) also shows that, when η < 1, the wave speed
is smaller for a larger conductivity contrast; when η > 1, the wave speed is larger for
a larger conductivity contrast. Additionally, the wave speed c > 0 indicates that the
linear wave propagates downstream.

6.2.2. Effect of interface location
This section discusses the influence of the interface location on the linear stability

of the system. The other parameters are fixed at Re = 1, Sc = 1000, δ = 0.05 so
as to investigate the dielectrophoretic instability. Here, δ = 0.05 is chosen under
the consideration of a sharper interface. Two conductivity ratios η = 0.5, 2 will
be considered in the following discussion. We examined the convergence of our
numerical method and found that N = 60 is sufficient to provide adequate resolution
at reasonable computational cost.

Selvam et al. (2007) found that the interface location had a significant influence on
the critical instability of a viscosity stratified pipe flow and the least unstable mode
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FIGURE 7. (a) The critical electrical strength number Qc versus η; (b) the critical
frequency |λi| versus η; (c) the critical wavenumber mc versus η; (d) the wave speed of
the critical mode c versus η.

occurred at approximately 0.6 times the pipe radius. In our problem of a liquid with
conductivity stratification, a similar phenomenon is observed. However, the instability
of our problem is triggered by the electric field, while in the problem studied by
Selvam et al. (2007), the instability is due to the Reynolds stress. If the interfacial
location is very near the centreline or the pipe wall, the diffusion of ions will rapidly
remove the conductivity difference. Furthermore, we consider a very sharp interface,
when a → 0 or a → 1, so no matter how large an electric field is imposed, the
system should be stable due to the homogenous conductivity profile. Hence, it can
be concluded that, as the interface is slightly moved away from the centreline, the
system becomes more unstable. As the interface approaches the outer boundary, the
system should become more stable. Therefore, there should be an optimal location of
the interface where the flow is least stable. Two typical cases of η= 0.5, 2 have been
investigated numerically and the range of the interface location a is considered to be
in [0.1, 0.9]. The variation of the critical wavenumber mc and the critical electrical
number Qc with the location a is shown in figure 8. Figure 8(a) demonstrates that, for
η = 0.5, 2, the system becomes more unstable as a increases from 0.1 until a≈ 0.3,
a≈ 0.2 respectively, while it becomes more stable as a increases further. Additionally,
for η= 0.5, we observe that the critical unstable mode shifts from the corkscrew mode
mc = 1 to the axisymmetric mode mc = 0 as a increases to a critical value a≈ 0.83.
For η= 2, the axisymmetric mode dominates the instability.

We are interested in the maximum growth rate of the system since the rapid mixing
is of particular interest (Lin et al. 2004). To investigate the maximum growth rate,
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FIGURE 8. (Colour online) (a) The critical electrical strength number Qc versus a; (b) the
critical wavenumber mc versus a.
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FIGURE 9. (Colour online) The maximum growth rate λm versus a: (a) Q= 5× 104,
η= 0.5; (b) Q= 5× 104, η= 2.

the electrical number is fixed. We examine the behaviour of the maximum growth
rate λm =max (Re(λ)) versus the interface location a. The maximum growth rate λm

describes the growth rate of the most unstable mode. The corkscrew mode and the
axisymmetric mode are investigated, as shown in figure 9. Figure 9(a) shows that the
maximum growth rate occurs at a≈ 0.6. We examined the maximum growth rate λm

