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Abstract

We consider a refracted jump diffusion process having two-sided jumps with rational
Laplace transforms. For such a process, by applying a straightforward but interesting
approach, we derive formulae for the Laplace transform of its distribution. Our formulae
are presented in an attractive form and the approach is novel. In particular, the idea in
the application of an approximating procedure is remarkable. In addition, the results are
used to price variable annuities with state-dependent fees.
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1. Introduction

A refracted Lévy process U = (U;);>0 is derived from a Lévy process X = (X;);>0 and is
described by the following equation (see [13]):

t
Uy = X; — 5/ 1iy,>p) ds, (1.1)
0

where §, b € R, and 14 is the indicator function of a set A. Refracted Lévy processes have
been investigated in [13], [14], and [20] based on the assumption that X in (1.1) has negative
jumps only; and in [23], the process X was assumed to be a double-exponential jump diffusion
process. Many results, including formula for occupation times of U, have been obtained,
and the interested reader is referred to the above papers for the details. In addition, in [22],
[24], and [25], under several different assumptions on X, we have considered a similar process
U* = (Uts)tzoi

dUts = dX; — 81{U,“<b} dz. (1.2)

For the process U in (1.1) with X given by (2.1), we will show that P(U; = b) = 0 is Lebesgue
for almost every ¢ > 0 (see Remark 4.1), which means that U; = X; — §t — (—9) fé 1y, <py ds.
Thus, the two processes U® and U are essentially equal.

In this paper we are interested in the distribution of U. When the process X; in (1.1) is a Lévy
process without positive jumps, the corresponding results can be found in [13, Theorem 6(iv)].
Thus, here we focus on the situation when X has both positive and negative jumps. Specifically,
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1168 J.ZHOU AND L. WU

we assume that X in (1.1) is a jump diffusion process and its jumps have probability density
functions whose Laplace transforms are rational functions. Such a Lévy process is popular and
quite general, and two particular examples of it are a hyper-exponential jump diffusion process
(see [5] and [6]) and a Lévy process with phase-type jumps (see [2] and [19]). Under the
above assumption on X, we want to derive the expression of fooo e 1"P(U; < y)dt or in
differential form

o0
/ e UPU, € dy)dt,  yeR, (1.3)
0

where ¢ > 0. One reason why we are interested in the above quantity is that it is closely related
to occupation times of U since

o0 t o
qf e_‘”E[/ Ly, <y) dS} dr =/ e 1"P(U; < y)dt, yeR,
0 0 0

which can be derived by applying integration by parts. This means that the occupation times
of U, i.e. fot 1y, <y} ds, can be derived from (1.3).

In [22], under the same assumption on X as in this paper, we have derived formulae for
fooo e"7"P(U; < b)dt, where U* and b are given by (1.2). In this paper, for a given b in
(1.1), we combine the ideas of [22] with a novel and helpful approximating discussion to
calculate fo e 9"P(U; < y)dt, where y € R. In particular, we obtain some attractive and
uncommon formulae, which are written in terms of positive and negative Wiener—Hopf factors.
These extraordinary expressions are important and are conjectured to hold for a general Lévy
process X and the corresponding solution U to (1.1), providing that such a solution U exists.

The results in this paper have some applications. One application is to price equity-linked
investment products or variable annuities with state-dependent fees as in [25]. Such a state-
dependent fee charging method has been proposed recently and has several advantages (see [4]
and [7]), e.g. it can reduce the incentive for a policyholder to surrender the policy. Equity-linked
products are popular life insurance contracts and one reason for their popularity is that they
typically provide a guaranteed minimum return. There are many papers devoted to studying
such products; see, e.g. [10], [15], and [18]. Investigations on evaluating equity-linked products
under a state-dependent fee structure are relatively new and we refer the reader to [17] for a
recent work.

The remainder of this paper is organized as follows. In Section 2 some notation and some
preliminary results are introduced. Next, we present an important proposition in Section 3 and
state the main results in Section 4. Finally, the application of our main results is discussed in
Section 5.

2. Notation and preliminary results

In this paper the process X = (X;);>0 in (1.1) is a jump diffusion process, where the jumps
have rational Laplace transforms. Specifically,

N NS
Xo=Xo+ut+oW,+> ZF =Y 7, (2.1)
k=1 k=1

. . . N
where Xo, i, and o > 0 are constants; (W;);>0 is a standard Brownian motion; Z,;l ZZ" and
> «iy Z; are compound Poisson processes with intensity AT and A™, respectively; and the
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density functions of Z fr and Z| are given respectively by

mt my

P = ZZ (nk)’ J= _,,kz’ .>0 2.2
k=1 j=I
and
.
p (@) = I;;dk, (0")]Z1]), e 750, (2.3)
withn; # n;and ¥; # ¥ fori # j; moreover, (W;);>o0, Z,ivil Z,j and Z,I{\Zl Z, are mutually
independent.

Remark 2.1. The parameters n; and cg; in (2.2) can take complex values as long as pT(2)
satisfies p*(z) > 0 and fooo pT(z)dz = 1. In addition, if 1 has the smallest real part among
M, ... N+ then 0 <1 < Re(mz) < -+ < Re(my+).

Remark 2.2. Equation (2.2) is quite general and, in particular, contains phase-type distribu-
tions. Thus, from Proposition 1 of [2], we know that for any given Lévy process X, there is a
sequence of X" with the form of (2.1) such that

lim sup |X; — X;| =0 almost surely.
n100 5e[0,7]

In what follows, the law of X starting from x is denoted by P, with E, denoting the
corresponding expectation; when x = 0, we write [P and E for convenience. And, as usual, for
T > 0, define

Xp:= inf X; and X7 = sup X,. 2.4)
0=<r<T 0<r<T
Throughout this paper, for a given ¢ > 0, e(g) is an exponential random variable whose
expectation is equal to 1/g. Furthermore, e(g) is assumed to be independent of all stochastic
processes appearing in this paper. In addition, for a complex value x, let Re(x) and Im(x)
represent its real part and imaginary part, respectively.

For the Lévy process X given by (2.1), it has been shown that (1.1) has a unique strong
solution U = (U;)s>0 (see, e.g. Theorem 305 of [21]), which is a strong Markov process (see
Remark 3 of [13]). For this unique solution U, our objective is deriving expression (1.3), i.e.

o0
/ e I'P(U; € dy)dt, y € R,
0

and, more importantly, we try to derive some novel expression.

Similar to previous investigations on refracted Lévy processes (see, e.g. [13]), for a given
8 € R, we introduce a process Y, which is defined as ¥ = {Y; = X, — §t; t > 0}. For the
process Y, the two quantities ¥ and Y7 are defined similarly as in (2.4). What is more, we
denote by IP’ the law of ¥ such that Yo = y and by ]E the corresponding expectation, and
abbreviate th1s to P and E when y=0.

