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Dynamics of a viscoelastic thread surrounded
by a Newtonian viscous fluid inside a
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A viscoelastic thread in vacuum is known to evolve into a beads-on-a-string structure at
large deformations. If the thread is immersed in another fluid, the surrounding medium
may influence the topological structure of it, which remains unexplored. To get some
insights into the nonlinear behaviour of a viscoelastic thread in a two-phase flow system, a
one-dimensional model is developed under the slender body approximation, in which the
thread of a highly viscoelastic fluid described by the Oldroyd-B or Giesekus constitutive
equation is immersed in a Newtonian viscous fluid of much smaller density and viscosity
inside a cylindrical tube. The effect of the outer viscous fluid layer and the confinement
of the tube is examined. It is found that the outer fluid may change substantially the
beads-on-a-string structure of the viscoelastic thread. Particularly, it may induce the
formation of secondary droplets on the filament between adjacent primary droplets, even
for large wavenumbers. The outer fluid exerts a resistance force on the extensional flow in
the filament, but the necking of the thread is slightly accelerated, due to the redistribution
of capillary and elastic forces along the filament accompanied by the formation of
secondary droplets. Decreasing the tube radius leads to an increase in secondary droplet
size but affects little the morphology of the thread. The non-uniformity of the filament
between droplets is more pronounced for a Giesekus viscoelastic thread, and pinch-off of
a Giesekus thread always occurs in the neck region connecting the filament to the primary
droplet in the presence of the outer viscous fluid.

Key words: nonlinear instability, core–annular flow, viscoelasticity

† Email address for correspondence: hedongdong@cuhk.edu.cn

© The Author(s), 2021. Published by Cambridge University Press 926 A21-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

68
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:hedongdong@cuhk.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.689&domain=pdf
https://doi.org/10.1017/jfm.2021.689
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1. Introduction

Instability and breakup of viscoelastic fluid threads or jets are frequently encountered
in nature and in a variety of applications including spraying, coating, fibre spinning,
ink-jet printing, medical diagnostics, rheological measurement, etc. As early as five
decades ago, researchers observed that a viscoelastic jet evolves into a long-lived
beads-on-a-string structure in which spheroidal droplets are connected by thin filaments
of almost uniform thickness (Middleman 1965; Goldin et al. 1969). To date, rich
dynamics of this beads-on-a-string morphology has been extensively explored. It has
been found that zero, single or multiple small secondary droplets can be formed between
two adjacent large primary droplets, depending on the interplay of capillary, inertial,
viscous and elastic forces (Ardekani, Sharma & Mckinley 2010; Bhat et al. 2010; Malkin,
Arinstein & Kulichikhin 2014; Turkoz et al. 2018b; Pingulkar, Peixinho & Crumeyrolle
2020). Generally, more secondary droplets tend to be formed at smaller viscosities or
smaller elasticities (Bhat et al. 2010). In addition, initial harmonic perturbations of long
wavelength favour the formation of secondary droplets (Ardekani et al. 2010; Li, Yin &
Yin 2017a). In contrast to Newtonian threads, a non-Newtonian viscoelastic filament, if it is
free of secondary droplets, undergoes a uniaxial extension. With continuous stretching of
the filament, strain hardening comes into play, and the extensional viscosity can be several
orders of magnitude greater than the zero-shear viscosity of the viscoelastic fluid, which
results in extremely large elastic stresses that slow down filament thinning significantly
(Feng 2003; Ardekani et al. 2010). An Oldroyd-B viscoelastic filament is known to neck
down exponentially in time at a rate of 1/3De, where the Deborah number De = λ/tc
is defined as the ratio of the stress relaxation time λ to the capillary time tc (Chang,
Demekhin & Kalaidin 1999; Clasen et al. 2006a; Ardekani et al. 2010). Meanwhile the
polymeric stress in the filament increases exponentially at the same rate. It has also
been recognized that the nonlinear evolution of an Oldroyd-B viscoelastic thread profile
possesses self-similar solutions (Clasen et al. 2006a; Deblais et al. 2020; Eggers, Herrada
& Snoeijer 2020).

Recently, the blistering instability occurring in a fully stretched filament of polymer
solution has drawn a lot of attention. When a uniform filament between large primary
droplets gets sufficiently thin, a Rayleigh–Plateau-like instability may arise, leading to
the formation of secondary droplets on the filament (Christanti & Walker 2001; Oliveira,
Yeh & McKinley 2006; Sattler, Wagner & Eggers 2008; Sattler et al. 2012; Eggers 2014).
Mechanisms have been proposed to explain this phenomenon, e.g. elastic drainage and
resulting filament recoil (Chang et al. 1999), phase separation (pure solvent droplets
are formed on a fine filament of high concentrated polymer solution) (Sattler et al.
2008; Eggers 2014; Kulichikhin et al. 2014; Deblais, Velikov & Bonn 2018) and finite
extensibility of polymer chains (Malkin et al. 2014). For the last one, the Giesekus or
finitely extensible nonlinear elastic (FENE) model is used in the corresponding theoretical
description.

Based on the slender body approximation, several one-dimensional (1-D) models were
built, which have proved to be able to predict morphologies of viscous or viscoelastic
fluid threads at large times with reasonable accuracy and much less computation time
compared with direct numerical simulations (Bousfield et al. 1986; Eggers & Dupont 1994;
Eggers & Villermaux 2008; Tembely et al. 2012; Vadillo et al. 2012; Turkoz et al. 2018a).
These1-D models are also useful in theoretical analysis. For instance, by balancing axial
polymeric stress and capillary pressure, the 1-D Oldroyd-B model predicted theoretically
the 1/3De exponential law of filament thinning (Clasen et al. 2006a). In addition, the
1-D models were broadly used in studying self-similarity in the corner region connecting
a filament to a droplet (Clasen et al. 2006a; Bhat et al. 2012; Mathues et al. 2018).
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Dynamics of viscoelastic thread surrounded by Newtonian fluid

The disadvantage of the 1-D models is that radial flow in droplets and off-diagonal
polymeric stress components are ignored, which have been shown to become important
in the later stages of filament thinning using two-dimensional (2-D) numerical simulation
(Turkoz et al. 2018a). More 2-D numerical simulations of large axisymmetric deformations
of viscoelastic fluid threads are expected in the future.

In the framework of the Oldroyd-B model, pinch-off of threads cannot be predicted,
because of its limit of infinite extensibility. To describe the finite-time breakup of polymer
threads or jets as observed in experiments, the Giesekus or FENE model is appropriate
(Entov & Hinch 1997; Chang et al. 1999; Fontelos & Li 2004; Ardekani et al. 2010;
Tembely et al. 2012; Vadillo et al. 2012; Wagner, Bourouiba & McKinley 2015; Snoeijer
et al. 2020). These two models, especially the latter, are quite favourable in experimental
data fitting as well (Entov & Hinch 1997; Anna & McKinley 2001; Tembely et al. 2012).
In the Giesekus model, the so-called mobility factor α, which is associated with the
anisotropy of hydrodynamic drag on polymer molecules, is introduced (if α = 0, the model
reduces to the Oldroyd-B model). Numerical study showed that increasing α leads to a
decrease in extensional viscosity and helps filaments neck down faster (Birjandi, Norouzi
& Kayhani 2017). At sufficiently large values of α, the 1/3De exponential law breaks down
at the beginning of uniaxial elongation of a filament, just when the continuously increasing
elastic stress in the filament grows comparable to the characteristic capillary force σ/R (σ :
surface tension coefficient; R: unperturbed thread radius); instead, the filament undergoes
a much faster algebraic decrease in thickness (Ardekani et al. 2010). In the FENE model,
the finite characteristic extensibility parameter L, which is the ratio of the length of a fully
extended dumbbell to its equilibrium length, is introduced (if L → ∞, the Oldroyd-B
model is recovered) (Clasen et al. 2006b; Malkin et al. 2014; Mathues et al. 2018). Both
numerical simulation and asymptotic analysis showed that in the later stages the minimum
radius of a Giesekus or FENE polymer thread decreases linearly in time (Fontelos & Li
2004). Moreover, when inertia is non-negligible, the transition from a symmetric to an
asymmetric profile occurs for filaments, that is, filaments lose their axial uniformity. In
such a case, inertia plays a role in self-similarity of the neck region (Fontelos & Li 2004).

