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INVARIANCE CRITERIA AS META-CONSTRAINTS

GIL SAGI

Abstract. Invariance criteria are widely accepted as a means to demarcate the logical
vocabulary of a language. In previous work, I proposed a framework of “semantic constraints”
for model-theoretic consequence which does not rely on a strict distinction between logical and
nonlogical terms, but rather on a range of constraints on models restricting the interpretations
of terms in the language in different ways. In this paper I show how invariance criteria can
be generalized so as to apply to semantic constraints on models. Some obviously unpalatable
semantic constraints turn out to be invariant under isomorphisms. I shall connect the
discussion to known counter-examples to invariance criteria for logical terms, and so the
generalization will also shed light on the current existing debate on logicality. I analyse the
failure of invariance to fulfil its role as a criterion for logicality, and argue that invariance
conditions should best be thought of as merely methodological meta-constraints restricting
the ways the model-theoretic apparatus should be used.

§1. Introduction. Tarski’s model-theoretic definition of logical conse-
quence relies on a distinction between the terms in a language that have
a fixed interpretation, and those whose interpretation varies across models.
Logical terms are those whose meanings get fixed across models. Recent
work on logicality is thus aimed at completing the definition of logical
consequence, telling us which terms ought to be fixed. Invariance criteria, in
particular, have proven to be especially fruitful and interesting, integrating
philosophical and mathematical studies of logicality.

In this paper I reconsider the role of invariance criteria. I take here a wider
perspective, from which logical consequence is no longer defined through a
division of terms into logical and nonlogical, and invariance criteria will be
generalized accordingly. It will emerge that when it comes to completing the
definition of logical consequence, invariance criteria are unsatisfactory, and
the generalization will direct us to the issues that need to be resolved for an
adequate solution to the problem of logicality.

In recent work, I proposed a framework for model-theoretic consequence
which does not rely on a strict distinction between logical and nonlogical
terms, but rather on a range of semantic constraints on models restricting
the interpretations of terms in the language in different ways—not by
merely either fixing their interpretation or leaving it variable. An example
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INVARIANCE CRITERIA AS META-CONSTRAINTS 105

of a semantic constraint is: ‘I (Red ) ∩ I (Green) = ∅’, which restricts the
interpretations of Red and Green to be mutually exclusive.1 An exposition
of the framework is given in Section 2 and more examples of constraints are
given in Section 3.

In the framework of semantic constraints, criteria for logical terms
lose much of their significance, as it is semantic constraints of all sorts
that determine logical consequence. A semantic clause fixing a term’s
interpretation is one kind of semantic constraint, while others merely restrict
the term’s interpretations, or set semantic relations between terms. It is
argued that the motivations leading to fixing some terms rather than others
don’t warrant dismissing other kinds of constraints on interpretations, and
so logical consequence should be explicated through the broader framework.

The question of logicality then becomes that of whether there is an
appropriate criterion for semantic constraints rather than for logical terms,
that will decide which semantic constraints are acceptable in a logical system.
One can still use existing criteria for logicality for the completely fixed terms
in this framework—indeed, some terms display a combination of properties
that makes them strong candidates for being completely fixed.2 But still, if
the analysis of logical consequence through the broader framework is to
be considered, the variety of other constraints needs to be addressed. The
option of dismissing out of hand semantic constraints that do not completely
fix a term is available, but as a resolution of the issue of logicality it would
seem ad hoc.

Indeed, a host of attitudes towards logical terms can be generalized
to the framework of semantic constraints. One can promote a criterion
demarcating the “logical” semantic constraints, or be skeptical about there
being a sharp distinction, taking up, e.g., a relativist or pragmatic attitude.
The framework seems to sit well with relativism, but it does not force a
relativist position.

This paper takes previous work on the framework forward by considering
possible conditions that may be imposed on semantic constraints. I focus
on invariance criteria, which I bring to the setting of semantic constraints.
I define the notion of invariance under isomorphisms of semantic constraints
in a way that is conservative with respect to the special case of logical terms
(the completely fixed terms in a system). This generalization will then help
us gain a better understanding of invariance criteria and their role in model-
theoretic semantics.

Criticisms of invariance criteria often lean on counterexamples. Following
the generalization, we’ll also see that some obviously unpalatable semantic
constraints turn out to be invariant under isomorphisms. While in the
standard, “term-based” setting, the counterexamples are, in many cases,
somewhat contrived, in the framework of semantic constraints, the apparent
failure of the criterion is much more obvious, and the examples more wide-
ranging and pressing. Nonetheless, we’ll see that problematic cases in both

1Here we understand Red and Green to mean red all over and green all over.
2See [3, 27].
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106 GIL SAGI

settings share the same source. Thus, the generalization will also shed light
on the current debate on logicality: we’ll be able to see more clearly what
invariance conditions may give us, and what they may not.

It will become evident that invariance is not a substantive enough
condition for choosing the semantic constraints (or logical terms) that will
set the consequence relation for a given language. Invariance conditions are
important, however, and their rationale is derived from the idea of modelling,
by which the particular identity of the building blocks is insignificant.
Indeed, my conclusion will be that invariance conditions are primarily
a guide to how the model-theoretic apparatus ought to be used. They
do not direct us towards the correct extension of the notion of logical
consequence (if such exists). When it comes to choosing the appropriate
semantic constraints for a language, a whole other set of considerations must
be applied. I thus propose to view invariance conditions as methodological
meta-constraints both in the framework of semantic constraints and in the
term-based setting.

My claims can be summed up thus:

• Invariance under isomorphisms can be naturally generalized to apply
to semantic constraints, as revealed by Proposition 4.4 (Section 4).

• Invariance under isomorphisms fails badly as a criterion for logicality
of semantic constraints. What is missing is an account of the relation
between expressions and their meanings and how it should be factorized
in the choice of a logical system. The inadequacy of the criterion is
already present in the term-based setting, and now we become better
equipped to identify its range and its source.

• While invariance under isomorphisms is not a guide for a choice of
a logical system in either framework, it does capture an important
feature of model-theoretic semantics, and should be considered as
a methodological meta-constraint on logical terms and on semantic
constraints.

