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The interface defining a biological cell is a thin membrane, which acts as a leaky
capacitor. We investigate the influence of capacitance and conductivity on the stability
of a planar membrane subjected to a DC electric field. We develop a zero-thickness
model of the membrane, in which the bilayer finite thickness is effectively accounted
for by membrane electro-mechanical properties such as bending modulus, capacitance
and conductance. The linear stability analysis shows that membrane conductance and
asymmetry in the embedding electrolyte solutions destabilize the interface. However,
the capacitive charging acts to stabilize the system under conditions where an ordinary
fluid–fluid interface is unstable.
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1. Introduction
Biological cells are enveloped by a nanometre-thick membrane, whose integrity is

central to maintaining life. The cell membrane regulates the transport of substances
between the cell interior and the extracellular space. To deliver exogenous molecules
(such as drugs and DNA) into living cells, strong electric fields are used. The electric
stresses induce pores in the cell membrane, through which the molecules enter the
cell. Ideally, these pores should reseal after the field is turned off. However, often the
membrane collapses leading to cell death.

The physical mechanisms of membrane destabilization in electric fields remain
poorly understood (Teissie, Golzio & Rols 2005). Theoretical models based
on stability analyses have mainly focused on thickness fluctuations (Weaver &
Chizmadzhev 1996). However, recent works have shown that bending modes can
also destabilize the membrane, even at lower voltages (Sens & Isambert 2002; Lacoste,
Lagomarsino & Joanny 2007; Schwalbe, Vlahovska & Miksis 2011). Experimental
studies using giant vesicles (artificial cell-size membrane envelopes) have revealed that
membrane deformation and poration depend crucially on the electric pulse duration
(Riske & Dimova 2005; Dimova et al. 2009): a vesicle subjected to a long, weak pulse
bursts while a vesicle subjected to a short, strong pulse survives (Salipante, Dimova &
Vlahovska, unpublished observations).
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FIGURE 1. (a) Vesicle collapsing in a DC electric field (Salipante et al. unpublished
observations). Leakage through pores causes loss of phase contrast and the interfaces facing
the poles appear fuzzy. (b) A freely floating planar lipid bilayer membrane separating fluids
with different physical and electrical properties is subjected to an uniform electric field E0.
The time-dependent displacement of the membrane above the x–y plane along the z-direction
is h(x, y, t).

The dynamics of fluid–fluid interfaces, e.g. water–air, stressed by a perpendicularly
applied electric field, as sketched in figure 1, has been extensively studied since the
pioneering work of Taylor & McEwan (1965). They found that the interface between
conducting and non-conducting fluids (σ2 � σ1) is unstable when the applied electric
field strength exceeds E2

c = 2γ kT/ε1, where kT = 2π [g(ρ2 − ρ1)/γ ]1/2; here γ is the
surface tension, ρ1,2 are the fluid densities and g is the gravitational acceleration.
Notably, if the fluids are density matched, i.e. ρ1 = ρ2, there is no threshold electric
field. A follow-up study by Melcher & Smith (1969) highlighted the importance of
the finite charge relaxation time. More recently, the discovery that thin polymer films
form periodic arrays of pillars when subjected to a vertical DC (Schaffer et al. 2000;
Pease & Russel 2002; Thaokar & Kumaran 2005; Wu & Russel 2009) or AC electric
field (Roberts & Kumar 2009; Gambhire & Thaokar 2010) renewed interest in the
electrohydrodynamic instabilities of fluid interfaces.

The main structural component of biomembranes is a lipid bilayer with typical
thickness of ∼5 nm. The lipid molecules are free to move within a monolayer, and
thus on scales larger than the bilayer thickness the membrane can be treated as
two-dimensional fluid. However, bilayer membranes differ from ordinary fluid–fluid
interfaces in several aspects. First, the finite bilayer thickness imparts resistance to
changes in curvature. Second, the energy required for bending is comparable to the
thermal energy, and thermally excited shape fluctuations are strong and visible with
optical microscopy. Third, the number of lipid molecules in the bilayer is fixed and
thus the interfacial area cannot change: the two-dimensional fluid is incompressible,
and the membrane tension γ is not a material property but an adjustable parameter
enforcing constant surface area (Seifert 1995).

