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The simplicial complexity is an invariant for finitely presentable groups which was
recently introduced by Babenko, Balacheff, and Bulteau to study systolic area. The
simplicial complexity κ(G) was proved to be a good approximation of the systolic
area σ(G) for large values of κ(G). In this paper we compute the simplicial
complexity of all surface groups (both in the orientable and in the non-orientable
case). This partially settles a problem raised by Babenko, Balacheff, and Bulteau.
We also prove that κ(G ∗ Z) = κ(G) for any surface group G. This provides the first
partial evidence in favor of the conjecture of the stability of the simplicial
complexity under free product with free groups. The general stability problem, both
for simplicial complexity and for systolic area, remains open.
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1. Introduction

Let X be a connected, non-simply connected finite simplicial complex of dimension
2. Given a piecewise smooth Riemannian metric g on X, the systole sys(X, g) of
(X, g) is the length of the shortest non-contractible loop in X. The systolic area
σ(X) of X is defined as

σ(X) := inf
g

area(X, g)
sys(X, g)2

,

where the infimum is taken over all piecewise smooth Riemannian metrics on X.
In [7], Gromov defined the systolic area of a finitely presentable group G as

σ(G) := inf
X

σ(X),

where the infimum is taken over the finite 2-dimensional simplicial complexes X
with fundamental group isomorphic to G. Gromov proved that σ(G) is strictly
positive unless G is free (see [6, theorem 6.7.A]) and posed the problem of estimating
the asymptotic behavior of the size of the set Gσ(C) of isomorphism classes of groups
G for which σ(G) � C [7]. By combining topological and geometric techniques,
Rudyak and Sabourau proved in [10] an exponential upper bound to the size of
Gσ(C), and considerably improved Gromov’s lower bound for the systolic area of a
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non-free group. In [10] they raised the following question concerning the stability
of the systolic area under free product with free groups: is σ(G ∗ Z) = σ(G) for
any non-free group G? (see [10, question 1.2]). The computation of σ(G ∗ T ) for
non-free groups G and T is a problem formulated by Gromov in [7, p. 337].

In [2] Babenko, Balacheff, and Bulteau introduced the simplicial complexity of
a finitely presentable group, which is a combinatorial invariant that approximates
the systolic area. The simplicial complexity κ(G) of a finitely presentable group G
is the minimum number of 2-simplices of a simplicial complex of dimension 2 with
fundamental group isomorphic to G (see [2, definition 2.1]). Here, the number of
2-simplices of a simplicial complex of dimension 2 may be thought of as a combi-
natorial approximation for the area. They showed that the simplicial complexity of
G constitutes a fairly good approximation to the systolic area of G for large values
of κ(G). More concretely, given ε > 0,

2πσ(G) � κ(G) � σ(G)(1+ε)

for a group G of free index 0, whenever κ(G) is big enough (see [2, theorem 1.2]
for the precise statement). Using this comparison result, they provided a quite
satisfactory answer to Gromov’s question on the size of Gσ(C), improving the upper
bound given in [10] (see [2, theorem 1.1]). In view of the close relationship between
σ(G) and κ(G), they asked whether the equality κ(G ∗ Z) = κ(G) holds for any
group G (see [2, § 2]). Another problem posed in [2] is the exact computation of
the value of κ for some groups ([2, examples 1,2]). To the best of our knowledge,
the only groups for which the value of κ is known are the fundamental group of the
projective plane Z2, of the torus Z ⊕ Z, of the Klein bottle, and Z3, computed in
[4] mainly by an exhaustive analysis.

The purpose of this article is to provide some partial answers to the problems
described above. In the first place, we compute the simplicial complexity of the
fundamental groups of all non-simply connected closed surfaces settling in the affir-
mative a conjecture from [4] (here by closed surface we mean a compact connected
smooth 2-manifold, orientable or non-orientable, without boundary).

Theorem 1.1. Let S be a non-simply connected closed surface. Then, κ(π1(S)) =
δ(S), where δ(S) is the minimum number of 2-simplices in a triangulation of S.

The numbers δ(S) were completely computed by Ringel [9], for non-orientable
surfaces, and by Jungerman and Ringel [5] in the orientable case (see theorem 4.1
below).