In Section 2, I briefly present the framework of semantic constraints. In
Section 3, I compare fixing terms and fixing constraints, and show how
the former can be conceived of as a special case of the latter. In Section
4 I present and discuss the criterion of invariance under isomorphisms for
semantic constraints, and in Section 5 I draw some lessons from our results.
In Section 6 I propose that invariance criteria should be thought of as meta-
constraints. Finally, I conclude in Section 7, and indicate the directions I
think the study of logicality ought to take. For the generalized criterion,
I rely on a somewhat nonstandard notion of isomorphism. In Section 8 I
clarify the notion of isomorphism used and how it relates to the standard one.
The technical bits throughout the paper all refer to the Tarski–Sher criterion
of invariance under isomorphisms. But the philosophical discussion applies
to other invariance criteria as well. In Section 9 I formulate the invariance
criterion for semantic constraints using similarity relations more generally
rather than isomorphisms.
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§2. Semantic constraints: the framework. The framework of semantic
constraints [26] allows for a model-theoretic notion of logical consequence
that does not depend on a strict division of the language into logical and
nonlogical terms. Semantic constraints are statements in the metalanguage
that somehow limit or constrain the possible interpretations of expressions
in the object language. We’ve seen the example constraint ‘I (Red ) ∩
I (Green) = ∅’, and we’ll see more examples in the next section. The idea of
the generalization is the following: whatever motivation (epistemic or other)
that led to completely fixing some terms (the logical terms) and letting
others (the nonlogical terms) vary in the standard, term-based framework
for logical consequence, also allows the option of merely constraining
interpretations of terms.3

We use the terminology of [26]. A language L consists of terms: the
primitive expressions, and phrases: the meaningful expressions—strings
of terms and perhaps auxiliary devices, such as parentheses—that are
interpreted in models (not every such string is necessarily a phrase). Every
term is assumed to be a phrase; any symbol that is not given an interpretation
on its own is considered an auxiliary device. A model M = 〈D, I 〉 for L
consists of a non-empty set D (the domain) and an interpretation function I
which assigns semantic values to the phrases of L. As in this framework no
semantic recursive clauses are assumed in the definition of a model, I is free
to assign any value from the set-theoretic hierarchy over D ∪ {T, F }: any
concocted set that involves members of the domain and the truth values can
be a value of a phrase. It is only by imposing constraints that these values,
and models in general, are restricted. Even the division of phrases into
semantic categories is not assumed at the outset, and is set using semantic
constraints. Note, also, that compositionality is not assumed either. One can
impose compositionality as a condition on systems of semantic constraints,
and we lay out this option shortly.

A semantic constraint is a statement in the metalanguage which includes
implicit general quantification over models (on domains and interpretation
functions), and which imposes a restriction on the class of models for a
language. A precise definition of semantic constraints is to be determined
given a metalanguage, which we leave open here to some extent. The
metalanguage includes the language of set theory, but can be more
comprehensive, according to the needs of interpreting the object language.4

Given a set of semantic constraints Δ, the Δ-models will be the models
abiding by the constraints in Δ. In this framework, all relevant notions are
defined with respect to a set of semantic constraints in a semantic manner,
even the standardly syntactic ones. We define singular phrases, sentences,
and logical consequence:

3See also [39, 40] for discussion of various restrictions on admissible models that questions
the logical–nonlogical divide.

4Some minimal restrictions on the metalanguage ought to be imposed to maintain
consistency of the framework; these considerations go beyond our present concerns.
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108 GIL SAGI

Let Δ be a set of semantic constraints, and let a Δ-model be a model
abiding by the constraints in Δ.

Definition 2.1 (Singular phrase). A phrase p is a singular phrase (w.r.t. Δ)
if for every Δ-modelM = 〈D, I 〉, I (p) ∈ D.

Definition 2.2 (Sentence). A phrase p is a sentence (w.r.t. Δ) if for every
Δ-modelM = 〈D, I 〉, I (p) ∈ {T, F }.5

Note that a phrase that in some Δ-models refers to a truth value and
in others it does not, will not be considered a sentence (w.r.t. Δ) by this
definition.

Definition 2.3 (Logical consequence). Let ϕ be a sentence and let Γ be
a set of sentences. The argument 〈Γ, ϕ〉 is logically valid (ϕ is a logical
consequence of Γ; w.r.t. Δ) if for every Δ-modelM = 〈D, I 〉, if I (�) = T for
every � ∈ Γ, then I (ϕ) = T .

The framework of semantic constraints is a generalization of standard
logic: it allows for a formulation of standard first-order logic (including the
standard semantic clauses), but also for more or less constrained logics.
Some semantic constraints (such as the one above) resemble meaning
postulates as in the work of Carnap [9] and Montague [21], expressed in
the metalanguage.6 On the other hand, semantic constraints can be taken
to represent partial information about a language (e.g., as in ‘I (p) �= I (q)’
which tells us only that p and q always get different interpretations).

Importantly, as opposed to meaning postulates, semantic constraints are
not formulated on the backdrop of a system of syntactic and semantic
recursive clauses—nor is any division between logical and nonlogical terms
assumed at the outset. Indeed, the basic syntactic categories assumed are
just those of terms and phrases. One may appeal to an elaborate syntax,
based on further syntactic distinctions and suitable recursive clauses—but
that would be an addendum to the basic framework. So, for instance, given
a set of semantic constraints, we may have a theory of syntax that provides
the set of sentences with respect to that set of constraints.

The framework allows for expressions that are fixed in various manners—
also with respect to each other. So we obtain various relations between
expressions in the language. Let us mention two main definitions
from [26]:

Definition 2.4 (Determinateness). A phrase a is determined by the set of
phrases B (w.r.t. Δ) if for any two Δ-modelsM = 〈D, I 〉 andM ′ = 〈D ′, I ′〉,
if I (b) = I ′(b) for all b ∈ B then I (a) = I ′(a).

5The setting is classical, but surely one can use it to formulate non-classical systems
forgoing bivalence.

6We note that meaning postulates as in Carnap and Montague are a special case of semantic
constraints: the former are sentences formulated in the object language which all admissible
models are required to satisfy; the latter are formulated in the metalanguage, and so they are
expressively richer.
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Definition 2.5 (Dependency). A set of phrases A depends on the set of
phrases B (w.r.t. Δ) if there are Δ-models M = 〈D, I 〉 and M ′ = 〈D, I ′〉
sharing the same domain D such that for any Δ-model M ∗ = 〈D, I ∗〉, if
I ∗(b) = I (b) for all b ∈ B , then I ∗(a) �= I ′(a) for some a ∈ A (that is,
fixing the phrases in B in a certain way excludes some interpretation for the
phrases in A that can otherwise be realized).

The notion of dependency is important, as it may serve to highlight
the departure from standard, term-based systems, where there are no
dependencies as defined above. The present discussion will not make further
appeal to this notion. The notion of determinateness will be used extensively,
as it is employed in explicating the notion of a fixed term that will be central
in what follows. It will also be used to define compositionality, which is briefly
discussed below.

In previous work on the framework the question of whether there is
a correct system of constraints for logic remained open. Some of the
intuitions that seem to be guiding the discussion on logicality of terms
are lost here. There do not seem to be any firm intuitions as to which
semantic constraints are clearly logical.7 Indeed, the framework seems to
invite a relativistic or pragmatic perspective: each set of semantic constraints
yields a logical consequence relation, and different sets might be suitable for
different purposes. In this paper I consider a different stance, and take into
account conditions that may be imposed on a system of semantic constraints.
Ultimately, the appropriateness of a system of constraints, as any system of
logic, depends on the use it is intended for. Specifically, a system of semantic
constraints can be used in empirical semantics to model logical consequence
in natural language, or it can be used as a framework of commitments made
by a reasoner [28]. It may be that these two uses (not to exclude other
possible uses) will pull us in completely different directions, but it may also
be that they do not differ categorically in the conditions they require on
constraints, rather only in emphasis and degree: while the former aims at
empirical adequacy, the latter might entail a preference for coherence and
robustness.