Elastic properties of fluid membranes are described by the classic Helfrich energy
(Helfrich 1973)

F =
∫ [κ

2
(2H)2+γ

]
dA, (1.1)

where κ is the bending modulus and H is the mean curvature. Equilibrium shape
fluctuations with wavenumber q of a planar membrane embedded in a fluid with
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viscosity µ are stable with relaxation rate s(q)=−(κq3+γ q)/4µ (Brochard & Lennon
1975; Seifert & Langer 1993).

Electric fields affect the membrane undulations (Sens & Isambert 2002, Lacoste
et al. 2007, 2009, Ziebert, Bazant & Lacoste 2010 and Ziebert & Lacoste 2010;
recently reviewed in Ziebert & Lacoste 2011). Sens & Isambert (2002) highlighted that
the electric field induces a negative tension in the membrane γm ∼ E2

0. An instability
occurs above a threshold electric field at which the negative tension exceeds the initial
tension in the membrane. Another source of instability found by Lacoste et al. (2007)
is ion currents in the diffuse layers near the membrane, which give rise to a positive q2

term in the relaxation rate. In the limit of zero Debye thickness this term vanishes, and
the negative tension remains as the sole possible source for instability.

All these analyses have focused on a membrane separating fluids with the same
permittivity and conductivity. Schwalbe et al. (2011) discovered that asymmetry
in the electric properties of the embedding solutions, in particular difference in
the conductivities σ1 6= σ2, gives rise to an instability with no threshold electric
field. Application of an electric field leads to the accumulation of ions (carried by
conduction) at the membrane physical surfaces. The membrane acts as a (leaky)
capacitor, whose charging is described by

Cm
dVm

dt
+ GmVm = n · (σ1E1)= n · (σ2E2), (1.2)

where Vm is the potential jump across the membrane (transmembrane potential), Cm

is the membrane capacitance, Gm is the membrane conductance due to pores, ion
channels or pumps, and J = σE are the bulk ohmic currents. Schwalbe et al. (2011)
investigated the dynamics of an insulating membrane (Gm = 0) and found that an
instability can develop during the time over which the capacitor is charging, i.e.
while capacitive charging current flows through the membrane. The model, however,
ignored the effect of ohmic conduction current through the membrane. Experiments
indicate that bilayer collapse is preceded by formation of nano-pores (Salipante
et al. unpublished observations) (see figure 1a), which allow ions to pass through
the membrane. Hence, the membrane conductivity may play an important role in
the destabilization of the interface. In this paper, we investigate the interplay of
capacitive charging and ohmic currents through the membrane in membrane dynamics
and stability in DC electric fields.

2. Problem formulation
Let us consider a planar membrane formed by a charge-free lipid bilayer with

dielectric constant εm and conductivity σm. The bilayer thickness d is ∼5 nm, which
is three orders of magnitude smaller than the radius of a typical cell. Accordingly,
the membrane can be treated as a two-dimensional interface with effective capacitance
Cm = εm/d and conductance Gm = σm/d. The membrane separates a subphase fluid of
conductivity σ2, dielectric constant ε2, viscosity µ2, and density ρ2 and superphase of
a different fluid characterized by σ1, ε1, µ1 and ρ1. The membrane is subjected to
an electric field created by a potential difference V applied across a distance 2L. The
problem is sketched in figure 1.

2.1. Governing equations
We adopt the leaky dielectric model, which combines the Stokes equations to describe
fluid motion with conservation of current described by Ohm’s law (Saville 1997).
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Stability of biomimetic membranes in DC electric fields 61

The electric field is irrotational, Ek =−∇φk, and the electric potential φ satisfies the
Laplace equation