Two-phase flow systems in which a fluid jet or thread is immersed in a second fluid
in a tube are ubiquitous in microfluidics, flow focusing, fuel atomization, emulsification
and rheological applications (Lee 2003; Arratia et al. 2009; Zhao & Middelberg 2011;
Du et al. 2016; Xie et al. 2019; Montanero & Gañán-Calvo 2020; Cabezas et al. 2021).
An exterior fluid as well as the confinement of a tube may influence fundamentally jet
configuration and resulting droplet size (Lister & Stone 1998; Montanero & Gañán-Calvo
2020). For the Newtonian case, a number of relevant studies have been reported (e.g.
Tjahjadi, Stone & Ottino 1992; Sierou & Lister 2003; Homma et al. 2006; Wang 2013;
Sousa et al. 2017). Particularly, Wang (2013) built a 1-D nonlinear model of a viscous
fluid thread surrounded by a much less viscous fluid in a cylindrical tube and simulated
numerically large deformations of the thread. The author found that increasing the tube
radius results in a decrease in the breakup time of the thread and also an increase in the
satellite drop size. Most interestingly, when the tube wall is placed close to the thread,
the exterior fluid layer forces primary drops in the thread to form a ‘plug with collar’
structure, which is characterized by an abrupt rise of fluid interface in the neighbourhood
of the pinch point.

Beyond Newtonian fluids, not many reports can be found in the literature. Among the
few studies, Gunawan, Molenaar & wan de Ven (2005) investigated the linear instability
of a viscoelastic fluid thread immersed in a Newtonian fluid inside a cylindrical tube,
where fluid viscosities were considered to be high and the Reynolds numbers to be small.
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Thus the equations governing the two-fluid system reduced to those for a creeping flow.
On the other hand, the base flow (the steady axial velocities exhibit a parabolic profile
under a constant pressure gradient) was taken into account. In the present work, a similar
linear analysis is carried out, in which the problem is not limited to the creeping state
but the base flow is neglected, in accordance with the conditions in our 1-D nonlinear
model. Figueiredo et al. (2020) simulated numerically the 2-D axisymmetric stretch of an
Oldroyd-B viscoelastic thread between two plates in the presence of an exterior Newtonian
viscous fluid phase. In their simulation of the finitely long thread, the wavelength was fixed
to three times the radius of the plates, which seems quite small compared to those in the
case of infinitely long or semi-infinitely long threads or jets. It was found that the exterior
Newtonian fluid does not prevent the formation of beads-on-a-string structures. However,
the details of the structures may differ for different inner to outer fluid viscosity or density
ratios.

To our knowledge, nonlinear dynamics of an infinitely long viscoelastic thread or jet in
a confined geometry has not been reported yet. In this work we present a 1-D description
of nonlinear behaviour of an Oldroyd-B or Giesekus viscoelastic thread surrounded by a
Newtonian viscous fluid inside a cylindrical tube. The objective is to examine the effect
of the surrounding fluid and the confinement on nonlinear evolution of the viscoelastic
thread. The paper is organized as follows. In § 2, the theoretical model and the 1-D
nonlinear equations describing the problem are presented. In § 3, a simple linear analysis is
performed, the effect of the outer fluid and the confinement on the topological structure of
the viscoelastic thread is explored and the nonlinear behaviour of Oldroyd-B and Giesekus
viscoelastic threads is compared with each other. Finally, in § 4 the main conclusions are
drawn.

2. One-dimensional model

Consider a two-fluid system confined in a cylindrical tube of radius R0, as sketched in
figure 1. Before being perturbed, the system is quiescent with no base flow; the interior
fluid thread is an infinitely long cylinder of radius R. In this problem, our main concern
is the effect of the surrounding immiscible fluid medium on the nonlinear deformation
of the viscoelastic thread. For this purpose, the inner fluid is considered to be a polymer
solution possessing viscoelasticity, and the outer fluid is Newtonian and viscous. The effect
of the gravitational or buoyancy force, temperature and mass transfer is neglected. To
facilitate the formulation, the cylindrical coordinate system (r, θ, z) with r, θ and z the
radial, azimuthal and axial coordinates, respectively, is used to describe the problem. Upon
a small-amplitude axisymmetric harmonic being imposed, the thread begins to deform,
whose shape is a function of z and time t, denoted by r = S(z, t).

Suppose that the viscoelasticity of the inner fluid is modelled by the Giesekus
constitutive equation. The continuity equation, the momentum equation and the
constitutive equations governing the inner fluid are

∇ · ui = 0, (2.1)

ρi
(
∂ui

∂t
+ ui · ∇ui

)
= −∇pi + ∇ · T i

s + ∇ · T p, (2.2)

T i
s = 2ηi

sD
i, (2.3)

T p + λi∇T p + αλi

ηi
p
(T p)

2 = 2ηi
pDi, (2.4)
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Dynamics of viscoelastic thread surrounded by Newtonian fluid

r = S(z, t)

z

r = R0

Interior viscoelastic fluid 

r

Tube wall

Exterior Newtonian fluid 

Figure 1. Schematic illustration of an axisymmetric core–annular flow in a cylindrical tube.

where ρ is the density, p is the pressure, u is the velocity, ηs is the solvent viscosity, ηp

is the polymer viscosity, Di (= 1
2 [∇ui + (∇ui)T] with T denoting the transpose) is the

rate-of-strain tensor, T s is the viscous stress from the solvent, T p is the polymer stress,
∇
T p

is the upper-convected derivative of T p defined by
∇
T p = ∂T p

∂t
+ ui · ∇T p − (∇ui)T · T p − T p · (∇ui)T (2.5)

and the superscript i is used to denote the inner fluid.
For the outer Newtonian fluid, the governing equations are

∇ · ue = 0, (2.6)

ρe
(
∂ue

∂t
+ ue · ∇ue

)
= −∇pe + ∇ · T e

s, (2.7)

T e
s = 2ηe

s De, (2.8)

where ηe
s is the viscosity of the outer fluid and the superscript e is used to denote the outer

fluid.
On the perturbed interface r = S(z, t), the balance of the forces in the normal and

tangential directions requires that

n · (−peI + T e
s + piI − T i

s − T p) · n = σκ, (2.9)

τ · (−peI + T e
s + piI − T i

s − T p) · n = 0, (2.10)

where n and τ are the unit normal and tangential vectors on the interface given by

n = 1√
1 +

(
∂S
∂z

)2

(
−∂S
∂z
, 1, 0

)
and τ = 1√

1 +
(
∂S
∂z

)2

(
1,
∂S
∂z
, 0
)
, (2.11a,b)

respectively, and κ is the mean curvature given by

κ = 1

S

[
1 +

(
∂S
∂z

)2
]1/2 −

∂2S
∂z2[

1 +
(
∂S
∂z

)2
]3/2 . (2.12)
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In addition, on the interface r = S(z, t), the kinematic boundary condition and the
continuity of velocity should be satisfied, i.e.

vi = ∂S
∂t

+ ui ∂S
∂z
, (2.13)

ui = ue, vi = ve, (2.14a,b)

where u and v are the axial and radial components of the velocity, respectively.
On the tube wall, the no-slip and no-penetration conditions are met, i.e.

ue(R0, z, t) = ve(R0, z, t) = 0. (2.15)

If the radius of the thread varies gradually along the axial direction (the axial
characteristic length lz is much larger than the radial characteristic length lr, i.e. lr/lz ∼
O(ε)with ε a small parameter), it can be considered as a slender body (Clasen et al. 2006a;
Eggers & Villermaux 2008). On the other hand, in this two-fluid system, the outer fluid
is assumed to be much lighter (ρe/ρi ∼ O(ε)) and much less viscous (ηe

0/η
i
0 ∼ O(ε2))

than the inner fluid. Although this restraint on the outer fluid greatly limits the generality
of the two-fluid system, it allows us to derive a set of 1-D equations and helps get
some insights into how the presence of an outer fluid affects the nonlinear evolution of
a viscoelastic thread without too much computational cost. The same assumption was
made in the 1-D study of two-fluid systems of viscous fluids in Lister & Stone (1998)
and Wang (2013). The derivation of the 1-D equations and their dimensional form can be
found in Appendix A. Choosing the unperturbed radius of the thread R, the capillary time
tc =

√
ρiR3/σ , the zero-shear viscosity of the inner fluid ηi

0 = ηi
s + ηi

p and the capillary
force σ/R as the scales of length, time, viscosity and pressure, respectively, the 1-D
equations are non-dimensionalized as follows:

∂(S2)

∂t
+ ∂(S2ui)

∂z
= 0, (2.16)

∂ui

∂t
+ ui ∂ui

∂z
= 3βOh

S2

∂

(
S2 ∂ui

∂z

)
∂z

+ 1
S2

∂
(
S2 (τzz − τrr)

)
∂z

− ∂κ

∂z
− 2

S2 mηOhuiG(S, d),

(2.17)

τzz + De
(
∂τzz

∂t
+ ui ∂τzz

∂z
− 2τzz

∂ui

∂z

)
+ αDe
(1 − β)Oh

τ 2
zz = 2(1 − β)Oh

∂ui

∂z
, (2.18)