The following lemma gives the roots of ¥ (z) = g and I/A/(z) = q, where

dyi (U
V(z) = izp — —Z 245t (ZZ Ckj i) (nk) ) <ZZ (ﬂ’::_llcz))] — 1), 2.5)

—i7)J
kl,l(m‘ 2) k=1 j=1
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and ¥/ (z) := ¥ (z)—i8z. Note thatifz € Rtheny(z) := In(E[e**1]) and ¥/ (z) := In(E[e?!1]).
Lemma 2.1 was developed in [16]; see Lemma 1.1 and Theorem 2.1 in that paper (note that

o > 0 here).
Lemma 2.1. (i) For g > 0, ¥ (2) = q(tﬁ(z) q) has, in the set Im(z) < 0, a total of
M (M) distinct solutions —ip(— 1/31) —iBa(— 1/32) , —1By+(— 1/3M+) with respective

multiplicities M1 = I(M] =1), M2(M2) o M+ (MM+) Moreover, it holds that

0<pi<Re(B) < <Re(By+)., 0<pBi<Re(B) <---<Re(By), (26
and
Mt M+ mt
ZMk = ZMk =1 —i—ka.
k=1 k=1 k=1
(ii) Forg > O and s > 0,

A

_ m* my MY 3
]E[e—SYg(q)] — H(S + nk) H( ﬂkA > i
k=1

el Nk s + Bk
N t y 2.7)
_ m mg k
E[e X ] = H(S + nk) H( P ) .
i\ Mk i \S T+ Br
Next, consider a function Fi(x) on (0, oo) with the Laplace transform
o0 ffe=sYew] N
/ e M Fi(x)dx = (— - 1) = Fi(s), s > 0. (2.8)
0 E[e5Xe@]

From (2.7) and (2.8), applying rational expansion yields

M+ Mk

/0 ”Fl(x)dx—zz !

= 1(S+5k)] (M — )t sk

My—j

~(Fi(s)Gs + 0™y,

which leads to

Mt My
x/-1

Fi(x) = ZZ = 1)1 e

k=1 j=1

1 M

(My — j)! dsMi—i

(FI$) s+ A, x>0,

Since M; = 1and 0 < B < Re(B2) < --- < Re(By;4) (see (2.6)), we have

. Fi(x) MkM+</3k—,3Al>Mk
lim = — . 2.9
im n( ﬂ]) (% 29)

xtoo e—ﬂlx i1

In addition, it is obvious that

I (Ao 3

;ffl (Br) M« (2.10)

o
F1(0) := lim Fy(x) = lim / se P Fi(x)dx =
x]0 stoo Jo
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Remark 2.3. Owingto (2.9), F1(x) is absolutely integrable and the Laplace transform of F; (x)
in (2.8) can be extended analytically to the half-plane Re(s) > 0. When s = 0, the right-hand
side of (2.8) is understood as

(B ) (1102 T
510§ \E[e™Xew ] ds k=1 s+ Bk B s=0

k=1

Besides, F1(x) is bounded on [0, oo] with Fy(00) := limy oo F1(x) = 0.
Lemma 2.2. For the continuous function Fy(x) given by (2.9), it holds that
Fiix)+1>0 forx > 0. (2.11)
Proof. For q,s > 0, we know that (see, e.g. [1, Equation (4)])

qr;rfs(XT;_ —h)

Ele™ %0 ™ g ) =Ele [Ele™¥w],  h>0.  (212)

+ .

where 7," := inf{r > 0: X; > h}. Exchanging the order of integration yields

oo — oo X _
/ Efe*Xew ™Mz - y1dh = / / e ARP(X () € dx)
0 0 0

= L~ Ee K,
N

Then, on both sides of (2.12), integrating with respect to 4 from 0 to oo yields

© gt -s(X_+—h 1 1
/ Ere % % T an = -<— - 1). (2.13)
0 s ]E[e_sxe(q)]
Equations (2.8) and (2.13) mean that f0°° e **(F1(x) + 1) dx isacompletely monotone function
of 5 on (0, 00), then (2.11) follows from Theorem 1a of [8, p. 439]. O

The following lemma is taken from Proposition 1(v) of [11], which states that for almost all
q > 0,v¥(z) = q and ¥ (z) = g only have simple solutions. Based on this lemma, we apply
an approximating argument (which reduces the calculation in a large extent) to derive the final
results.

Lemma 2.3. There exists only finite numbers q¢ > 0 such that ¥ (z) = q or ¥(z) = q has
solutions of multiplicity greater than 1.

In the following, let S be the set of ¢ > 0 such that all the roots of ¥/ (z) = ¢ and 1/}(z) =q
are simple.

Remark 2.4. Forg € S, Lemma 2.1 yields Mt = M+ =1 + ka; my.
Applying Lemma 2.1 to the dual processes —X; and —Y; gives the following result.

Lemma 24. (i) For q € S, ¥(z) = q(l/Af(Z) = q) has, in the set Im(z) > 0, a total of
N™(N7) = Y4y nk + 1 distinct simple roots iy1(iy1),iy2(ip2), . .., iyn-(ipg-), ordered
such that

0 <y <Re(y2) <---<Re(yy-), 0<yp <Re() <--- <Re(yg-).
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(ii) For g € S and Re(s) > 0, we have

n—

) s+ 9\ N Vi
E[e*Xew] = ( ) ,
l_[ g ]!:[1 S+ Vi

k=1
- . N~ «
fi[e’Yew] = ln_[(s + ﬁk)m l_[( Yk )
ici N Uk jo1 \S T

Remark 2.5. For ¢ > 0 and g € S€, a similar result to (2.14) holds, e.g.

_ S . A
fife’Yew] = ﬁ(s—i_ﬂk)nk H( Yk ) ‘
i \S %k ’

0
k=1 k

where N,~ is the multiplicity of 7, and Y 5, N, = Y¢_; ng + 1.

(2.14)

(2.15)

Remark 2.6. For any ¢ > 0, from (2.7), (2.14), and (2.15), it can be concluded that both Ye(q)

and Y

Y, (4) have probability density functions.

The following lemma is important. We remark that the result in Lemma 2.5 is not surprising
as o > 01in (2.1), and its proof is omitted since it can be established by using almost the same

discussion as in Theorem 2.1 of [25].

Lemma 2.5. For g > 0, the function V,;(x), defined as V,(x) := Py(Uyy) > y) for given

y > b, is continuously differentiable on R. In particular, it holds that
Vy(b—) = V4(b+) and Vq’(b—) = Vq’(b—l-).
For a given y > b and g € S, the following proposition gives the expression of
o0
Py(Ueq) > y) = 61/ e 7P (U; > y)dr.
0

The proof of Proposition 2.1 is long and is deferred to Appendix A.

Proposition 2.1. Forq € Sand y > b, we have

M+
ijeﬂk(x—h)’ x < b,
k=1
M+ A N~
Py(Ueiq) > y) = Zerﬁk(X—y) + Z Pkeyk(b_x), b<x<y,
k=1 k=1
N~ ) N™ R
1+ Z Qe =) 4 Z Pee =9 x>y,
k=1 k=1

(2.16)

2.17)

where Hy and Qk are given by (A.13) and (A.14), respectively; Ji and Py are given by rational
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expansion:
N,

Zx+yt_z ﬂz(h )

N
pri x_'Bl

TS G = ™ T 4 90
H?ﬁ(x — B TS & + 7)
Z H[MJ;(.Bk - ﬂz)]_[, 1(ﬂk “I‘Vl) _H ﬁk(b v
— 17, B — ni)™ 17—, Br + 90 x — Br

Remark 2.7. Equation (2.17) contains the roots of ¥/ (z) = ¢ and 1//(1) =gq,i.e. B, Bk, and .
This poses a limitation to extending the result in Proposition 2.1 to a refracted Lévy process U
driven by other Lévy processes, because we cannot characterize the roots of ¢ (z) = g for a
general Lévy process X (note that ¢ (z) = In(E[ei¢X1]) if z € R). In Theorem 4.1 below, we
will derive another expression for P, (U,(4) > y), which is free of g, ,31(, and .

(2.18)

3. An important result

In this section the following proposition is derived, and we have to say that the ideas in the
derivation are interesting.