Here, we’ll look at conditions on constraints, meta-constraints, that would,
at least prima facie, be relevant to a variety of uses. The rest of the
paper will be devoted to invariance conditions. Before that, I shall briefly
mention another meta-constraint, that in standard logical systems is taken
for granted. I’ve mentioned that compositionality is not assumed here at the
outset. Compositionality, or the idea that the semantic value of a complex
expression is a function of the semantic values of its parts and the manner
of their composition, can be formally stated in various ways.8 We define
compositionality here as a property of a language with respect to a set of

7We note the obvious, that intuitions about logicality are surely affected by (and feed into)
what is considered a “standard” logical system, and become ineffective when moving to a
less standard or more general setting.

8For discussion, see [23].
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constraints by reference to all terms occurring in the given phrase, as well
as the domain. For the sake of this definition, add to L the term D, and in
Δ include the constraint ‘I (D) = D’.

Definition 2.6 (Compositionality). A language L is compositional
(w.r.t. Δ) if each phrase p is determined by {a : a is a term occurring
in p} ∪ {D} (w.r.t. Δ).

Example: Assume that Rudolf, sits, likes, and everything are terms, and
that the following are phrases: Rudolf sits and Rudolf likes everything. If we
employ a set of semantic constraints Δ with respect to which the language
is compositional, the semantic value of both phrases in a Δ-model will only
depend on the order of the terms they involve, the semantic values of the
terms in the given model, and the model’s domain.

Some definitions of compositionality require syntactic distinctions beyond
those assumed here. If, for example, we added on to our rudimentary syntax
a notion of immediate subexpressions forming a complex expression (so our
strings would come with ‘analysis trees’ representing their derivation histo-
ries; see [23]), then we could define a stronger notion of compositionality,
and have every phrase be determined merely by its immediate subphrases
and the domain.9

Compositionality has been assumed to be a desirable, if not a requisite
feature of logical systems—whether they are intended for modelling natural
language or as providing an alternative means for reasoning [8, 13]. Whether
natural language is in fact compositional (in one sense or another) has
nonetheless become a matter of dispute.10 In the present context, let
us simply flag compositionality as an optional meta-constraint in the
framework.

§3. Fixing terms vs. fixing constraints. We now have two semantic
frameworks at hand: the framework of semantic constraints and the
standard, term-based framework. Each framework offers a variety of logical
systems that are determined by a choice of semantic constraints or of logical
terms that are held fixed. In previous work [26], systems in the term-based
semantics were presented as a special case of systems of semantic constraints.
Given a set of constraints, the terms of a language can be thought of as fixed
in different manners and to different degrees. The completely fixed terms of

9Note that the present definition is weak also in that it allows for a compositional language
in which the interpretation of a phrase will vary in models with different domains even if
the interpretations of its constituent terms are unchanged. The idea is that structural input
(the order of the terms and the use of auxiliary symbols) might affect the interpretation
of a phrase in a way that is sensitive to the domain (cf. [16, 39] where logical terms are
substituted by structural features). Still, the present definition is strong enough for the sake
of item 2 in Proposition 9.2 (Section 9) linking elementary equivalence and isomorphism in
compositional languages.

10For discussion, see [24]. See also [1, 15, 17].
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a language with respect to a set of semantic constraints function as the fixed
terms in term-based semantics.

What does it mean that we “fix” the logical terms? Usually, what is
meant is that we include those terms in the language and assign to them
a semantic clause, which says how expressions constructed using a logical
term should be interpreted, given the semantic values of their components.
In customary presentations of model-theoretic semantics for predicate logic,
logical terms are not assigned extensions as such: they are treated as formula
building operators that have a respective semantic clause. A term is thus
fixed as logical if its semantic action is fixed for all models—if the semantic
clause provides an operation by which the interpretation of the complex
expression is a function of the interpretations of its components and possibly
the domain. Connectives and quantifiers, for example, form well-formed
formulas out of well-formed formulas—the semantic value of the well-
formed formula formed is a function of the semantic values of the well-
formed formulas from which it was formed, and possibly the domain. If we
were to adopt this approach in the framework of semantic constraints, then
logical terms would not be terms per se, as we assumed that all terms are
phrases and are thus interpreted. In that case, logical terms would behave as
auxiliary symbols: they would affect the interpretations of phrases in which
they appear without having a meaning of their own—in other words, logical
terms would be treated as “punctuation marks.”11

In the literature on logicality it is customary to assign extensions to logical
terms, as various criteria for logicality are applied to a term vis-à-vis its
extension. Henceforth I shall follow this route.12 I thus assume that all
terms in the language are assigned an associated operation (usually aiming
to capture antecedent use), by which they are tested for their logicality.
A term that passes the test can then, as is customary, be completely fixed
in the system. In the term-based framework, terms that do not pass the
test remain maximally variable—any interpretation that is in accord with
their semantic category can be assigned to them in some model (regardless
of their associated operation). Now, a term is completely fixed if the
interpretation function has no freedom, as it were: given a domain, the
interpretation of the term is then determined. So, for example, if we construe
quantifiers as second-level predicates in the Fregean fashion, then fixing the
standard quantifiers entails that the class of models satisfies the following
constraints:

• I (∀) = {D},
• I (∃) = {A ⊆ D : A �= ∅}.

11Compare the view of logical constants as punctuation marks from the proof-theoretic
perspective in [11]. See also the aforementioned [16, 39] where logical terms are substituted
by structural features of expressions.

12Even when logical terms are only defined through recursive clauses without an extension
assigned by the interpretation function, we can look at the set-theoretic operators determined
by these clauses and apply the following to them.
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Note that the interpretation of the quantifiers, and of the fixed terms
in general in term-based semantics, is a function of the domain.13 More
generally, it is assumed that each candidate logical term t has an associated
operationOt which, given a nonempty set D, assigns to t its extension, taken
from the set-theoretic hierarchy over D ∪ {T, F }. And so, O∀(D) = {D}.
Another example would beOEven(D) = {x ∈ D : x is an even number}. We
do not assume that every term in the language has an associated operation
(not every term is assumed to be a candidate logical term or a candidate for
fixing), so Ot might not exist for every t. Nor do we assume that Ot , when
it exists, is definable in the metalanguage. Presumably, if t is fixed as logical,
then it will have an associated operation so that its interpretation in every
model will agree with what t’s associated operation assigns to the model’s
domain (see the definition below).