We also show that κ(G ∗ Z) = κ(G) for any surface group G. Here by a surface
group we mean the fundamental group of any non-simply connected closed surface
S. This provides some (admittedly partial) evidence in favor of the validity of κ(G ∗
Z) = κ(G) for any group G. Actually, we prove the following stronger estimate.

Theorem 1.2. Let G be a surface group and T a finitely presentable group. Then,
κ(G ∗ T ) � κ(G). In particular, κ(G ∗ Z) = κ(G).

To prove these results, we derive a sharp lower bound of κ(G ∗ T ) for any group
G whose cohomology ring satisfies a certain regularity property. The proof of this
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estimate is based on rather elementary techniques that we developed previously
in [3].

The outline of the article is as follows. In § 2, we recall the pertinent definitions
and results from [3] and prove our main technical result. In § 3, we use the main
lemma to estimate the mentioned lower bound on κ(G ∗ T ). Finally, in § 4 we prove
theorems 1.1 and 1.2. For almost all closed surfaces (non-exceptional surfaces in the
vocabulary of [3]), these results will follow straightforwardly from the lower bound
provided by theorem 3.2. In contrast, for handling the exceptional cases some ad-hoc
arguments will be required (cf. [3, § 3]).

2. Main technical result

In this section we prove a central technical lemma that will allow us to give a
lower bound of the simplicial complexity for groups of the form G ∗ T , where G
and T are finitely presentable groups and the cohomology ring of G satisfies a
certain regularity property. By the cohomology ring of a group G we will understand
its cohomology as a discrete group, i.e. the cohomology of an Eilenberg–MacLane
space K(G, 1). We will work with reduced (co)homology and the coefficient ring
for (co)homology groups will be F2. Throughout the article, G and T will denote
finitely presentable groups, and all the simplicial complexes that we deal with will
be finite. We recall first the definition of property (A) from [3, definition 2.3].

Definition 2.1. Let X be a topological space. We say that the cohomology ring
H∗(X) (with coefficients in F2) satisfies property (A) if for every non-trivial α in
H1(X), there exists β ∈ H1(X) such that α ∪ β is non-trivial in H2(X).

We will say that the cohomology ring of a group satisfies property (A) whenever
the cohomology ring of a K(G, 1) space does.

Example 2.2. Any surface group (orientable or non-orientable) satisfies property
(A) by Poincaré Duality.

More generally, any one-relator group G with H2(G) = F2 and with a non-
degenerate cup product form H1(G) × H1(G) → H2(G) = F2, satisfies property
(A). Using the computation of the cohomology ring of one-relator groups of [8],
one may obtain many additional examples of such groups. As concrete examples,
the Baumslag–Solitar groups BS(m,n) satisfy property (A) whenever m and n are
odd.

Let K be a connected simplicial complex of dimension 2 such that π1(K) = G ∗ T .
Observe that K is the 2-skeleton of an aspherical CW-complex X (possibly infinite
dimensional). Since the fundamental group of X is isomorphic to G ∗ T , X is an
Eilenberg–MacLane space K(G ∗ T, 1). By a theorem of Whitehead (see for example
[1, theorem 7.3]), X is homotopy equivalent to a space of the form KG ∨ KT , the
wedge union of a K(G, 1) space and a K(T, 1) space. Informally speaking, our
first objective is to obtain a subcomplex of K in which we have killed all the 2-
dimensional homology classes of K that do not correspond to classes in H2(G). We
start by giving a definition.
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Definition 2.3. Let X be a CW-complex of dimension at least 2, together with a
homotopy equivalence h : X → KG ∨ KT , where KG and KT are defined as above.
Assume further that its 2-skeleton X(2) is a finite simplicial complex. Let M � X(2)

be a (simplicial) subcomplex satisfying the following properties:

(1) The inclusion i : M ↪→ X induces isomorphisms i∗ : Hn(M) → Hn(X) for
n < 2.

(2) The composition H2(M) i∗−→ H2(X) ≡ H2(KG) ⊕ H2(KT )
p−→ H2(KG) is an

epimorphism, where p is the projection and the isomorphism H2(X) ≡
H2(KG) ⊕ H2(KT ) is induced by h.

We will say that such a subcomplex M is homologically G-full with respect to h, or
simply homologically G-full if the homotopy equivalence h is clear from the context.