Proposition 3.1. For giveny > b, q > 0, and Re(¢) = 0, we have
o b R
/ e VTP (Uetg) > ¥) = PeYeqq) > y) dx
—00
R — o0
= R[e?Lew [E[e?Xe@)] / Fi(x +y — b)e?* dx. (3.1)
0
In the following, we first show that Proposition 3.1 holds for ¢ € S and then prove that it is
also valid for ¢ € S°.
Proof of Proposition 3.1. (i) With q € S. From (A.20), we know that

M+ N- M+
LTSRS SRS SR
i=1 i=1 i=1
From (2.17), for Re(¢) = 0, some straightforward calculations yield
dir_py O
PO (e (Ueg) > ¥) dx
o X

M+ N~

Mt
- / e P b>—(19> Uetgy > ) dx + Y HeP O 4 3 B -3y,
—00 i—

i=1 i=1

A N Ny -
— ! + l,\ ,Bt(b y)
;ﬁi_d’ ;¢'+Vi ;,3 —¢
LA 07
N ¢<b—y)< i ivi ) 32
) ;ﬂ, Z%Jrqﬁ G2
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It can be proved that

Mt A oA N~ A A M N~
ZAH:B _ ,\Qll:1+ AH¢ +ZAQ1¢
iz Bi ovite o B—¢ Vit
=9t =)V ()
= B[e?Yew |R[e?Lew ]
— E[e‘pye(q)], (33)

where 1//+() and 1// () are given by (A.3) and (A.4); the first equality is due to the fact
that Zl 1 H; — Zl 1 0i—1=0(eto 1 00 in (A.24)); the second and the third equalities
follow respectively from (A.24) and (A.5), and the final equality is a result of the well-known
Wiener—Hopf factorization.

In addition, for Re(¢) = 0, applying integration by parts yields

o
d N
/ e_(p(x_b)a_(PX(Ue(q) > y))dx — e¢(b—y)E[e¢Ye<q>]
o x
> —oa-n 0 > b 0 3
=/ e P B—(IP’X(Ue(q) > y))dx—/ e 00D — (P(Y,) > vy — x))dx
—00 X — 00 0x

o0
=¢ f e PO P (Uey) > ¥) — Bu(Ye(q) > ¥)) dx. (3.4)
—00

Note that (see (3.10) in Lemma 3.1)

00
18]
/ |Px(Ue(q) > Y) P (Ye(q) > y)|dx =—.
00 q

Besides, from (2.18), (A.1), (A.2), (A4), (A. 5), and (A.13), after some straightforward
calculations, we derive (note that M+ = M+t if g € S)

Mt N~ M+

Z Z byt pie-y
,31 ¢ + Vi o B9
— o0
= ¢pR[e?Tw E[e?Xe0] / Fo(x 4+ y — b)e?* dx, 3.5)
0
where
M+ M+ A
_ Bi — B B
Fox) = ) e v ]_[ l,Bk “ 11 7 "ﬁ x> 0. (3.6)
i=1 k=1 k=1, ki P k
Finally, for s > 0, it holds that
Mt M+ A M+ Bk |
e M Fy(x)dx =
~/0 ;]!_[1 kll_]!;b,ﬂt ﬁkﬂz+s
B 1 s+ Br )
s (l—[ 1—[ s+ ,Bk

k=1
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Tre—sYe(
=l<@E__L!_4), (3.7)

s \E[e—sXew]

where the second equality follows from the rational expansion and the third equality is due to
(A.2), (A.3), and (A.5).

Equations (2.8) and (3.7) confirm that Fj(x) = Fo(x) for x > 0. Therefore, (3.1) forg € S
is derived from (3.2)—(3.5).

(ii) For ¢ > 0 and q € S°. First, for such ag > 0 and ¢ € S°, Lemma 2.3 implies that there
exists a sequences of g, € S such that lim,4o0 ¢, | ¢. In the proof of Proposition 3.1 (with
q € S), we have shown that (3.1) holds for ¢,, yielding

o0
/ e PP (Upgny > ¥) — Pe(Yeq > ¥)) dx
—00

— oo
— E[6¢XE(q;z)]]E[e¢Xe(qn)]f Fln(x +y— b)e¢x dx, (3.8)
0
where Re(¢) = 0 and
o0 1/ Tfe=sYe@n]
/ e Fl(x)dx = —(— — 1), s > 0. 3.9
0 S \E[e*Xe@n ]

To complete the proof, we want to show that (3.8) will reduce to (3.1) after letting n 1 1. This
will be carried out in the rest of this section. O

Lemma 3.1. Fora given 8,y € R, we have

o0
| B =~ B> piax <o

i (3.10)
f Be(X, > y) — By(T, > y)ldx < J8]1.

oo

Proof. Recall (1.1) and Y; = X; — 4t.
For 6 > 0, it holds that Py (X; > y) > P, (U; > y) > Py (¥; > y), thus,

o]

00
/ [Py (U > y) — Px(Y; >Y)|dx=/ Py(Uy > y) =Py (Y; > y)dx

—00 —00

(o]
5/ Pe(X, > y) — Bo(¥, > y)da
—00

e8]

= / E[l{y_x<X,§y—x+6t}] d-x

—00

00
= ]E|:/ I{y,x<x,5y,x+3;} dx]
—00

= 6t,

where the penultimate equality is due to the Fubini theorem.
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For § < 0, it is obvious that Py (X; > y) <P, (U; > y) < IAP’X(YI > y), which yields

o0 o0
/ Py(Us > v) — Bo(¥, > y)ldx < / Bo(, > y) — Py(X, > y)da
—o —o0
o0
= ]E|:/ 1{y—x+5t<X,§y—x} dx:l
—o0
= —4t,

so the first inequality in (3.10) is derived.

Note that supg<,, (X5 — &s) — [8]t < X, < SUPg<y<; (X5 — 8s) + ||, which means that

Po(X, — 18]t > y) < Bo(Y, > y) < Po(X, + 8] > y).

Hence, the second inequality in (3.10) can be proved similarly.

Lemma 3.2. For Re(¢) =0,

00
lim ei¢(X7b) (Px(Ue(qn) > y) - Px(Ye(q,,) = )’)) dx

ntoo J_so

o0
_ / e DBy (Ueg) > ¥) — Py Yoy > 7)) d,
—00
and, for Re(s) > 0,

lim B[e*Yewn] = Ble’Yew] and lim Efe=Xe@n ] = E[e~sXew)].
ntoo ntoo

(3.11)

(3.12)

Proof. Since g, > q and Py (U,g,) > y) = fooo gne” ' P, (U; > y)dt, we derive, via the

dominated convergence theorem,
lim ]Px(Ue(qn) >y) = IPj}c(Ue(q) > y).
ntoo

Similarly, we can prove (3.12) and the following result:
lim Py (Yo, > ¥) = Py(Yorp) > ).
ntoo

In addition, it holds that

o0 b R
/ D B, Uiy > 1) — By (Yo > 1) d
—o0

o0 o0 N
= f gne” " / e P (P(U; > y) — Py(Y, > y))dxdr.
0

—00
From (3.10) and (3.13)—(3.15), the dominated convergence theorem yields (3.11).
Lemma 3.3. For F{'(x) in(3.9) and Fi(x) in (2.8), it holds that

o oo
lim e FlH(x)dx = / e Y Fi(x)dx, Re(s) > 0.
ntoo Jo 0
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Proof. Due to Remark 2.3, for each n, we have

oo 1 E —S?e( n)
/ e~ FI (x) dx = _(M _ 1), Re(s) > 0.
0 S \E[eXewn]
Similar to the derivation of (3.12), it can be shown that
lim Ble=Yewn] = Ble™Ye@],  Re(s) > 0. (3.17)
ntoo
Equations (3.12) and (3.17) lead to
o o 1 IAE —s5Ye(q)
lim [ e S FI(x)dx = / e Fy (x) dx = -<M _ 1), (3.18)
ntoo Jo 0 s \E[e™*¥ew)]

which holds for Re(s) > 0 and s # 0.
Next, we consider the s = 0 case. It follows from (3.9) that