τrr + De
(
∂τrr

∂t
+ ui ∂τrr

∂z
+ τrr

∂ui

∂z

)
+ αDe
(1 − β)Oh

τ 2
rr = −(1 − β)Oh

∂ui

∂z
, (2.19)

where τzz and τrr are the zz and rr components of the tensor T p, respectively,
G(S, d) = (S2 + d2)/(S2 − d2 − (S2 + d2) ln(S/d)) and κ is the same in form as in
(2.12). Note that the same symbols are used to denote both the dimensional and
corresponding non-dimensional quantities. The non-dimensional parameters involved in
the 1-D equations are: the Ohnesorge number Oh = ηi

0/
√
ρiσR representing the relative

importance of viscosity and capillarity, the Deborah number De = λi/tc measuring the
relative importance of elasticity and capillarity, the solvent to solution viscosity ratio of
the inner fluid β = ηi

s/η
i
0, the outer to inner fluid viscosity ratio mη = ηe

0/η
i
0, the mobility

factor α and the tube to thread radius ratio d = R0/R. When the viscosity ratio mη is
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Dynamics of viscoelastic thread surrounded by Newtonian fluid

equal to zero, the 1-D model is reduced to that for a single Giesekus viscoelastic thread
in vacuum (Fontelos & Li 2004; Ardekani et al. 2010). If the mobility factor α is set to
zero, the 1-D model represents that for an Oldroyd-B viscoelastic thread surrounded by a
Newtonian fluid inside a tube.

3. Numerical results

The 1-D equations (2.16)–(2.19) are solved using an implicit finite difference scheme
(first-order backward method in time, upwind scheme for the convective terms and central
difference method for the dissipation terms), where the Newton–Raphson technique is
used to solve the nonlinear algebraic equations at each time step. To better simulate large
deformations at large times, non-uniform grids with an adaptive grid refinement are used in
the spatial discretization. Considering both accuracy and efficiency, the number of discrete
points is usually between 1000 and 1400, and the time step varies between 10−6 and 0.001.
At each time step, it requires that the maximum relative errors of all quantities are less
than 0.1 %. The calculation is terminated when the minimum radius of the thread is below
0.001. The validity of the code is checked by comparing with the results in Clasen et al.
(2006a) and Ardekani et al. (2010).

At the initial time, the thread is assumed to be perturbed by a small cosinoidal harmonic,
i.e.

S(z, t = 0) =
√

1 − ε2
0/2 + ε0 cos(kz), (3.1)

where k = 2π/λ is the axial wavenumber and ε0 is the initial amplitude of the disturbance
whose value is fixed to 0.01.

Considering the spatial periodicity and symmetry of the system, only a half-
wavelength-long segment z ∈ [0, λ/2] is calculated, where λ is the wavelength. The
periodic boundary conditions are imposed at two ends of the segment, i.e.

∂S
∂z
(z = 0, t) = ∂S

∂z

(
z = λ

2
, t
)

= 0, ui(z = 0, t) = ui
(

z = λ
2
, t
)

= 0,

∂τzz

∂z
(z = 0, t) = ∂τzz

∂z

(
z = λ

2
, t
)

= 0,
∂τrr

∂z
(z = 0, t) = ∂τrr

∂z

(
z = λ

2
, t
)

= 0.

⎫⎪⎪⎬
⎪⎪⎭
(3.2)

Suppose that the density of the polymer solution ρi = 1000 kg m−3, the zero-shear
viscosity ηi

0 = 0.1 Pa s, the stress relaxation time λi = 0.5 ms and the interface tension
coefficient σ = 0.05 N m−1. Such a fluid is of high viscoelasticity. The radius of the thread
is supposed to be 100 μm. Thus the Ohnesorge number Oh = 1.4 and the Deborah number
De = 3.5, the values of which are quite close to the estimation in Ardekani et al. (2010).
Without loss of generality, the viscosity ratio β is fixed to 0.5. The viscosity ratio mη must
be small, which ranges from 0 to 0.04 in the calculation. The mobility factor α is also
maintained to be small, varying between 0 and 0.005. The axial wavenumber k must be
within the instability region, and we take k ∈ [0.3, 0.9] in the calculation. As for the radius
ratio d, its value must be large enough to prevent the inner fluid thread from touching the
tube wall at large deformations. In the computation, the constraint d ≥ 2 may ensure the
avoidance of touchdown phenomenon.
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3.1. Linear instability analysis
The behaviour of the perturbed viscoelastic thread at small times and the effect of the
relevant parameters on it can be predicted by linear theory. In this subsection a simple
linear instability analysis is performed. Linearizing the 1-D equations (2.16)–(2.19) and
substituting the following normal mode decompositions into them:

S = 1 + Ŝ exp(ωt + jkz)+ c.c., (3.3)

ui = ûi exp(ωt + jkz)+ c.c., (3.4)

τzz = τ̂zz exp(ωt + jkz)+ c.c., (3.5)

τrr = τ̂rr exp(ωt + jkz)+ c.c., (3.6)

where the hat denotes the initial amplitudes of the perturbations, ω is the complex
frequency (with real part ωr the temporal growth rate and imaginary part ωi the speed
of wave propagation), ‘c.c.’ denotes the complex conjugate and j is the imaginary unit,
one obtains the following dispersion relation:

ω

(
ω + 3βOhk2 + 3(1 − β)Ohk2

1 + Deω

)
− k2(1 − k2)

2
+ 2ωmηOhG(1, d) = 0. (3.7)

Note that the mobility factor α for Giesekus fluids does not appear in (3.7). When De = 0,
(3.7) reduces to that for the Newtonian viscous case (Wang 2013); let mη be 0, and (3.7)
reduces to that for an Oldroyd-B or Giesekus viscoelastic thread in vacuum.

The dispersion relation for the 2-D axisymmetric instability of the thread is also derived.
The derivation process is straightforward. Some details can be found in Appendix B.
Finally, the dispersion relation is written as∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

I1(k) I1(ki) −I1(k) −K1(k) −I1(ke) −K1(ke)

kI0(k) kiI0(ki) −kI0(k) kK0(k) −keI0(ke) keK0(ke)

0 0 I1(kd) K1(kd) I1(ked) K1(ked)
0 0 −kI0(kd) kK0(kd) −keI0(ked) keK0(ked)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (3.8)

where

a11 = ωI0(k)
Oh

+ 2k2I′
1(k)

1 + βωDe
1 + ωDe

+ 1
ωOh

k(k2 − 1)I1(k),

a12 = 2kkiI′
1(k

i)
1 + βωDe
1 + ωDe

+ k(k2 − 1)
ωOh

I1(ki),

a13 = −mρω

Oh
I0(k)− 2mηk2I′

1(k), a14 = mρ

ω

Oh
K0(k)− 2mηk2K′

1(k),

a15 = −2mηkkeI′
1(k

e), a16 = −2mηkkeK′
1(k

e),

a21 = −2k2I1(k)
1 + βωDe
1 + ωDe

, a22 = −(k2 + (ki)2)I1(ki)
1 + βωDe
1 + ωDe

, a23 = 2mηk2I1(k),

a24 = 2mηk2K1(k), a25 = mη(k2 + (ke)2)I1(ke),

a26 = mη(k2 + (ke)2)K1(ke),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.9)
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Figure 2. The temporal growth rate ωr versus the axial wavenumber k. (a) The effect of the outer to inner
fluid viscosity ratio mη, where d = 5, and (b) the effect of the tube to thread radius ratio d, where mη = 0.01.
Dashed: the slender body approximation; dotted: the 2-D linear instability analysis. The arrows denote the
direction of a parameter increasing. Here Oh = 1.4, β = 0.5,De = 3.5,mρ = 0.1.

In(·) and Kn(·) (n = 0, 1) are the nth-order modified Bessel functions of the first
and second kinds, respectively, ki =

√
k2 + ω(1 + ωDe)/Oh(1 + βωDe),

ke =
√

k2 + mρω/mηOh and mρ = ρe/ρi is defined as the outer to inner fluid density
ratio. Note that the mobility factor α of the Giesekus model, which turns out to be a
secondary factor in linear analysis, is absent from (3.8).

The effect of the viscosity ratio mη and the radius ratio d on the temporal growth rate ωr
is shown in figures 2(a) and 2(b), respectively. Clearly, as mη increases or d decreases, ωr
decreases. This indicates that both the outer viscous fluid layer and the confinement of the
tube suppress the instability of the viscoelastic thread. It is also found that when d exceeds
10, ωr is little changed on increasing d further, as reported by Gunawan et al. (2005).
Note that the cut-off wavenumber beyond which the thread is stable is maintained at unity,
regardless of the value of mη or d. A comparison of the 1-D and 2-D results shows that
the slender body approximation overestimates the growth rate at moderate wavenumbers
but it predicts well the linear instability of the thread at small wavenumbers, as reported
by Wang (2013) in a study of Newtonian threads.