Note that in standard, term-based semantics, when one fixes the
interpretation of some terms, one thereby determines a class of models
(all those models that give unintended interpretations to those terms are
ruled out). Now, by contrast, assume that one obtains a class of models
through a set of semantic constraints or in any other way. Given a class of
models, one can then draw out the terms that are (completely) fixed in that
class as those whose interpretation is a function of the domain. And so we
define:

Definition 3.1 (Fixed term). A term t is fixed in a given class of models
if there is an associated operation Ot such that for every modelM = 〈D, I 〉
in the class, I (t) = Ot(D) (i.e., the interpretation of t is a function of the
domain).

The definition given here of fixed term intentionally does not assume the
framework of semantic constraints, but of course one can speak of the fixed
terms with respect to a set of constraints that provides the given class of
models. We can then loosely say that a term is fixed (w.r.t Δ) if and only if it
is determined by the domain. More precisely, including the term D in L and
the constraint ‘I (D) = D’ in Δ as before, we have that a term is fixed in the
class of Δ-models if and only if it is determined by {D}.14

Now, criteria for logicality ordinarily apply to a term t given an associated
operation Ot . The idea is that in a correct system for logic, only the terms
satisfying the given criterion should be fixed, and the criterion applies to their
interpretation were they fixed according to their associated operation. In the
next section I adjust this idea to the framework of semantic constraints. We
shall look at a constraint Ct that fixes a term t to have an interpretation in
accord with an associated operation Ot :

Ct : I (t) = Ot(D)

13Truth-functional connectives can be construed as functions on truth values or as set-
theoretic operations on variable assignment sequences. In either case, the interpretation of
the truth-functional connectives is a function of the domain—in the former case, vacuously
so, as the interpretation is constant across domains.

14See the definition of logical term in the “shallow sense” (or completely fixed term) in [26].
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(read: the interpretation of t in a given model is the value ofOt on the model’s
domain). Criteria for logical terms can then be reformulated as criteria for
the matching constraints. In case that the latter criteria can be naturally
extended to apply to all semantic constraints (not just those of the form
above), they can be viewed as generalizations of the former. Note, however,
that Ct is not a term, but it is a statement: accepting it does not only entail
fixing t, but it is also a statement to the effect thatOt is t’s associated operation
by which it is fixed. On the other hand, when choosing t as a logical term
in the term-based framework, the relation to Ot is normally presupposed
rather than explicitly asserted. In the term-based framework, the debate
is on whether certain terms, say, there exist infinitely many, Unicorn, etc.,
are logical, given their associated operation. But the choice of associated
operation is also part of the construction of a logical system, whether implicit
or explicit. In the framework of semantic constraints, this choice is made
explicit—different operations by which a term can be fixed may be considered
through competing semantic constraints, and choosing among them is an
explicit stage in the construction of a system in the framework.

§4. Invariance under isomorphisms: terms and constraints. Among criteria
for logicality, invariance under isomorphisms is the most prominent in
contemporary literature (see [22, 32]). Invariance under permutations too
has gained prominent support in the literature [19, 20, 37]; invariance under
isomorphisms is a natural way to extend invariance under permutations
from single domain to multiple domain model-theoretic semantics. Various
criticisms have been raised, mostly accusing isomorphism-invariance of
overgenerating. However, many writers on the topic hold that invariance
under isomorphisms is at least a necessary condition on logicality, and when
a precise definition of logicality is not the main issue discussed, invariance
under isomorphisms is the natural default criterion to assume (see [5]).

One of the main driving principles for isomorphism-invariance is that
logic ought not be concerned with the particular identity of individuals
[4, 22, 32, 36]: however we permute the objects in the domain or switch
them with objects from other domains, and the interpretations of the logical
terms will maintain their contribution to truth conditions. To make this idea
more precise in the present setting, we define the notion of isomorphism and
then state the criterion of invariance under isomorphisms for both logical
terms and semantic constraints.

We shall say that two models for a language L are isomorphic when
there is a bijection from the domain of one to the other which preserves
interpretations. To give a precise definition, we need to first extend bijections
in the appropriate way to functions that apply to any possible interpretation
of phrases in the language. Recall that values of the interpretation function
may be any set-theoretic entity constructed from elements of the domain
and truth values. We thus define recursively, for any function f from a set D
to a set D ′ the function f+ on elements in the set-theoretic hierarchy over
D ∪ {T, F } as follows (we assume that T, F �∈ D ∪D ′ and also that D and
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D ′ consist of ur-elements, and so they include as members no sets built over
D and D ′, so that a recursive definition can be applied):

• f+(x) =

{
f(x) if x ∈ D,
x if x ∈ {T, F },

and for a set A belonging to the set-theoretic hierarchy overD ∪ {T, F },

• f+(A) = {f+(B) : B ∈ A}.
Since this extension of f is a natural one, we shall omit the superscript

and simply speak freely of f applying to the relevant sets.15

Now we can give the definition for isomorphic models, which builds on the
definition of isomorphic models with respect to a set of phrases:

Definition 4.1 (Isomorphic models). We say thatM = 〈D, I 〉 is isomor-
phic toM ′ = 〈D ′, I ′〉w.r.t. a set of phrases S (M ∼=S M ′) if there is a bijection
f : D → D ′ which, when appropriately extended, yields f(I (p)) = I ′(p)
for every phrase p ∈ S. We say that M andM ′ are isomorphic (M ∼=M ′) if
they are isomorphic w.r.t. the set of all phrases in the language.

Note that the present notion of isomorphism is stronger than the standard
one. Standardly, say, in first-order logic, isomorphism is defined with respect
to the nonlogical vocabulary, and then is proven to extend to complex
expressions in the language. In the present setting, isomorphism with respect
to the set of all phrases in the language and isomorphism with respect
to the nonlogical vocabulary (whatever that may be) may come apart.
We therefore take the stronger definition of isomorphism between models
for the formulation of invariance criteria, as the distinction between logical
and nonlogical terms no longer plays a central role. I spell out the added
assumptions that would entail the equivalence of the weaker and the stronger
notions of isomorphism in Section 8.

Now we can formulate invariance criteria for terms and for constraints.
I shall first present the definition of invariance under isomorphisms
pertaining to terms in the language. As mentioned earlier, when a term t
is claimed to be invariant under isomorphisms, it is standardly assumed
that there is an operation Ot associated with t that gives its intended
interpretation in all domains which is invariant under isomorphisms, and
thus we have:

Definition 4.2 (Invariance under isomorphisms: terms). Let t be a term
and Ot be the operation associated with t. The term t is invariant under

15The only seemingly nontrivial choice in the definition was to have f constant on the
truth values. The reason for this is that we view the truth values as part of the semantic
apparatus as opposed to the material from which domains are made of. When later on we
say that invariance under isomorphisms is to capture the thought that logical terms are
insensitive to the particular identities of elements in the domain, we do not mean to include
the particular identity of True and False, which are very much relevant to logic. This would
allow truth-functional connectives to be invariant under isomorphisms by the subsequent
definitions.
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isomorphisms if for any nonempty sets D andD ′ and a bijectionf : D → D ′

appropriately extended, f(Ot(D)) = Ot(D ′).