00 1/ Ere—sYewn
/ F{’(x)dx:lim—(u—o
0 sy0 s E[e_sxe(qn)]
o Ble=Yean ] — Ele=Xetn ]
= lim

540 S

o0
= lim f e P e(gy) < X) — P(Xe(g,) < X)) dx
s30 Jo

o0
= [ P(Y e(gy) = %) — P(Xe(g,) = x))dx, (3.19)
0

where the third equality is due to integration by parts and the final equality follows from the
dominated convergence theorem since (see (3.10))

© . _ — < 5]
IP(Ye(g,) < %) —P(Xe@g,) <X)dx < | ge”?[Slrdr = —.
0 0 q
As g, > q and (3.10) holds, (3.19) yields
o0 o o . _
lim Fl(x)dx = lim qne_q"t/ PY; <x)—P(X; <x))dxdrt
ntoo Jo ntoo Jo 0
o o0 n _
= lim qe_qtf PY; <x)—P(X; <x))dxdt
ntoo Jo 0
o0
= [ AW
0
which combined with (3.18), leads to (3.16). O

Proof of Proposition 3.1. (For q € §°.) Since Fi(x), F{'(x) = —1 for x > 0 (see Lemma
2.2), we can define the following measures:

Mf(x):/o (F'(z) + 1)dz and Ml(x)zfo (Fi1(z) + D dz.
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Equation (3.16) implies that

o0 o
lim e dMi (x) = / e dM; (x), s >0,
ntoo Jo 0

which combined with the continuity theorem for the Laplace transform (see Theorem 2a of [8,
p- 433]) yields

X X
lim / (Fi(x)+ Ddz= / (F1(z) +1)dz forallx > 0. (3.20)
ntoo Jo 0

Next, for fixed z > 0, introduce the following probability distribution functions:

_ Jo (Fl@) 4+ 1) dt _ [P0 + D dr
Jo (FiH () + 1 dr JS(Fi(@) + Dde

Pl (x) Pi(x) 0<x <z

Then, (3.20) means that P{ (x) converges to Py (x) in distribution. As a result,

Z Z
lim [ e”dP!(r) = / e? dP(t) for Re(¢p) =0,
0

ntoo Jo

SO
_ Jo " (F{ () + dr e (Fi(1) + 1) dr

im = (3.2D)
ntoo  [S(FJ'(t) + 1) dt Jo (Fi(t) + 1) dt
It follows from (3.20) and (3.21) that
X X
lim / e Fl'(t)dt = / e? Fi(t)dr forany x > 0,
ntoo Jo 0
which combined with (3.16) yields
o0 o
lim e Fl'(x +y—b)dx = / e Fi(x +y — b) dx. (3.22)
ntoo Jo 0

Therefore, the desired result that (3.1) holds also for ¢ € S¢ follows from (3.8) by letting n 1 co
and using (3.11), (3.12), and (3.22). O
4. Main results

For the unique strong solution U to (1.1) with X given by (2.1), its probability distribution
function is given by Theorems 4.1 and 4.2.
Theorem 4.1. Forq > O0and y > b,
y—x
P > ) = 1= Ko =0 = [ Fily = x = 9, @2, @)
b—x

where K (x) is the convolution Oer(q) under P and Ye(q) under P, i.e.

min{0,x} R
K, (x) = / P(Xeq) <x — )P, € d2),  xeR, (4.2)

—00

and F1(x) is continuous and differentiable on (0, 0c0) with rational Laplace transform given by
(2.8).
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Proof. First, the right-hand side of (3.1) can be rewritten as

(/CW/ Fi(x —z+y — b)dK,(z) dx, 43)

where K (x) is given by (4.2). Since Ye(q) and Y. have density functions (see Remark 2.6)
and F1(x) is continuous on (0, co), we conclude that the integrand in (4.3), i.e. ffoo Fi(x —
Z+y —b)dK,(z), is continuous with respect to x.

As Ye(g) is tlle convolution of Y ,(4) and Xe(q) (which is due to the well-known Wiener—Hopf
factorization), Py (Ye(g) > ¥) is cgntinuous with respect to x. This result and Lemma 2.5 lead
to the fact that Py (Ueg) > ¥) — Px(Yeq) > ¥) is also continuous. For y > b, it follows from
(3.1) and (4.3) that

b—x
IP)X(UE(Q) > y) — ]P)X(Ye(q) >y) = / Fiy—x—12) qu(Z), x € R. “4.4)

—00

In addition, for Re(¢) = 0, we have (recall (4.2) and Remark 2.3)

00 00 1 E[e¢76(q)] o0
¢x ¢x _ _ ¢x
/_Ooe qu(x)/O e” Fi(x)dx = " (1 —]E[e‘f’Xew)]) /_Ooe dK,(x)

= /oo e(bx (I,E\D(Ye(q) < )C) — Kq (x)) dx, (45)

—00

where the second equality is due to the Wiener—Hopf factorization, and the third one follows
from the application of integration by parts. Note that

00
/ IP(Ye(q) = x) — Kq(x)|dx
00

o0 min{0,x} = o R
5/ [ g 2 x -0 — PR =3 - DlP € d2)ds
—00 J —00

o0 0
5/ / BT o) < x — 2 — PReqy < 3 — DB, € do)dr
—o0 J—c0

Ll
=

where in the first inequality, we have used the Wiener—Hopf factorization and (4.2); the final
inequality follows from (3.10).
For x € R, (4.5) yields

y—x .
/ Fiy —x — 20 dKy (@) = P(Yaig) < v — ) — Koy — 2,

—0o0
which combined with (4.4), leads to
Px(Ue(q) > )’) - I©>)C(Ye(q) > )’)
y—x

=P(Yeq) <y —x) —Kq(y—X)—/b Fi(y —x —2)dKy(2). (4.6)
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This proves that (4.1) holds for y > b. Letting y | b in (4.6) and using the fact that
limy fby:xx Fi1(y —x —2)K,4(dz) = 0 (since F1(x) is bounded on (0, 00); see Remark 2.3),
we deduce that (4.1) holds also for y = b. O

Similar derivations lead to the following Theorem 4.2, and for the sake of brevity, we omit
the details.

Theorem 4.2. Forq > 0and y < b,

b—x
Px(Ueqy < ¥) = Kq(y —x) — / Fo(y —x —2)Kq4(dz), 4.7)
y—x
where F>(x) is continuous and differentiable on (—oo, 0) and its Laplace transform is given
by
0 1 (E[e*Xe@
| e he= —(# - 1), 5> 0. (48)
S s \E[e**@]

Remark 4.1. It follows from (4.1) and (4.7) that Py (U,(g) > b) + Py (U.(y) < b) = 1, which
implies that P, (Ue(q) = b) = O forallg > 0.

Remark 4.2. Forfixedb € R, letting y = bin (4.1), we arrive at P, (Ue(q) > b) = 1 - K, (b—
x), which means that

oo —
/ e D AP, (Ueg) > b)) = Ble?" 0 E[eXew],
—o0

A similar result has already been derived in [22]; see Equation (4.1) in that paper.

Remark 4.3. Compared with (2.17), in (4.1), (4.2), (4.7), and (4.8), the roots of V¥ (z) = ¢
and ¥ (z) = q disappear. The forms of these results and Remark 2.2 lead to the following
conjecture: (4.1) and (4.7) hold for a general Lévy process X and the corresponding solution U
(if it exists) to (1.1). Proving this conjecture is a potential research direction.

Since both Fj(x) and F>(x) are differentiable, from (4.1) and (4.7), the expression of
Py (Ue(q) € dy) can be derived.