The next result says, roughly, that we can kill the ‘extra’ homology classes in
H2(X) one at a time. The result is inspired in [3, proposition 2.7].

Lemma 2.4. Let X be a CW-complex of dimension at least 2 homotopy equiv-
alent to a space of the form KG ∨ KT and such that its 2-skeleton X(2) is a
finite simplicial complex. Let M � X(2) be a homologically G-full subcomplex.
If dim H2(M) > dim H2(G), there exists a 2-simplex σ ∈ M such that M \ σ is
homologically G-full. Moreover, dim H2(M \ σ) = dimH2(M) − 1.

Proof. Since by hypothesis dimH2(M) > dim H2(KG) there is a non-trivial class
B in the kernel of the linear map p ◦ i∗ : H2(M) → H2(KG). Let σ be a 2-simplex
of M in the support of B. The topological boundary ∂σ viewed as a chain in
C1(M \ σ) is the boundary of the 2-chain B − σ. Hence the inclusion induces the
zero morphism H1(∂σ) → H1(M \ σ). It follows that the inclusion M \ σ ↪→ M
induces isomorphisms Hn(M \ σ) → Hn(M) for n < 2. It remains to verify the
surjectivity of p ◦ j∗ : H2(M \ σ) → H2(KG), where j is the inclusion j : M \ σ ↪→
X. Let [Z] be a class in H2(KG). By hypothesis, there is some class C ∈ H2(M)
such that p ◦ i∗[C] = [Z]. If σ does not belong to the support of C, when viewed as
a class in H2(M \ σ) we have p ◦ j∗[C] = [Z]. In the other case, consider the 2-chain
C + B. Since the coefficients are taken in F2, this chain is a well defined 2-cycle in
M \ σ and p ◦ j∗[C + B] = p ◦ i∗[C] + p ◦ i∗[B] = p ◦ i∗[C] = [Z]. Hence, in any case
p ◦ j∗ : H2(M \ σ) → H2(KG) is an epimorphism. The fact that dimH2(M \ σ) =
dim H2(M) − 1 follows immediately from the Euler characteristic, since χ(M \ σ) =
χ(M) − 1. �

Notation. Given a finitely presentable group G, we will denote by χ(G) the
2-truncated Euler characteristic of G, that is χ(G) := dimH2(G) − dim H1(G) +
dim H0(G).

Recall that a simplex σ of a simplicial complex K is a free face of K if there is a
unique simplex τ ∈ K containing σ properly. In that case, we say that there is an
(elementary) collapse from K to the subcomplex L obtained from K by removing
the free face σ together with τ . Note that the inclusion L ⊆ K is, in particular, a
strong deformation retract.
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Lemma 2.5. Let K be a (finite) connected simplicial complex of dimension 2 with
fundamental group isomorphic to G ∗ T, and suppose that the cohomology ring of
G satisfies property (A). Then, there is another simplicial complex L of dimension
at most 2 with no more 2-simplices than K such that χ(L) � χ(G), dim H2(L) =
dim H2(G) and every edge of L is the face of at least two 2-simplices.

Proof. Let X be an Eilenberg–MacLane space K(G ∗ T, 1) such that X(2) = K.
Then there is a map i : K → KG ∨ KT inducing an isomorphism in Hn for n = 0
and 1 and an epimorphism in H2, where KG and KT are respectively a K(G, 1)
and a K(T, 1) space as before. Since the projection H2(X) ≡ H2(KG) ⊕ H2(KT ) →
H2(KG) is surjective, K is a homologically G-full subcomplex of X. By applying
inductively lemma 2.4, we obtain a subcomplex M of K that is homologically G-full
and such that dimH2(M) = dim H2(G). After collapsing the free faces of M , we
may assume that M has no edge that is the face of a unique 2-simplex. Suppose
there is a maximal edge e = {a, b} in M (otherwise we are done, since we may
take the desired complex L as M). If there is no path between a and b in M \ e,
the quotient M/e has a natural structure of a simplicial complex with one less
maximal edge than M . If, on the contrary, a and b are joined by some path in
M \ e, M is homotopy equivalent to a CW-complex of the form Z ∨ S1, where Z is
the complex M \ e and the S1 results from attaching a 1-cell by a map that sends
both vertices to a ∈ Z. After applying, if needed, finitely many of these moves, we
get a CW-complex of the form L ∨∨m

i=1 S1 homotopy equivalent to M , where L
is a simplicial complex formed by the 2-simplices of M (and hence, with no more
2-simplices than K) in which every edge is the face of at least two 2-simplices. It
remains to verify the bound on the Euler characteristic of L. Since L ∨∨m

i=1 S1 is
homotopy equivalent to M , clearly

χ(M) = χ

(
L ∨

m∨
i=1

S1

)
= χ(L) − m.