The standard logical terms of first-order logic are invariant under
isomorphisms. In addition, so are generalized quantifiers such as Most
and ∃ℵ0 (there exist infinitely many). For details, see [31]. For example, we
can look at the equality symbol and its associated operation: O=(D) =
{< x, x >: x ∈ D}. A bijection from D to D ′ will invariably take O=(D) to
O=(D ′). On the other hand, any term whose operation distinguishes between
elements in the domain will not be invariant. For example, the term Even
taken as a first-level predicate with the associated operation OEven(D) =
{x ∈ D : x is an even number} is not invariant under isomorphisms, since
a bijection might take an even number from one domain to one that is not
in another.

Moving on to the proposed generalization, we define what it is for a
semantic constraint to be invariant under isomorphisms. Here, again, one
might be guided by the motivation that logic should not be sensitive to the
individual identity of objects. This motivation can be explicated here as the
demand that logic will not distinguish between isomorphic models:

Definition 4.3 (Invariance under isomorphism: semantic constraints).
A semantic constraint C is invariant under isomorphisms if for any models M
andM ′ such thatM ∼=M ′, if M is a {C}-model, thenM ′ is a {C}-model.16

Note that the models M and M ′ in the definition are any models, not
necessarily satisfying some given set of constraints.

We shall see a variety of constraints that are and others that fail to be
invariant under isomorphisms shortly, but first let us consider one sort of
example to help us see the relation between the two notions of invariance. We
consider, for each term t which has an associated operationOt , its associated
semantic constraint which fixes t with the operation Ot , as was formulated
in Section 3:

Ct : I (t) = Ot(D).

Indeed, such constraints allow us to reformulate term-based systems in the
framework of semantic constraints. For each term fixed as logical in a term-
based system, we can include its matching constraint, ultimately leading to
the same class of models (assuming other constraints pertaining to more
general semantic and syntactic features of the logic are also included, e.g.,
setting the semantic categories of the non-fixed terminology). And so, for
example, we can consider the constraint

C= : I (=) = O=(D).

16Compare [38, p. 790], where Zimmermann formulates the “meta-constraint” that any
appropriate class of models for model-theoretic semantics is closed under isomorphisms. We
return to Zimmermann in Section 6.
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It is easy to see that this constraint on models is closed under isomorphisms,
whereas

CEven : I (Even) = OEven(D),

is not.
By the definition of invariance under isomorphisms for terms, we

immediately get that if t is invariant under isomorphisms, then every
two {Ct}-models are isomorphic w.r.t. {t}. Now, if t is invariant under
isomorphisms, it does not distinguish between equinumerous models, and
thus its relevant constraint should be invariant under isomorphisms. In fact,
the entailment goes both ways.

Proposition 4.4 Let t be a term that has an associated operation Ot , and
let Ct be its associated constraint. Then t is invariant under isomorphisms iff
Ct is invariant under isomorphisms.

Proof. For the left to right direction, assume that t is invariant under
isomorphisms. Let M = 〈D, I 〉 and M ′ = 〈D ′, I ′〉 be isomorphic models,
and assume that M is a {Ct}-model. So I (t) = Ot(D). By the assumption
that t is invariant under isomorphisms, f(Ot(D)) = Ot(D ′). So f(I (t)) =
Ot(D ′). By the assumption that M ∼=M , f(I (t)) = I ′(t), and so we have
I ′(t) = Ot(D ′) proving that M ′ is {Ct}-model, and so that Ct is invariant
under isomorphisms.

For the right to left direction, assume that Ct is invariant under
isomorphisms, D and D ′ are nonempty sets, and f : D → D ′ is a bijection.
In order to make use of our assumption, we employ isomorphic models
with the given domains. Let M = 〈D, I 〉 and M ′ = 〈D ′, I ′〉 be models
with the given domains and with interpretation functions that satisfy:
(a) I (t) = Ot(D) and (b) for every phrase p, I ′(p) = f(I (p)). (There are
such models: recall that our definition of models is very liberal, and we can
let, e.g., I (p) = ∅ for every phrase p �= t.)

By (a), M is a {Ct}-model, and by (b),M ∼=M ′. By our assumption that
Ct is invariant under isomorphisms, M ′ is a {Ct}-model. So f(Ot(D)) =
f(I (t)) = I ′(t) = Ot(D ′) as required. �

I thus contend that the definition of invariance under isomorphisms for
semantic constraints can be appropriately regarded as a generalization
of the definition for terms. The thought is as follows. As applied to
terms, invariance under isomorphisms means that the term is indifferent
to distinctions between elements of the domain, it is blind to switching
and exchanging elements in the domain: an isomorphism-invariant term
does not distinguish between isomorphic models. And this is precisely the
property which we use to define isomorphism invariant semantic constraints.
Indeed, Proposition 4.4 is an indication that the definition caught on
to the desired property. If the move to the more general framework of
semantic constraints for the explication of logical consequence is accepted,
then our definition gives the appropriate corresponding generalization of
isomorphism-invariance.
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We can now observe some consequences of the generalized definition.
From the examples below it immediately becomes apparent how the criterion
of invariance under isomorphisms pertains only to the form of constraints,
and it is completely indifferent to the intended meaning of the terms that
appear in those constraints. The following constraints are invariant under
isomorphisms:

1. I (∀) = {D}.17

2. I (Red ) ∩ I (Green) = ∅.
3. I (Even) ∩ I (Odd ) = ∅.
4. I (Bachelor) ∩ I (Married ) = ∅.
5. I (3) ∈ I (Odd ).18

6. I (Unicorn) = ∅.
7. I (Water) = I (H2O).
8. |I (Red )| ≥ 375 (i.e., the size of the extension of Red is at least 375.)

If we take the predicates in the constraints above to have meanings
associated with them that are derived from natural language correlates,
then it seems that the possible grounds for accepting the above constraints
would be of different nature. While the grounds for the first five constraints
would presumably be a-priori: conceptual and perhaps also metaphysical
or mathematical, those for the last three would be a-posteriori if not
straightforwardly empirical and, at least in the last constraint, contingent,
if such grounds would even exist. Of course, the criterion allows constraints
that patently defy intended meaning, either as a matter of mathematical
fact:

9. I (Even) = I (Odd )

or as a matter of empirical fact:

10. I (Red ) ∩ I (Big) = ∅.

The criterion of invariance under isomorphisms thus seems to be quite
permissive. However, our proof above shows that in the case of the fixed
terms, it is completely aligned with the standard invariance criterion. And
the generalized criterion does rule out some constraints—those which refer
to specific objects in domains, such as:

11. I (naturalNumber) = {0, 1, 2, ...}.
12. 3 ∈ I (Odd ).
13. I (Even) ∩ I (Prime) = {2}.

So the generalized criterion, although weak, is not completely powerless
in ruling out semantic constraints. To be sure, in some sense the generalized
criterion captures the thought that the particular identities of elements in

17Recall that semantic constraints implicitly generalize over domains and interpretation
functions: I stands for an interpretation function, D stands for a domain.