Corollary 4.1. We have
IP>)c(Ue(q) € dY)

o
:qf e "P (U; € dy)dt
0

y—x
(F1(0) + DKy (dy — x) +/ Fi(y —x —2)K,(dz)dy, y>b,
_ b—x
= bix 4.9)
(F200) + DK;(dy — x) — / Fy(y —x —2)K4(dz)dy, y <b,
y—x
where F1(0) is given by (2.10), F2(0) := limyo F2(x), and, moreover, I>(0) = F1(0).

Proof. In(4.1)and (4.7), differentiating with respect to y yields (4.9). Noting that P(U,(y) =
b) = 0(seeRemark4.1), wecanwritey > bory < bin(4.9)asy > bory < b. Aninteresting
result is F2(0) = F1(0), which will be proved in the following.
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For simplicity, we only consider ¢ € S since the case of ¢ € S¢ can be shown similarly.
Similar to the derivation of (2.10), it follows from (2.14) and (4.8) that

.
F>(0) = y — 1. (4.10)
Hk:1 Yk

From (2.5), we can rewrite x@(z) —q=vY(z) —idz —q as
_(02/2)(1)Zk 11 (— I)Zk 1 Mk (Z)2+Zk lnk+zk 1Mk 4 g (Z)
[Ti=) O + o)™ T3, (e — iy

where P (z) is a polynomial and its degree is 1 + Y }_, nx + ZZ’; my.
For g € S, it follows from Lemma 2.1(i) and Lemma 2.4(i) that there is a constant £
satisfying

V() —

2 _
_%(i)ZL] ng (_i)ZZ"L my (Z)2+Zk YIRS il 1m1< 2 H(ﬂk —ig) H(Vk +iz).

Lemma 2.1(i) and Lemma 2.4(i) also yield M+ = kazl mp+1and N~ = S e+ L
So we have £y = —o2/2, thus, the last two displayed equations yield
It s . - oA
_ _‘7_2 1_[1}:/[:1 (Br —iz2) H11<V=1 Yk +12)
2 TSy @ + i) T On — i)

V(z) —

which combined with the fact that &(O) = 0, produces

2 H ,3k Hk 1 Yk
Hk 1 ()" "Hk 1(77k)mk

Q

N |

Similarly, we have

H/I:/ﬁ] B H}I{v_1 Yk
Hk 1 ()% Hk 1(77k)mk

quN

Therefore,
M* 3 N~
[Tmi Be _ [l v (4.11)
MT o T R A :
k=1Pk Tl
and the desired result follows from (2.10), (4.10), and (4.11). O

Remark 4.4. For a more general Lévy process X, the functions F(x) and F>(x) given resp-
ectively by (2.8) and (4.8) may not be differentiable. Thus, it is better to understand (4.9)
as
y—x
(FO+ DK@y =0+ [ Ay =3 -9k, @), = b,
b—x
b—x

Py (Ue(g) € dy) =
(F200) + DKy(dy — x) — / Fdy —x —2)K;(dz), y <b.
y

—X
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5. Applications in pricing variable annuities

As stated in the introduction, our results can be used to price variable annuities (VAs) with
state-dependent fees. First of all, we provide some background.

VAs are life insurance products whose benefits are linked to the performance of a reference
portfolio with guaranteed minimum returns. There are many kinds of guarantees such as
guaranteed minimum death benefits (GMDBs) and guaranteed minimum maturity benefits
(GMMBgs), and we refer the reader to [3] for more details. Of course, the guaranteed benefits
are not free. Traditionally, the corresponding fees are deducted at a fixed rate from the
policyholder’s account. This classical fee charging method has some disadvantages, which
have been noted in [4]. Thus, in [4], the authors proposed a new fee deducting approach under
which only when the policyholder’s account value is lower than a prespecified level can the
insurer charge fees. For more details and research on this new method, we refer the reader to
[4], [7], [17], [24], and [25].

Let S; and F; represent, respectively, the value at time ¢ of the reference portfolio and the
policyholder’s account. Under the state-dependent fee structure, we have (see [4, Equation (1)]
or [25, Equation (2.3)])

dF, = Ft_? — (=) F_1{f_<pdt, t >0, 5.1
—
where —§ > 0 is the fee rate and B is a prespecified level. Note that the case of B = oo
corresponds to the classical fee charging method. Furthermore, assume that S, = SoeX* %!
with X; given by (2.1).

For a VA with GMMB:s, its payoff can be written as G(Fr), where T is the maturity and
G (-) is a payoff function. For a VA with GMDBs, its payment when the policyholder dies is
given by G(F7,), where T is the time of the death of the insured. A simple example of G(-)
is G(x) = max{x, K}, where K is a constant. In order to price VAs with GMMBs or GMDBs,
we need to compute the following expectations under an equivalent martingale measure:

Ele"TG(Fr)] or Ele">G(Fr,)l, (5.2)

where r > 0 denotes the continuously compounded constant risk-free rate.

As the market is incomplete, an equivalent martingale measure should be chosen to calculate
(5.2). Similar to [25], we use the Cramér—Esscher transform (see [9]) to obtain the desired
martingale measure. Specifically, first define

dP¢ ecXr
dP ~ E[ecX:]’

where ¢ € R such that E[e*'] < co. And for convenience, in (2.2) and (2.3), we assume
that 11 (1) has the smallest real part among 71, ..., n,+ (@1, ..., 0,-). As §; = SOeX’_‘S’,
it is reasonable to require that E[eX] < oo, this means that n > 1in (2.2). Note that
limg4,, E[eX'] = 0o and lim.|_p, E[e“*"] = co. We can choose c* such that e™"’S, is a
martingale under PP¢". It is obvious that X, is still a Lévy process under P¢", and, in particular,
the process X has the same form as (2.1) under P°". So we drop the superscript ¢* from P¢*
and assume that the expectations appearing in the following are calculated under the equivalent
martingale measure P

For a VA with GMDBs, its price is E[e " 7*G(Fr,)]. Applying discussions similar to those
presented in [25] (see the derivation of [25, Equation (2.9)]), we find that the computation of
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E[e_rTXG(FTX )] reduces to that of calculating E[e " ¢@) G(Feg)]= g/ + g)E[G(Fer+9))]
for given ¢ > 0. For a VA with GMDBs, we note that

o —sT —rT 1
e TEle ™" G(Fr)|dT = ——E[G(Fe(s4r)].
0 s+r

from which E[e "7 G (Fr)] can be obtained by using a numerical Laplace inversion technique.
In summary, the key step to price a VA with GMDBs or GMMB:s is deriving the expression
of E[G (Fe(g))] for g > 0.
From (5.1), applying It6’s formula yields F; = Fpe!" with

dU; = d(X; — 81) — (=8 1y, <py dt =dX; — 81y, >p) dt, (5.3)

where b = In(B/ Fyp). So we arrive at

o0

E[G (Fe(q))] = EIG (Foe"@)] :/ G (Foe")P(Ue(g) € dy).

—00

It follows from (1.1), (4.9), and (5.3) that

,
(F1(0) + DK, (dy) + / Fl(y — 9K, (d)dy, y > b,
P(Ueg) € dy) = b 5.4

b
(Fz(0)+1)1<q<dy>—/ Fj(y — 9K,d2)dy, y <b,
)7

where F1(x), F2(x), and K, (x) are given by (2.8), (4.8), and (4.2), respectively.

By applying a rational expansion, we can obtain semiexplicit expressions for Fi(x), F»(x),
and K, (x) and, thus, for P(U,,) € dy). However, for ¢ € S¢, formulae for P(U,(,) € dy)
are very long and complicated, and, more importantly, they are difficult to use in numerical
computations since we need to handle multiple roots. Fortunately, due to Lemma 2.3, it is safe
and convenient to consider only the case of ¢ € S. The corresponding results will be given in
the following corollary, from which we can obtain first the expression of E[G (F,(,))] and then
the price of a VA with GMDBs or GMMBs.