∇2φk = 0 k = 1, 2, (2.1)

where the top and bottom fluids are denoted by k = 1 and k = 2, respectively.
The potential at the electrodes is φ1(z = ±L) = ∓V/2. At the membrane interface
z= h(x, y, t), the potential is discontinuous φ2 − φ1 = Vm. The transmembrane potential
Vm is determined from the conservation of normal current (see the Appendix for its
derivation)

n ·
(
σkEk + εk

∂Ek

∂t

)
+∇s · (vQk)= Cm

∂Vm

∂t
+ GmVm (k = 1, 2), (2.2)

which in the limit of fast bulk charge relaxation and negligible convection reduces to
(1.2). Qk are the induced charge densities on the top and bottom side of the membrane
interface (A 2). The electric stress τ el acting on the membrane is then calculated from
the Maxwell tensor

τ el = n · (T el
1 − T el

2 ), T el
k = εk

(
EkEk − 1

2Ek ·EkI
)
. (2.3)

In the context of biological membranes, inertia is negligible so that the velocity v and
pressure p are solutions of the Stokes equations

µk∇2vk =∇pk, ∇ ·vk = 0. (2.4)

The no-slip boundary condition applies for the velocity field at the electrodes
v(z = ±L) = 0. The area-incompressibility of the membrane implies that the surface
velocity is solenoidal, ∇s · vs = 0. The membrane moves with the normal velocity of
the fluid due to the membrane impermeability on the time scale of interest. The fluid
tractions τ hd on the membrane are inferred from the hydrodynamic stress tensor

τ hd = n · (T hd
1 − T hd

2 ), T hd
k =−pkI + µk[∇vk + (∇vk)

T], (2.5)

where T denotes the transpose. The pressure, viscous, and electric stresses undergo a
jump across the membrane, which is balanced by membrane elastic stresses derived
from the Helfrich energy (1.1) (Seifert 1999)

τm =−κ[4H3 − 4HKG + 2∇2
s H]n+ 2γHn−∇sγ, (2.6)

where KG is the Gaussian curvature. The last term in (2.6) arises under non-
equilibrium conditions, in which the tension γ can become non-uniform in order
to enforce the local area incompressibility. Finally the kinematic condition determines
the location of the interface.

2.2. Dimensionless parameters and rescaling
Upon application of an electric field, bulk fluids become electroneutral on the charge
relaxation time scales (Melcher & Taylor 1969)

t1 = ε1

σ1
, t2 = ε2

σ2
. (2.7)

The electrohydrodynamic flow which drives membrane bending is characterized by

tel = µ1 + µ2

ε1E2
0

, (2.8)
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where E0 = V/2L is the characteristic magnitude of the imposed electric field.
Resistance to changes in membrane curvature drives relaxation on a time scale

tκ = µ1 + µ2

κl3
, (2.9)

where l is the curvature of the interface; for a membrane undulation with wavenumber
q, l ∼ q. An additional restoring mechanism is provided by the charging of the
membrane capacitor, which acts to decrease the difference between the free charge
densities on the two membrane surfaces. The smaller the surface charge imbalance, the
weaker the destabilizing electric stresses; a fully charged membrane is stable to small
disturbances (Schwalbe et al. 2011). For a purely capacitive membrane (Gm = 0), the
capacitor time scale is

tm = LCm(σ
−1
1 + σ−1

2 ). (2.10)

Henceforth, all quantities are rescaled by the properties of the top fluid; the distance
between the membrane and the electrode L is the characteristic length scale, the time
scale is LCm/σ1, the charge scale is ε1E0, and stresses are scaled with ε1E2

0. To analyse
the problem systematically we introduce three dimensionless parameters:

Ca= tκ
tel
= ε1E2

0L3

κ
, α = t1

tm
= ε1

LCm
, β = ε1E2

0CmL

µ1σ1
≈ tm

tel
, (2.11)

where α controls the importance of charge relaxation. β and the capillary number
Ca compare capacitive and elastic effects to electrohydrodynamics; it is expected that
higher values of these two parameters correspond to more unstable configurations.

Four additional parameters describe the physical properties of the system: R= σ2/σ1

and S = ε2/ε1, which measure the electrical mismatch between the two fluids,
the viscosity ratio λ = µ2/µ1, and the non-dimensional membrane conductance
gm = GmL/σ1.