On the other hand, by construction χ(M) = χ(G) − dim H1(T ), since dim H2(M) =
dim H2(G) and the first homology group of M is isomorphic to H1(KG ∨ KT ) =
H1(G) ⊕ H1(T ). Now, by composing with the homotopy equivalence L ∨∨m

i=1 S1 �
M we obtain a map f : L ∨∨m

i=1 S1 → KG ∨ KT which induces an isomorphism in
Hn for n = 0 and 1, and such that p ◦ f∗ : H2(L ∨∨m

i=1 S1) = H2(L) → H2(KG) is
an epimorphism. In particular, dualizing we get an isomorphism

H1(KG ∨ KT ) = H1(G) × H1(T ) → H1

(
L ∨

m∨
i=1

S1

)
= H1(L) × H1

(
m∨

i=1

S1

)
.

Let (0, a) ∈ H1(L) × H1(
∨m

i=1 S1) be a non-trivial class and suppose that (α, δ) ∈
H1(G) × H1(T ) is the unique class such that f∗(α, δ) = (0, a). We claim that α =
0. Indeed, suppose that it was not the case. Then, since the cohomology ring of
G satisfies property (A) there is a class β ∈ H1(G) with α ∪ β �= 0. Consider the
class f∗((α, δ) ∪ (β, 0)) = f∗(α ∪ β, 0) ∈ H2(L) = H2(L) × H2(

∨m
i=1 S1). It is non-

trivial: take a class λ ∈ H2(G) such that (α ∪ β)λ �= 0 (here we use the identification
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H2(G) = Hom(H2(G), F2). Since M is homologically G-full, there is some class
γ ∈ H2(L) ≡ H2(M) such that f∗(γ) = (λ, η), for some η ∈ H2(T ). Then,

f∗(α ∪ β, 0)γ = (α ∪ β, 0)f∗(γ) = (α ∪ β, 0)(λ, η) �= 0.

On the other hand, from the identity

f∗((α, δ) ∪ (β, 0)) = (0, a) ∪ f∗(β, 0) = 0

we obtain a contradiction, proving the claim. We conclude that the inverse of
the map f∗ : H1(G) × H1(T ) → H1(L) × H1(

∨m
i=1 S1) restricts to a monomor-

phism H1(
∨m

i=1 S1) → H1(T ). Hence, m � dim H1(T ) and, since χ(L) = χ(G) −
(dim H1(T ) − m), the result follows. �

3. The lower bound

This section is devoted to the proof of the announced lower bound on the simplicial
complexity for groups of the form G ∗ T , where G and T are finitely presentable
groups and G satisfies property (A).

We begin by fixing some notations (see [3, § 2]).

Notation. Let k ∈ Z, k � 2. We denote by ρ(k) the integer number defined as

ρ(k) :=
⌈

7 +
√

49 − 24k

2

⌉
.

By abuse of notation, if K is a simplicial complex of dimension 2 such that χ(K) � 2
we will write ρ(K) to mean ρ(χ(K)). Also, we will denote by αi(K) the number of
i-simplices of K.

We prove now a simple result that links the special properties of the simplicial
complex L from the statement of lemma 2.5 to a lower bound on its number of
2-simplices α2(L). In what follows we will understand that a simplicial complex of
dimension 2 is of strict dimension 2, i.e. it has at least one 2-simplex.

Lemma 3.1 cf. [3, lemma 2.2]. Let L be a connected simplicial complex of dimension
2 in which every edge is the face of at least two 2-simplices. Then, if χ(L) � 2, the
complex L has at least ρ(L) vertices and at least 2ρ(L) − 2χ(L) 2-simplices.

