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Abstract
In a classical chess round-robin tournament, each of 𝑛 players wins, draws, or loses a game against each of the other
𝑛−1 players. A win rewards a player with 1 points, a draw with 1/2 point, and a loss with 0 points. We are interested
in the distribution of the scores associated with ranks of 𝑛 players after

(𝑛
2
)

games, that is, the distribution of the
maximal score, second maximum, and so on. The exact distribution for a general 𝑛 seems impossible to obtain; we
obtain a limit distribution.

1. Introduction

In a classical chess round-robin tournament, each of 𝑛 players wins, draws, or loses a game against each
of the other 𝑛 − 1 players. A win rewards a player with 1 points, a draw with 1/2 point, and a loss with
0 points. Denoting by 𝑋𝑖 𝑗 the score of the player 𝑖 after the game with the player 𝑗 , 𝑗 ≠ 𝑖, in this article,
we consider the following model:

Model M:
For 𝑖 ≠ 𝑗 , 𝑋𝑖 𝑗 + 𝑋 𝑗𝑖 = 1, 𝑋𝑖 𝑗 ∈ {0, 1/2, 1}; we assume that all players are equally strong, that

is, 𝑃(𝑋𝑖 𝑗 = 1) = 𝑃(𝑋 𝑗𝑖 = 1), and that the probability of a draw is the same for all games, denoted
by 𝑝 = 𝑃(𝑋𝑖 𝑗 = 1/2). We also assume that all

(𝑛
2
)

pairs of scores (𝑋12, 𝑋21), . . . , (𝑋1𝑛, 𝑋𝑛1), . . . ,
(𝑋𝑛−1,𝑛, 𝑋𝑛,𝑛−1) are independent.

Let 𝑠𝑖 =
∑𝑛

𝑗=1, 𝑗≠𝑖 𝑋𝑖 𝑗 be a score of the player 𝑖 (𝑖 = 1, . . . , 𝑛) after playing with 𝑛 − 1 opponents.
We use a standard notation and denote by 𝑠 (1) ≤ 𝑠 (2) ≤ · · · ≤ 𝑠 (𝑛) the order statistics of the random
variables 𝑠1, 𝑠2, . . . , 𝑠𝑛, and further denote normalized scores (zero expectation and unit variance) by
𝑠∗1, 𝑠

∗
2, . . . , 𝑠

∗
𝑛 with the corresponding order statistics 𝑠∗(1) ≤ 𝑠∗(2) ≤ · · · ≤ 𝑠∗(𝑛) .

For the case where there are no draws, that is, 𝑋𝑖 𝑗 ∈ {0, 1}, 𝑋𝑖 𝑗 + 𝑋 𝑗𝑖 = 1, 𝑝𝑖 𝑗 = 𝑃(𝑋𝑖 𝑗 = 1) = 1
2 ,

Huber [7] proved that

𝑠∗(𝑛) −
√

2 log(𝑛 − 1) → 0

in probability as 𝑛 → ∞ (see also [12]), where log(x) is the logarithm of x, to base e. The main step in
his proof was establishing the following inequality (Lemma 1 in [7]):

𝑃(𝑠1 < 𝑘1, . . . , 𝑠𝑚 < 𝑘𝑚) ≤ 𝑃(𝑠1 < 𝑘1) · · · 𝑃(𝑠𝑚 < 𝑘𝑚)

for any probability matrix (𝑝𝑖 𝑗 ) and any numbers (𝑘1, . . . , 𝑘𝑚), 𝑚 ≤ 𝑛.
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Malinovsky and Moon [11] extended Huber’s lemma for the case with draws and a general 𝑝𝑖 𝑗 ,
where 𝑋𝑖 𝑗 ∈ {0, 1/2, 1}, 𝑋𝑖 𝑗 + 𝑋 𝑗𝑖 = 1, 𝑝𝑖 𝑗 = 𝑃(𝑋𝑖 𝑗 = 1) (Model H1), and for the case of a symmetric
distribution where 𝑋𝑖 𝑗 ∈ {1, 2, . . . , 𝑚}, 𝑋𝑖 𝑗 + 𝑋 𝑗𝑖 = 𝑚, 𝑝𝑢 = 𝑃(𝑋𝑖 𝑗 = 𝑢) = 𝑝𝑚−𝑢 , 𝑢 = 0, 1, . . . , 𝑚
(Model H2). As a byproduct, in Models H1 and H2, similar convergence in the probability of the
normalized maximal score holds. Ross [13] found some bounds on the distribution of the number of
wins of the winning team for a related model.