Corollary 5.1. For q € S, defining f;(y) := P(U.y) € dy)/dy, we have the following
results.

(1) Ifb = 0 then
fh
1_[11:/1:1 ﬁk
M+

k=1 kA .
M+t N- M+t

1530 3p 3T TSN

i=1 j=1m=l B
nkll/k

lek
M* N= N~

Yy KijFom o—piy _ g=Biben=by 0 <y <p,
vn + Bi

i=1 j=1n=1

K, (dy)

fq ) =
Kq(dy)
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and, for y <0,
Yk
fa) = H’“ —r=L K, (dy)
1)’k
M+ N~ N~ A A
_ZZZ Kl]F2n< ;(Vj + Bi _Yi— y”e—(ﬁi+)/n)b) —e};jy>.
im1 j=1n=1 Yn Yn + Bi Yn + Bi
(i) Ifb < O then
Mt N- —b)+Pib 5oy
% eVn(y Yib — eVjy
[l 1VK(d) ZZK,,Zan —— . y<b,
fq(y): k 1Vk i=1 j=1 n= 1 Vi = Vn
Mt 4 M+ N 7 b (b—y)+7;b
B eViy — ebm(b=y)+y;
M1 B e ay V1S K S R SO
k= 113 i=1 j=1 m=1 )/j+,3m
and, for y > 0,
Mt 3
Br
fa) = H’” A K, (dy)
k 1 k

M+t N— M+

KijFim | g Bi+Pi | Bu—Bi cBnt7pb ) _ o—Biy
D I I R e | -

i=1 j=1m= 1 Bi — ﬁm Yj + Bm ﬁm‘i‘)/]

In the above formulae,

A

m
Bi — B Br
Fl,:—ﬁ,l"[ ’ﬂ I1 (5.5)
k=1 Pk o1k Bi — B
N= . NT
Pui=-n]2%2 ] 2= fri<i<n-, (5.6)
k=1 Yk ko g VR TV
and
Mt N~ A
K, (dx) = Z Z Ki’jefﬁixe(ﬂiﬂ/j)(x/\o)’ (5.7)
i=1 j=1
where
A + M+ - A N~ A
x Bt 1’"—[ (e — B)™ I Br 1—[ (O — 7)™ I ( Yk )
i,j — ~ = = .
B+ i1 O™ B B @™\ Ve Y

Proof. Smce g € S, we have Fi(x) = Fy(x) (see (3.6) and (3.7)). So, for x > 0,
Fl(x) = Zl 1F1,e Bix with Fi; given by (5.5). In addition, (2.10) yields Fi(0) =

Hllcw:l /§k/nk=1 B — L.
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From (2.14) and (4.8), for x < 0, applying a partial fraction expansion leads to F;(x) =
Z[ 1 B2, leV' where F» ; is given by (5.6). In addition, we know that (see (4.10)) Fz(O)
[T Vk/l_[kzl v — L.

From Lemma A.1(i), Lemma A.1(iii), and (4.2), some straightforward calculations lead
to (5.7).
Therefore, the desired results follow from (5.4) after some simple computations. ]

Appendix A

The proof of Proposition 2.1 is given in this section, where some ideas used can also be found
in [22]. For completeness and for the convenience of the reader, we present all the details rather
than omit some of them even though we will repeat some preliminary results and calculation
procedures that appeared in [22].

Recall that S is the set of ¢ > 0 such that all roots of ¥/ (z) = g and &(z) = g are simple.

The following lemma follows directly from Lemmas 2.1 and 2.4.

Lemma A.1. For g € S, the following results hold.
(i) Fory >0, P(Ye(q) € dy) = Z,ﬁg Cre Py dy, where

i l—l(nk_ﬂt> Ml—[ 1 <i<M*
= <i< .
k=1 1,k k_,Bl

(ii) Fory >0, I@)(?e(q) € dy) = Z,I(w;l C’ke_ﬂ” dy, where

/\

. + e

¢ T — ~

——]_[<'7" ﬂ’) ]_[ l<i<M* (A1)
Bi i 1, kit ,3 /31

(iii) Fory <0, I@’(Xe(q) € dy) = Z,I{VZ_I lA)ke?ky dy, where

- N N A
Dj u l?k—]/j Ttk Yk A
= s 1<j<N".
: ||< 5 [ (—= =Jj=

Vi k=i k=1,kzj Nk T Vi

Next, introduce the following three rational functions:

mt my M+ Mt
Fooy S+7lk>k ( Br ): Cr Ao
PG - g( ) () -2 A2
mt 7+ A Mt ~
s o\ B Ck
P = (s ) ( i ) _ _ A3)
,E Nk ,!:[1 s+ Bk ; s+ B
- A v ( Yk ) i Dy
= = . A4
v g( 178 ) ,g s+ Vi =S+ A4
For ¢ € S and Re(s) > 0, note that (see (2.7) and (2.14))
Ele™Xw] =yt (), Bl w]=J%c),  Eew] =y (. (A.5)
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In addition, for a € R, define
th=inf{t >0: X, >a} and %, :=inf{t >0:Y, <a)}.

Results on the one-sided exit problems of X and Y are presented in the following lemma.
Lemma A.2(i) can be established by applying Lemma A.1(i), (2.12), and (A.2); and Lemma
A.2(ii) follows from Lemma A.1(iii), (A.4), and the following result (see Corollary 2 of [1]):

~
E[e—qf;H(Yf?—x)] _ Efe'®ew X)I{Y (<)) 5> 0
f[etYew] ’ B

LemmaA.2. (i) Forg € Sand x,y > 0,

-1
() y? &Y dy,

Ele ™ 1ix , xedy}]—cou)ao(dywzzc O~

k=1 j=1

where 8o(dy) is the Dirac delta at y = 0, and Cy(x) and Cyj(x) are given by the rational
expansion:

mt m J 1 " e Brx
Co(x)—l-;Zij(x)( +s> ¢+(S)chs+ﬂk’ x> 0. (A.6)
j=1 k=1
(ii) Forg e Sand x,y <0,
n~ ng ; i
Ble™ 1y, —xean] = Dot)do(dy) + 30 3" Dy (x)(ﬁk();(_;i}))!]leﬂky dy,
k=1 j=1
where ﬁo(x) and ﬁkj (x) are given by the rational expansion:
n J 1 N . elkx
Do(x)+l;]2;Dk](x)<ﬂ +s> = o kZIDkS_H;k, x <0. (A7)

Remark A.1. A useful observation is that Co (x) and Cyg;(x) in (A.6) are linear combinations
of efi for 1 <i<Mt, and Do(x) and ij (x) in (A.7) are linear combinations of e”i* for
1<i< N-

Lemma A.3 is a straightforward result of (A.9) and (A.10), here the reader is reminded that
1/(6 + Br)(s + Bi) can be written as (1/(s — 6))(1/(6 + Bi) — 1/(s + Br))-

Lemma A.3. Forany > 0ands # —nq, ..., —yu+ with0 # s,
/ 6xC0()C)d)C+ZZ/ "xck,(x)dx< Mk )j _ 1 (W(e) —1), (A.8)
0 Pt M+ s s =0\ YT(s)
and, forany 0 > 0and s # =01, ..., —0,- with6 # s,
/0 e’ Do(x) dx + iZ/ Qkaj(x)dx< )j _ ! (%_(9) —~ 1). (A.9)
- k=1 j=1 +s S=ONY=()
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Proof of Proposition 2.1. For a given y > b, the function of x, V,(x), is defined as (see
Lemma 2.5:

Vq(x) = Px(Ue(q) > y)'

Recall (1.1). Note that {X,, t < 7,7} and {Uy, t < k;7} with &, := inf{r > 0: U, > b}
under P, have the same law if x < b. Therefore, for x < b, the strong Markov property of U
lead to
Vq (X) = Ex [I{Ue(q)>)’}1{e(q)>/(;'}]
= By[e™ V, (Us)]
= Ele™% V(X))
= E[e 4%V, Xpr 4]

mt my

)
=> > Gjb—x) e " Valb+dz+ Colb =)V, (b)
Pl o (G-D
M+
_ Z Jkeﬁk(x—b)’ x < b, (A.10)
k=1
where Ji, ..., Jy+ are constants which are not dependent on x; the fifth and the sixth equalities

follow from Lemma A.2(i) and Remark A.1, respectively.