versus a by reducing the value of Q and found that the peak point in the λm–a plane
moved leftwards, as shown in figure 10(a). This implies that, for a strong electric field,
the most unstable mode prefers an intermediate a for η = 0.5 although the critical
unstable mode prefers a≈ 0.3. The mechanism is very complex because the electrical
force destabilizes the flow while the viscous dissipation and the ionic diffusion tend
to stabilize the system. In order to explain the results, we apply the energy analysis.
As the interface location a increases, the viscous dissipation effect becomes weaker
until a ≈ 0.6, after which it becomes stronger as a increases further, as shown in
figure 10(b). This is the reason why for an unstable flow, Q= 5× 104, the maximum
growth rate occurs at a≈ 0.6. In addition, we observe that, for η= 0.5, the maximum
growth rate of the axisymmetric mode dominates the corkscrew mode when a ' 0.83
for Q = 5 × 104. This indicates that the axisymmetric mode becomes critical when
the interface approaches the pipe wall. Figure 9(b) demonstrates that the maximum
growth rate occurs at a ≈ 0.2, which indicates that the most unstable mode and the
critical unstable mode prefer a≈ 0.2. Additionally, it is observed that, for η= 2, the
axisymmetric mode always dominates the corkscrew mode.
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FIGURE 10. (a) The maximum growth rate λm of the corkscrew mode m= 1 versus a for
different values of the input electrical number Q. (b) The log ratio between the energy Ee
and V , in which the electrical number Q= 5× 104 and the wavenumber α corresponds to
the most unstable mode.
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FIGURE 11. The marginal stability curves: (a) η= 0.5; (b) η= 2.

6.2.3. Effect of interface thickness
This section investigates of the influence of the interface thickness on the critical

instability. The other parameters are fixed: Re= 1, Sc= 1000, a= 0.5. In the above
discussion, we have considered two values of δ. It is observed that the system
becomes more stable for a larger value of δ. The marginal stable curves for three
typical values of δ are shown in figure 11. For a liquid with viscosity stratification,
Selvam et al. (2007) reported that, for a thicker interface, the flow became more
stable. Selvam et al. (2007) explained that the stabilizing effect was due to the
diffusion effect becoming more significant for a thicker interface, which dissipated
the kinetic energy and inhibited the instability. Two studies by Chang et al. (2009)
and Ding & Wong (2014) show that the system becomes more stable with reduction
of the conductivity gradient when the conductivity gradient is small, while the flow
becomes more stable as the conductivity gradient increases when the conductivity
gradient is large. In our present study, if we fix the conductivity ratio, the conductivity
gradient within the interface becomes smaller as the interface becomes thicker. Our
study shows that the flow becomes more stable as the conductivity gradient decreases,
which is different from the previous two studies by Chang et al. (2009) and Ding
& Wong (2014). In fact, in our current study, a thicker interface implies that the
system undergoes a longer diffusion time. Assuming that the conductivity is uniform
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FIGURE 12. (Colour online) The critical electrical strength number Qc versus δ: (a) η=
0.5; (b) η= 2.

in the system due to diffusion for quite a long time, we would expect a completely
stable flow. Therefore, the system may become more stable as the interface becomes
thicker. Numerical studies demonstrate that, with increasing interface thickness δ, the
marginal curve rises up in the Q–α plane, which indicates that the flow becomes more
stable as the interface becomes thicker, supporting our analysis. Our result is similar
to the phenomenon in a viscosity stratified flow (Selvam et al. 2007), but different
from the studies by Chang et al. (2009) and Ding & Wong (2014). The difference
is due to the fact that the flow studied by Chang et al. (2009) and Ding & Wong
(2014) is bounded by two solid walls. However, in our problem, the flow is only
bounded by the outer pipe wall. We observe that, for the axisymmetric mode, η= 2,
the critical wavenumber αc becomes smaller as δ increases, as seen in figure 11(b).
This indicates that the wavelength of the disturbance becomes longer as δ increases.
In order to show the effect of δ on the critical stability, the critical electrical number
Qc is plotted against δ in figure 12. Figure 12 also demonstrates that the system
becomes more stable as δ increases. Additionally, the corkscrew mode dominates the
instability for η= 0.5, and the axisymmetric mode dominates the instability for η= 2.