18I use ‘3’ (in boldface) to stand for a term in the language, and ‘3’ to stand for the number
three.
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models should not matter. By this we mean that it does not matter what
kind of object each element of the domain is; what material it is made
of, so to speak. On the other hand, the structure that the interpretation
function imposes on the domain is not something the invariance criterion
will have a say on, where the structure includes any set-theoretic relation as
well as properties of sets having to do with cardinality. By the criterion, we
can consider as logical whatever meaning relations we like, as long as the
material of the domain is not constrained. In the following sections we make
further observations on the forgoing generalization.

Before we move on, let us look at another class of constraints that is
sanctioned by the invariance criterion:

14. I (5 + 7 = 12) = T .
15. I (Bachelor(John)) = T .
16. I (0 = 1) = T .

In general, for any phrase p, the semantic constraint ‘I (p) = T ’ is invariant
under isomorphisms: this is a trivial outcome, given our robust notion of
isomorphism. Note that even on a weaker notion of isomorphism such con-
straints would turn out to be invariant, if we add some standard assumptions
to the framework that lead from isomorphism to elementary equivalence (see
Section 8). And thus, constraints imposed by meaning postulates or theories
in the object language are invariant under isomorphisms: for any theory T ,
there is a set of constraints Δ that are invariant under isomorphisms such
that the Δ-models are the models satisfying T (see also [38, p. 790]).

This outcome may be used as a further rebuttal of invariance under
isomorphisms as a criterion for logicality of semantic constraints. Still,
the thought that model-theoretic semantics should be indifferent to the
particular identities of elements in a model is preserved. Indeed, we may note
that theories in the object-language can never distinguish between particular
members of the domain, as they never have direct access to members of
the domain that is not mediated by language. This is the gist of Putnam’s
permutation argument against model-theoretic accounts of reference [25]:
reference can only be fixed up to isomorphism. It is of interest to note that in
the present context of discussion, this feature is perceived favourably: from
the perspective of logicality, particular members of the domain should not
be distinguishable.19 This leaves us with a condition that cannot possibly
fulfil the role of a criterion for the acceptance of semantic constraints into
a system, but can still serve for an initial screening. In the next section I
analyse the outcomes of the generalization, and in the subsequent section I
re-evaluate the role of invariance in setting up a logical system.

§5. Lessons from the generalized criterion. The criterion of invariance
under isomorphisms for logical terms has been widely discussed and
analysed in philosophical literature. Nonetheless, the discussion suffers from

19See [33, 34] for discussion on the contrast between logical concerns and the concerns of
a theory of reference.
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some blind spots. The generalized viewpoint offered here can further the
understanding of the philosophical role of invariance conditions in standard
systems as well as in systems of semantic constraints. Let us go over several
immediate lessons from looking at the isomorphism invariance criterion
for semantic constraints. In the next section I will use these lessons in
formulating the role I think invariance conditions should play in logical
systems.

I. Vocabulary. The first lesson has to do with the relation of invariance
under isomorphisms to vocabulary that is empirical or refers to
contingent properties. The term ‘red’ (by its intended meaning) is
not normally associated with an operation that is invariant under
isomorphisms, and thus it fails the criterion for logical terms.
Indeed, completely fixing the interpretation of ‘red’, if that is at
all possible,20 would require us to divide any given domain into
the extension and the anti-extension of ‘red’, and assuming there
are cases where neither of them is empty, we shall have to make
distinctions between particular objects. However, merely constraining
‘red’ does not necessarily commit us to these distinctions. The
constraint ‘I (Red ) ∩ I (Green) = ∅’ does not refer to any particular
objects: whether or not it holds will be so even if elements are
switched and moved around. The first lesson from the generalization
to semantic constraints is that even if we have a principle, such
as isomorphism invariance, prohibiting us from completely fixing
some term, it does not follow that the interpretation of the term
needs to remain maximally variable. We might still allow the term
to be constrained in various ways, abiding by the principle in its
generalized form. Moreover, invariance criteria, as understood here,
do not produce a bifurcation of the vocabulary into its “formal”
and its “non-formal” parts: all terms can be fixed at least to some
extent and thus take part in a “logical” language. Invariance criteria
rather tell us which ways of fixing meanings or meaning-relations are
admissible.

II. Logicality vs. fixity. Proponents of invariance criteria pose a twofold
demand on logical terms of a system: that they have a fixed interpre-
tation, and that this interpretation is invariant under isomorphisms
(or other transformations). Whatever is not completely fixed cannot
be logical. The second lesson is that logicality and fixity can be
pulled apart, even under the assumption that invariance under
isomorphisms is a test for logicality (if we are open to generalizing
it to the proffered framework). While a term without an associated
operation completely fixing it cannot even be considered for logicality
in the term-based framework, the generalization of invariance criteria
allows for clauses or rules that merely limit a term’s interpretation.

20In [27] I argue that isomorphism invariance is a pre-requisite for fixing a term in a
manner faithful to its meaning in standard extensional model-theoretic semantics.
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As an example from recent literature, we can look at the study of
Carnap’s categoricity problem of deriving semantic interpretation of
terms from their associated inference rules. In a recent article, Bonnay
and Westerståhl [6] extend the discussion from propositional to first-
order logic, and analyse the categoricity problem of the quantifiers.
The rules for the universal quantifier do not fix its interpretation
completely according to its usual semantic clause, but rather narrow
down the admissible models to those where the interpretation of the
universal quantifier is a principal filter closed under the interpretation
of the singular terms in the model. Absence of categoricity will appear
to be troublesome to those who think that we learn the interpretations
of the logical constants via their inference rules. In their analysis,
Bonnay and Westerståhl take for granted that logicality entails fixity.
They then show that if the universal quantifier is also required to be
invariant under permutations, then together with the inference rules
one obtains a fixed meaning. And thus, by imposing a commonly
accepted condition for logicality, one can obtain a fixed logical term.

Note that the restriction on models that is obtained by Bonnay
and Westerståhl, by the inference rules for the universal quantifier,
can be formulated as a set of semantic constraints. The restriction
to models where the universal quantifier is interpreted as a principal
filter generated from some subset A of the domain is formulated
by the semantic constraint: ‘I (∀) ∈ {{B ⊆ D : A ⊆ B} : A ⊆ D}’.
Closure under the interpretation of the singular terms in the model
is captured by including the constraint ‘I (t) ∈

⋂
{B : B ∈ I (∀)}’ for

each singular term t in the language.21 These semantic constraints
are invariant under isomorphisms. Thus, the present contribution
to that discussion will be: even though the rules for the universal
quantifier do not suffice for fixing the meaning of the term, they
do constrain it in a logical way—that is if isomorphism-invariance
is endorsed as a criterion for logicality (Bonnay and Westerståhl
themselves propose permutation-invariance as a condition for topic-
neutrality). What the rules fail to provide are fixed terms. Logicality
(of relevant constraints), under the common assumptions, is granted.

