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Abstract

We consider a refracted jump diffusion process having two-sided jumps with rational
Laplace transforms. For such a process, by applying a straightforward but interesting
approach, we derive formulae for the Laplace transform of its distribution. Our formulae
are presented in an attractive form and the approach is novel. In particular, the idea in
the application of an approximating procedure is remarkable. In addition, the results are
used to price variable annuities with state-dependent fees.
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1. Introduction

A refracted Lévy process U = (Ut )t≥0 is derived from a Lévy process X = (Xt )t≥0 and is
described by the following equation (see [13]):

Ut = Xt − δ

∫ t

0
1{Us>b} ds, (1.1)

where δ, b ∈ R, and 1A is the indicator function of a set A. Refracted Lévy processes have
been investigated in [13], [14], and [20] based on the assumption that X in (1.1) has negative
jumps only; and in [23], the processX was assumed to be a double-exponential jump diffusion
process. Many results, including formula for occupation times of U , have been obtained,
and the interested reader is referred to the above papers for the details. In addition, in [22],
[24], and [25], under several different assumptions onX, we have considered a similar process
Us = (Ust )t≥0:

dUst = dXt − δ1{Ust <b} dt. (1.2)

For the processU in (1.1) withX given by (2.1), we will show that P(Ut = b) = 0 is Lebesgue
for almost every t > 0 (see Remark 4.1), which means thatUt = Xt − δt− (−δ)

∫ t
0 1{Us<b} ds.

Thus, the two processes Us and U are essentially equal.
In this paper we are interested in the distribution ofU . When the processXt in (1.1) is a Lévy

process without positive jumps, the corresponding results can be found in [13, Theorem 6(iv)].
Thus, here we focus on the situation whenX has both positive and negative jumps. Specifically,
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we assume that X in (1.1) is a jump diffusion process and its jumps have probability density
functions whose Laplace transforms are rational functions. Such a Lévy process is popular and
quite general, and two particular examples of it are a hyper-exponential jump diffusion process
(see [5] and [6]) and a Lévy process with phase-type jumps (see [2] and [19]). Under the
above assumption on X, we want to derive the expression of

∫ ∞
0 e−qt

P(Ut < y) dt or in
differential form ∫ ∞

0
e−qt

P(Ut ∈ dy) dt, y ∈ R, (1.3)

where q > 0. One reason why we are interested in the above quantity is that it is closely related
to occupation times of U since

q

∫ ∞

0
e−qt

E

[∫ t

0
1{Us<y} ds

]
dt =

∫ ∞

0
e−qt

P(Ut < y) dt, y ∈ R,

which can be derived by applying integration by parts. This means that the occupation times
of U , i.e.

∫ t
0 1{Us<y} ds, can be derived from (1.3).

In [22], under the same assumption on X as in this paper, we have derived formulae for∫ ∞
0 e−qt

P(Ust < b) dt , where Us and b are given by (1.2). In this paper, for a given b in
(1.1), we combine the ideas of [22] with a novel and helpful approximating discussion to
calculate

∫ ∞
0 e−qt

P(Ut < y) dt , where y ∈ R. In particular, we obtain some attractive and
uncommon formulae, which are written in terms of positive and negative Wiener–Hopf factors.
These extraordinary expressions are important and are conjectured to hold for a general Lévy
process X and the corresponding solution U to (1.1), providing that such a solution U exists.

The results in this paper have some applications. One application is to price equity-linked
investment products or variable annuities with state-dependent fees as in [25]. Such a state-
dependent fee charging method has been proposed recently and has several advantages (see [4]
and [7]), e.g. it can reduce the incentive for a policyholder to surrender the policy. Equity-linked
products are popular life insurance contracts and one reason for their popularity is that they
typically provide a guaranteed minimum return. There are many papers devoted to studying
such products; see, e.g. [10], [15], and [18]. Investigations on evaluating equity-linked products
under a state-dependent fee structure are relatively new and we refer the reader to [17] for a
recent work.

The remainder of this paper is organized as follows. In Section 2 some notation and some
preliminary results are introduced. Next, we present an important proposition in Section 3 and
state the main results in Section 4. Finally, the application of our main results is discussed in
Section 5.

2. Notation and preliminary results

In this paper the process X = (Xt )t≥0 in (1.1) is a jump diffusion process, where the jumps
have rational Laplace transforms. Specifically,

Xt = X0 + μt + σWt +
N+
t∑

k=1

Z+
k −

N−
t∑

k=1

Z−
k , (2.1)

where X0, μ, and σ > 0 are constants; (Wt )t≥0 is a standard Brownian motion;
∑N+

t

k=1 Z
+
k and∑N−

t

k=1 Z
−
k are compound Poisson processes with intensity λ+ and λ−, respectively; and the
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density functions of Z+
1 and Z−

1 are given respectively by

p+(z) =
m+∑
k=1

mk∑
j=1

ckj
(ηk)

j zj−1

(j − 1)! e−ηkz, z > 0, (2.2)

and

p−(z) =
n−∑
k=1

nk∑
j=1

dkj
(ϑk)

j zj−1

(j − 1)! e−ϑkz, z > 0, (2.3)

with ηi �= ηj and ϑi �= ϑj for i �= j ; moreover, (Wt )t≥0,
∑N+

t

k=1 Z
+
k and

∑N−
t

k=1 Z
−
k are mutually

independent.

Remark 2.1. The parameters ηk and ckj in (2.2) can take complex values as long as p+(z)
satisfies p+(z) ≥ 0 and

∫ ∞
0 p+(z) dz = 1. In addition, if η1 has the smallest real part among

η1, . . . , ηm+ then 0 < η1 < Re(η2) ≤ · · · ≤ Re(ηm+).

Remark 2.2. Equation (2.2) is quite general and, in particular, contains phase-type distribu-
tions. Thus, from Proposition 1 of [2], we know that for any given Lévy process X, there is a
sequence of Xn with the form of (2.1) such that

lim
n↑∞ sup

s∈[0,t]
|Xns −Xs | = 0 almost surely.

In what follows, the law of X starting from x is denoted by Px with Ex denoting the
corresponding expectation; when x = 0, we write P and E for convenience. And, as usual, for
T ≥ 0, define

XT := inf
0≤t≤T Xt and XT := sup

0≤t≤T
Xt . (2.4)

Throughout this paper, for a given q > 0, e(q) is an exponential random variable whose
expectation is equal to 1/q. Furthermore, e(q) is assumed to be independent of all stochastic
processes appearing in this paper. In addition, for a complex value x, let Re(x) and Im(x)
represent its real part and imaginary part, respectively.

For the Lévy process X given by (2.1), it has been shown that (1.1) has a unique strong
solution U = (Ut )t≥0 (see, e.g. Theorem 305 of [21]), which is a strong Markov process (see
Remark 3 of [13]). For this unique solution U , our objective is deriving expression (1.3), i.e.

∫ ∞

0
e−qt

Px(Ut ∈ dy) dt, y ∈ R,

and, more importantly, we try to derive some novel expression.
Similar to previous investigations on refracted Lévy processes (see, e.g. [13]), for a given

δ ∈ R, we introduce a process Y , which is defined as Y = {Yt = Xt − δt; t ≥ 0}. For the
process Y , the two quantities YT and YT are defined similarly as in (2.4). What is more, we
denote by P̂y the law of Y such that Y0 = y and by Êy the corresponding expectation, and
abbreviate this to P̂ and Ê when y = 0.

The following lemma gives the roots of ψ(z) = q and ψ̂(z) = q, where

ψ(z) := izμ− σ 2

2
z2 + λ+

(m+∑
k=1

mk∑
j=1

ckj (ηk)
j

(ηk − iz)j
− 1

)
+ λ−

( n−∑
k=1

nk∑
j=1

dkj (ϑk)
j

(ϑk + iz)j
− 1

)
, (2.5)
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and ψ̂(z) := ψ(z)−iδz. Note that if z ∈ R thenψ(z) := ln(E[eizX1 ]) and ψ̂(z) := ln(Ê[eizY1 ]).
Lemma 2.1 was developed in [16]; see Lemma 1.1 and Theorem 2.1 in that paper (note that
σ > 0 here).

Lemma 2.1. (i) For q > 0, ψ(z) = q(ψ̂(z) = q) has, in the set Im(z) < 0, a total of
M+(M̂+) distinct solutions −iβ1(−iβ̂1),−iβ2(−iβ̂2), . . . ,−iβM+(−iβ̂

M̂+), with respective
multiplicities M1 = 1(M̂1 = 1),M2(M̂2), . . . ,MM+(M̂

M̂+). Moreover, it holds that

0 < β1 < Re(β2) ≤ · · · ≤ Re(βM+), 0 < β̂1 < Re(β̂2) ≤ · · · ≤ Re(β̂
M̂+), (2.6)

and
M+∑
k=1

Mk =
M̂+∑
k=1

M̂k = 1 +
m+∑
k=1

mk.