Proof. Consider the Euler characteristic formula,

χ(L) = α0(L) − α1(L) + α2(L).

Since every edge of L is the face of at least two 2-simplices, we see that 3α2(L) �
2α1(L). On the other hand, since L is a simplicial complex it has at most

(
α0(L)

2

)
edges. Then

6χ(L) � 6α0(L) − α0(L)(α0(L) − 1).

If χ(L) � 0, the minimum strictly positive integer that satisfies this inequality is
precisely ρ(L) = ρ(χ(L)) and therefore α0(L) � ρ(L). An easy analysis shows that
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α0(L) � ρ(L) also when χ(L) = 1, 2. Finally, the claimed lower bound α2(L) �
2ρ(L) − 2χ(L) follows immediately from the Euler characteristic formula and the
inequalities 3α2(L) � 2α1(L), α0(L) � ρ(L). �

We are now ready to prove the main result of this section.

Theorem 3.2. Let G and T be finitely presented groups. If G satisfies property (A),
χ(G) � 2, and dim H2(G) > 0, then κ(G ∗ T ) � 2ρ(χ(G)) − 2χ(G).

Proof. Let K be a simplicial complex of dimension 2 with fundamental group iso-
morphic to G ∗ T . Since G satisfies property (A), from lemma 2.5 we obtain a
simplicial complex L with α2(L) � α2(K), χ(L) � χ(G) and such that every edge
of L is in at least two 2-simplices. Furthermore, there is an epimorphism H2(L) →
H2(G), so that dim H2(L) > 0 and hence L is of dimension 2. By lemma 3.1, L has at
least 2ρ(L) − 2χ(L) 2-simplices. Now, since χ(L) � χ(G) and ρ is a non-increasing
function, we conclude that α2(L) � 2ρ(χ(G)) − 2χ(G), as desired. �

We may apply theorem 3.2 to the one-relator groups from example 2.2. For
instance, the theorem gives the lower bound κ(BS(m,n)) � 14 for Baumslag–
Solitar groups with m, n odd since χ(BS(m,n)) = 0. We know that this bound
is not sharp except for the fundamental group of the torus Z ⊕ Z = BS(1, 1). But
one would expect stronger lower bounds for one-relator groups with a large num-
ber of generators (and hence, small Euler characteristic). As we will see in the
next section, the lower bound from theorem 3.2 is sharp for fundamental groups of
surfaces.

4. The simplicial complexity of surface groups

In this section we derive the main results of the article. Recall that the number of
2-simplices in a minimal triangulation of a closed surface was computed by Ringel
[9], in the non-orientable case, and by Jungerman and Ringel [5], in the orientable
case.

Theorem 4.1 Jungerman and Ringel. Let S be a closed surface different from the
orientable surface of genus 2 (M2), the Klein bottle (N2) and the non-orientable
surface of genus 3 (N3). Then, we have the following formula for the number δ(S)
of 2-simplices in a minimal triangulation of S :

δ(S) = 2ρ(χ(S)) − 2χ(S).

For the exceptional cases M2, N2, and N3, it is necessary to replace δ(S) by δ(S) − 2
in the formula.

As it was observed in example 2.2, the fundamental group of a non-simply con-
nected closed surface S satisfies property (A). Hence, we may apply theorem 3.2 to
groups of the form π1(S) ∗ T obtaining the following corollary.

Proposition 4.2. Let S be a non-simply connected closed surface. Then κ(π1(S) ∗
T ) � 2ρ(χ(S)) − 2χ(S). In particular, if S is non-exceptional, then κ(π1(S) ∗ T ) �
δ(S).
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Proof. By theorem 3.2, we have that κ(π1(S) ∗ T ) � 2ρ(χ(π1(S))) − χ(π1(S)).
Hence, it is enough to see that χ(π1(S)) = χ(S) for all non-simply connected closed
surfaces S. This identity is clear for surfaces S different from the real projective
plane RP 2 since these surfaces are aspherical. For RP 2, notice that the infinite
real projective space RP∞ is an Eilenberg–MacLane space for π1(RP 2) = Z2, so
we have χ(π1(S)) = χ(S) also for S = RP 2. �

It remains to handle the exceptional cases. Observe that for an exceptional
surface S (i.e. S = N2, N3 or M2), proposition 4.2 provides the lower bound
κ(π1(S) ∗ T ) � 2ρ(χ(S)) − 2χ(S), which is slightly weaker than required because
δ(S) = 2ρ(χ(S)) − 2χ(S) + 2 in these cases. So, for the exceptional surfaces, we
will need to refine the proof of the lower bound of theorem 3.2.