3. Problem solution
Here we perform a linear stability analysis by studying the dynamics of a shape

fluctuation mode h(x, t)= hqest+iqx. Without loss of generality we consider only a wave
vector parallel to the x-axis. Accordingly, any variable u is expanded in a series of the
form u= u(0)(z, t)+ u(1)(z, x, t)+ · · · . The superscript (0) corresponds to the base state,
h = 0; u(1) = uq(z) exp(st + iqx) is a linear correction accounting for the effect of the
small undulations.

In the base state of the system, where the membrane is flat and located at z= 0, the
electric field is uniform in the bulk, E(0)k = E(0)k ẑ, and at the steady state (fully charged
capacitor, ∂tVm = 0)

E(0)2 = R−1E(0)1 = δ, δ = gm

R+ gm(1+ R)
. (3.1)

The potential is discontinuous across the membrane, Vm = φ2(0)− φ1(0)= δR/gm. The
limit gm→∞ formally recovers the solution for a ‘simple’ fluid–fluid interface, which
is characterized by a continuous potential. A flat interface experiences only electric
pressure:

pel,(0) = 1
2 [(E(0)1 )

2−S (E(0)2 )
2] = δ2(R2 − S). (3.2)
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Stability of biomimetic membranes in DC electric fields 63

The electric field E(0) does not generate shear tractions, and the tension γ is uniform
at leading order. Since the electric pressure is isotropic it follows that v(0) = 0, i.e. the
system is in hydrostatic equilibrium.

The governing equations in § 2.1 can now be linearized about the base state
(Schwalbe 2010; Ziebert & Lacoste 2011), resulting in

shq = βf (q)(p(1)el,q − F(q)hq), (3.3)

where

F(q)= Ca−1(q4 + γ q2)+ B, f (q)= cosh 2q− 1− 2q2

2(1+ λ)q(2q+ sinh 2q)
. (3.4)

F(q) describes the restoring effects of membrane elastic stresses (from (2.6)) and
gravity, B= (ρ2 − ρ1)gL/ε1E2

0.
In the absence of an electric field, (3.3) reduces to the classic result of

Brochard & Lennon (1975) for an unbounded, tensionless, symmetric membrane
(µ1 = µ2, ρ1 = ρ2), s = −κq3/4µ1, q−1 � L (written in dimensional form). In the
opposite limit of a wall-bounded membrane, q−1 � L, we find s = −κL3q6/12µ1 in
agreement with Prost, Manneville & Bruinsma (1998).

The electric field effect on the growth rate s depends on the sign of the perturbation
in the electric pressure:

pel,(1) = E(0)z,1E(1)z,1 − S(E(0)z,2E(1)z,2). (3.5)

The above equation shows that the electric stress in the perturbed state depends
crucially on the bulk electric field in the base state. If E(0) is zero, then the electric
stress, which is linear in the perturbation, vanishes and the membrane is linearly
stable.

The electric field also generates tangential tractions. In the case of a simple
fluid–fluid interface (characterized by constant surface tension) this creates tangential
surface flow. In the case of a bilayer membrane, however, surface-incompressibility,
∇s · vs = 0, dictates that the tangential component of the velocity v(1)x = 0. The electric
shear stresses are balanced by gradients in the membrane tension. The tension varies
as γ (1) = γ0 + γqest+iqx, and γq is determined from the tangential stress balance.

To find the electric pressure, we solve for the electric potential

φ
(1)
1q = A1q exp(−qz), φ

(1)
2q = A2q exp(qz), (3.6)

where A1q and A2q are determined from the two current conservation conditions (2.2):

A2q(R+ sαS)=−A1q(1+ αs), (3.7)

qA1q(1+ αs)= (s+ gm)(A2q − A1q + hqE(0)2 (R− 1)). (3.8)

From (3.5) we obtain for the normal electric stress

p(1)el,q = qE(0)2 (RA1q + SA2q). (3.9)

Thus the dispersion relation (3.3) becomes

c3s3 + c2s2 + c1s+ c0 = 0, (3.10)

where
c0 = βf (q)[qRF(q)− gm(δ

2q(R− 1)(R2 − S)+ (R+ 1)F(q))], (3.11a)
c1 = gm(R+ 1)+ qR+ βf (q)[gmα((S+ 1)F(q)− δ2q (R− 1)2 S)