(ii) For q > 0 and s ≥ 0,

Ê[e−sY e(q) ] =
m+∏
k=1

(
s + ηk

ηk

)mk M̂+∏
k=1

(
β̂k

s + β̂k

)M̂k

,

E[e−sXe(q) ] =
m+∏
k=1

(
s + ηk

ηk

)mk M+∏
k=1

(
βk

s + βk

)Mk

.

(2.7)

Next, consider a function F1(x) on (0,∞) with the Laplace transform

∫ ∞

0
e−sxF1(x) dx = 1

s

(
Ê[e−sY e(q)]
E[e−sXe(q)]

− 1

)
:= F̂1(s), s > 0. (2.8)

From (2.7) and (2.8), applying rational expansion yields

∫ ∞

0
e−sxF1(x) dx =

M̂+∑
k=1

M̂k∑
j=1

1

(s + β̂k)j

1

(M̂k − j)!
∂M̂k−j

∂sM̂k−j
(F̂1(s)(s + β̂k)

M̂k )
s=−β̂k ,

which leads to

F1(x) =
M̂+∑
k=1

M̂k∑
j=1

xj−1

(j − 1)!e−β̂kx 1

(M̂k − j)!
∂M̂k−j

∂sM̂k−j
(F̂1(s)(s + β̂k)

M̂k )
s=−β̂k , x > 0.

Since M̂1 = 1 and 0 < β̂1 < Re(β̂2) ≤ · · · ≤ Re(β̂
M̂+) (see (2.6)), we have

lim
x↑∞

F1(x)

e−β̂1x
= −

M̂+∏
k=2

(
β̂k

β̂k − β̂1

)M̂k M
+∏

k=1

(
βk − β̂1

βk

)Mk

. (2.9)

In addition, it is obvious that

F1(0) := lim
x↓0

F1(x) = lim
s↑∞

∫ ∞

0
se−sxF1(x) dx =

∏M̂+
k=1(β̂k)

M̂k∏M+
k=1(βk)

Mk

− 1. (2.10)
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Remark 2.3. Owing to (2.9),F1(x) is absolutely integrable and the Laplace transform ofF1(x)

in (2.8) can be extended analytically to the half-plane Re(s) ≥ 0. When s = 0, the right-hand
side of (2.8) is understood as

lim
s↓0

1

s

(
Ê[e−sY e(q) ]
E[e−sXe(q) ]

− 1

)
= ∂

∂s

(M̂+∏
k=1

(
β̂k

s + β̂k

)M̂k M
+∏

k=1

(
s + βk

βk

)Mk
)
s=0
.

Besides, F1(x) is bounded on [0,∞] with F1(∞) := limx↑∞ F1(x) = 0.

Lemma 2.2. For the continuous function F1(x) given by (2.9), it holds that

F1(x)+ 1 ≥ 0 for x > 0. (2.11)

Proof. For q, s > 0, we know that (see, e.g. [1, Equation (4)])

E[e−s(Xe(q)−h)1{Xe(q)>h}] = E[e−qτ+
h −s(X

τ
+
h

−h)]E[e−sXe(q)], h > 0, (2.12)

where τ+
h := inf{t ≥ 0 : Xt > h}. Exchanging the order of integration yields

∫ ∞

0
E[e−s(Xe(q)−h)1{Xe(q)>h}] dh =

∫ ∞

0

∫ x

0
e−s(x−h) dhP(Xe(q) ∈ dx)

= 1

s
(1 − E[e−sXe(q)]).

Then, on both sides of (2.12), integrating with respect to h from 0 to ∞ yields
∫ ∞

0
E[e−qτ+

h −s(X
τ
+
h

−h)] dh = 1

s

(
1

E[e−sXe(q)]
− 1

)
. (2.13)

Equations (2.8) and (2.13) mean that
∫ ∞

0 e−sx(F1(x)+ 1) dx is a completely monotone function
of s on (0,∞), then (2.11) follows from Theorem 1a of [8, p. 439]. �

The following lemma is taken from Proposition 1(v) of [11], which states that for almost all
q > 0, ψ(z) = q and ψ̂(z) = q only have simple solutions. Based on this lemma, we apply
an approximating argument (which reduces the calculation in a large extent) to derive the final
results.

Lemma 2.3. There exists only finite numbers q > 0 such that ψ(z) = q or ψ̂(z) = q has
solutions of multiplicity greater than 1.

In the following, let S be the set of q > 0 such that all the roots of ψ(z) = q and ψ̂(z) = q

are simple.

Remark 2.4. For q ∈ S, Lemma 2.1 yields M+ = M̂+ = 1 + ∑m+
k=1mk .

Applying Lemma 2.1 to the dual processes −Xt and −Yt gives the following result.

Lemma 2.4. (i) For q ∈ S, ψ(z) = q(ψ̂(z) = q) has, in the set Im(z) > 0, a total of
N−(N̂−) = ∑n−

k=1 nk + 1 distinct simple roots iγ1(iγ̂1), iγ2(iγ̂2), . . . , iγN−(iγ̂
N̂−), ordered

such that

0 < γ1 < Re(γ2) ≤ · · · ≤ Re(γN−), 0 < γ̂1 < Re(γ̂2) ≤ · · · ≤ Re(γ̂
N̂−).
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(ii) For q ∈ S and Re(s) ≥ 0, we have

E[esXe(q)] =
n−∏
k=1

(
s + ϑk

ϑk

)nk N−∏
k=1

(
γk

s + γk

)
,

Ê[esY e(q)] =
n−∏
k=1

(
s + ϑk

ϑk

)nk N̂−∏
k=1

(
γ̂k

s + γ̂k

)
.

(2.14)

Remark 2.5. For q > 0 and q ∈ S
c, a similar result to (2.14) holds, e.g.

Ê[esY e(q)] =
n−∏
k=1

(
s + ϑk

ϑk

)nk N̂−∏
k=1

(
γ̂k

s + γ̂k

)N̂−
k

, (2.15)

where N̂−
k is the multiplicity of γ̂k , and

∑N̂−
k=1 N̂

−
k = ∑n−

k=1 nk + 1.

Remark 2.6. For any q > 0, from (2.7), (2.14), and (2.15), it can be concluded that bothXe(q)
and Y e(q) have probability density functions.

The following lemma is important. We remark that the result in Lemma 2.5 is not surprising
as σ > 0 in (2.1), and its proof is omitted since it can be established by using almost the same
discussion as in Theorem 2.1 of [25].

Lemma 2.5. For q > 0, the function Vq(x), defined as Vq(x) := Px(Ue(q) > y) for given
y > b, is continuously differentiable on R. In particular, it holds that

Vq(b−) = Vq(b+) and V ′
q(b−) = V ′

q(b+). (2.16)

For a given y > b and q ∈ S, the following proposition gives the expression of

Px(Ue(q) > y) = q

∫ ∞

0
e−qt

Px(Ut > y) dt.

The proof of Proposition 2.1 is long and is deferred to Appendix A.

Proposition 2.1. For q ∈ S and y > b, we have

Px(Ue(q) > y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M+∑
k=1

Jke
βk(x−b), x ≤ b,

M̂+∑
k=1

Ĥke
β̂k(x−y) +

N̂−∑
k=1

P̂ke
γ̂k(b−x), b ≤ x ≤ y,

1 +
N̂−∑
k=1

Q̂ke
γ̂k(y−x) +

N̂−∑
k=1

P̂ke
γ̂k(b−x), x ≥ y,

(2.17)

where Ĥk and Q̂k are given by (A.13) and (A.14), respectively; Jk and P̂k are given by rational
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expansion:
M+∑
i=1

Ji

x − βi
−

N̂−∑
i=1

P̂i

x + γ̂i
−

M̂+∑
i=1

Ĥi

x − β̂i
eβ̂i (b−y)

=
∏m+
k=1(x − ηk)

mk
∏n−
k=1(x + ϑk)

nk

∏M+
i=1(x − βi)

∏N̂−
i=1(x + γ̂i )

×
M̂+∑
k=1

∏M+
i=1(β̂k − βi)

∏N̂−
i=1(β̂k + γ̂i )∏m+

i=1(β̂k − ηi)mi
∏n−
i=1(β̂k + ϑi)ni

−Ĥk
x − β̂k

eβ̂k(b−y). (2.18)

Remark 2.7. Equation (2.17) contains the roots ofψ(z) = q and ψ̂(z) = q, i.e. βk, β̂k , and γ̂k .
This poses a limitation to extending the result in Proposition 2.1 to a refracted Lévy process U
driven by other Lévy processes, because we cannot characterize the roots of ψ(z) = q for a
general Lévy process X (note that ψ(z) = ln(E[eizX1 ]) if z ∈ R). In Theorem 4.1 below, we
will derive another expression for Px(Ue(q) > y), which is free of βk, β̂k, and γ̂k .

3. An important result

In this section the following proposition is derived, and we have to say that the ideas in the
derivation are interesting.

Proposition 3.1. For given y > b, q > 0, and Re(φ) = 0, we have∫ ∞

−∞
e−φ(x−b)(Px(Ue(q) > y)− P̂x(Ye(q) > y)) dx

= Ê[eφY e(q)]E[eφXe(q)]
∫ ∞

0
F1(x + y − b)eφx dx. (3.1)

In the following, we first show that Proposition 3.1 holds for q ∈ S and then prove that it is
also valid for q ∈ S

c.