Lemma 4.3. Let S be an aspherical closed surface (either exceptional or non-
exceptional) and let K be a connected simplicial complex of dimension 2 with
fundamental group isomorphic to π1(S) ∗ T . Let L be the simplicial complex
obtained from K by applying lemma 2.5. If χ(L) = χ(S), then there is a continuous
map L → S that induces an isomorphism in (co)homology.

Proof. From the proof of lemma 2.5 applied to K, we obtain a continuous map
f : L ∨∨m

i=1 S1 → Kπ1(S) ∨ KT � S ∨ KT (since S is aspherical) which induces an
isomorphism in Hn for n = 0 and 1 and an epimorphism p ◦ f∗ : H2(L ∨∨m

i=1 S1) =
H2(L) → H2(S), and such that dimH2(L) = dim H2(S). Consider the natural map

g : L → S defined as the composition L ↪→ L ∨∨m
i=1 S1 f−→ S ∨ KT → S, where the

first map is the inclusion and the last one is the projection to the quotient.
Since the quotient map S ∨ KT → S induces the projection H∗(S) ⊕ H∗(KT ) →
H∗(S) in homology, g induces an isomorphism in H2 and so it suffices to show
g∗ : H1(L) → H1(S) is an isomorphism. Note that from the proof of lemma 2.5
it follows that the inverse of f∗ : H1(Kπ1(S)) × H1(KT ) → H1(L) × H1(

∨m
i=1 S1)

restricts to a monomorphism h : H1(
∨m

i=1 S1) → H1(KT ). More concretely, the
monomorphism h sends a class a ∈ H1(

∨m
i=1 S1) to the unique class α ∈ H1(KT )

such that f∗(0, α) = (0, a). On the other hand, χ(L) = χ(S) − (dim H1(KT ) − m)
and since χ(L) = χ(S) by assumption, m = dim H1(KT ) and so h is an isomor-
phism. It is clear then that also f∗ restricts in an analogous way to an isomorphism
H1(KT ) → H1(

∨m
i=1 S1). Now, the morphism induced by g between the first coho-

mology groups coincides with the composition H1(S) ↪→ H1(S) × H1(KT )
f∗
−→

H1(L) × H1(
∨m

i=1 S1) → H1(L), the first arrow being the inclusion and the last
one the projection on the first coordinate. Using the fact that f∗ restricts to an iso-
morphism between the second factors, it is not difficult to check that the described
map between the first factors H1(S) → H1(L) is an isomorphism. Since H1(L) and
H1(S) are vector spaces of finite dimension over F2, we conclude that g induces an
isomorphism in (co)homology as desired. �

The next result, which was proved in [3], states roughly that if the complex L
obtained from lemma 2.5 satisfies the hypothesis of lemma 4.3, it is close to being
homeomorphic to a surface.
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Proposition 4.4 see [3, proposition 3.1]. Let K be a simplicial complex of dimen-
sion 2 such that each edge of K is the face of exactly two 2-simplices and let
S be a closed surface. Suppose that there is a continuous map K → S inducing
isomorphisms in all homology groups. Then K is homeomorphic to S.

Proposition 4.5. Let S = N2, N3 or M2. Then κ(π1(S) ∗ T ) � δ(S).

Proof. Let K be a simplicial complex with fundamental group isomorphic to π1(S) ∗
T . From lemma 2.5, and keeping the notations of the proof of theorem 3.2, we
obtain a complex L with α2(L) � α2(K), χ(L) � χ(π1(S)) = χ(S) and such that
every edge of L is in at least two 2-simplices. By lemma 3.1, this implies that L has
at least ρ(L) � ρ(S) vertices and at least 2ρ(L) − 2χ(L) 2-simplices. Note that if
any of the strict inequalities α0(L) > ρ(S), χ(L) < χ(S) holds, we have

α2(L) � 2ρ(S) − 2χ(S) + 2 = δ(S)

and there is nothing to prove. In view of this, in what follows we will suppose
that α0(L) = ρ(S) and χ(L) = χ(S). Observe that the homology of L is isomorphic
to the homology of S via a continuous map L → S by lemma 4.3. Also, since
3α2(L) � 2α1(L), by the Euler characteristic formula for L we have

3(α0(L) − χ(L)) � α1(L) �
(

α0(L)
2

)
.