Note, also, that rules formulated in the object language will always
yield isomorphism-invariant constraints: this is for the same reason
that was mentioned at the end of the previous section concerning
meaning postulates and theories in the object language.

21Recall that singular terms in the framework of semantic constraints are terms whose
interpretation is a member of the domain in each model (admissible by a given set of
constraints). Of course, the category of singular terms in this framework coincides with that
of singular terms in the special case of standard systems, and so the constraints above are
another way of stating Bonnay and Westerståhl’s results. Note that by the completeness of
first-order logic, the addition of “non-standard” interpretations does not make any difference
to the extension of the relation of logical consequence.

https://doi.org/10.1017/bsl.2021.67 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2021.67


INVARIANCE CRITERIA AS META-CONSTRAINTS 121

III. Modelling. Invariance under isomorphisms is part and parcel of
practice in model-theoretic semantics.22 The more general moral
that can be drawn from the foregoing is that by the invariance
criterion, the models of model theory are really just models: different
“materials” or “substances”, so to speak, can be used to model
the same phenomenon. Passing the invariance criterion’s test for
logicality simply means that this feature of modelling is maintained
in the semantic framework. Invariance is thus a desirable property if
models are to be used. As it happens, if you restrict your perspective
to completely fixed terms, and apply invariance criteria to this class
of terms, it looks like a bifurcation of the vocabulary is at issue.
However, when viewing things more broadly, considering all sorts
of semantic constraints, a strict division of the vocabulary into the
logical and the nonlogical is no longer the main outcome. The issue
rather seems to be the basic features of being a model, of what kinds
of restrictions on models qua models are permitted.23

To sum up, invariance criteria, when generalized, do not bifurcate the
language, in the sense that they do not sieve the empirical, contingent, or
non-formal expressions out of logical languages. Constraints on all parts of
vocabulary can be invariant. Further, invariance criteria, in their generalized
form, do not require a strict division of the language into the fixed and non-
fixed terms: terms that are not completely fixed can have constraints that
are yet invariant under isomorphisms. Finally, invariance criteria pertain to
the way in which the semantic apparatus, namely the models, are to be used:
distinctions between isomorphic models have no place in model-theoretic
semantics. If a certain meaning relation formed as a semantic constraint
is not invariant under isomorphisms, this tells us that the standard model-
theoretic apparatus is inadequate for capturing it. From this we can derive
that the meaning relation is too complex, or indeed non-logical; but it would
be good to remember that we arrived at these properties through a certain
semantic apparatus for modelling.

Nonetheless, defenders of invariance criteria might claim that in the
special case of the term-based framework, invariance under isomorphisms
(or other transformations) does do the work of dividing the language in
a more or less desirable manner, getting the distinction between logical
and nonlogical terms approximately right—assuming, of course, the pairing
of candidate terms with their associated operations. I agree that in the
term-based setting, invariance criteria do not fail as badly, but I think that
they leave much to be desired. To be sure, terms that are invariant under

22Generalized quantifiers in [22] are invariant under isomorphisms by definition. Closure
under isomorphisms of the class of models for a logic is assumed throughout [2].

23Shapiro [30] distinguishes between two kinds of features of models: representors—those
elements in models that correspond to some features of the phenomena modelled, and
artefacts—those elements in models that do not represent, but are part the model, perhaps
making it simple or coherent. Here I take invariance criteria to express the idea that the
material from which elements of the domain of a model are made is an artefact.
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isomorphisms have associated operations that are simple and general, as
they don’t distinguish between equinumerous domains. Nevertheless, the
association of terms with operations, which is assumed in the background
of term-based systems, and is made explicit in the framework of semantic
constraints, is a crucial factor in the adequacy of a logical system. In the
next section, I stress the importance of this element in the construction of a
logical system, on which invariance criteria are silent.

§6. Invariance criteria as meta-constraints. The following arguments
are valid in systems of semantic constraints that are invariant under
isomorphisms (including the constraints ‘I (Bachelor) ∩ I (Married ) = ∅’
and ‘I (Unicorn) = ∅’ as well as the standard constraints for first-order
logic):

(A)
Bachelor(John)

¬Married (John)

(B)

¬Unicorn(John)

Argument (B) is already captured by the term-based framework abiding
by invariance under isomorphisms, assuming that the extension of Unicorn
is the empty set in every model. Should these arguments be sanctioned
by a system for logic? Examples such as (B) can be used to cast doubt on
invariance under isomorphisms as a criterion for logicality, and indeed, some
have used Unicorn as a counterexample for this criterion.24 The present
discussion of invariance criteria from a general perspective can help us
locate the issue with these putative counterexamples. It seems (at least prima
facie) wrong to fix Unicorn in a logical system, not because its associated
operation is somehow nonlogical, but because the choice and assignment of
the associated operation seems to be too contentious to be allowed to have an
effect on logical consequence.

I do not wish to take a definite stance here with respect to (A) and (B)
and whether a system for logic should sanction these arguments. But the
status of these examples cannot be settled merely by invariance conditions,
as those will also sanction:

(C)
Bachelor(John)

Married (John)

24See [14].
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(D)

¬Man(John)

We need only make sure that we include the relevant, invariant, semantic
constraints (i.e., ‘I (Bachelor) = I (Married )’ and ‘I (Man) = ∅’ as well as
the standard constraints for first-order logic). Clearly, what’s wrong with
these constraints has to do with their relation to the intended meaning of
the terms. The Tarskian approach to logical consequence assumes that the
(correct) semantic facts are given, and that there’s no doubt about them.
When choosing a logical system, such assumptions need to be negotiated,
and invariance conditions contribute nothing on this matter.25 Given that
the role assigned to criteria for logicality in the relevant discussion is to
complete Tarski’s definition of logical consequence, invariance criteria fail
their purpose badly.

At this point we can mention two possible objections to the critical
assessment above, in defence of invariance criteria as adjudicating logicality.
The first opts for the use of a fully symbolic language that divorces
expressions from their preconceived meanings: while a use of an expression
in natural language could lead to a choice of an associated operation, in
the formalized setting meaning is reduced to that operation—its source is
disregarded, as are all other aspects of meaning. And so, if indeed our
semantics happens to dictate that Unicorn denotes the empty set in every
model, then it means the same as the co-extensional ‘non-self-identical’ for
all intents and purposes of the formal system.26 From this perspective, what
invariance criteria presumably fail to capture is irrelevant to the construction
of a fully formal logical system.