Proof of Proposition 3.1. (i) With q ∈ S. From (A.20), we know that

M̂+∑
i=1

Ĥie
β̂i (b−y) +

N̂−∑
i=1

P̂i −
M+∑
i=1

Ji = 0.

From (2.17), for Re(φ) = 0, some straightforward calculations yield∫ ∞

−∞
e−φ(x−b) ∂

∂x
(Px(Ue(q) > y)) dx

=
∫ ∞

−∞
e−φ(x−b) ∂

∂x
(Px(Ue(q) > y)) dx +

M̂+∑
i=1

Ĥie
β̂i (b−y) +

N̂−∑
i=1

P̂i −
M+∑
i=1

Ji

=
M+∑
i=1

Jiφ

βi − φ
+

N̂−∑
i=1

P̂iφ

φ + γ̂i
−

M̂+∑
i=1

Ĥiφ

β̂i − φ
eβ̂i (b−y)

+ eφ(b−y)
(M̂+∑
i=1

Ĥi β̂i

β̂i − φ
−

N̂−∑
i=1

Q̂i γ̂i

γ̂i + φ

)
. (3.2)
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It can be proved that

M̂+∑
i=1

Ĥi β̂i

β̂i − φ
−

N̂−∑
i=1

Q̂i γ̂i

γ̂i + φ
= 1 +

M̂+∑
i=1

Ĥiφ

β̂i − φ
+

N̂−∑
i=1

Q̂iφ

γ̂i + φ

= ψ̂+(−φ)ψ̂−(φ)

= Ê[eφY e(q)]Ê[eφY e(q)]
= Ê[eφYe(q) ], (3.3)

where ψ̂+(·) and ψ̂−(·) are given by (A.3) and (A.4); the first equality is due to the fact
that

∑M̂+
i=1 Ĥi − ∑N̂−

i=1 Q̂i − 1 = 0 (let θ ↑ ∞ in (A.24)); the second and the third equalities
follow respectively from (A.24) and (A.5), and the final equality is a result of the well-known
Wiener–Hopf factorization.

In addition, for Re(φ) = 0, applying integration by parts yields
∫ ∞

−∞
e−φ(x−b) ∂

∂x
(Px(Ue(q) > y)) dx − eφ(b−y)Ê[eφYe(q)]

=
∫ ∞

−∞
e−φ(x−b) ∂

∂x
(Px(Ue(q) > y)) dx −

∫ ∞

−∞
e−φ(x−b) ∂

∂x
(P̂(Ye(q) > y − x)) dx

= φ

∫ ∞

−∞
e−φ(x−b)(Px(Ue(q) > y)− P̂x(Ye(q) > y)) dx. (3.4)

Note that (see (3.10) in Lemma 3.1)
∫ ∞

−∞
|Px(Ue(q) > y)− P̂x(Ye(q) > y)| dx ≤ |δ|

q
.

Besides, from (2.18), (A.1), (A.2), (A.4), (A.5), and (A.13), after some straightforward
calculations, we derive (note that M+ = M̂+ if q ∈ S)

M+∑
i=1

Jiφ

βi − φ
+

N̂−∑
i=1

P̂iφ

φ + γ̂i
−

M̂+∑
i=1

Ĥiφ

β̂i − φ
eβ̂i (b−y)

= φÊ[eφY e(q)]E[eφXe(q)]
∫ ∞

0
F0(x + y − b)eφx dx, (3.5)

where

F0(x) =
M̂+∑
i=1

e−β̂ix
M+∏
k=1

β̂i − βk

βk

M̂+∏
k=1, k �=i

β̂k

β̂i − β̂k
, x > 0. (3.6)

Finally, for s > 0, it holds that

∫ ∞

0
e−sxF0(x) dx =

M̂+∑
i=1

M+∏
k=1

β̂i − βk

βk

M̂+∏
k=1,k �=i

β̂k

β̂i − β̂k

1

β̂i + s

= 1

s

(M+∏
k=1

s + βk

βk

M̂+∏
k=1

β̂k

s + β̂k
− 1

)
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= 1

s

(
Ê[e−sY e(q)]
E[e−sXe(q)]

− 1

)
, (3.7)

where the second equality follows from the rational expansion and the third equality is due to
(A.2), (A.3), and (A.5).

Equations (2.8) and (3.7) confirm that F1(x) = F0(x) for x > 0. Therefore, (3.1) for q ∈ S

is derived from (3.2)–(3.5).

(ii) For q > 0 and q ∈ S
c. First, for such a q > 0 and q ∈ S

c, Lemma 2.3 implies that there
exists a sequences of qn ∈ S such that limn↑∞ qn ↓ q. In the proof of Proposition 3.1 (with
q ∈ S), we have shown that (3.1) holds for qn, yielding

∫ ∞

−∞
e−φ(x−b)(Px(Ue(qn) > y)− P̂x(Ye(qn) > y)) dx

= Ê[eφY e(qn) ]E[eφXe(qn) ]
∫ ∞

0
Fn1 (x + y − b)eφx dx, (3.8)

where Re(φ) = 0 and

∫ ∞

0
e−sxF n1 (x) dx = 1

s

(
Ê[e−sY e(qn) ]
E[e−sXe(qn) ]

− 1

)
, s > 0. (3.9)

To complete the proof, we want to show that (3.8) will reduce to (3.1) after letting n ↑ 1. This
will be carried out in the rest of this section. �

Lemma 3.1. For a given δ, y ∈ R, we have

∫ ∞

−∞
|Px(Ut > y)− P̂x(Yt > y)| dx ≤ |δ|t,

∫ ∞

−∞
|Px(Xt > y)− P̂x(Y t > y)| dx ≤ |δ|t.

(3.10)

Proof. Recall (1.1) and Yt = Xt − δt .
For δ > 0, it holds that Px(Xt > y) ≥ Px(Ut > y) ≥ P̂x(Yt > y), thus,

∫ ∞

−∞
|Px(Ut > y)− P̂x(Yt > y)| dx =

∫ ∞

−∞
Px(Ut > y)− P̂x(Yt > y) dx

≤
∫ ∞

−∞
Px(Xt > y)− P̂x(Yt > y) dx

=
∫ ∞

−∞
E[1{y−x<Xt≤y−x+δt}] dx

= E

[∫ ∞

−∞
1{y−x<Xt≤y−x+δt} dx

]

= δt,

where the penultimate equality is due to the Fubini theorem.
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For δ < 0, it is obvious that Px(Xt > y) ≤ Px(Ut > y) ≤ P̂x(Yt > y), which yields

∫ ∞

−∞
|Px(Ut > y)− P̂x(Yt > y)| dx ≤

∫ ∞

−∞
P̂x(Yt > y)− Px(Xt > y) dx

= E

[∫ ∞

−∞
1{y−x+δt<Xt≤y−x} dx

]

= −δt,
so the first inequality in (3.10) is derived.

Note that sup0≤s≤t (Xs − δs)− |δ|t ≤ Xt ≤ sup0≤s≤t (Xs − δs)+ |δ|t , which means that

Px(Xt − |δ|t > y) ≤ P̂x(Y t > y) ≤ Px(Xt + |δ|t > y).

Hence, the second inequality in (3.10) can be proved similarly. �
Lemma 3.2. For Re(φ) = 0,

lim
n↑∞

∫ ∞

−∞
e−φ(x−b)(Px(Ue(qn) > y)− P̂x(Ye(qn) > y)) dx

=
∫ ∞

−∞
e−φ(x−b)(Px(Ue(q) > y)− P̂x(Ye(q) > y)) dx, (3.11)

and, for Re(s) ≥ 0,

lim
n↑∞ Ê[esY e(qn) ] = Ê[esY e(q)] and lim

n↑∞ E[e−sXe(qn) ] = E[e−sXe(q)]. (3.12)

Proof. Since qn > q and Px(Ue(qn) > y) = ∫ ∞
0 qne−qntPx(Ut > y) dt, we derive, via the

dominated convergence theorem,

lim
n↑∞ Px(Ue(qn) > y) = Px(Ue(q) > y). (3.13)

Similarly, we can prove (3.12) and the following result:

lim
n↑∞ P̂x(Ye(qn) > y) = P̂x(Ye(q) > y). (3.14)

In addition, it holds that
∫ ∞

−∞
e−φ(x−b)(Px(Ue(qn) > y)− P̂x(Ye(qn) > y)) dx

=
∫ ∞

0
qne−qnt

∫ ∞

−∞
e−φ(x−b)(Px(Ut > y)− P̂x(Yt > y)) dx dt. (3.15)

From (3.10) and (3.13)–(3.15), the dominated convergence theorem yields (3.11). �
Lemma 3.3. For Fn1 (x) in (3.9) and F1(x) in (2.8), it holds that

lim
n↑∞

∫ ∞

0
e−sxF n1 (x) dx =

∫ ∞

0
e−sxF1(x) dx, Re(s) ≥ 0. (3.16)
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Proof. Due to Remark 2.3, for each n, we have

∫ ∞

0
e−sxF n1 (x) dx = 1

s

(
Ê[e−sY e(qn) ]
E[e−sXe(qn) ]

− 1

)
, Re(s) ≥ 0.