In this work, we are interested in the marginal distribution of the scores associated with the ranks
of 𝑛 players after

(𝑛
2
)

games under Model M, where rank 1 is the winner’s rank, rank 2 is the second
best, and so on. This means that we are interested in finding the marginal distribution of 𝑠 (𝑖) . The exact
distribution for a general 𝑛 seems impossible to obtain; we obtain a limit distribution, and demonstrate
it with the three best scores in Model M.

2. Asymptotic distribution

Under Model M, we have the following properties of the scores 𝑠1, 𝑠2 . . . , 𝑠𝑛 that satisfy 𝑠1+𝑠2+· · ·+𝑠𝑛 =
𝑛(𝑛 − 1)/2:

(a) 𝐸𝑛 = 𝐸 (𝑠1) = (𝑛 − 1)/2, 𝜎𝑛 = 𝜎(𝑠1) =
√
(𝑛 − 1)(1 − 𝑝)/4,

(b) 𝜌𝑛 = corr(𝑠1, 𝑠2) = −1/(𝑛 − 1),
(c) The random variables 𝑠1, 𝑠2, . . . , 𝑠𝑛 are exchangeable.

From the multivariate central limit theorem (e.g., see [10]), it follows that when 𝑛 → ∞, the
joint distribution of 𝑠1, 𝑠2, . . . , 𝑠𝑛 is multivariate normal. Therefore, the problem of finding the limit
distribution of 𝑠 (𝑖) reduces to the problem of the distribution of the 𝑖th largest term in the multivariate
normal vector.

The investigation of the distribution of maximum and extreme elements of i.i.d. random variables
has a long history (see, e.g., the books by [3,4,6]). In the case of dependent random variables, the
fundamental work of Berman [1] will lead to a limit distribution of 𝑠 (𝑛) , and using the results presented
in Leadbetter et al. [9], we can obtain a limit distribution of 𝑠 (𝑖) . Due to the properties of a multivariate
normal distribution and its particular correlation structure under Model M, the limit distribution of the
maximal score is identical to the limit distribution of the corresponding independent random variables.
The intuition for this “surprising” phenomenon was initially explained by Markov and Bernstein, as is
described in Leadbetter [8].

2.1. Maximal score

First, we present the result from Berman [1] and therefore have to introduce the definition of a stationary
sequence of random variables (see, e.g., [9]).

Definition 2.1. A sequence of random variables is called a stationary sequence if the distributions of
the vectors (𝑋 𝑗1 , . . . , 𝑋 𝑗𝑛 ) and (𝑋 𝑗1+𝑠, . . . , 𝑋 𝑗𝑛+𝑠) are identical for any choice of 𝑛, 𝑗1, . . . , 𝑗𝑛, and 𝑠.

Theorem 2.1 (Berman[1]). Let 𝑋0, 𝑋1, 𝑋2, . . . be a stationary Gaussian sequence with 𝐸 (𝑋1) = 0,
𝐸 (𝑋2

1 ) = 1, 𝐸 (𝑋0𝑋 𝑗 ) = 𝑟 𝑗 for 𝑗 ≥ 1 and let sequences {𝑎𝑛} and {𝑏𝑛} be defined as

𝑎𝑛 = (2 log 𝑛)−1/2, 𝑏𝑛 = (2 log 𝑛)1/2 − 1
2 (2 log 𝑛)−1/2 (log log 𝑛 + log 4𝜋). (1)

If lim𝑛→∞ 𝑟𝑛 log 𝑛 = 0 or
∑∞

𝑛=1 𝑟
2
𝑛 < ∞, then

lim
𝑛→∞

𝑃(𝑋(𝑛) ≤ 𝑎𝑛𝑡 + 𝑏𝑛) = 𝑒𝑒
−𝑡 ≡ 𝐺 (𝑡) ("Gumbel"),

for all 𝑡.
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We obtain:

Result 2.1.
lim
𝑛→∞

𝑃(𝑠∗(𝑛) ≤ 𝑎𝑛 + 𝑏𝑛𝑡) = 𝐺 (𝑡).