+F(q)(R+ 1)+ qα(R+ S)+ δ2q(R− 1)(R2 − S)], (3.11b)
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c2 = R+ 1+ gmα(S+ 1)+ qα(R+ S)

+αβf (q)[−δ2q (R− 1)2 S+ (S+ 1+ qαS)F(q)], (3.11c)
c3 = α(1+ S+ αqS). (3.11d)

In the limit of an unbounded membrane, L→∞, and instantaneous charge relaxation
α = 0, the growth rate of a tension-free membrane separating density matched fluids
(γ = 0,B= 0) in dimensional form becomes

sL→∞ = t−1
el

(R− 1)(R2 − S)

(R+ 1)2(1+ R+ Rqσ1/Gm)
− κq3

2µ1(1+ λ) . (3.12)

The above expression generalizes the Brochard & Lennon (1975) result for the
fluctuations of a tensionless, symmetric membrane in the presence of electric field.
Interestingly, long wavelength undulations with q(1 + R)σ1/Gm � 1 are insensitive
to the membrane conductivity. For an insulating membrane, gm = 0 (and thus
δ = 0), the solutions of (3.10) for the growth rate are always negative, s =
−βf (q)F(q),−1/α,−R/Sα, and the membrane is stable. This is in contrast to a
simple fluid–fluid interface, where charge relaxation (α > 0) can lead to instability
(Melcher & Smith 1969). In general, (3.10) has three solutions, which can be real or
complex. The growth rate s of a given perturbation is the largest real part of these. The
complexity of the dispersion equation suggests we explore some less involved limiting
cases.

4. Results
In electrodeformation experiments with cells or giant lipid vesicles, the fluids are

aqueous salt solutions. Therefore, our analysis focuses on the case of equal-density
and equal-viscosity fluids, ρ1 = ρ2 and µ1 = µ2 ≈ 10−3 Pa s. Typical values for the
other physical variables are σ ∼ 10−6–10−3 S m−1, Cm ∼ 0.01 F m−2, L ∼ 100 µm,
κ ∼ 10−19 J, E0 ∼ 1 kV m−1 (Dimova et al. 2007, 2009; Salipante et al. 2012). It is
difficult to pick a typical value for gm as it varies by orders of magnitude; indeed the
conductivity of an intact membrane is very low (∼10−12 S m−1), but can approach that
of the surrounding liquid when it opens pores (DeBruin & Krassowska 1999). Thus
Gm ∼ 10−3–106 S m−2.

These data show that the conductivity ratio can vary over a broad range
R ∼ 10−3–103, whereas the permittivity ratio S is of order one. Typical values for the
other dimensionless numbers are Ca ∼ 105, gm ∼ 10−4–108 (gm ∼ 10−4–10−1 without
membrane poration), α ∼ 10−4–10−1 and β ∼ 10−3–1. The low values of α suggest that
usually charge relaxation is faster than the capacitor charging.

We also discuss only the bending as a restoring force because it is a unique feature
of bilayer membranes, i.e. F(q) = −Ca−1q4. The effects of gravity can be explored
in a straightforward manner using the complete form of the restoring function, (3.4).
The effects of tension are more subtle. The tension of a fluctuating membrane in the
absence of an electric field is very low γ0 ∼ 10−6 N m−1 (Evans & Rawicz 1990;
Kummrow & Helfrich 1991). The electric field has a two-fold effect on the tension.
On one side, the finite-thickness membrane experiences a compressive electric stress,
which effectively decreases the isotropic tension (Needham & Hochmuth 1989; Ziebert
& Lacoste 2011), γ = γ0 − εmV2

m/d. On the other side, the electric pressure acts to
straighten the undulations (recorded as vesicle deformation in experiments Kummrow
& Helfrich 1991), which raises the tension. We leave the more detailed study of the
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FIGURE 2. The effect of (a) gm, (b) Ca, (c) β on growth rate s as a function of perturbation
wavenumber q, for R = 10, S = 1, α = 0. (a) Ca = 105, β = 1; (b) gm = 1, β = 1; (c) gm = 1,
Ca= 105.

effects of tension to a future study and here we centre our attention on the case of a
freely floating membrane, which is tensionless in its base state γ0 = 0.