Similar to the derivation of (3.12), it can be shown that

lim
n↑∞ Ê[e−sY e(qn) ] = Ê[e−sY e(q)], Re(s) ≥ 0. (3.17)

Equations (3.12) and (3.17) lead to

lim
n↑∞

∫ ∞

0
e−sxF n1 (x) dx =

∫ ∞

0
e−sxF1(x) dx = 1

s

(
Ê[e−sY e(q)]
E[e−sXe(q)]

− 1

)
, (3.18)

which holds for Re(s) ≥ 0 and s �= 0.
Next, we consider the s = 0 case. It follows from (3.9) that

∫ ∞

0
Fn1 (x) dx = lim

s↓0

1

s

(
Ê[e−sY e(qn) ]
E[e−sXe(qn) ]

− 1

)

= lim
s↓0

Ê[e−sY e(qn) ] − E[e−sXe(qn) ]
s

= lim
s↓0

∫ ∞

0
e−sx(P̂(Y e(qn) ≤ x)− P(Xe(qn) ≤ x)) dx

=
∫ ∞

0
(P̂(Y e(qn) ≤ x)− P(Xe(qn) ≤ x)) dx, (3.19)

where the third equality is due to integration by parts and the final equality follows from the
dominated convergence theorem since (see (3.10))

∫ ∞

0
|P̂(Y e(qn) ≤ x)− P(Xe(qn) ≤ x)| dx ≤

∫ ∞

0
qe−qt |δ|t dt = |δ|

q
.

As qn > q and (3.10) holds, (3.19) yields

lim
n↑∞

∫ ∞

0
Fn1 (x) dx = lim

n↑∞

∫ ∞

0
qne−qnt

∫ ∞

0
(P̂(Y t ≤ x)− P(Xt ≤ x)) dx dt

= lim
n↑∞

∫ ∞

0
qe−qt

∫ ∞

0
(P̂(Y t ≤ x)− P(Xt ≤ x)) dx dt

=
∫ ∞

0
F1(x) dx,

which combined with (3.18), leads to (3.16). �
Proof of Proposition 3.1. (For q ∈ S

c.) Since F1(x), F
n
1 (x) ≥ −1 for x > 0 (see Lemma

2.2), we can define the following measures:

Mn
1 (x) =

∫ x

0
(F n1 (z)+ 1) dz and M1(x) =

∫ x

0
(F1(z)+ 1) dz.
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Equation (3.16) implies that

lim
n↑∞

∫ ∞

0
e−sx dMn

1 (x) =
∫ ∞

0
e−sx dM1(x), s > 0,

which combined with the continuity theorem for the Laplace transform (see Theorem 2a of [8,
p. 433]) yields

lim
n↑∞

∫ x

0
(F n1 (z)+ 1) dz =

∫ x

0
(F1(z)+ 1) dz for all x > 0. (3.20)

Next, for fixed z > 0, introduce the following probability distribution functions:

Pn1 (x) =
∫ x

0 (F
n
1 (t)+ 1) dt∫ z

0 (F
n
1 (t)+ 1) dt

and P1(x) =
∫ x

0 (F1(t)+ 1) dt∫ z
0 (F1(t)+ 1) dt

, 0 < x < z.

Then, (3.20) means that Pn1 (x) converges to P1(x) in distribution. As a result,

lim
n↑∞

∫ z

0
eφt dPn1 (t) =

∫ z

0
eφt dP1(t) for Re(φ) = 0,

so

lim
n↑∞

∫ z
0 eφt (F n1 (t)+ 1) dt∫ z

0 (F
n
1 (t)+ 1) dt

=
∫ z

0 eφt (F1(t)+ 1) dt∫ z
0 (F1(t)+ 1) dt

. (3.21)

It follows from (3.20) and (3.21) that

lim
n↑∞

∫ x

0
eφtF n1 (t) dt =

∫ x

0
eφtF1(t) dt for any x > 0,

which combined with (3.16) yields

lim
n↑∞

∫ ∞

0
eφxFn1 (x + y − b) dx =

∫ ∞

0
eφxF1(x + y − b) dx. (3.22)

Therefore, the desired result that (3.1) holds also for q ∈ S
c follows from (3.8) by letting n ↑ ∞

and using (3.11), (3.12), and (3.22). �

4. Main results

For the unique strong solution U to (1.1) with X given by (2.1), its probability distribution
function is given by Theorems 4.1 and 4.2.

Theorem 4.1. For q > 0 and y ≥ b,

Px(Ue(q) > y) = 1 −Kq(y − x)−
∫ y−x

b−x
F1(y − x − z)Kq(dz), (4.1)

where Kq(x) is the convolution of Y e(q) under P̂ and Xe(q) under P, i.e.

Kq(x) =
∫ min{0,x}

−∞
P(Xe(q) ≤ x − z)P̂(Y e(q) ∈ dz), x ∈ R, (4.2)

and F1(x) is continuous and differentiable on (0,∞) with rational Laplace transform given by
(2.8).
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Proof. First, the right-hand side of (3.1) can be rewritten as∫ ∞

−∞
eφx

∫ x

−∞
F1(x − z+ y − b) dKq(z) dx, (4.3)

where Kq(x) is given by (4.2). Since Xe(q) and Y e(q) have density functions (see Remark 2.6)
and F1(x) is continuous on (0,∞), we conclude that the integrand in (4.3), i.e.

∫ x
−∞F1(x −

z+ y − b) dKq(z), is continuous with respect to x.
As Ye(q) is the convolution of Y e(q) and Y e(q) (which is due to the well-known Wiener–Hopf

factorization), P̂x(Ye(q) > y) is continuous with respect to x. This result and Lemma 2.5 lead
to the fact that Px(Ue(q) > y)− P̂x(Ye(q) > y) is also continuous. For y > b, it follows from
(3.1) and (4.3) that

Px(Ue(q) > y)− P̂x(Ye(q) > y) =
∫ b−x

−∞
F1(y − x − z) dKq(z), x ∈ R. (4.4)

In addition, for Re(φ) = 0, we have (recall (4.2) and Remark 2.3)

∫ ∞

−∞
eφx dKq(x)

∫ ∞

0
eφxF1(x) dx = 1

φ

(
1 − Ê[eφY e(q)]

E[eφXe(q)]

) ∫ ∞

−∞
eφx dKq(x)

= 1

φ

(∫ ∞

−∞
eφx dKq(x)− Ê[eφYe(q)]

)

=
∫ ∞

−∞
eφx(P̂(Ye(q) ≤ x)−Kq(x)) dx, (4.5)

where the second equality is due to the Wiener–Hopf factorization, and the third one follows
from the application of integration by parts. Note that∫ ∞

−∞
|P̂(Ye(q) ≤ x)−Kq(x)| dx

≤
∫ ∞

−∞

∫ min{0,x}

−∞
|P̂(Y e(q) ≤ x − z)− P(Xe(q) ≤ x − z)|P̂(Y e(q) ∈ dz) dx

≤
∫ ∞

−∞

∫ 0

−∞
|P̂(Y e(q) ≤ x − z)− P(Xe(q) ≤ x − z)|P̂(Y e(q) ∈ dz) dx

≤ |δ|
q
,

where in the first inequality, we have used the Wiener–Hopf factorization and (4.2); the final
inequality follows from (3.10).

For x ∈ R, (4.5) yields
∫ y−x

−∞
F1(y − x − z) dKq(z) = P̂(Ye(q) ≤ y − x)−Kq(y − x),

which combined with (4.4), leads to

Px(Ue(q) > y)− P̂x(Ye(q) > y)

= P̂(Ye(q) ≤ y − x)−Kq(y − x)−
∫ y−x

b−x
F1(y − x − z) dKq(z). (4.6)
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This proves that (4.1) holds for y > b. Letting y ↓ b in (4.6) and using the fact that
limy↓b

∫ y−x
b−x F1(y − x − z)Kq(dz) = 0 (since F1(x) is bounded on (0,∞); see Remark 2.3),

we deduce that (4.1) holds also for y = b. �

Similar derivations lead to the following Theorem 4.2, and for the sake of brevity, we omit
the details.

Theorem 4.2. For q > 0 and y ≤ b,

Px(Ue(q) < y) = Kq(y − x)−
∫ b−x

y−x
F2(y − x − z)Kq(dz), (4.7)

where F2(x) is continuous and differentiable on (−∞, 0) and its Laplace transform is given
by ∫ 0

−∞
eszF2(z) dz = 1

s

(
E[esXe(q)]
Ê[esY e(q)] − 1

)
, s > 0. (4.8)

Remark 4.1. It follows from (4.1) and (4.7) that Px(Ue(q) > b)+ Px(Ue(q) < b) = 1, which
implies that Px(Ue(q) = b) = 0 for all q > 0.