6.2.4. Effect of shear flow
In this section, we aim to reveal the influence of the shear flow on the

dielectrophoretic instability. The other parameters are fixed at a = 0.5, δ = 0.1.
Before presenting the numerical study, let us consider the electrical force term in the
linearized axial momentum equation (4.6):

− Q
RePe

L φ̂ = Q
Re2Sc

ρ̂e. (6.3)

The value of Sc is fixed at Sc= 1000. Equating Q/(Re2Sc) at two different values of
Re gives

Q2 = Re2
2

Re2
1
Q1. (6.4)

This relation reflects the fact that, when the value of Q/(Re2Sc) is fixed, a smaller
Re describes a smaller Q. This implies that, when the Reynolds number is small, the
system may be more unstable. In this paper, we consider a weak shear flow under
the consideration of flow in a microfluidic channel and propose that Re has a range
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FIGURE 13. (Colour online) The critical electrical strength number Qc versus Re: (a) η=
0.5; (b) η= 2.

of [0.1, 10] provided that the pipe radius is 10−3 m and the kinematic viscosity ν =
10−6 m2 s−1. The maximum velocity occurring at the centreline r = 0 can be varied
from 10−4 to 10−2 m s−1.

It is observed that, for η = 0.5, the corkscrew mode dominates the instability, and
for η= 2, the axisymmetric mode dominates the instability. Figure 13 illustrates that
the critical electrical number Qc increases as Re increases, indicating that the shear
flow impedes the electro-convection in the system. Interestingly, the corkscrew mode
for η = 2 can be enhanced by the shear flow, as seen in figure 13(b), although it
never becomes critical for the selected input values of Re, η and Sc. It is different
from the previous studies by Chang et al. (2009) and Ding & Wong (2014), which
show that the critical instability can be either enhanced or impeded by the shear
flow. In the present study, we observe that the shear flow always impedes the critical
instability. In order to understand the physical mechanism, we fix the value of Q
and the wavenumber α to investigate the energy contributions of the electrical force,
Reynolds stress and viscous stress. For some Re, the flow is stable, e.g. Re> 2.5 for
η= 0.5 and Re> 2 for η= 2. The electrical energy becomes smaller, as demonstrated
in figure 14(a). We have found that Ėk becomes smaller as Re increases and becomes
negative as Re exceeds some critical value, which indicates that the system becomes
stable as Re increases. However, the underlying factor that stabilizes the system is not
the reduction in the electrical energy. Figure 14(b) shows that, as the Reynolds number
increases, ln(|Ee/V|) decreases for η= 0.5, while ln(|Ee/V|) increases for η= 2. This
indicates that the stabilizing mechanisms in the two cases η = 0.5, 2 are different.
We have examined the case of Re = 10 and found that, for η = 0.5, ln(|Ee/V|) < 0,
while for η = 2, ln(|Ee/V|) > 0. This indicates that, for η = 0.5, the increase of the
viscous dissipation is the major factor that stabilizes the flow, although the Reynolds
stress also plays a stabilizing role, as shown in figure 14(c). For η = 2, because the
electrical energy always dominates the viscous dissipation, i.e. Ee> |V|, the stabilizing
factor in the system is due to the Reynolds stress, which dissipates the kinetic energy
of the perturbation. The results indicate that the imposed shear flow can impede the
dielectrophoretic instability via the dissipation mechanisms of the viscous stress and
the Reynolds stress.

Furthermore, we investigated the influence of Re on the wave speed c. Results are
shown in figure 15. It is observed that, for η= 0.5, the critical wave speed c increases
slightly as Re increases initially, then it has a negligible influence on the wave speed.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

72
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.720


Electrohydrodynamic instability of miscible core–annular flows 507

103

101

100

102

0.5

0.5

1.0

1.0

1.5

1.5

2.0

2.0

0
0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

0

–0.1

–0.2

–0.3

(a) (b) (c)

FIGURE 14. (a) Electrical energy Ee versus Re; (b) the log ratio between the electrical
energy and the viscous dissipation versus Re; (c) the work of the Reynolds stress versus
Re. The electrical number Q= 104.
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FIGURE 15. (Colour online) The wave speed of the critical unstable mode versus the
Reynolds number.