Proof. The random variables 𝑠1, 𝑠2, . . . , 𝑠𝑛 are exchangeable random variables and therefore stationary.
In our case, corr(𝑠1, 𝑠2) = −1/(𝑛 − 1) and lim𝑛→∞(1/(𝑛 − 1)) log(𝑛) = 0, and therefore, Berman’s
Theorem 2.1 holds for Model M. Combining the multivariate central limit theorem with Theorem 2.1,
we obtain the limiting distribution of 𝑠∗(𝑛) . �

Corollary 2.1.

𝐸 (𝑠 (𝑛) ) ∼ 𝑛 − 1
2

+
√

(𝑛 − 1) log(𝑛)(1 − 𝑝)
2

+
√

(𝑛 − 1)(1 − 𝑝)
2 log(𝑛)

{
𝛾

2
− 1

4
(log log(𝑛) + log(4𝜋))

}
≡ 𝐸̂ (𝑛)

𝜎(𝑠 (𝑛) ) ∼ 𝜋

4
√

3

√
(𝑛 − 1)(1 − 𝑝)

2 log(𝑛) ≡ 𝜎̂(𝑛) ,

where 𝛾 = 0.5772156649 . . . is the Euler constant and 𝑎𝑛 ∼ 𝑏𝑛 means lim𝑛→∞ 𝑎𝑛/𝑏𝑛 = 1.

Proof. The moments under the distribution function 𝐺 can be obtained based on the following consid-
eration. If 𝑌1, . . . , 𝑌𝑛 are independent exp(1) random variables, then straightforward calculation shows
(see, e.g., [5]):

lim
𝑛→∞

𝑃(𝑌(𝑛) − ln(𝑛) ≤ 𝑡) = 𝐺 (𝑡), (2)

and for r =1, 2, . . . , 𝑛,
(𝑛 + 1 − 𝑟)(𝑌(𝑟 ) − 𝑌(𝑟−1) )

are independent exponential random variables with rate parameter 1, where𝑌(0) is defined as zero. Since

𝑌(𝑘) = 𝑌(1) + (𝑌(2) − 𝑌(1) ) + · · · + (𝑌(𝑘) − 𝑌(𝑘−1) ), (3)

we obtain that

𝐸 (𝑌(𝑛) ) =
𝑛∑
𝑗=1

1
𝑗
, Var(𝑌(𝑛) ) =

𝑛∑
𝑗=1

1
𝑗2 .

From lim𝑛→∞{
∑𝑛

𝑗=1 1/ 𝑗 − log(𝑛)} = 𝛾, lim𝑛→∞
∑𝑛

𝑗=1 1/ 𝑗2 = 𝜋2/6 (see, e.g., [2]), and (2), we obtain the
expectation and variance under the distribution function 𝐺 as 𝐸𝐺 = 𝛾, Var𝐺 = 𝜋2/6. Combining this
with Result 2.1, we have

𝐸 (𝑠∗(𝑛) ) ∼ 𝛾𝑏𝑛 + 𝑎𝑛, 𝜎(𝑠∗(𝑛) ) ∼
√

𝜋2

6
𝑏𝑛. (4)

Then, upon substituting 𝑠∗(𝑛) = (𝑠 (𝑛) − 𝐸𝑛)/𝜎𝑛, Corollary 2.1 follows. �

In Table 1, we compare 𝐸 (𝑠 (𝑛) ) with 𝐸̂ (𝑛) and 𝜎(𝑠 (𝑛) ) with 𝜎̂(𝑛) in this manner: We fix 𝑝 = 2/3 and
for 𝑛 = 10, 20, 50, 100, 1,000, and 10,000 we evaluate 𝐸 (𝑠 (𝑛) ) and 𝜎(𝑠 (𝑛) ) using Monte-Carlo (MC)
simulation. Values of 𝐸̂ (𝑛) and 𝜎̂(𝑛) obtained based on Corollary 2.1.
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Table 1. The number of Monte-Carlo repetitions is 100,000 for 𝑛 = 10, 20, 50, 100; 10, 000 for 𝑛 =
1,000; and 500 for 𝑛 = 10,000.