Remark 4.2. For fixed b ∈ R, letting y = b in (4.1), we arrive at Px(Ue(q) > b) = 1−Kq(b−
x), which means that

∫ ∞

−∞
e−φ(x−b) d(Px(Ue(q) > b)) = Ê[eφY e(q)]E[eφXe(q)].

A similar result has already been derived in [22]; see Equation (4.1) in that paper.

Remark 4.3. Compared with (2.17), in (4.1), (4.2), (4.7), and (4.8), the roots of ψ(z) = q

and ψ̂(z) = q disappear. The forms of these results and Remark 2.2 lead to the following
conjecture: (4.1) and (4.7) hold for a general Lévy processX and the corresponding solutionU
(if it exists) to (1.1). Proving this conjecture is a potential research direction.

Since both F1(x) and F2(x) are differentiable, from (4.1) and (4.7), the expression of
Px(Ue(q) ∈ dy) can be derived.

Corollary 4.1. We have

Px(Ue(q) ∈ dy)

= q

∫ ∞

0
e−qt

Px(Ut ∈ dy) dt

=

⎧⎪⎪⎨
⎪⎪⎩
(F1(0)+ 1)Kq(dy − x)+

∫ y−x

b−x
F ′

1(y − x − z)Kq(dz) dy, y > b,

(F2(0)+ 1)Kq(dy − x)−
∫ b−x

y−x
F ′

2(y − x − z)Kq(dz) dy, y < b,

(4.9)

where F1(0) is given by (2.10), F2(0) := limx↑0 F2(x), and, moreover, F2(0) = F1(0).

Proof. In (4.1) and (4.7), differentiating with respect to y yields (4.9). Noting that P(Ue(q) =
b) = 0 (see Remark 4.1), we can write y > b or y < b in (4.9) as y ≥ b or y ≤ b. An interesting
result is F2(0) = F1(0), which will be proved in the following.
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For simplicity, we only consider q ∈ S since the case of q ∈ S
c can be shown similarly.

Similar to the derivation of (2.10), it follows from (2.14) and (4.8) that

F2(0) =
∏N−
k=1 γk∏N̂−
k=1 γ̂k

− 1. (4.10)

From (2.5), we can rewrite ψ̂(z)− q = ψ(z)− iδz− q as

ψ̂(z)− q = −(σ 2/2)(i)
∑n−
k=1 nk (−i)

∑m+
k=1 mk (z)2+∑n−

k=1 nk+
∑m+
k=1 mk + P (z)∏n−

k=1(ϑk + iz)nk
∏m+
k=1(ηk − iz)mk

,

where P (z) is a polynomial and its degree is 1 + ∑n−
k=1 nk + ∑m+

k=1mk .
For q ∈ S, it follows from Lemma 2.1(i) and Lemma 2.4(i) that there is a constant P0

satisfying

−σ
2

2
(i)

∑n−
k=1 nk (−i)

∑m+
k=1 mk

(
z
)2+∑n−

k=1 nk+
∑m+
k=1 mk + P (z) = P0

M̂+∏
k=1

(β̂k − iz)
N̂−∏
k=1

(γ̂k + iz).

Lemma 2.1(i) and Lemma 2.4(i) also yield M̂+ = ∑m+
k=1mk + 1 and N̂− = ∑n−

k=1 nk + 1.
So we have P0 = −σ 2/2, thus, the last two displayed equations yield

ψ̂(z)− q = −σ
2

2

∏M̂+
k=1(β̂k − iz)

∏N̂−
k=1(γ̂k + iz)∏n−

k=1(ϑk + iz)nk
∏m+
k=1(ηk − iz)mk

,

which combined with the fact that ψ̂(0) = 0, produces

q = σ 2

2

∏M̂+
k=1 β̂k

∏N̂−
k=1 γ̂k∏n−

k=1(ϑk)
nk

∏m+
k=1(ηk)

mk
.

Similarly, we have

q = σ 2

2

∏M+
k=1 βk

∏N−
k=1 γk∏n−

k=1(ϑk)
nk

∏m+
k=1(ηk)

mk
.

Therefore, ∏M̂+
k=1 β̂k∏M+
k=1 βk

=
∏N−
k=1 γk∏N̂−
k=1 γ̂k

, (4.11)

and the desired result follows from (2.10), (4.10), and (4.11). �
Remark 4.4. For a more general Lévy process X, the functions F1(x) and F2(x) given resp-
ectively by (2.8) and (4.8) may not be differentiable. Thus, it is better to understand (4.9)
as

Px(Ue(q) ∈ dy) =

⎧⎪⎪⎨
⎪⎪⎩
(F1(0)+ 1)Kq(dy − x)+

∫ y−x

b−x
F1(dy − x − z)Kq(dz), y > b,

(F2(0)+ 1)Kq(dy − x)−
∫ b−x

y−x
F2(dy − x − z)Kq(dz), y < b.
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5. Applications in pricing variable annuities

As stated in the introduction, our results can be used to price variable annuities (VAs) with
state-dependent fees. First of all, we provide some background.

VAs are life insurance products whose benefits are linked to the performance of a reference
portfolio with guaranteed minimum returns. There are many kinds of guarantees such as
guaranteed minimum death benefits (GMDBs) and guaranteed minimum maturity benefits
(GMMBs), and we refer the reader to [3] for more details. Of course, the guaranteed benefits
are not free. Traditionally, the corresponding fees are deducted at a fixed rate from the
policyholder’s account. This classical fee charging method has some disadvantages, which
have been noted in [4]. Thus, in [4], the authors proposed a new fee deducting approach under
which only when the policyholder’s account value is lower than a prespecified level can the
insurer charge fees. For more details and research on this new method, we refer the reader to
[4], [7], [17], [24], and [25].

Let St and Ft represent, respectively, the value at time t of the reference portfolio and the
policyholder’s account. Under the state-dependent fee structure, we have (see [4, Equation (1)]
or [25, Equation (2.3)])

dFt = Ft−
dSt
St−

− (−δ)Ft−1{Ft−<B} dt, t > 0, (5.1)

where −δ > 0 is the fee rate and B is a prespecified level. Note that the case of B = ∞
corresponds to the classical fee charging method. Furthermore, assume that St = S0eXt−δt
with Xt given by (2.1).

For a VA with GMMBs, its payoff can be written as G(FT ), where T is the maturity and
G(·) is a payoff function. For a VA with GMDBs, its payment when the policyholder dies is
given by G(FTx ), where Tx is the time of the death of the insured. A simple example of G(·)
isG(x) = max{x,K}, whereK is a constant. In order to price VAs with GMMBs or GMDBs,
we need to compute the following expectations under an equivalent martingale measure:

E[e−rT G(FT )] or E[e−rTxG(FTx )], (5.2)

where r > 0 denotes the continuously compounded constant risk-free rate.
As the market is incomplete, an equivalent martingale measure should be chosen to calculate

(5.2). Similar to [25], we use the Cramér–Esscher transform (see [9]) to obtain the desired
martingale measure. Specifically, first define

dP
c

dP
= ecXt

E[ecXt ] ,

where c ∈ R such that E[ecXt ] < ∞. And for convenience, in (2.2) and (2.3), we assume
that η1 (ϑ1) has the smallest real part among η1, . . . , ηm+(ϑ1, . . . , ϑn−). As St = S0eXt−δt ,
it is reasonable to require that E[eXt ] < ∞, this means that η1 > 1 in (2.2). Note that
limc↑η1 E[ecXt ] = ∞ and limc↓−ϑ1 E[ecXt ] = ∞. We can choose c∗ such that e−rtSt is a
martingale under P

c∗ . It is obvious that Xt is still a Lévy process under P
c∗ , and, in particular,

the process X has the same form as (2.1) under P
c∗ . So we drop the superscript c∗ from P

c∗

and assume that the expectations appearing in the following are calculated under the equivalent
martingale measure P

c∗ .
For a VA with GMDBs, its price is E[e−rTxG(FTx )]. Applying discussions similar to those

presented in [25] (see the derivation of [25, Equation (2.9)]), we find that the computation of
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E[e−rTxG(FTx )] reduces to that of calculating E[e−re(q)G(Fe(q))]= (q/(r + q))E[G(Fe(r+q))]
for given q > 0. For a VA with GMDBs, we note that

∫ ∞

0
e−sT

E[e−rT G(FT )] dT = 1

s + r
E[G(Fe(s+r))],

from which E[e−rT G(FT )] can be obtained by using a numerical Laplace inversion technique.
In summary, the key step to price a VA with GMDBs or GMMBs is deriving the expression

of E[G(Fe(q))] for q > 0.
From (5.1), applying Itô’s formula yields Ft = F0eUt with

dUt = d(Xt − δt)− (−δ)1{Ut<b} dt = dXt − δ1{Ut>b} dt, (5.3)

where b = ln(B/F0). So we arrive at

E[G(Fe(q))] = E[G(F0eUe(q) )] =
∫ ∞

−∞
G(F0ey)P(Ue(q) ∈ dy).