4.1. Instantaneous charge relaxation (α = 0)

Setting α = 0 reduces the dispersion relation (3.10) to a quadratic equation, whose
complex solutions have no positive real part. This greatly simplifies the analysis,
since every unstable solution must then be real, and it cannot be positive if all the
coefficients of the polynomial equation are positive, that is, if gm(R−1)(R2−S)6 0. In
the opposite case, as shown in figure 2, the membrane can become unstable for long
waves.

A closer inspection of the behaviour of the dispersion relation near the origin,
q→ 0, shows that it simplifies to

sq→+0 = βq3 g2
m(R− 1)(R2 − S)

24 (R+ gm(1+ R))2
+ O(q4). (4.1)

Equation (4.1) indicates that an unstable domain must exist near q = 0 when gm > 0
and (R − 1)(R2 − S) > 0. The membrane is thus always unstable if the fluids have
very different conductivities, that is, R� 1 or R� 1, but it may become stable for
intermediate values of R. This conclusion is illustrated in figure 3, where the maximal
growth rate smax is plotted as a function of R, for different values of S. In this
logarithmic plot, curves are only shown if smax > 0, i.e. if the system is unstable.
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FIGURE 3. Maximal growth rate smax as function of R, for gm = 1, Ca = 105, β = 1, α = 0
and different values of S. In this semi-logarithmic plot, each curve only exists where the
system is unstable, that is, for (R − 1)(R2 − S) > 0. When S > 1, for example (long-dashed
line), the membrane is unstable when R< 1 or R>

√
S.

The wavenumber qc corresponding to marginal stability s = 0, excluding the trivial
solution qc = 0, is a solution of a simple quartic equation:

Ca−1q3
c(qcR+ gm(1+ R))= (E(0)2 )

2
gm(R− 1)(R2 − S). (4.2)

Equation (4.2) allows us to recover the criterion of instability previously derived:
a strictly positive solution exists (i.e. the system is unstable in a finite window of
wavenumbers) if and only if gm(R − 1)(R2 − S) > 0. Moreover, there is only one
unstable region 0< q< qc. Lastly, qc does not depend on β.

Next we discuss the dependence of the instability on gm, Ca and β. Figure 2(a)
shows that the membrane conductivity enhances the instability. Increasing gm decreases
the effect of the membrane capacitance and when gm→+∞ the capacitor is totally
short-circuited. In experiments, vesicles or cells are likely to be in this limit as soon as
they porate. The growth rate tends towards a limit value which satisfies the following
equation:

sgm→+∞ = βf (q)

[
q
(R− 1)(R2 − S)

(R+ 1)3
− Ca−1q4

]
. (4.3)

Equation (4.3) illustrates the two antagonist phenomena: the electric pressure that is
destabilizing if (R − 1)(R2 − S) > 0, and the stabilizing bending stresses. In the limit
gm →+∞ the transmembrane potential vanishes, and from an electrical standpoint,
the membrane acts as a simple fluid–fluid interface. Thus, figure 2(a) suggests that a
simple fluid interface is more unstable than the capacitive membrane. Mechanically,
however, the membrane differs from a simple interface, since the membrane is
surface-incompressible. Thus, only a qualitative comparison with published results
on fluid–fluid interface stability is possible.

The effect of the applied voltage is illustrated in figure 2(b). The growth rate
monotonically increases with Ca, reaching an asymptotic value at Ca→ +∞ (i.e.
vanishing membrane rigidity), found by formally setting Ca−1 = 0 in (3.10). In this
limit, all wavelengths are unstable. Mathematically, this comes from the fact that
the Ca−1 ∼ 0 assumption is only valid for q � Ca1/3, but more interestingly it
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FIGURE 4. Growth rate s as a function of q for gm = 100, Ca= 105, R= 5, β = 1 and S= 80.
When α = 0 (dashed line), the system is always stable as (R − 1)(R2 − S) < 0. When α = 1,
an unstable region appears at shorter wavelengths.

shows that the largest unstable wavenumber qc diverges as Ca→ +∞. There is
no threshold voltage for the instability to occur, in agreement with the finding by
Taylor & McEwan (1965) for an interface separating fluids with the same density.
The applied voltage is also included in β, which characterizes the mismatch between
the electrohydrodynamic and capacitor charging time scales. Figure 2(c) shows that
β enhances the instability: the faster the electrohydrodynamic time compared to the
capacitor charging time, the higher the maximum growth rate. However, the window of
unstable wavenumbers and the most unstable mode remain unchanged. Note that smax

increases linearly with β, see (4.3).