𝑛 𝐸 (𝑠 (𝑛) ) 𝐸̂ (𝑛) |𝐸 (𝑛) /𝐸 (𝑠 (𝑛) ) − 1| ∗ 100% 𝜎(𝑠 (𝑛) ) 𝜎̂(𝑛) |𝜎̂(𝑛) /𝜎(𝑠 (𝑛) ) − 1| ∗ 100%

10 5.833 5.912 1.360 0.469 0.518 10.454
20 11.89 11.944 0.456 0.627 0.659 5.189
50 29.08 29.162 0.283 0.912 0.927 1.563
100 56.73 56.843 0.199 1.219 1.214 0.426
1,000 529.12 529.352 0.044 3.259 3.148 3.529
10,000 5110.23 5111.295 0.0212 8.949 8.626 3.742

Table 2. The number of Monte-Carlo repetitions is 100,000 for 𝑛 = 10, 20, 50, 100; 10, 000 for 𝑛 =
1,000; and 500 for 𝑛 = 10,000; 𝑟 𝑗 = |𝐸 ( 𝑗) /𝐸 (𝑠 ( 𝑗) ) − 1| ∗ 100%, 𝑗 = 𝑛 − 1, 𝑛 − 2.

𝑛 𝐸 (𝑠 (𝑛−1) ) (𝜎(𝑠 (𝑛−1) )) 𝐸 (𝑛−1) (𝜎̂(𝑛−1) ) 𝐸 (𝑠 (𝑛−2) ) (𝜎(𝑠 (𝑛−2) )) 𝐸 (𝑛−2) (𝜎̂(𝑛−2) ) 𝑟 (𝑛−1) 𝑟 (𝑛−2)

10 5.400 (0.338) 5.509 (0.324) 5.093 (0.273) 5.307 (0.254) 2.009 4.195
20 11.305 (0.446) 11.43 (0.413) 10.95 (0.374) 11.173 (0.323) 1.106 2.037
50 28.277 (0.649) 28.44 (0.580) 27.816 (0.541) 28.079 (0.454) 0.576 0.946
100 55.695 (0.858) 55.896 (0.760) 55.113 (0.712 55.423 (0.595) 0.361 0.563
1,000 526.48 (2.154) 526.9 (1.971) 525.05 (1.764) 525.67 (1.543) 0.080 0.118
10,000 5103.2 (5.866) 5104.6 (5.401) 5099.5 (4.672) 5101.2 (4.227) 0.027 0.033

2.2. Second and third largest scores

Result 2.2. For 𝑗 = 1, . . . , 𝑛 − 1,

lim
𝑛→∞

𝑃(𝑠∗(𝑛− 𝑗) < 𝑎𝑛 + 𝑏𝑛𝑡) = 𝐺 (𝑡)(1 + 𝑒−𝑡 + · · · + 𝑒− 𝑗𝑡/ 𝑗!),

where 𝑎𝑛 and 𝑏𝑛 are defined in (1).

Proof. Follows from combining the multivariate central limit theorem with Theorems 4.5.2. and 5.3.4.
in Leadbetter et al. [9]. �

Corollary 2.2.

𝐸 (𝑠∗(𝑛−1) ) ∼ 𝛾𝑏𝑛 + 𝑎𝑛 − 𝑏𝑛, 𝜎(𝑠∗(𝑛−1) ) ∼
√(

𝜋2

6
− 1

)
𝑏𝑛, (5)

𝐸 (𝑠∗(𝑛−2) ) ∼ 𝛾𝑏𝑛 + 𝑎𝑛 − 3/2𝑏𝑛, 𝜎(𝑠∗(𝑛−2) ) ∼
√(

𝜋2

6
− 1.25

)
𝑏𝑛 (6)

Proof. Combing (2) with Theorem 2.2.2 in Leadbetter et al. [9], we obtain the following result: if
𝑌1, . . . , 𝑌𝑛 are independent exp(1) random variables, then for 𝑗 = 1, . . . , 𝑛 − 1

lim
𝑛→∞

𝑃(𝑌(𝑛− 𝑗) − log(𝑛) ≤ 𝑡) = 𝐺 (𝑡)(1 + 𝑒−𝑡 + · · · + 𝑒− 𝑗𝑡/ 𝑗!). (7)

The rest of the proof is similar to the proof of Corollary 2.1. �
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Substituting 𝑠∗( 𝑗) = (𝑠 ( 𝑗) −𝐸𝑛)/𝜎𝑛 for 𝑗 = 𝑛−1, 𝑛−2, we obtain the values 𝐸 (𝑠 ( 𝑗) ), 𝜎(𝑠 ( 𝑗) ), 𝐸 ( 𝑗) , 𝜎̂( 𝑗) ,
which are similar to the corresponding values obtained in Corollary 2.1 for the case 𝑗 = 𝑛.

In the case where 𝑝 = 2/3, we provide (in Table 2) numerical comparisons for the second and third
largest scores in a similar manner as was done in Table 1.
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