It follows from (1.1), (4.9), and (5.3) that

P(Ue(q) ∈ dy) =

⎧⎪⎪⎨
⎪⎪⎩
(F1(0)+ 1)Kq(dy)+

∫ y

b

F ′
1(y − z)Kq(dz) dy, y > b,

(F2(0)+ 1)Kq(dy)−
∫ b

y

F ′
2(y − z)Kq(dz) dy, y < b,

(5.4)

where F1(x), F2(x), and Kq(x) are given by (2.8), (4.8), and (4.2), respectively.
By applying a rational expansion, we can obtain semiexplicit expressions for F1(x), F2(x),

and Kq(x) and, thus, for P(Ue(q) ∈ dy). However, for q ∈ S
c, formulae for P(Ue(q) ∈ dy)

are very long and complicated, and, more importantly, they are difficult to use in numerical
computations since we need to handle multiple roots. Fortunately, due to Lemma 2.3, it is safe
and convenient to consider only the case of q ∈ S. The corresponding results will be given in
the following corollary, from which we can obtain first the expression of E[G(Fe(q))] and then
the price of a VA with GMDBs or GMMBs.

Corollary 5.1. For q ∈ S, defining fq(y) := P(Ue(q) ∈ dy)/ dy, we have the following
results.

(i) If b ≥ 0 then

fq(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∏M̂+
k=1 β̂k∏M+
k=1 βk

Kq(dy)

+
M+∑
i=1

N̂−∑
j=1

M̂+∑
m=1

Ki,jF1,m

β̂m − βi
(e−βiy − e−βibeβ̂m(b−y)), y > b,

∏N−
k=1 γk∏N̂−
k=1 γ̂k

Kq(dy)

−
M+∑
i=1

N̂−∑
j=1

N−∑
n=1

Ki,jF2,n

γn + βi
(e−βiy − e−βibeγn(y−b)), 0 < y < b,
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and, for y ≤ 0,

fq(y) =
∏N−
k=1 γk∏N̂−
k=1 γ̂k

Kq(dy)

−
M+∑
i=1

N̂−∑
j=1

N−∑
n=1

Ki,jF2,n

γ̂j − γn

(
eγny

(
γ̂j + βi

γn + βi
− γ̂j − γn

γn + βi
e−(βi+γn)b

)
− eγ̂j y

)
.

(ii) If b < 0 then

fq(y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∏N−
k=1 γk∏N̂−
k=1 γ̂k

Kq(dy)−
M+∑
i=1

N̂−∑
j=1

Ki,j

N−∑
n=1

F2,n
eγn(y−b)+γ̂j b − eγ̂j y

γ̂j − γn
, y < b,

∏M̂+
k=1 β̂k∏M+
k=1 βk

Kq(dy)+
M+∑
i=1

N̂−∑
j=1

Ki,j

M̂+∑
m=1

F1,m
eγ̂j y − eβ̂m(b−y)+γ̂j b

γ̂j + β̂m
, b < y < 0,

and, for y ≥ 0,

fq(y) =
∏M̂+
k=1 β̂k∏M+
k=1 βk

Kq(dy)

+
M+∑
i=1

N̂−∑
j=1

M̂+∑
m=1

Ki,jF1,m

βi − β̂m

{
e−βmy

(
βi + γ̂j

γ̂j + β̂m
+ β̂m − βi

β̂m + γ̂j
e(β̂m+γ̂j )b

)
− e−βiy

}
.

In the above formulae,

F1,i = −β̂i
M+∏
k=1

β̂i − βk

βk

M̂+∏
k=1, k �=i

β̂k

β̂i − β̂k
for 1 ≤ i ≤ M̂+, (5.5)

F2,i = −γi
N̂−∏
k=1

γ̂k − γi

γ̂k

N−∏
k=1, k �=i

γk

γk − γi
for 1 ≤ i ≤ N−, (5.6)

and

Kq(dx) =
M+∑
i=1

N̂−∑
j=1

Ki,j e−βixe(βi+γ̂j )(x∧0), (5.7)

where

Ki,j = βiγ̂j

βi + γ̂j

m+∏
k=1

(ηk − βi)
mk

(ηk)mk

M+∏
k=1, k �=i

βk

βk − βi

n−∏
k=1

(ϑk − γ̂j )
nk

(ϑk)nk

N̂−∏
k=1, k �=j

(
γ̂k

γ̂k − γ̂j

)
.

Proof. Since q ∈ S, we have F1(x) = F0(x) (see (3.6) and (3.7)). So, for x > 0,
F ′

1(x) = ∑M̂+
i=1 F1,ie−β̂ix with F1,i given by (5.5). In addition, (2.10) yields F1(0) =∏M̂+

k=1 β̂k/
∏M+
k=1 βk − 1.
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From (2.14) and (4.8), for x < 0, applying a partial fraction expansion leads to F ′
2(x) =∑N−

i=1 F2,ieγix , where F2,i is given by (5.6). In addition, we know that (see (4.10)) F2(0) =∏N−
k=1 γk/

∏N̂−
k=1 γ̂k − 1.

From Lemma A.1(i), Lemma A.1(iii), and (4.2), some straightforward calculations lead
to (5.7).

Therefore, the desired results follow from (5.4) after some simple computations. �

Appendix A

The proof of Proposition 2.1 is given in this section, where some ideas used can also be found
in [22]. For completeness and for the convenience of the reader, we present all the details rather
than omit some of them even though we will repeat some preliminary results and calculation
procedures that appeared in [22].

Recall that S is the set of q > 0 such that all roots of ψ(z) = q and ψ̂(z) = q are simple.
The following lemma follows directly from Lemmas 2.1 and 2.4.

Lemma A.1. For q ∈ S, the following results hold.

(i) For y ≥ 0,P(Xe(q) ∈ dy) = ∑M+
k=1 Cke

−βky dy, where

Ci

βi
=

m+∏
k=1

(
ηk − βi

ηk

)mk M+∏
k=1, k �=i

βk

βk − βi
, 1 ≤ i ≤ M+.

(ii) For y ≥ 0, P̂(Y e(q) ∈ dy) = ∑M̂+
k=1 Ĉke

−β̂ky dy, where

Ĉi

β̂i
=

m+∏
k=1

(
ηk − β̂i

ηk

)mk M̂+∏
k=1, k �=i

β̂k

β̂k − β̂i
, 1 ≤ i ≤ M̂+. (A.1)

(iii) For y ≤ 0, P̂(Y e(q) ∈ dy) = ∑N̂−
k=1 D̂ke

γ̂ky dy, where

D̂j

γ̂j
=

n−∏
k=1

(
ϑk − γ̂j

ϑk

)nk N̂−∏
k=1, k �=j

(
γ̂k

γ̂k − γ̂j

)
, 1 ≤ j ≤ N̂−.

Next, introduce the following three rational functions:

ψ+(s) :=
m+∏
k=1

(
s + ηk

ηk

)mk M+∏
k=1

(
βk

s + βk

)
=

M+∑
k=1

Ck

s + βk
, (A.2)

ψ̂+(s) :=
m+∏
k=1

(
s + ηk

ηk

)mk M̂+∏
k=1

(
β̂k

s + β̂k

)
=

M̂+∑
k=1

Ĉk

s + β̂k
, (A.3)

ψ̂−(s) :=
n−∏
k=1

(
s + ϑk

ϑk

)nk N̂−∏
k=1

(
γ̂k

s + γ̂k

)
=

N̂−∑
k=1

D̂k

s + γ̂k
. (A.4)

For q ∈ S and Re(s) ≥ 0, note that (see (2.7) and (2.14))

E[e−sXe(q)] = ψ+(s), Ê[e−sY e(q) ] = ψ̂+(s), Ê[esY e(q)] = ψ̂−(s). (A.5)
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In addition, for a ∈ R, define

τ+
a := inf{t ≥ 0 : Xt > a} and τ̂−

a := inf{t ≥ 0 : Yt < a}.
Results on the one-sided exit problems of X and Y are presented in the following lemma.

Lemma A.2(i) can be established by applying Lemma A.1(i), (2.12), and (A.2); and Lemma
A.2(ii) follows from Lemma A.1(iii), (A.4), and the following result (see Corollary 2 of [1]):

Ê[e−qτ̂−
x +s(Y

τ̂
−
x

−x)] = Ê[es(Y e(q)−x)1{Y e(q)<x}]
Ê[esY e(q)] , x, s ≥ 0.