3.2. Nonlinear behaviour of an Oldroyd-B viscoelastic thread surrounded by a viscous
fluid in a tube

In this subsection the mobility factor α is fixed to zero and we study the effect of the
surrounding viscous fluid layer and the confinement of the tube on the nonlinear behaviour
of the Oldroyd-B viscoelastic thread. As is well known, a single Oldroyd-B viscoelastic
thread in vacuum evolves into a beads-on-a-string structure with or without secondary
droplets; if there is no secondary droplet, the stretched filament between primary droplets
necks down following the 1/3De exponential law in time (Chang et al. 1999; Clasen et al.
2006a; Ardekani et al. 2010). Here we show that the presence of an outer fluid phase may
influence substantially the topological structures of Oldroyd-B viscoelastic threads.

Typical thread profiles are illustrated in figure 3, where the axial wavenumber k is fixed
to 0.9. As shown in figure 3(a), for such a large wavenumber, no satellite droplet is formed
in an Oldroyd-B viscoelastic thread in vacuum (mη = 0). When mη is increased to a small
value, 0.001 in figure 3(b), a very small secondary droplet appears at the midpoint of the
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Figure 3. Space–time diagrams of the evolution of the Oldroyd-B viscoelastic thread and its profile. The
viscosity ratio (a) mη = 0, (b) mη = 0.001, (c) mη = 0.01 and (d) mη = 0.04. Here k = 0.9,Oh = 1.4, β =
0.5,De = 3.5, d = 5, α = 0.

filament; see the zoomed-in plot on the right-hand side for clarity. Due to the formation
of this secondary droplet, the axial uniformity of the entire filament collapses and the
extensional flow in it is rearranged. As mη is further increased, the size of the secondary
droplet at the midpoint is continuously increased, as shown in figure 3(c,d). When mη is
large enough, in addition to the droplet at the midpoint, even smaller secondary droplets
appear in the filament (see figure 3d). Generally, the presence of the outer viscous
fluid phase gives rise to the formation of secondary droplets. Moreover, the space–time
diagrams demonstrate that secondary droplets start to form at earlier times for larger
viscosities of the outer fluid.
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Figure 4. Effect of the viscosity ratio mη on the evolution of the Oldroyd-B viscoelastic thread. (a) The thread
radius S at the midpoint z = λ/2, (b) the first normal stress difference τzz − τrr at z = λ/2, (c) the minimum
thread radius Smin and (d) τzz − τrr at Smin. Here k = 0.9,Oh = 1.4, β = 0.5,De = 3.5, d = 5, α = 0.

The space–time diagrams in figure 3 also demonstrate the suppression effect of the outer
viscous phase on the instability of the thread. As mη continuously increases, the thread
thickness at the midpoint z = λ/2, where the trough of the initial harmonic perturbation
is located, decreases more and more slowly. This trend is clearly shown in figure 4, where
the variation of both the thread radius S and the first normal stress difference τzz − τrr with
time is illustrated. Note that due to the small growth rate of the wavenumber k = 0.9 as
predicted by linear theory (see figure 2), the perturbation on the thread grows very slowly
in the linear stage. Moreover, as mη increases, the decrease in the thread radius gets slower.
Beyond the linear range, as shown in figure 4(a), the thread radius at the midpoint, Sλ/2,
undergoes first a fast decrease dominated by the inertial and capillary forces, and then steps
into a relatively slow decrease stage in which the elastic and capillary forces presumably
play a role (Clasen et al. 2006a). In the elasto-capillary regime, if the outer fluid phase
exists, the decrease in Sλ/2 does not follow the 1/3De exponential law as in vacuum, which
appears to be slightly slower. Most significantly, at some instant, Sλ/2 starts to increase,
indicating that a secondary droplet is being formed at the midpoint. With the formation
of the secondary droplet, the polymeric stress at the midpoint decreases rapidly, as shown
in figure 4(b). Ultimately the first normal stress difference τzz − τrr approaches zero and
ends up with a small negative value, which is not illustrated in the semi-logarithmic plot
in figure 4(b).

The variation of the minimum thread radius Smin with time is shown in figure 4(c).
Surprisingly, while the secondary droplet at the midpoint is formed, the decrease of Smin

926 A21-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

68
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.689


F. Li and D. He

0 1 2 3

0

1

2

0

0.5

1.0

S

z

t = 170

0 1 2 3

0

1

2

–5

0

5

z

t = 190

f e

0 1 2 3

0

1

2

–40

–20

0

20

40

z

t = 201
(a) (b) (c)

Figure 5. The thread profile S (solid lines) and the force exerted on the thread by the outer fluid f e (dashed
lines) at different instants. Here k = 0.9,Oh = 1.4, β = 0.5,De = 3.5,mη = 0.01, d = 5, α = 0.

gets slightly faster, with a rate slightly (about 2 %) higher than 1/3De. The polymeric stress
at Smin experiences an increase greater than the 1/3De law at the moment the secondary
droplet begins to form, as shown in figure 4(d). After the secondary droplet is formed, the
distribution of the forces along the filament, especially the capillary and elastic forces, is
substantially changed.

To better understand the effect of the outer viscous fluid phase on the stretch
of the thread, the force exerted on the thread by the outer fluid, expressed as
f e = −2mηOhuiG(s, d)/S2 in the 1-D momentum equation (2.17), is calculated and
diagrammed in figure 5 for k = 0.9, mη = 0.04 and three time instants t = 170, 190
and 201, where a half-wavelength-long segment of the thread z ∈ [0, λ/2] is plotted. At
t = 170, the secondary droplet at the midpoint has not been formed yet, and the thickness
of the stretched filament between primary droplets is almost axially uniform. The force
exerted by the outer fluid, f e, is positive in the entire filament (see figure 5a), indicating
that the outer fluid tends to stop fluid particles in the filament from moving towards the
primary droplet and slows down the thinning of the filament, as shown in figure 4(a).
That is, f e acts as a resistance to the extensional flow in the filament. This force induces
the non-uniformity of the filament thickness gradually. In figure 5(b), at t = 190, the
non-uniformity becomes more evident, with a mild hump appearing at the midpoint. In
the neighbourhood of the midpoint the elastic stress decreases dramatically to almost zero.
Under the action of the capillary pressure, the small hump eventually obtains a spheroidal
shape, as shown in figure 5(c). On the other hand, from the distribution of f e in the filament
between the primary droplet and the hump in figure 5(b), the outer fluid still resists the
thinning of the filament. At t = 201, the double-fold configuration of f e indicates that
another secondary droplet is going to be formed at some location. Indeed, for mη = 0.04,
two generations of secondary droplets exist in the filament, as shown in figure 3(d). As
the filament is stretched, f e is increased, but it remains as a secondary factor compared
with the capillary and elastic forces. So its resisting effect on the filament thinning is quite
limited all the time, as illustrated in figure 4(c).

At smaller wavenumbers, the scenario is similar. That is, the outer viscous fluid tends
to induce the formation of secondary droplets on the filament. As shown in figure 6 where
the axial wavenumber k = 0.3, when the viscosity ratio mη is increased from 0 to 0.01,
more generations of secondary droplets are produced successively. Different generations
have difference sizes, and those smallest secondary droplets are hardly seen in the figure.
This beads-on-a-string structure with multiple secondary droplets, described by Kamat
et al. (2018) as micro-thread cascades, may also be induced by a surfactant or an imposed
electric field (Li, Yin & Yin 2017b; Kamat et al. 2018; Li et al. 2019). The space–time
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Figure 6. Space–time diagrams of the evolution of the Oldroyd-B viscoelastic thread and its profile for
(a) mη = 0 and (b) mη = 0.01. Here k = 0.3,Oh = 1.4, β = 0.5,De = 3.5, d = 5, α = 0.

diagrams demonstrate that the necking of the thread is slowed down to a certain extent by
the outer fluid phase.

The axial wavenumber k is considered to be an important parameter influencing the
topological structure of a viscoelastic thread (Ardekani et al. 2010). We diagram the
situation in the (k,mη) plane in figure 7, where for each couple of k and mη the number of
secondary droplets is counted. Generally, as k decreases or mη increases, more secondary
droplets appear in the filament between two adjacent primary droplets. Even when the
viscosity of the outer fluid is very small (the smallest value of mη in the calculation
is 0.001), at least one secondary droplet is formed, regardless of the value of the axial
wavenumber. It seems that the appearance of secondary droplets is unavoidable in the
presence of an outer viscous fluid. Differently, in the absence of an outer fluid phase,
at large wavenumbers, such as k = 0.8 or 0.9 as shown in figure 7, there is no satellite
droplet formed in beads-on-a-string structure (Ardekani et al. 2010; Keshavarz et al. 2015).
Our simulation result shows that the presence of an outer fluid phase does not favour the
formation of a uniform filament that is expected in applications such as fluid bridge and
extensional rheometer (Ardekani et al. 2010; Mathues et al. 2018; Figueiredo et al. 2020).