For x > b, the strong Markov property of U and the fact that {Y;, r < 7.} under HA”x and
{Us, t <k, } withk,” :=inf{t > 0: U; < b} under PP, have the same law (Strictly speaking,
this statement should be written as follows: {Y;, t < 7, } with 7, :=inf{r > 0: ¥; < b} under
Py and {U;, t < k;, } with k7 := inf{t > 0: U, < b} under P, have the same law. But, since
o >0,wehave P, (7, =7,) =1land Py(x, =k, ) =1.) yield

Kb_ 00
V,(x) = E, [/ ge "y, >y dr + / qe™ "1y, ) df]
0 Ky

b

=>

0 A
x[/o qeiqll{Y,>y,t<f[:} dt] + E [e 9% Vq(Yf[;)]

= Bx(Yeq) > ¥ Yogg) 2 b) + Exle™ Vo (V). (A.11)

Applying the Wiener—Hopf factorization (see Theorem 6.16 of [12]), we can rewrite the first

item on the right-hand side of (A.11) as

0
/ P(Yq) — Xe(q) >y—Xx— Z,Xe(q) € dz)

b—x

0
=/ P(Yeq) >y —x —2)PX, ) € d2)
b

—X
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Zb}keﬁk(x—y) + Z Pretb—), bh<x<y,
=1 k=1

- i (A.12)
1+ Z Qe =9 4 Z ﬁljeyk(b*x)’ x>y,

k=1 k=1

where the second equality Ais due to Lemma A.1(ii) and A.1(iii) (note that I@’(?e(q) >z)=1if
z<0)fork=1,2,..., M,

A N oA

N C D;
Bo=—23Y 21 (A.13)
Br 521 Br+ Vi
and, fork =1, 2, ...,]\Af’,
D . u 6 D
O« = Dy Z — =X and Bp =Y L iy, (A.14)
ﬂz (,Bz + k) Vk i—1 ,31 ,31 + Vi
Therefore, froAm (A.1 12, (A.12), Lemma A.2(ii), and Remark A.1, we conclude that there are
some constants Py, ..., Py (independent of x) such that
- 1
Pelb—x) _ _ (O (—2)/~ ot
ZPke ZZDk,(b x)/ Vob+0)— et dz
k=1 j=1
+ Do(b — x)V, (b) + Z Pre?i®=) forall x > b, (A.15)
j=1
and
M+ R N~ A
Z HpeP=y 4 Z Pretk(b=x) b<x<y,
Vy(x) = { ¢! - k=1 . (A.16)
1 + Z le);k(y_x) + Zﬁke);k(b_x)’ x > v,
k=1 k=1
For the constants J; in (A.10) and P in (A.15), we will show in Lemma A.4 that (A.20)—
(A.23) hold.

Next, consider a rational function of x as follows:

Mt

b= Z - :31 B Z X + Vt - Z ﬂl(b y) A7)

i=1 11

For fixed 1 <k <mtand 0 < j < my — 1, (A.22) yields (3/ /axj)(L(x))x=,7k = 0. This
implies that 7y is a root of L(x) = 0 and its multiplicity is m,. Moreover, for | <k <n~,
(A.23) means that —v is a ng-multiplicity root of L(x) = 0. From these results, L(x) can be
rewritten as

T, G = )™ [T (x4 9™ (o + Lix + -+ Lys g xM =14 xM¥ (Lo + Lyx)
[0 = B TS o+ 20 T (= B

’

(A.18)
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wherelg, Iy, ..., Iy+_1, Loand Ly are constants, and we have used M = ZZQ] me+1 =M+
(see Remark 2.4) and N~ = ZZ;I ni + 1 (see Lemma 2.4(i)) in the above derivation.

Then, by applying (A.20) and (A.21), we derive Ly = 0 and L1 = 0 from (A.17) and (A.18).
Finally, it can be seen from (A.17) that

lim Lx)(x — fi) = —BieP o= 1 <i<mt

x—Bi

Therefore, we arrive at the conclusion:

. -
[T & = )™ [Ty & + 9™

L(x) = M+ N- ~
[li2i =B io (x +7)
M+ + A N n A
s OB = BOTLL Bt 7 —Hi oy (a0
k=1 fn; (Br — ni)™i TTimy (Br + 0 x — Br
Equations (2.17) and (2.18) are derived from (A.10), (A.16), (A.17), and (A.19). O
Lemma A.4. (i) It holds that
M+ Mt R N
D Ti=Vyb)y =Y HieP Y 3P (A.20)
i=1 i=1 i=1
and
M+t mt R N
D dibi= Vo) =) Hipieh O =Y By, (A21)
i=1 i=1 i=1
(iiyForl <k <mTand0 < j <my—1,
M+ . N— A M+ ~ .
Ji(—=1) p; Hi(=1) 4, .
> i« )-+1 +y s —Z#eﬁi“’—” =0. (A.22)
= Bi — i) = O +vi) = (Bi —m)iT!
(iii) For any given 1 <k <n” and0 < j <mnj — 1,
M+ ; N- 5 Mt A ;
Ji(—=1) p; H(-1))
> i1 LY -y i )_ efit= =0, (A.23)
= B0 H =0T (B )

Proof. (1) These results follow from (2.16), (A.10), and (A.16).

(i) First, as Zlﬁg Ci/Bi=1= Zj\; lA)j/JQj (lets = 0in (A.3) and (A.4)), for some proper 6,
we have (see (A.14))

N- M* N~ A~ N- mt

00 éiD; 0 D€ A}
X e oL e Y (Tt -5

i=1 j=1 IBl);] k=1 i=1 ,éi(.éi +),/\k) Yk i=1 :Bi

N
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Thus, for all 6 € C except at ,31, o 3/&# and -y, ..., =V, the last formula and (A.13)
lead to

LA S 00

k k
+ — + 1

; -0 Z9+J/k
_ZZ{ 0C; D, 0C; D, +éib,-}
pr &(B,-wj)(ﬁ,-—e) PiBi+ )@ +60)  Biv

Mt N

- 2; G000 +7)
=9 (=¥ O), (A.24)

where the last equality follows from (A.3) and (A.4). Note that

j-1
anJ—1

G (=m)y=p, =0 forl <k <m"and1<j<my.