Lemma A.2. (i) For q ∈ S and x, y ≥ 0,

E[e−qτ+
x 1{X

τ
+
x

−x∈ dy}] = C0(x)δ0(dy)+
m+∑
k=1

mk∑
j=1

Ckj (x)
(ηk)

j yj−1

(j − 1)! e−ηky dy,

where δ0(dy) is the Dirac delta at y = 0, and C0(x) and Ckj (x) are given by the rational
expansion:

C0(x)+
m+∑
k=1

mk∑
j=1

Ckj (x)

(
ηk

ηk + s

)j
= 1

ψ+(s)

M+∑
k=1

Ck
e−βkx

s + βk
, x ≥ 0. (A.6)

(ii) For q ∈ S and x, y ≤ 0,

Ê[e−qτ̂−
x 1{Y

τ̂
−
x

−x∈ dy}] = D̂0(x)δ0(dy)+
n−∑
k=1

nk∑
j=1

D̂kj (x)
(ϑk)

j (−y)j−1

(j − 1)! eϑky dy,

where D̂0(x) and D̂kj (x) are given by the rational expansion:

D̂0(x)+
n−∑
k=1

nk∑
j=1

D̂kj (x)

(
ϑk

ϑk + s

)j
= 1

ψ̂−(s)

N̂−∑
k=1

D̂k
eγ̂kx

s + γ̂k
, x ≤ 0. (A.7)

Remark A.1. A useful observation is that C0(x) and Ckj (x) in (A.6) are linear combinations
of eβix for 1 ≤ i ≤ M+, and D̂0(x) and D̂kj (x) in (A.7) are linear combinations of eγ̂i x for
1 ≤ i ≤ N̂−.

Lemma A.3 is a straightforward result of (A.9) and (A.10), here the reader is reminded that
1/(θ + βk)(s + βk) can be written as (1/(s − θ))(1/(θ + βk)− 1/(s + βk)).

Lemma A.3. For any θ > 0 and s �= −η1, . . . ,−ηm+ with θ �= s,

∫ ∞

0
e−θxC0(x) dx+

m+∑
k=1

mk∑
j=1

∫ ∞

0
e−θxCkj (x) dx

(
ηk

ηk + s

)j
= 1

s − θ

(
ψ+(θ)
ψ+(s)

−1

)
, (A.8)

and, for any θ > 0 and s �= −ϑ1, . . . ,−ϑn− with θ �= s,

∫ 0

−∞
eθxD̂0(x) dx +

n−∑
k=1

nk∑
j=1

∫ 0

−∞
eθxD̂kj (x) dx

(
ϑk

ϑk + s

)j
= 1

s − θ

(
ψ̂−(θ)
ψ̂−(s)

− 1

)
. (A.9)
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Proof of Proposition 2.1. For a given y > b, the function of x, Vq(x), is defined as (see
Lemma 2.5:

Vq(x) = Px(Ue(q) > y).

Recall (1.1). Note that {Xt, t < τ+
b } and {Ut, t < κ+

b } with κ+
b := inf{t ≥ 0 : Ut > b}

under Px have the same law if x < b. Therefore, for x < b, the strong Markov property of U
lead to

Vq(x) = Ex[1{Ue(q)>y}1{e(q)>κ+
b }]

= Ex[e−qκ+
b Vq(Uκ+

b
)]

= Ex[e−qτ+
b Vq(Xτ+

b
)]

= E[e−qτ+
b−xVq(Xτ+

b−x
+ x)]

=
m+∑
k=1

mk∑
j=1

Ckj (b − x)

∫ ∞

0

(ηk)
j zj−1

(j − 1)! e−ηkzVq(b + z) dz+ C0(b − x)Vq(b)

=
M+∑
k=1

Jke
βk(x−b), x < b, (A.10)

where J1, . . . , JM+ are constants which are not dependent on x; the fifth and the sixth equalities
follow from Lemma A.2(i) and Remark A.1, respectively.

For x > b, the strong Markov property of U and the fact that {Yt , t < τ̂−
b } under P̂x and

{Ut, t < κ−
b } with κ−

b := inf{t ≥ 0 : Ut < b} under Px have the same law (Strictly speaking,
this statement should be written as follows: {Yt , t < τ̃−

b } with τ̃−
b := inf{t ≥ 0 : Yt ≤ b} under

P̂x and {Ut, t < κ̃−
b } with κ̃−

b := inf{t ≥ 0 : Ut ≤ b} under Px have the same law. But, since
σ > 0, we have Px(τ̂

−
b = τ̃−

b ) = 1 and Px(κ
−
b = κ̃−

b ) = 1.) yield

Vq(x) = Ex

[∫ κ−
b

0
qe−qt1{Ut>y} dt +

∫ ∞

κ−
b

qe−qt1{Ut>y} dt

]

= Êx

[∫ ∞

0
qe−qt1{Yt>y,t<τ̂−

b } dt

]
+ Êx[e−qτ̂−

b Vq(Yτ̂−
b
)]

= P̂x(Ye(q) > y, Y e(q) ≥ b)+ Êx[e−qτ̂−
b Vq(Yτ̂−

b
)]. (A.11)

Applying the Wiener–Hopf factorization (see Theorem 6.16 of [12]), we can rewrite the first
item on the right-hand side of (A.11) as

∫ 0

b−x
P̂(Ye(q) − Y e(q) > y − x − z, Y e(q) ∈ dz)

=
∫ 0

b−x
P̂(Y e(q) > y − x − z)P̂(Y e(q) ∈ dz)
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=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M̂+∑
k=1

Ĥke
β̂k(x−y) +

N̂−∑
k=1

P̂ ∗
k eγ̂k(b−x), b < x ≤ y,

1 +
N̂−∑
k=1

Q̂ke
γ̂k(y−x) +

N̂−∑
k=1

P̂ ∗
k eγ̂k(b−x), x ≥ y,

(A.12)

where the second equality is due to Lemma A.1(ii) and A.1(iii) (note that P̂(Y e(q) > z) = 1 if
z ≤ 0); for k = 1, 2, . . . , M̂+,

Ĥk = Ĉk

β̂k

N̂−∑
j=1

D̂j

β̂k + γ̂j
, (A.13)

and, for k = 1, 2, . . . , N̂−,

Q̂k = D̂k

M̂+∑
i=1

Ĉi

β̂i (β̂i + γ̂k)
− D̂k

γ̂k
and P̂ ∗

k = −
M̂+∑
i=1

Ĉi

β̂i

D̂k

β̂i + γ̂k
eβ̂i (b−y). (A.14)

Therefore, from (A.11), (A.12), Lemma A.2(ii), and Remark A.1, we conclude that there are
some constants P̂1, . . . , P̂N̂− (independent of x) such that

N̂−∑
k=1

P̂ke
γ̂k(b−x) =

n−∑
k=1

nk∑
j=1

D̂kj (b − x)

∫ 0

−∞
Vq(b + z)

(ϑk)
j (−z)j−1

(j − 1)! eϑkz dz

+ D̂0(b − x)Vq(b)+
N̂−∑
j=1

P̂ ∗
j eγ̂j (b−x) for all x > b, (A.15)

and

Vq(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M̂+∑
k=1

Ĥke
β̂k(x−y) +

N̂−∑
k=1

P̂ke
γ̂k(b−x), b < x ≤ y,

1 +
N̂−∑
k=1

Q̂ke
γ̂k(y−x) +

N̂−∑
k=1

P̂ke
γ̂k(b−x), x ≥ y,

(A.16)

For the constants Jk in (A.10) and P̂k in (A.15), we will show in Lemma A.4 that (A.20)–
(A.23) hold.

Next, consider a rational function of x as follows:

L(x) =
M+∑
i=1

Ji

x − βi
−

N̂−∑
i=1

P̂i

x + γ̂i
−

M̂+∑
i=1

Ĥi

x − β̂i
eβ̂i (b−y). (A.17)

For fixed 1 ≤ k ≤ m+ and 0 ≤ j ≤ mk − 1, (A.22) yields (∂j /∂xj )(L(x))x=ηk = 0. This
implies that ηk is a root of L(x) = 0 and its multiplicity is mk . Moreover, for 1 ≤ k ≤ n−,
(A.23) means that −ϑk is a nk-multiplicity root of L(x) = 0. From these results, L(x) can be
rewritten as∏m+

k=1(x − ηk)
mk

∏n−
k (x + ϑk)

nk (l0 + l1x + · · · + lM+−1x
M+−1 + xM

+
(L0 + L1x)∏M+

i=1(x − βi)
∏N̂−
i=1(x + γ̂i )

∏M̂+
i=1(x − β̂i )

,

(A.18)
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where l0, l1, . . . , lM+−1, L0 andL1 are constants, and we have usedM+ = ∑m+
k=1mk+1 = M̂+

(see Remark 2.4) and N̂− = ∑n−
k=1 nk + 1 (see Lemma 2.4(i)) in the above derivation.

Then, by applying (A.20) and (A.21), we deriveL0 = 0 andL1 = 0 from (A.17) and (A.18).
Finally, it can be seen from (A.17) that

lim
x→β̂i

L(x)(x − β̂i ) = −Ĥieβ̂i (b−y), 1 ≤ i ≤ M̂+.