The effect of the confinement on the Oldroyd-B viscoelastic thread is examined
in figure 8, where the radius ratio d varies from 2 to 10. In figures 8(a) and 8(b),
two-wavelength-long thread segments are plotted for k = 0.3 and k = 0.9, respectively.
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Figure 7. The statistics of secondary droplets in the (k,mη) plane. The numbers indicate how many secondary
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3.5, d = 5, α = 0.

It is shown that for all values of d considered, the thread evolves into a quite similar
beads-on-a-string structure. Not like the viscosity ratio mη, the confinement hardly
influences the topological structure of a fully stretched thread. In addition, a closer
observation finds that as d decreases the sizes of secondary droplets of all generations
are increased slightly; see the zoomed-in plots in figures 8(a) and 8(b). That is, the
confinement helps secondary droplets gain some weight.

Figure 8(c) shows the time evolution of the minimum thread radius Smin for k = 0.9,
where the location of Smin, i.e. zmin (relative to half-wavelength λ/2), is plotted as well.
As d decreases, the decrease of Smin is slowed down, indicating that the confinement has
a stabilization effect on the perturbed thread, which is well predicted by linear theory in
figure 2(b). Initially, Smin is located at the midpoint of the thread, zmin/(λ/2) being equal
to 1. Later, when the deformation of the thread enters the elasto-capillary stage, zmin moves
away from the midpoint z = λ/2. Ultimately, Smin is located in the neck region joining the
filament to the primary droplet where zmin/(λ/2) 	 0.5. Generally, for different values of
d, the variation of Smin with time is quite similar in the elasto-capillary stage. The time
evolution of the first normal stress difference τzz − τrr at Smin is also similar for all values
of d, as shown in figure 8(d).

Given the thread profile S and the axial velocity u, the force exerted by the outer fluid
phase, f e, is calculated for different values of the radius ratio d. The relevant results are
shown in figure 9, where two typical time instants are plotted. At t = 179, the thread
exhibits a beads-on-a-string profile in which the secondary droplet is not formed yet
(see figure 9a). The filament between primary droplets is almost axially uniform. The
force exerted by the outer fluid, f e, is positive in the filament (see figure 9c), which
serves as a resistance to the extensional flow. As d decreases, f e increases, indicating
that the confinement enhances the influence of the outer fluid phase on the deformation of
the thread. From the distribution of the axial velocity in the filament shown in figure 9(a),
the extension rate ∂u/∂z deviates from 2/3De of an Oldroyd-B viscoelastic thread in
vacuum. This is understandable, considering that f e is a resistance which decelerates the
motion of fluid particles in the filament. Basically, away from the midpoint of the filament,
the extension rate becomes larger. The extensional flow with a spatially varying extension
rate implies that the filament thickness can no longer be uniform. Close to the primary
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Figure 8. Effect of the radius ratio d on the nonlinear behaviour of the Oldroyd-B viscoelastic thread. The
thread profile for (a) k = 0.3 and (b) k = 0.9 as d varies. The arrows denote the direction of d increasing.
The variation of (c) the minimum thread radius Smin (the lower lines) and the corresponding location zmin
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Oh = 1.4, β = 0.5,De = 3.5,mη = 0.01, α = 0.
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Figure 9. (a,b) The thread profile S (solid lines) and the axial velocity u (dashed lines) and (c,d) the force
exerted on the thread by the outer fluid f e at two typical instants. The arrows denote the direction of d increasing.
Here k = 0.9,Oh = 1.4, β = 0.5,De = 3.5,mη = 0.01, α = 0.

droplet, the filament is more stretched. At the later time t = 200, the secondary droplet
at the midpoint is about to be shaped (see figure 9b). The distribution of the force in
figure 9(d) suggests that f e is still a resistance. As d decreases, f e increases, resulting in
a larger size of secondary droplet, as shown in figure 8. In figure 9(b), the axial velocity
in the filament deviates slightly from the 2/3De slope, and the trend that the extension
rate varies along the axial direction suggests that the filament is most stretched in the neck
regions.

3.3. Nonlinear behaviour of a Giesekus viscoelastic thread surrounded by a viscous fluid
in a tube

For a Giesekus viscoelastic thread, breakup occurs in a finite time. It is well established
that at the final stages prior to pinch-off, the minimum radius of a Giesekus viscoelastic
thread approaches zero linearly with time, i.e. Smin ∼ (tp − t), where tp is the pinching
time (Fontelos & Li 2004; Ardekani et al. 2010). In this study, it is found that an outer
viscous fluid affects the topological structure of a Giesekus thread in a way similar to how
it affects an Oldroyd-B thread. Some results are shown in figure 10.

In figure 10, four different cases, i.e. an Oldroyd-B thread in vacuum (mη = 0, α = 0),
an Oldroyd-B thread surrounded by a viscous fluid (mη = 0.01, α = 0), a Giesekus
thread in vacuum (mη = 0, α = 0.005) and a Giesekus thread surrounded by a viscous
fluid (mη = 0.01, α = 0.005), are presented for comparison. For the relatively large axial
wavenumber k = 0.8 considered in the figure, in the absence of the outer fluid phase, no
secondary droplet is formed at the midpoint of the filament, regardless of fluid type; in
the presence of an outer fluid, secondary droplets always appear in the thread, although
the sizes of them are different for Oldroyd-B and Giesekus fluids, as can be seen from
the thread profiles in figure 10(a). As shown in figure 10(b), the Oldroyd-B thread in
vacuum necks down following the 1/3De exponential law in the elasto-capillary stage.
Differently, the thickness of the Giesekus thread in vacuum decreases much more rapidly
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(c) The minimum thread radius Smin (the lower lines) and its location zmin/(λ/2) (the upper lines). (d) Typical
distribution of τzz − τrr along the thread, where z ∈ [0, λ/2]. (e) The first normal stress difference τzz − τrr at
z = λ/2. ( f ) The extension rate ε̇ at z = λ/2. (g) The Trouton ratio ηi

E/η
i
0 at z = λ/2. Short dashed: mη =

0, α = 0; dotted: mη = 0.01, α = 0; dash-dotted: mη = 0, α = 0.005; long dashed: mη = 0.01, α = 0.005.
Here k = 0.8,Oh = 1.4, β = 0.5,De = 3.5, d = 5. 926 A21-17
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and reaches zero at tp. In the presence of the outer viscous fluid phase, Sλ/2 of either
Oldroyd-B or Giesekus thread starts to increase at some instant, indicating the formation
of a secondary droplet at the midpoint. Moreover, the final Sλ/2 for the Giesekus thread is
larger, indicating that its secondary droplet is larger. Fontelos & Li (2004) found that due
to the non-zero mobility factor α, a Giesekus viscoelastic filament in vacuum may lose its
uniformity. In this problem, apart from the mobility factor, the outer fluid phase is also
a factor inducing the non-uniformity of the filament. Accompanied by the formation of
the secondary droplet, the decrease in the minimum thread radius of both Oldroyd-B and
Giesekus threads becomes a little faster than in the case of no outer fluid, as illustrated in
figure 10(c).

Typical distribution of the first normal stress difference τzz − τrr at large times is
presented in figure 10(d) for a half-wavelength-long segment of the thread. It is clear
that only the polymeric stress of the Oldroyd-B thread in vacuum is axially uniform
in the filament, whose growth in time follows the 1/3De exponential law, as shown in
figure 10(e). The outer fluid phase induces the non-uniformity of τzz − τrr in the filament
of Oldroyd-B fluid, with the minimum stress located near the centre of the filament
between the primary droplet at z = 0 and the formed secondary droplet at z = λ/2. Thus
the gradient of τzz − τrr provides a force that tends to push fluid particles in the filament
towards the primary or secondary droplet, accelerating the necking of the thread. The
Giesekus thread in vacuum has the maximum τzz − τrr at the midpoint of the filament
z = λ/2. Moreover, this τzz − τrr at the midpoint grows much faster than the 1/3De
exponential law, as shown in figure 10(e). Away from the midpoint the polymeric stress
decreases monotonically and an axially uniform distribution of it can never be built in the
filament. In such a case, the filament is most stretched at the midpoint and Smin coincides
with Sλ/2 all the time (zmin = λ/2), as illustrated in figure 10(c). That is, for a Giesekus
thread in vacuum, the midpoint of the filament is the place where the thread pinches off.
Differently, in the presence of the outer fluid, the maximum τzz − τrr of the Giesekus
thread is located in the neck region connecting the primary droplet to the filament, which
suggests that the pinch-off occurs there. Indeed, as shown in figure 10(c), its minimum
radius zmin moves from the midpoint towards the neck at large times and is located
there eventually. Away from the neck, τzz − τrr decreases monotonically, resulting in a
negative gradient of polymeric stress in the filament, which tends to push fluid particles
towards the primary droplet and accelerate the pinching process. In figure 10(e), τzz − τrr
at the midpoint of either Oldroyd-B or Giesekus thread immersed in an outer fluid phase
decreases markedly to a minimal value, due to the fact that a secondary droplet is formed
at the midpoint.