However, the wave speed decreases slightly as Re increases from Re = 1 for η = 2,
and then the wave speed seems to be independent of Re. The results by Chang et al.
(2009) indicated that the critical frequency of the critical transverse unstable mode −λi

was independent of the Reynolds number when Re> 1. This implies that the critical
wave speed is independent of Re. In our system, we observe that the wave speed c is
independent of Re for both the two critical unstable modes, the corkscrew mode and
the axisymmetric mode, when Re> 2.

6.2.5. Effect of ionic diffusion
This section presents a study of the influence of the ionic diffusion on the

dielectrophoretic instability. The other parameters are fixed: Re= 1, a= 0.5, δ = 0.1.
In the governing equations (4.3)–(4.8), replacing Re by Pe does not change the
governing equations, which indicates that the effect of ionic diffusion on the flow
instability should be similar to that of Re. However, the results should not be the
same as shown in § 6.2.4 above, in which Re is varied while Sc is fixed. Therefore,
it is necessary to investigate the influence of Sc on the stability by fixing the value
of Re.

The critical electrical number Qc versus the Schmidt number is shown in figure 16.
The corkscrew mode dominates the instability for η= 0.5 and the axisymmetric mode
dominates the instability for η = 2, as shown in figure 16. The system becomes
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FIGURE 16. (Colour online) The critical electrical strength number Qc versus Sc: (a) η=
0.5; (b) η= 2.

more stable as Sc increases. The results in figure 16 are quite similar to those in
figure 13, which demonstrates that the influence of Sc on the flow stability is similar
to that of Re.

The instability mechanism is then interpreted by the energy analysis. We consider
the critical instability of the system when Ėk = 0. The viscous dissipation term V is
always negative and plays a stabilizing role. The electrical force work Ee > 0, which
triggers the electro-convection in the system. We calculated ln(|Ee/V|) and found that
its value increased with Sc initially, then it decreased as Sc increased further, as shown
in figure 17(a). This indicates that the viscous dissipation effect becomes weaker as
Sc increases from Sc= 100, while it becomes stronger when Sc is very large. When
Sc is not too large, Sc = O(102), the Reynolds stress plays a key role in stabilizing
the system since its dissipation effect becomes stronger as Sc increases, as shown
in figure 17(b). As Sc increases further, for η = 0.5, the dissipation effect by the
Reynolds stress becomes weaker, while for η = 2, the work of the Reynolds stress
reaches a plateau, as seen in 17(b). Such a phenomenon indicates that, although the
Reynolds stress dissipates the kinetic energy, it is not the major factor that causes the
system to be more stable when we increase Sc. As shown in figure 17(a), ln(|Ee/V|)
starts to decrease when Sc exceeds a certain value. This indicates that the viscous
dissipation increases with Sc and becomes the major stabilizing factor. Moreover, we
recall the definition of Sc = ν/Keff . This indicates that the viscous effect becomes
stronger as the parameter Sc increases. Since viscous dissipation plays a stabilizing
role, the system becomes more stable as Sc increases. The effect of Sc on the critical
stability in this system is different from that in the previous studies by Chang et al.
(2009) and Ding & Wong (2014). In these studies (Chang et al. 2009; Ding & Wong
2014), Sc was found to have a dual effect: increasing Sc can either enhance or inhibit
the critical instability. Our study shows that, for η = 2, the corkscrew mode can be
either enhanced or impeded as Sc increases, as seen in 16(b). However, the critical
unstable mode always becomes stable. For an unstable flow, we observed that Sc can
play a dual role in the system, in that the growth rate of disturbances can become
either larger or smaller as Sc increases; this is not shown here since we are only
interested in the critical stability of this system.

7. Conclusion
This paper investigated the electrodynamical instability of two miscible flows in

a micro-pipe with electrical conductivity stratification. An axial electric field was
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FIGURE 17. (a) The log ratio between the electrical energy and the viscous dissipation
versus Sc; (b) the work of the Reynolds stress versus Sc.