4.2. Effect of charge relaxation α > 0
Until now we have assumed α = 0, which is a good approximation in usual
experiments. However, formally setting α = 0 is justified only when α|s| � 1. We
could then expect a qualitative difference at large growth rates, even when α� 1. This
happens when β→+∞ (because s increases with β) or q→+∞, although the latter
case is usually considered less interesting since the growth rate is large but negative,
and the system is stable. However, as shown in figure 4, a window of unstable large
wavenumbers can appear. Thus, the previous instability criterion gm(R− 1)(R2 − S) > 0
no longer holds when α > 0, although it still governs the behaviour of s near q = 0.
The values of the parameters needed for this unexpected instability are somewhat
different from those chosen in the context of biological experiments, but they are well
within experimental reach. In particular, the value S = 80 used in figure 4 corresponds
to an air–water interface. Admittedly, in this case one has to account for the density
difference between the two fluids. However, gravity stabilizes only long wavelengths
and does not affect the observed range of unstable short wavelength undulations

5. Conclusions and outlook
We have developed a physical model for the dynamic coupling between

transmembrane potential (induced by an applied uniform electric field) and
deformation of biomimetic membranes. We perform linear stability analysis to clarify
and quantify the effects of the lipid bilayer properties (conductivity and capacitance),
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and asymmetry in the embedding electrolyte solutions, on membrane dynamics.
Previous work on non-conducting membranes by Schwalbe et al. (2011) found only a
transient instability upon application of the electric field. Our study shows that in a
steady DC electric field, in contrast to the purely capacitive membrane, a conducting
membrane is unstable to long-wavelength perturbations if the fluids have different
conductivities gm(R− 1)(R2 − S) > 0. In the considered case of density-matched fluids,
there is no threshold voltage for the instability. An interesting new result is that finite
charge relaxation can open another instability window at shorter wavelengths.

The developed theory applies only to small perturbations in shape and linear
ohmic conductance of the membrane. The experiments on collapsing vesicles shown
in figure 1(a) involve large membrane deformations, which can be explored by
a nonlinear stability analysis based on lubrication theory or numerical simulation.
Biological membranes typically possess nonlinear conductance. In this case, Leonetti,
Dubois-Violette & Homble (2004) found an intriguing electrodiffusive instability
which can lead to patterns in the membrane potential. However, in their study
membrane deformation was not considered. We hope our work will stimulate further
research on the electrohydrodynamics of deformable bio-membranes.
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Appendix. Current conservation
To include charge convection by fluid motion and time-dependent charge build-up,

we need to consider the charge conservation at the two physical surfaces

n · (J1 − Jm)=−∂Q1

∂t
−∇s · (vQ1) z= 0+, (A 1a)

n · (Jm − J2)=−∂Q2

∂t
−∇s · (vQ2) z= 0−. (A 1b)

Here ∇s = Is ·∇ is the surface gradient operator and Is = I−nn is the surface projection.
The charge density on the top, Q1, and bottom, Q2, side of the membrane interface are

Q1 = n · (ε1E1)− CmVm, Q2 = CmVm − n · (ε2E2), (A 2)

where for a thin membrane we use the approximation εmn ·Em = CmVm.
The classic leaky dielectric model for a ‘simple’ interface developed by G. I. Taylor

is recovered by writing the surface charge as Q = Q1 + Q2, and adding the
two transport equations, (A 1), on the top and bottom interface. Noting that
the ohmic current through the membrane Jm = σmEm, and charge convection is
negligible (at leading order the tangential surface velocity is zero due to membrane
area–incompressibility), (A 1) can be rewritten as (2.2).
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