Therefore, we arrive at the conclusion:

L(x) =
∏m+
k=1(x − ηk)

mk
∏n−
k=1(x + ϑk)

nk

∏M+
i=1(x − βi)

∏N̂−
i=1(x + γ̂i )

×
M̂+∑
k=1

∏M+
i=1(β̂k − βi)

∏N̂−
i=1(β̂k + γ̂i )∏m+

i=1(β̂k − ηi)mi
∏n−
i=1(β̂k + ϑi)ni

−Ĥk
x − β̂k

eβ̂k(b−y). (A.19)

Equations (2.17) and (2.18) are derived from (A.10), (A.16), (A.17), and (A.19). �

Lemma A.4. (i) It holds that

M+∑
i=1

Ji = Vq(b) =
M̂+∑
i=1

Ĥie
β̂i (b−y) +

N̂−∑
i=1

P̂i (A.20)

and
M+∑
i=1

Jiβi = V ′
q(b) =

M̂+∑
i=1

Ĥi β̂ie
β̂i (b−y) −

N̂−∑
i=1

P̂i γ̂i . (A.21)

(ii) For 1 ≤ k ≤ m+ and 0 ≤ j ≤ mk − 1,

M+∑
i=1

Ji(−1)j

(βi − ηk)j+1 +
N̂−∑
i=1

P̂i

(ηk + γ̂i )j+1 −
M̂+∑
i=1

Ĥi(−1)j

(β̂i − ηk)j+1
eβ̂i (b−y) = 0. (A.22)

(iii) For any given 1 ≤ k ≤ n− and 0 ≤ j ≤ nk − 1,

M+∑
i=1

Ji(−1)j

(βi + ϑk)j+1 +
N̂−∑
i=1

P̂i

(γ̂i − ϑk)j+1 −
M̂+∑
i=1

Ĥi(−1)j

(β̂i + ϑk)j+1
eβ̂i (b−y) = 0. (A.23)

Proof. (i) These results follow from (2.16), (A.10), and (A.16).

(ii) First, as
∑M̂+
i=1 Ĉi/β̂i = 1 = ∑N̂−

j=1 D̂j /γ̂j (let s = 0 in (A.3) and (A.4)), for some proper θ ,
we have (see (A.14))

1 +
N̂−∑
k=1

θQ̂k

θ + γ̂k
=

M̂+∑
i=1

N̂−∑
j=1

ĈiD̂j

β̂i γ̂j
+

N̂−∑
k=1

θ

θ + γ̂k

(M̂+∑
i=1

D̂kĈi

β̂i (β̂i + γ̂k)
− D̂k

γ̂k

M̂+∑
i=1

Ĉi

β̂i

)
.
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Thus, for all θ ∈ C except at β̂1, . . . , β̂M̂+ and −γ̂1, . . . ,−γ̂N̂− , the last formula and (A.13)
lead to

M̂+∑
k=1

θĤk

β̂k − θ
+

N̂−∑
k=1

θQ̂k

θ + γ̂k
+ 1

=
M̂+∑
i=1

N̂−∑
j=1

{
θĈiD̂j

β̂i(β̂i + γ̂j )(β̂i − θ)
− θĈiD̂j

γ̂j (β̂i + γ̂j )(γ̂j + θ)
+ ĈiD̂j

β̂i γ̂j

}

=
M̂+∑
i=1

N̂−∑
j=1

ĈiD̂j

(β̂i − θ)(θ + γ̂j )

= ψ̂+(−θ)ψ̂−(θ), (A.24)

where the last equality follows from (A.3) and (A.4). Note that

∂j−1

∂ηj−1 (ψ̂
+(−η))η=ηk = 0 for 1 ≤ k ≤ m+ and 1 ≤ j ≤ mk.

From the last two equations, we obtain

(ηk)
j (−1)j−1

(j − 1)!
∂j−1

∂ηj−1

(
1

η
eη(b−y)

(M̂+∑
i=1

Ĥiη

β̂i − η
+

N̂−∑
i=1

ηQ̂i

η + γ̂i
+ 1

))
η=ηk

= 0. (A.25)

For 1 ≤ k ≤ m+ and 1 ≤ j ≤ mk , the integral (−1)j−1
∫ z2
z1
zj−1e−ηkzeξz dz can be

understood as (∂j−1/∂ηj−1)(
∫ z2
z1

e−ηzeξz dz)η=ηk for some proper constants z1, z2, and ξ , then
from (A.16) and (A.25), we have

∫ ∞

0

(ηk)
j zj−1

(j − 1)! e−ηkzVq(b + z) dz =
N̂−∑
i=1

P̂i(ηk)
j

(ηk + γ̂i )j
+

M̂+∑
i=1

Ĥi(ηk)
j

(ηk − β̂i )j
eβ̂i (b−y),

which combined with (A.10) and the result of Vq(b) = ∑M̂+
i=1 Ĥie

β̂i (b−y) + ∑N̂−
i=1 P̂i (see

(A.20)), yields

M+∑
k=1

Jke
βk(x−b) =

m+∑
k=1

mk∑
j=1

Ckj (b − x)

( N̂−∑
i=1

P̂i(ηk)
j

(ηk + γ̂i )j
+

M̂+∑
i=1

Ĥi(ηk)
j

(ηk − β̂i )j
eβ̂i (b−y)

)

+ C0(b − x)

(M̂+∑
i=1

Ĥie
β̂i (b−y) +

N̂−∑
i=1

P̂i

)
for all x < b. (A.26)

It follows from (A.8) and (A.26) that

M+∑
i=1

Ji

βi + θ
=

∫ b

−∞
eθ(x−b)

M+∑
i=1

Jie
βi(x−b) dx

=
M̂+∑
i=1

Ĥieβ̂i (b−y)

θ + β̂i

(
1 − ψ+(θ)

ψ+(−β̂i )
)

+
N̂−∑
i=1

P̂i

γ̂i − θ

(
ψ+(θ)
ψ+(γ̂i)

− 1

)
. (A.27)
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We note that lim
θ→−β̂i (ψ

+(−β̂i )− ψ+(θ))/(θ + β̂i ) = −ψ+′(−β̂i ) and limθ→γ̂i (ψ
+(θ) −

ψ+(γ̂i))/(θ − γ̂i ) = ψ+′(γ̂i). In addition, noting that both sides of (A.27) are rational functions
of θ , we can extend identity (A.27) to the whole plane except at −β1, . . . ,−βM+ . Here, we
omit the first equality in (A.27), i.e. the item

∫ b
−∞ eθ(x−b)

∑M+
i=1 Jie

βi(x−b) dx is omitted. Then,
for given 1 ≤ k ≤ m+ and 0 ≤ j ≤ mk − 1, (A.22) is derived by first taking a derivative on
both sides of (A.27) with respect to θ up to the j th order and then letting θ be equal to −ηk ,
where we have used the fact that (∂j /∂θj )(ψ+(θ))θ=−ηk = 0.

(iii) Similarly, for 1 ≤ k ≤ n− and 1 ≤ j ≤ nk , it follows from (A.10) that

∫ 0

−∞
Vq(b + z)

(ϑk)
j (−z)j−1

(j − 1)! eϑkz dz =
M+∑
i=1

Ji(ϑk)
j

(ϑk + βi)j
. (A.28)

From (A.9), (A.14), (A.15), (A.28), and the fact that Vq(b) = ∑M+
i=1 Ji (see (A.20)), it can be

proved that

N̂−∑
i=1

P̂i

θ + γ̂i
=

N̂−∑
i=1

P̂i

∫ ∞

b

eθ(b−x)eγ̂i (b−x) dx

= −
M̂+∑
i=1

Ĉi

β̂i
eβ̂i (b−y)

N̂−∑
j=1

D̂j

β̂i + γ̂j

1

θ + γ̂j
+

M+∑
i=1

Ji

βi − θ

(
ψ̂−(θ)
ψ̂−(βi)

− 1

)
.

In addition, we note that

−
M̂+∑
i=1

Ĉi

β̂i
eβ̂i (b−y)

N̂−∑
j=1

D̂j

β̂i + γ̂j

1

θ + γ̂j

= −
M̂+∑
i=1

Ĉi

β̂i
eβ̂i (b−y) 1

β̂i − θ

N̂−∑
j=1

D̂j

(
1

θ + γ̂j
− 1

β̂i + γ̂j

)

=
M̂+∑
i=1

Ĥi

β̂i − θ
eβ̂i (b−y) −

M̂+∑
i=1

Ĉiψ̂
−(θ)

β̂i(β̂i − θ)
eβ̂i (b−y),

where the second equality follows from (A.4) and (A.13).
Hence, from the last two equations, we arrive at

N̂−∑
i=1

P̂i

θ + γ̂i
=

M+∑
i=1

Ji

βi − θ

(
ψ̂−(θ)
ψ̂−(βi)

−1

)
+
M̂+∑
i=1

Ĥieβ̂i (b−y)

β̂i − θ
−
M̂+∑
i=1

Ĉiψ̂
−(θ)

β̂i(β̂i − θ)
eβ̂i (b−y), (A.29)

which holds for θ ∈ C except at −γ̂1, . . . ,−γ̂N̂− .
For given 1 ≤ k ≤ n−, on both sides of (A.29), we take a derivative with respect to θ up

to the j th order for 0 ≤ j ≤ nk − 1 and then let θ be equal to −ϑk . This calculation leads to
(A.23) since (∂j /∂θj )(ψ̂−(θ))θ=−ϑk = 0, and the proof is completed. �
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