From the last two equations, we obtain

() (—1)i~1 9! (1 n(by)(w n0; ))
(! 1 —0. (A25
G-l i T\n ;ﬁl - Zn+% - (.23

For 1 <k <m%Tand1 < j < my, the integral (—1)/~ 1f22 72/ le e 4z can be
understood as (87! /i~ 1)([22 s dz)y=n, for some proper constants z1, z, and &, then
from (A.16) and (A.25), we have

00 (1) zi—1 N i Mg
/ (nk) Z e_”kZVq (b+7)dz = Z z(’?kA) 4 Z 1(77kA) ,eﬂi(b_y),
o G-D! = e+ = e — B

which combined with (A.10) and the result of V,(b) = Zf‘g Hieio—» 4 251_1 P (see
(A.20)), yields

+ mg N— N . M+ ~ .
P; (i)’ Hi(m)! 40—
Jkeﬁk(x b) _ Cri(b — x)< + - _eﬁz( y)
Z ;; / Z(nkﬂa)f ;(nk_ﬁ,.y
M X N~
+ Co(b — x) (Z H;efit—» 4 Z Pl-> for all x < b. (A.26)

i=1 i=1
It follows from (A.8) and (A.26) that

Mt Mt

: b
Ji Zf 0D 3 ehD) g
im1 Bi +06 —00

i=1

MY Bib—y) + Y +
FE ) ()

= 0+ b vt—pn) =
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We note that lim, 5 (¥*(— Bi) — vt (0)/©0 + Bi) = =y (—p;) and limg_, 5, (Y (0) —
ARCAVICES yl) = w"’ (1). Inaddition, noting that both sides of (A.27) are rational functions
of 6, we can extend identity (A.27) to the Whole plane except at —pB1, ..., —By~+. Here, we
omit the first equahty in (A.27), i.e. the item f e?(x=b) ZM J;efi=b) dx is omitted. Then,
for given 1 < k < mTand 0 < j < my — 1, (A 22) is derived by first taking a derivative on
both sides of (A.27) with respect to 6 up to the jth order and then letting 6 be equal to —ny,
where we have used the fact that (3//367) (¥ (0))g=—y, = 0.

(iii) Similarly, for 1 <k <n™ and 1 < j < ng, it follows from (A.10) that

0 . i1 Mt .
@) (=) Ji (0!
Voo + 2)————e"**dz = —_—. (A.28)
/_oo ! (=Dt ; @ + Bi)
From (A.9), (A.14), (A.15), (A.28), and the fact that V,(b) = Zf‘g Ji (see (A.20)), it can be
proved that

%: p;

- s A"
/ I Fi (b1 g
i=1 i=1

M+ N N* A

M A
Ci 4 D; C
= — —Lefitb=y) _— E < ©) 1).
io1 Pi =1 pi

11/31+V19+yl ¢(ﬁz)

In addition, we note that

Mt A N~ A
_ geﬁi(b—)’) _ Dj 1 _

i=1 :81' j=1 ,31' + );j 0+ Vj

N~
C; A 1 1
__Z Ci it ZD( _ )
Bi — = 0+7 B+ Vi
M+ ~

A Ciyr(0)
_ Pib—y) _ Bib— »,
1/31_9 Zlﬂt(ﬂz_g)

where the second equahty follows from (A.4) and (A.13).
Hence, from the last two equations, we arrive at

P M+ A I+ o~ A i 7+
- 19+m ) F—o\ip) S h-0 2 lﬁl(ﬁ,—e))

which holds for 6 € C exceptat —py, ..., —Vq-.
For given 1 < k < n~, on both sides of (A.29), we take a derivative with respect to 6 up

to the jth order‘for O = Jj < nj — 1 and then let 6 be equal to —¥;. This calculation leads to
(A.23) since (987 /007 ) (¥~ (0))g=—p, = 0, and the proof is completed. O

Acknowledgements

The authors are grateful to two anonymous referees for various helpful comments and
suggestions on an earlier version, which help to improve the structure and text of the paper, and
they would like to thank the Editors for their helpful suggestions.

https://doi.org/10.1017/jpr.2017.58 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2017.58

1192

(1]
(2]
(3]
(4]
(3]
(6]
(71
(8]
(91
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
[23]
[24]

[25]

J.ZHOU AND L. WU

References

ALILL, L. AND KYPRIANOU, A. E. (2005). Some remarks on first passage of Lévy processes, the American put
and pasting principles. Ann. Appl. Prob. 15,2062-2080.

ASMUSSEN, S., AVRAM, F. AND PIsTORIUS, M. R. (2004). Russian and American put options under exponential
phase-type Lévy models. Stoch. Process. Appl. 109, 79-111.

BAUER, D., KLING, A. AND Russ, J. (2008). A universal pricing framework for guaranteed minimum benefits in
variable annuities. ASTIN Bull. 38, 621-651.

BERNARD, C., HARDY, M. AND MACKAY, A. (2014). State-dependent fees for variable annuity guarantees. ASTIN
Bull. 44, 559-585.

CaL, N. (2009). On first passage times of a hyper-exponential jump diffusion process. Operat. Res. Lett. 37,
127-134.

Car, N., CHEN, N. AND WaN, X. (2009). Pricing double-barrier options under a flexible jump diffusion model.
Operat. Res. Lett. 37, 163-167.

DELONG, L. (2014). Pricing and hedging of variable annuities with state-dependent fees. Insurance Math.
Econom. 58, 24-33.

FELLER, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. 11, 2nd edn. John Wiley,
New York.

GERBER, H. U. AND SHIU, E. S. W. (1994). Option pricing by Esscher transforms. Trans. Soc. Actuaries 46,
99-140.

Ko, B., SHIu, E. S. W. AND WEI, L. (2010). Pricing maturity guarantee with dynamic withdrawal benefit.
Insurance Math. Econom. 47,216-223.

KuzNETSoV, A. (2012). On the distribution of exponential functionals for Lévy processes with jumps of rational
transform. Stoch. Process. Appl. 122, 654—663.

KypPriaNOU, A. E. (2006). Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer,
Berlin.

KypriaNoOU, A. E. AND LOEFFEN, R. L. (2010). Refracted Lévy processes. Ann. Inst. H. Poincaré Prob. Statist.
46, 24-44.

KypriaNoU, A. E., PArDO, J. C. AND PEREZ, J. L. (2014). Occupation times of refracted Lévy processes.
J. Theoret. Prob. 27, 1292-1315.

LEE, H. (2003). Pricing equity-indexed annuities with path-dependent options. Insurance Math. Econom. 33,
677-690.

Lewis, A. L. AND MORDECKI, E. (2008). Wiener—Hopf factorization for Lévy processes having positive jumps
with rational transforms. J. Appl. Prob. 45, 118-134.

MACKAY, A., AUGUSTYNIAK, M., BERNARD, C. AND HARDY, M. R. (2017). Risk management of policyholder
behavior in equity-linked life insurance. J. Risk Insurance 84, 661-690.

NG, A.C.-Y.ANDLLJ. S.-H. (2011). Valuing variable annuity guarantees with the multivariate Esscher transform.
Insurance Math. Econom. 49, 393-400.

PisTorius, M. (2006). On maxima and ladder processes for a dense class of Lévy process. J. Appl. Prob. 43,
208-220.

RENAUD, J.-F. (2014). On the time spent in the red by a refracted Lévy risk process. J. Appl. Prob. 51,1171-1188.
Situ, R. (2005). Theory of Stochastic Differential Equations with Jumps and Applications. Springer, New York.
Wu, L. AND ZHOU, J. (2015). Occupation times of refracted Lévy processes with jumps having rational Laplace
transform. Preprint. Available at https://arxiv.org/abs/1501.03363v3.

ZHou, J. AND Wu, L. (2015). Occupation times of refracted double exponential jump diffusion processes. Statist.
Prob. Lett. 106, 218-227.

ZHou, J. AND Wu, L. (2015). The time of deducting fees for variable annuities under the state-dependent fee
structure. Insurance Math. Econom. 61, 125-134.

ZHou, J. AND WU, L. (2015). Valuing equity-linked death benefits with a threshold expense strategy. Insurance
Math. Econom. 62, 79-90.

https://doi.org/10.1017/jpr.2017.58 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2017.58

	1 Introduction
	2 Notation and preliminary results
	3 An important result
	4 Main results
	5 Applications in pricing variable annuities
	A 
	Acknowledgements
	References