The extension rate ε̇ = ∂u/∂z at the midpoint z = λ/2 is illustrated in figure 10( f ) for
the four cases. It is shown that in the absence of the outer fluid the Giesekus thread has
an extension rate much higher than the Oldroyd-B thread whose value is maintained at
2/3De. Figure 10(g) shows the Trouton ratio defined as ηi

E/η
i
0 = 3β + (τzz − τrr)/Ohε̇,

where ηi
E is the transient extensional viscosity (Ardekani et al. 2010). Only for the

Oldroyd-B thread in vacuum does the extensional viscosity grow almost exponentially.
In contrast, the extensional viscosity of the Giesekus thread in vacuum stays moderate
when pinch-off occurs. In the presence of the outer fluid, the Oldroyd-B or Giesekus
thread may experience a sharp increase in the Trouton ratio just before the formation of
secondary droplet, as shown in figure 10(g). Then, with the formation of a secondary
drop at the midpoint, the extensional viscosity there ceases to increase. Instead, the
Trouton ratio decreases rapidly and ends up with a small negative value at the moment
the secondary droplet is formed (the decrease and the negative values are not shown in the
semi-logarithmic plot of figure 10g).
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Figure 11. Space–time diagrams of the deformation of the Oldroyd-B or Giesekus viscoelastic thread and the
final profiles for (a) α = 0,mη = 0, (b) α = 0.005,mη = 0 and (c) α = 0.005,mη = 0.01. Here k = 0.5,Oh =
1.4, β = 0.5,De = 3.5, d = 5.

More space–time diagrams of the evolution of the thread are shown in figure 11, where
the axial wavenumber k is fixed at a relatively small value of 0.5. For this relatively long
wave, a secondary droplet appears at the midpoint of the Oldroyd-B thread in vacuum, as
shown in figure 11(a). When α is increased from 0 to 0.005, the secondary droplet at the
midpoint is maintained but its size is decreased, as shown in figure 11(b). Comparing the
space–time diagrams in figures 11(a) and 11(b), the Giesekus thread necks down much
faster than the Oldroyd-B thread. On the other hand, for the Giesekus thread, at the
final stages prior to pinch-off, the filament between the primary and secondary droplets
becomes non-uniform. In figure 11(c), where the viscosity ratio mη is increased from 0 to
0.01, the non-uniformity of the filament becomes more pronounced, with the aid of the
outer fluid, which can be seen from the profile on the right-hand side. Meanwhile, the
secondary droplet becomes larger.

4. Conclusion

Based on the slender body theory, a 1-D model is built for a two-phase flow system, in
which an infinitely long viscoelastic fluid thread is surrounded by a Newtonian viscous
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fluid layer confined in a coaxial cylindrical tube. The viscoelasticity of the inner fluid
is described by the Oldroyd-B or Giesekus constitutive equation, and the outer fluid is
assumed to be much lighter and much less viscous than the inner fluid. Under such an
assumption, the 1-D equations are successfully derived. The effect of the outer viscous
fluid phase and the confinement of the tube on the evolution of the beads-on-a-string
structure of the viscoelastic thread is examined by numerically solving the nonlinear 1-D
equations. Direct simulations and experimental observations will be hopefully carried out
in the future to compare with and confirm the 1-D predictions obtained in this work.

In the 1-D model, there are two dimensionless parameters related to the outer fluid or
the confinement, i.e. the outer to inner fluid viscosity ratio mη and the tube to thread
radius ratio d. For an Oldroyd-B viscoelastic thread, it is found that the presence of
the outer viscous fluid phase may lead to the formation of secondary droplets on the
filament between two adjacent primary droplets, even for large wavenumbers. For a fixed
wavenumber, as mη increases, more and more secondary droplets appear in the filament,
and meanwhile those existing secondary droplets get larger. The outer viscous fluid exerts
a resistance force on the filament, which tends to resist the stretching of the thread. On
the other hand, due to the formation of secondary droplets, the capillary and elastic forces
are redistributed in the filament, and the polymeric stress loses its uniformity. As a result,
the necking of the thread gets slightly faster than in the case of no outer fluid phase.
Decreasing the radius ratio d results in an increase in secondary droplet size, but affects
little the topological structures of viscoelastic threads.

At sufficiently large wavenumbers, secondary droplets are absent from a Giesekus
thread in vacuum, and the thread pinches off at the midpoint of the filament between
primary droplets, where the polymeric stress is maximal. In contrast, in the presence of
an outer viscous phase, secondary droplets are formed and pinch-off occurs in the neck
region connecting the filament to the primary droplet, where the thread is most stressed.
Moreover, as mη increases, the non-uniformity of the filament thickness becomes more
and more pronounced.

In addition, a simple linear analysis is executed. The dispersion relations for the 1-D
model as well as for the 2-D axisymmetric instability are obtained. It is shown that the
mobility factor of the Giesekus model is a secondary factor in linear instability. Increasing
mη or decreasing d may suppress the instability of the viscoelastic thread. The 1-D slender
body approximation predicts well the linear instability of the thread at small wavenumbers.

Viscoelasticity influences the linear instability and nonlinear evolution of a viscoelastic
thread to a great extent. In this 1-D analysis, the fluid is limited to being of high
viscoelasticity (the values of the Ohnesorge and Deborah numbers are relatively large).
The present study illuminates just a part of the whole picture. It would be of interest
to expand the ranges of the non-dimensional parameters in future 1-D or 2-D numerical
simulations.
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Dynamics of viscoelastic thread surrounded by Newtonian fluid

Appendix A. Derivation of the 1-D model

In the 1-D model, the thread is assumed to be perturbed by a small cosinoidal harmonic at
the initial time. Naturally, the radius of the unperturbed thread R is the characteristic length
in the radial direction (lr) and the wavelength of the perturbation 2π/k is the characteristic
length in the axial direction (lz). Apparently, within the range of the wavenumber k
considered, lr is much smaller than lz, i.e.

lr = εlz, (A1)

where ε is a small parameter. In such a case, the slender body theory can be applied.
The balance of capillary, inertial and viscoelastic forces of the inner fluid gives

ρi lz
l2t

= ηi
0

lz/lt
l2z

= σ

lr

1
lz
. (A2)

Using the scales

r = lrr̃, z = lzz̃, t = lt t̃, S = lrS̃, d = lrd̃, vi = lr
lt
ṽi, ve = lr

lt
ṽe, ui = lz

lt
ũi, ue = lz

lt
ũe,

pi = ρ il2z
l2t

p̃i, pe = ρ il2z
l2t

p̃e, τrr = ρ il2z
l2t
τ̃rr, τθθ = ρ il2z

l2t
τ̃θθ , τzz = ρ il2z

l2t
τ̃zz, τrz = ρ il3z

lrl2t
τ̃rz,

⎫⎪⎪⎬
⎪⎪⎭
(A3)

where the tilde denotes the corresponding non-dimensional quantities, and omitting the
tildes, one can get the following non-dimensionalized governing equations and boundary
conditions.

For the inner viscoelastic fluid:

1
r
∂(rvi)

∂r
+ ∂ui

∂z
= 0, (A4)

∂vi

∂t
+ vi ∂v

i

∂r
+ ui ∂v

i

∂z
= − 1

ε2
∂pi

∂r
+ β

ε2

(
∂2vi

∂r2 + 1
r
∂vi

∂r
− vi

r2

)
+ β

∂2vi

∂z2

+ 1
ε2

(
∂τrr

∂r
+ ∂τrz

∂z
+ τrr − τθθ

r

)
, (A5)

∂ui

∂t
+ vi ∂ui

∂r
+ ui ∂ui

∂z
= −∂pi

∂z
+ β

ε2

(
∂2ui

∂r2 + 1
r
∂ui

∂r

)

+ β
∂2ui

∂z2 + 1
ε2
∂τrz

∂r
+ 1
ε2
τrz

r
+ ∂τzz

∂z
, (A6)

τrr + De
(
∂τrr

∂t
+ vi ∂τrr

∂r
+ ui ∂τrr

∂z
− 2τrr

∂vi

∂r
− 2τrz

∂vi

∂z

)

+ αDe
1 − β

(
τ 2

rr + 1
ε2 τ

2
rz

)
= 2(1 − β)

∂vi

∂r
, (A7)

τθθ + De
(
∂τθθ

∂t
+ vi ∂τθθ

∂r
+ ui ∂τθθ

∂z
− 2τθθ

vi

r

)
+ αDe

1 − β
τ 2
θθ = 2(1 − β)

vi

r
, (A8)
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τzz + De
(
∂τzz

∂t
+ vi ∂τzz

∂r
+ ui ∂τzz

∂z
− 2
ε2 τrz

∂ui

∂r
− 2τzz

∂ui

∂z

)

+ αDe
1 − β

(τ 2
zz + τ 2

rz) = 2(1 − β)
∂ui

∂z
, (A9)

τrz + De
(
∂τrz

∂t
+ vi ∂τrz

∂r
+ ui ∂τrz

∂z
+ vi

r
τrz − τrr

∂ui

∂r
− ε2τzz

∂vi

∂z

)

+ αDe
1 − β

(τrr + τzz)τrz = (1 − β)

(
ε2 ∂v

i

∂z
+ ∂ui

∂r

)
, (A10)

where τθθ and τrz are the θθ and rz components of the polymer stress T p, De = λi/lt and
β = ηi

s/η
i
0.