We solve first the case S = N2. By our assumption, we have that χ(L) = χ(N2) = 0
and α0(L) = ρ(N2) = 7. Hence, from the above inequality we learn that α1(L) =
21 and, since χ(L) = 0, α2(L) = 14. Thus 3α2(L) = 2α1(L) = 42, from where it
follows that every edge of L is the face of exactly two 2-simplices. Since there is a
map L → S inducing an isomorphism in homology, by proposition 4.4 L would be
homeomorphic to N2 contradicting theorem 4.1. Hence, α0(L) > ρ(N2) or χ(L) <
χ(S) and consequently α2(L) � δ(N2).

For the surface S = N3, we know that χ(L) = χ(N3) = −1 and α0(L) = ρ(N3) =
8. Hence,

3(α0(L) − χ(L)) = 27 � α1(L) � 28 =
(

α0(L)
2

)
.

Suppose first that α1(L) = 27, so that α2(L) = 18. Hence every edge of L is the
face of exactly two 2-simplices and from proposition 4.4, L is homeomorphic to N3

in contradiction to theorem 4.1. Then, α1(L) = 28. In that case, α2(L) = 19 and
since 57 = 3α2(L) = 2α1(L) + 1, every edge of L is in two 2-simplices except for
one that is the face of three 2-simplices of L. The link of a vertex of this edge is a
graph in which every vertex has degree two except for one that has degree three.
This is impossible because the sum of the degrees of an undirected graph is even.
Therefore, α0(L) > ρ(N3) or χ(L) < χ(N3) and hence α2(L) � δ(N3) as claimed.

Finally, when S = M2 we have that χ(L) = χ(M2) = −2 and α0(L) = ρ(M2) = 9.
In this case, we know that α2(L) � 22 = δ(M2) − 2 and we want to show that L has
at least δ(M2) = 24 2-simplices. We will see that the cases α2(L) = 22, α2(L) = 23
are not possible. Suppose first that α2(L) = 22. Then, by the Euler characteristic
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formula, α1(L) = 33. Therefore, every edge of L is the face of exactly two 2-simplices
of L and so, by proposition 4.4 L should be homeomorphic to M2, which contradicts
theorem 4.1. If α2(L) = 23, it is α1(L) = 34, whence 69 = 3α2(L) = 2α1(L) + 1. It
follows that every edge of L is the face of exactly two 2-simplices except for one
which is the face of three 2-simplices. The same argument as before shows that this
is impossible. We conclude that α2(L) � δ(M2). �

We obtain theorems 1.1 and 1.2 as corollaries of the previous propositions.

Proof of theorem 1.1. The upper bound κ(π1(S)) � δ(S) is clear, while the lower
bound follows from propositions 4.2 and 4.5. �

Note that, as a consequence of this result, the simplicial complexity of surface
groups grows linearly on the genus. This was observed, in the orientable case, in
[2, example 2].

Proof of theorem 1.2. Let T be a finitely presentable group. By propositions 4.2
and 4.5, κ(π1(S) ∗ T ) � δ(S) and since κ(π1(S)) = δ(S) by theorem 1.1, the first
claim holds. For the second one, it is enough to observe that the upper bound
κ(G ∗ Z) � κ(G) holds trivially for every finitely presentable group G. �

Arguably, the conclusions of theorems 1.1 and 1.2 should hold at least for
finitely presentable groups G satisfying property (A) in place of surface groups.
Unfortunately, we have not been able to establish these results in the general case.
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Dreiecke zerlegen kann. Math. Ann. 130 (1955), 317–326.

10 Y. Rudyak and S. Sabourau. Systolic invariants of groups and 2-complexes via Grushko
decomposition. Ann. Inst. Fourier (Grenoble) 58 (2008), 777–800.

https://doi.org/10.1017/prm.2019.67 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.67