N = 40 N = 50 N = 60

λ 0.291796693− 1.449416017i 0.291796697− 1.449416018i 0.291796697− 1.449416018i

TABLE 2. The first leading eigenvalues of the system for Re=1, Q=104, Sc=103, η=0.5,
a= 0.5, δ= 0.05, α= 2, m= 1. This shows that our numerical method converges quickly
by clustering the Chebyshev collocation points into the interfacial region.

imposed, which can trigger electro-convection in the system. A weak shear flow
arose from an axial pressure gradient. A three-dimensional linear stability analysis
was implemented to discuss the influences of conductivity ratio, interface location,
interface thickness, shear flow and ionic diffusion on the critical stability of the flow.
An energy analysis was carried out to interpret the instability mechanism.

It was found that the system was more unstable for a larger electrical conductivity
contrast. When the electrical conductivity was larger within the inner layer, the
critical unstable mode could be either the corkscrew mode or the axisymmetric
mode, depending on the interface location. A detailed study showed that the critical
unstable mode shifted from the corkscrew mode to the axisymmetric mode as the
interface approached the pipe wall. When the electrical conductivity was larger in
the outer layer, the critical unstable mode was dominated by the axisymmetric mode.
The interface location had a significant influence on the critical unstable mode. The
system was more stable when the interface was close to the centreline or the pipe
wall. The flow became more stable as the interface became thicker, and the shear
flow and ionic diffusion were found to have a stabilizing effect via the dissipation
mechanisms of the Reynolds stress and viscous stress.
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Appendix A
The general eigenvalue problem is denoted as

A q = λBq, (A 1)
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Q′ = 10 Q′ = 100 Q′ = 1000

c= iλ/α 0.846469697− 0.071763323i 0.846469697− 0.071763323i 0.846469695− 0.071763321i

TABLE 3. The first leading eigenvalues of the system for Re = 2000, Pe = 0, α = 0.5,
m= 1, η= 1. We have also considered some other values of Re and the result shows that
the eigenvalue is only dependent on Re. Changing the value of Q′ = (εE2/ρW2) does not
affect the eigenvalue for η= 1. The parameter Q′ measures the ratio of electrical force to
the fluid inertia.

where q = (û, v̂, ŵ, p̂, φ̂, σ̂ )T and

A =



D+ 1
r

im
r

iα 0 0 0

L1 − 2im
Rer2

0 −D 0 0

2im
Rer2

L2 0 − im
r

0 0

−Dw̄ 0 L3 −iα L4 0
−PeDσ̄ 0 0 0 0 L5

0 0 0 0 L6 −iα(η− 1)


, (A 2)

B =


0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 Pe
0 0 0 0 0 0

 , (A 3)

in which L1 = L2 = 1/Re(L − 1/r2)− iαw̄, L3 = (1/Re)L − iαw̄, L4 =−Q/(RePe)L ,
L5=L − iαPew̄ and L6=[(η− 1)σ̄ + 1]L + (η− 1)(Dσ̄ )D. The operator D= d/dr and
L = D2 + D/r−m2/r2 − α2. After imposing the boundary conditions at the centreline
r = 0 and the wall r = 1, the general eigenvalue problem is solved by the standard
MATLAB subroutine EIG (Schmid & Henningson 2001).

The convergence of our numerical method is tested here, see table 2. In the work
of Selvam et al. (2007), 251 Chebyshev collocation points were used to achieve
high numerical accuracy without using the technique of clustering the points into
the interfacial region, which is quite time consuming. They modified their numerical
method by clustering the collocation points into the interfacial region in their further
study (Selvam et al. 2009). Another test is made by considering a special case: η= 1,
see table 3. The results in table 3 also agree with the results of SH since this special
case corresponds to a single fluid flow. They also demonstrate that our numerical
method is valid.
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