For the outer Newtonian fluid:

1
r
∂(rve)

∂r
+ ∂ue

∂z
= 0, (A11)

mρ

(
∂ve

∂t
+ ve ∂v

e

∂r
+ ue ∂v

e

∂z

)
= − 1

ε2
∂pe

∂r
+ mη

(
1
ε2

(
∂2ve

∂r2 + 1
r
∂ve

∂r
− ve

r2

)
+ ∂2ve

∂z2

)
,

(A12)

mρ

(
∂ue

∂t
+ ve ∂ue

∂r
+ ue ∂ue

∂z

)
= −∂pe

∂z
+ mη

(
1
ε2

(
∂2ue

∂r2 + 1
r
∂ue

∂r

)
+ ∂2ue

∂z2

)
, (A13)

where mρ = ρe/ρi and mη = ηe
0/η

i
0.

On the interface r = S(z, t), the normal dynamic balance is

pi = pe − 2mη

1 + ε2
(
∂S
∂z

)2

(
∂ve

∂r
− ∂S
∂z

(
∂ve

∂z
+ ∂ue

∂r

)
+
(
∂S
∂z

)2
∂ue

∂z

)

+ 2β

1 + ε2
(
∂S
∂z

)2

(
∂vi

∂r
− ∂S
∂z

(
ε2 ∂v

i

∂z
+ ∂ui

∂r

)
+ ε2

(
∂S
∂z

)2
∂ui

∂z

)

+ 1

1 + ε2
(
∂S
∂z

)2

(
ε2
(
∂S
∂z

)2

τzz − 2
∂S
∂z
τrz + τrr

)

+ 1

S

(
1 + ε2

(
∂S
∂z

)2
)1/2 −

ε2 ∂
2S
∂z2(

1 + ε2
(
∂S
∂z

)2
)3/2 , (A14)
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the tangential force balance is

1

1 + ε2
(
∂S
∂z

)2

(
2βε2 ∂S

∂z

(
∂vi

∂r
− ∂ui

∂z

)
+ β

(
1 − ε2

(
∂S
∂z

)2
)(

ε2 ∂v
i

∂z
+ ∂ui

∂r

))

+ 1

1 + ε2
(
∂S
∂z

)2

(
ε2 ∂S
∂z
(τrr − τzz)+

(
1 − ε2

(
∂S
∂z

)2
)
τrz

)

= 1

1 + ε2
(
∂S
∂z

)2

(
2mη

∂S
∂z
ε2
(
∂ve

∂r
− ∂ue

∂z

)

+mη

(
1 − ε2

(
∂S
∂z

)2
)(

ε2 ∂v
e

∂z
+ ∂ue

∂r

))
, (A15)

the kinematic boundary condition is

vi = ∂S
∂t

+ ui ∂S
∂z

(A16)

and the continuity of velocity requires

ui = ue and vi = ve. (A17a,b)

The boundary conditions on the tube wall are

ue(d, z, t) = ve(d, z, t) = 0. (A18)

Now we expand the quantities into Taylor series of εr. For the inner viscoelastic thread:

ui(r, z, t) = ui
0(z, t)+ ui

2(z, t)
(εr)2

2
+ · · · , (A19)

vi(r, z, t) = − r
2
∂ui

0
∂z

− ε2r3

8
∂ui

2(z, t)
∂z

+ · · · , (A20)

pi(r, z, t) = pi
0(z, t)+ pi

2(z, t)(εr)2 + · · · , (A21)

τrr(r, z, t) = τrr0(z, t)+ τrr2(z, t)(εr)2 + · · · , (A22)

τzz(r, z, t) = τzz0(z, t)+ τzz2(z, t)(εr)2 + · · · , (A23)

τθθ (r, z, t) = τθθ0(z, t)+ τθθ2(z, t)(εr)2 + · · · , (A24)

rτrz(r, z, t) = τrz0(z, t)+ τrz2(z, t)(εr)2 + · · · . (A25)

For the outer Newtonian fluid:

ue(r, z, t) = ue
0(r, z, t)+ ue

2(r, z, t)ε2 + · · · , (A26)

ve(r, z, t) = ve
0(r, z, t)+ ve

2(r, z, t)ε2 + · · · , (A27)

pe(r, z, t) = pe
0(r, z, t)+ pe

2(r, z, t)ε2 + · · · . (A28)
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Substituting the expansions (A19)–(A28) into the kinematic condition (A16), the leading
order yields

vi
0(S, z, t) = ∂S

∂t
+ ui

0
∂S
∂z

= −S
2
∂ui

0
∂z
. (A29)

This gives

∂(S2)

∂t
+ ∂(S2ui

0)

∂z
= 0. (A30)

Substituting the expansions into (A4)–(A10), one has τrz0 = 0, τrr0 = τθθ0 and

∂ui
0

∂t
+ ui

0
∂ui

0
∂z

= −∂pi
0

∂z
+ β

(
2ui

2 + ∂2ui
0

∂z2

)
+ 2τrz2 + ∂τzz0

∂z
, (A31)

τrr0 + De

(
∂τrr0

∂t
+ ui

0
∂τrr0

∂z
+ τrr0

∂ui
0

∂z

)
+ αDe

1 − β
τ 2

rr0 = −(1 − β)
∂ui

0
∂z
, (A32)

τzz0 + De

(
∂τzz0

∂t
+ ui

0
∂τzz0

∂z
− 2τzz0

∂ui
0

∂z

)
+ αDe

1 − β
τ 2

zz0 = 2(1 − β)
∂ui

0
∂z
, (A33)

τθθ0 + De

(
∂τθθ0

∂t
+ ui

0
∂τθθ0

∂z
− 2τθθ0

∂ui
0

∂z

)
+ αDe

1 − β
τ 2
θθ0 = −(1 − β)

∂ui
0

∂z
, (A34)

τrz2 + De

(
∂τrz2

∂t
− τrz2

∂ui
0

∂z
+ ui

0
∂τrz2

∂z
− τrr0ui

2 + 1
2
τzz0

∂2ui
0

∂z2

)

+ αDe
1 − β

(τrr0 + τzz0)τrz2 = (1 − β)

(
ui

2 − 1
2
∂2ui

0
∂z2

)
. (A35)

Assume that mρ = ρe/ρi ∼ O(ε) and mη = ηe
0/η

i
0 ∼ O(ε2) = λ0ε

2, where λ0 is a
constant of O(1). Equation (A12) at O(1/ε2) gives

∂pe
0

∂r
= 0, (A36)

which implies that pe
0 = pe

0(z, t). Equation (A13) at O(1) gives

− ∂pe
0

∂z
+ λ0

1
r

∂

(
r
∂ue

∂r

)
∂r

= 0, (A37)

and then we obtain

ue
0 = r2

4λ0

∂pe
0

∂z
+ A(z, t) ln r + B(z, t), (A38)

where A(z, t) and B(z, t) are functions of z and t to be determined.
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Dynamics of viscoelastic thread surrounded by Newtonian fluid

From (A11) and (A38), one can obtain

ve
0 = − r3

16λ0

∂2pe
0

∂z2 + ∂A
∂z

(
r
4

− r ln r
2

)
− ∂B
∂z

r
2

+ C
r
. (A39)

From (A18), one has

B = − d2

4λ0

∂pe
0

∂z
− A ln d, (A40)

C = d4

16λ0

∂2pe
0

∂z2 − ∂A
∂z

(
d2

4
− d2 ln d

2

)
+ ∂B
∂z

d2

2
. (A41)

Therefore, (A 17) yields

ue
0 = r2 − d2

4λ0

∂pe
0

∂z
+ A ln

r
d
, (A42)

ve
0 = − 1

λ0

⎛
⎜⎝(r2 − d2)2

16r
∂2pe

0
∂z2 + λ0

2r2 ln
r
d

+ d2 − r2

4r
∂A
∂z

⎞
⎟⎠ . (A43)

Thus

ui
0(z, t) = ui

0|r=S = ue
0(S, z, t) = S2 − d2

4λ0

∂pe
0

∂z
+ A ln

S
d
. (A44)

From (A4), one has

vi
0 = − r

2
∂ui

0
∂z
. (A45)

Thus

vi
0(S, z, t) =

(
− r

2
∂ui

0
∂z

)∣∣∣∣∣
r=S

= −S
2

(
S2 − d2

4λ0

∂pe
0

∂z
+ A ln

S
d

)
z
. (A46)

On the other hand,

ve
0(S, z, t) = − 1

λ0

⎛
⎜⎝(S2 − d2)2

16r
∂2pe

0
∂z2 + λ0

2S2 ln
S
d

+ d2 − S2

4S
∂A
∂z

⎞
⎟⎠ . (A47)

Equations (A45) and (A47) together with (A 17) yield

A = −S2 + d2

4λ0

∂pe
2

∂z
+ f (t)
(S2 − d2)λ0

, (A48)

where f (t) is an arbitrary function of time t.
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F. Li and D. He

Thus, (A44) further gives

∂pe
2

∂z
=
λ0ui

0 − f (t)
S2 − d2 ln

S
d

S2 − d2

4
− S2 + d2

4
ln

S
d

. (A49)

The normal condition (A14) at O(1) together with (A19) and (A45) yields

pi
0 = pe

0 − β
∂ui

0
∂z

+ τrr0 + κ̂ (A50)

and

∂pi
0

∂z
= ∂pe

0
∂z

− β
∂2ui

0
∂z2 + ∂τrr0

∂z
+ ∂κ̂

∂z
, (A51)

where

κ̂ = 1

S

(
1 + ε2

(
∂S
∂z

)2
) −

ε2 ∂
2S
∂z2(

1 + ε2
(
∂S
∂z

)2
)3/2 . (A52)

The tangential condition (A15) at O(ε2) together with (A19), (A42) and (A45) gives

−3β
∂S
∂z
∂ui

0
∂z

+ β
∂vi

0
∂z

+ S
(
βui

2 + τrz2

)
+ ∂S
∂z
(τrr0 − τzz0) = S2 − d2

4S
∂pe

0
∂z

+ f (t)
S(S2 − d2)

.

(A53)

Equation (A6) at O(1) gives

∂ui
0

∂t
+ ui

0
∂ui

0
∂z

= −∂pi
0

∂z
+ 2

(
βui

2 + τrz2

)
+ β

∂2ui
0

∂z2 + ∂τzz0

∂z
. (A54)

Using (A49), (A51), (A53) and (A54), one can obtain

∂ui
0

∂t
+ ui

0
∂ui

0
∂z

= β

S2

∂

(
3S2 ∂ui

0
∂z

)

∂z
+ 1

S2

∂
(
S2 (τzz0 − τrr0)

)
∂z

− ∂κ̂

∂z
− 2

S2

(
λ0ui

0 − f (t)
S2 + d2

)
G(S, d), (A55)

where

G(S, d) = S2 + d2

S2 − d2 − (S2 + d2) ln
S
d

. (A56)
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Dynamics of viscoelastic thread surrounded by Newtonian fluid

Equations (A30), (A32), (A33) and (A55) constitute the 1-D model. For brevity we drop
the superscript i and the subscript 0.

Note that in this problem the shape of the stretched thread is spatially periodic in the
z direction. Being a cosinoidal harmonic perturbation imposed on the thread at the initial
time (Wang 2013), one has

f (t) =

∫ λ/2
−λ/2

S2
(
∂ui

∂t
+ ui ∂ui

∂z

)
dz + 2λ0

∫ λ/2
−λ/2

uiG(S, d) dz

∫ λ/2
−λ/2

2G(S, d)
S2 + d2 dz

= 0, (A57)

where λ = 2π/kR is the dimensionless wavelength of the perturbation.
Now one can write the above 1-D equations in the following dimensional form:

∂(S2)

∂t
+ ∂(S2ui)

∂z
= 0, (A58)

ρi
(
∂ui

∂t
+ ui ∂ui

∂z

)
= 3ηi

s

S2

∂

(
S2 ∂ui

∂z

)
∂z

+ 1
S2
∂(S2(τzz − τrr))

∂z
− σ

∂κ

∂z
− 2

S2 η
e
0uiG(S,R0),

(A59)

τzz + λi
(
∂τzz

∂t
+ ui ∂τzz

∂z
− 2τzz

∂ui

∂z

)
+ αλi

ηi
p
τ 2

zz = 2ηi
p
∂ui

∂z
, (A60)

τrr + λi
(
∂τrr

∂t
+ ui ∂τrr

∂z
+ τrr

∂ui

∂z

)
+ αλi

ηi
p
τ 2

rr = −ηi
p
∂ui

∂z
, (A61)

where

G(S,R0) = S2 + R2
0

S2 − R2
0 − (S2 + R2

0) ln
S

R0

, κ = 1

S

(
1 +

(
∂S
∂z

)2
)1/2 −

∂2S
∂z2(

1+
(
∂S
∂z

)2
)3/2 .

(A62)

Appendix B. Linear stability analysis of the 2-D axisymmetric model

In this Appendix, we derive the dispersion relation for the 2-D axisymmetric linear
stability from (2.1)–(2.15). The basic state of this model is

ūi = v̄i = ūe = v̄e = 0, p̄i − p̄e = σ

R
, τ̄zz = τ̄rr = τ̄rz = τ̄θθ = 0. (B1a–c)
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F. Li and D. He

Following the normal mode method, the quantities after being perturbed are decomposed
into

ui = ûi exp(ωt + jkz)+ c.c.,

vi = ûi exp(ωt + jkz)+ c.c.,

pi = p̄i + p̂i exp(ωt + jkz)+ c.c.,
τzz = τ̂zz exp(ωt + jkz)+ c.c.,
τrr = τ̂rr exp(ωt + jkz)+ c.c.,
τrz = τ̂zz exp(ωt + jkz)+ c.c.,
τθθ = τ̂θθ exp(ωt + jkz)+ c.c.,
ue = ûe exp(ωt + jkz)+ c.c.,
ve = ûe exp(ωt + jkz)+ c.c.,

pe = p̄e + p̂e exp(ωt + jkz)+ c.c.,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B2)

where the hat indicates the amplitude of the perturbation.
Substituting the above decompositions into (2.1)–(2.8), performing linearization and

introducing the stream functions ψ i(r, z, t) = ψ̂ i(r) exp(ωt + jkz)+ c.c. and ψe(r, z, t) =
ψ̂e(r) exp(ωt + jkz)+ c.c., one can obtain

ψ̂ i = rI1(kr)Ai
1 + rI1(kir)Ai

2,

ûi = −1
r
ψ̂ i

r = −kI0(kr)Ai
1 − kiI0(kir)Ai

2,

v̂i = jkψ̂ i

r
= jk(I1(kr)Ai

1 + I1(kir)Ai
2),

p̂i = −jωρiI0(kr)Ai
1,

τ̂zz = 2η̄i
0jkûi,

τ̂rr = 2η̄i
0

dv̂i

dr
,

τ̂rz = η̄i
0

(
dûi

dr
+ jkv̂i

)
,

τ̂θθ = 2η̄i
0
v̂i

r
,

ψ̂e = rI1(kr)Ae
1 + rK1(kr)Be

2 + rI1(ker)Ae
2 + rK1(ker)Be

2,

ûe = −1
r
ψ̂e

r = −kI0(kr)Ae
1 + kK0(kr)Be

1 − keI0(ker)Ae
2 + keK0(ker)Be

2,

v̂e = jkψ̂e

r
= jk(I1(kr)Ae

1 + K1(kr)Be
1 + I1(ker)Ae

2 + K1(ker)Be
2),

p̂e = −jωρeI0(kr)Ae
1 + jωρeK0(kr)Be

1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B3)

where Ai
1, Ai

2, Ae
1, Ae

2, Be
1, Be

2 are constants to be determined and

ki =
√

k2 + ωρi(1 + ωλi)

ηi
0(1 + ωβλi)

, ke =
√

k2 + ωρe

ηe
0

and η̄i
0 = ηi

0
1 + ωβλi

1 + ωλi . (B4)
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Dynamics of viscoelastic thread surrounded by Newtonian fluid

Substituting the above solutions into the boundary conditions (2.9)–(2.15) and
linearizing them, one obtains a system of equations for the unknown constants Ai

1, Ai
2, Ae

1,
Ae

2, Be
1and Be

2. In order to have non-trivial solutions, the determinant of the corresponding
coefficient matrix must be zero, which yields the non-dimensional dispersion relation
(3.8).
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