The second objection is less radical. Here one accepts that the assignment
of an associated operation to an expression might be a non-trivial matter,
but still they take it as a given on the basis of which we choose a system for
logic. To justify this, one might argue for a division of labour between logical
and linguistic or other inquiries. Logic, by this defense, is not supposed to
deal with the basis for assigning one meaning or another to a given term,
but rather it is there to differentiate between terms given the meanings that
they have. Give the logician a language with its semantics, and they will

25See also MacFarlane on permutation invariance: “Its main shortcoming is that it operates
at the level of reference rather than the level of sense; it looks at the logical operations
expressed by the constants, but not at their meanings. An adequate criterion, one might
therefore expect, would operate at the level of sense, perhaps attending to the way we grasp
the meanings of logical constants” [18]. I agree with the gist of MacFarlane’s remark, although
I would add that (given that criteria for logicality apply to linguistic expressions), it is the
relation between an expression and its meaning that is at stake, and to this relation I refer in
what follows. Senses may be involved (I do not go into this topic), but note that (Fregean)
senses, while intermediate between a linguistic expression and its extension, are on their own
meanings detached from linguistic expressions.

26For such a line of argument, see [34, p. 304].
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identify its logic. Further, a logician might claim that the subject matter of
logic is not language itself, but the formal operations denoted by logical
terms. Such a logician might appeal to Tarski [37] for support, where Tarski
focuses on logical notions, which he defines as the set-theoretic entities that
are invariant under permutations of the domain. One can then define logical
terms to be the linguistic expressions that happen to denote logical notions,
but logic is primarily concerned with the denotations, not with how language
attaches itself to them.27

To respond to these objections, I’d like to first reiterate my acknowledge-
ment that logical systems have different uses, serving different purposes
giving rise to different conceptions of logic. In a setting where logic is
viewed as a purely mathematical discipline (as in [37]), invariance under
isomorphisms might indeed suffice as a criterion for logicality. Nonetheless,
I contend that in a setting where the validity of meaningful arguments is
concerned, the relation between expressions and their formal explications
needs to be considered.28 Criteria for logical terms are intended to fill in
the lacuna in defining the concept of logical consequence or of logical
validity (see [4, 31]). Logical consequence in the model-theoretic tradition
is a relation between linguistic entities. In other words, the question at
the base of the project is which arguments are valid. We may look at
denotations to answer this question. But we cannot disregard the nature
of the relation between expressions and their denotations, lest we accept
Unicorn and other such terms as logical terms—being merely guided by
invariance criteria. In the framework of semantic constraints, we would end
up with ‘I (Water) = I (H2O)’ and other semantic constraints that are based
on empirical findings, which would presumably be unpalatable for anyone
who is interested in setting bounds for logic.

Many of the critics of the isomorphism-invariance criterion agree that it
serves at least as a necessary condition for logicality, but perhaps not as a
sufficient one. However, the problem is not that the criterion misses certain
cases. The picture under which the isomorphism-invariance criterion pretty
much gets it right and is just in need of some modification is misleading in
view of its utter silence on fundamental semantic and metasemantic issues
concerning the relation between terms and their intended meanings.29 The
kind of overgeneration we encounter, that arises in the stage of meaning
assignment, will not be overcome by stricter invariance criteria (see Section
9). Invariance criteria on their own just don’t seem to deliver what is expected

27Indeed, it is customary to interpret Tarski’s later work as completing the explication of
logical consequence he set out on in his earlier paper [36], but see [29] for an alternative
interpretation.

28Note that when presenting the criterion of permutation invariance for logicality, Tarski
expressly disconnects the discussion from the issue of logical truth, and logical consequence
or validity is not even mentioned [37].

29For the distinction between semantics and metasemantics see [7]. A related distinction
is made by Stalnaker [35] between descriptive semantics and foundational semantics. In the
former one provides the semantic values of expressions in the language, and in the latter one
asks what makes it the case that a language has the descriptive semantics that it has.
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of them in terms of guiding us towards a correct logical system, at least
when we consider terms with a preconceived meaning coming from natural
language.

I suggest to simply give up the phrase “criteria for logicality” when it
comes to invariance conditions. Invariance certainly has a role in model-
theoretic semantics, but it is not that of marking a line between logical
vocabulary and nonlogical vocabulary, or between the vocabulary that
should be fixed and the vocabulary that shouldn’t be fixed. Nor does it
serve as an arbitrator for logical semantic constraints. I suggest, instead, an
alternative rephrasing that I adopt from Zimmermann [38]. Zimmermann
considers meaning postulates and other kinds of constraints on models as
means for approximating appropriate models for English. The method of
verification of a correct set of constraints would presumably be any of the
existing methods in linguistic theory. Zimmermann then proposes a meta-
constraint on classes of appropriate models that they should be closed under
isomorphisms, and this is equivalent to our criterion of invariance under
isomorphisms for semantic constraints. The meta-constraint does not tell us
which classes of models are appropriate—whether a given meaning postulate
such as ‘No bachelor is married’ is correct for English. The meta-constraint
is more of a feature of the model-theoretic apparatus. The exact same holds
in our setting: the invariance criterion for semantic constraints is not faithful
to intended meaning and therefore may not be a guide for the correct logical
system—it merely indicates the ways models can be used, and should thus
be considered as a methodological meta-constraint.30

Restricting our perspective back to term-based logic: we have learned
that the criterion of invariance under isomorphisms for logical terms is a
special case of the requirement of closure under isomorphisms of classes of
models, and thus it too, by Zimmermann’s own lights, should be considered
as a meta-constraint. It tells us what kinds of operations can be fixed as
denotations of terms in the language, without telling us further how and
which to fix. To be sure, every criterion for logicality would be a meta-
constraint, but not every meta-constraint is a criterion for logicality.

Although Zimmermann is concerned with model-theoretic semantics
from a linguistic perspective, this outlook on invariance applies more
generally—whether we are concerned with natural language as an empirical
object of study or with explicating the concept of logical consequence from
the reasoner’s perspective. The observations in Section 5 have led there to
the claim that invariance criteria tell us how models ought to be used,
that the “material” from which the domain is made is an artefact and
should not affect logical consequence. This sits well with the invariance
as a methodological meta-constraint perspective. Adopting this perspective
means that (a) the critics of invariance criteria are correct—invariance falls

30Perhaps we can identify a similar attitude in Shapiro [30], who states the isomorphism
property, a condition that is equivalent to isomorphism-invariance, without endorsing it as
a full criterion: “I would submit that the isomorphism property is a necessary condition of
any model theory worthy of the name” [30, p. 152].
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short of bringing Tarski’s explication of logical consequence to fruition,
and that (b) inasmuch as invariance tells us anything about logicality,
it is through its methodological role in setting-up the boundaries of the
model-theoretic framework. Model theory is a tool we use for theorizing in
logic, and invariance under isomorphisms should reasonably be included in
any manual for the use of this tool (on the assumption that the particular
identities of elements of domains should not be considered in modelling).

§7. Conclusion. The aim of this paper was twofold. First, I generalized
invariance criteria so as to apply in the framework of semantic constraints.
I have done so by reformulating invariance under isomorphisms (of a term)
as closure under isomorphisms of classes of models (satisfying a constraint).
Secondly, through the generalization, we obtain a new perspective on the
philosophical significance of invariance criteria. On the assumption that
the move to the more general framework of semantic constraints for the
explication of logical consequence is a viable one, the two main results
were:

1. Invariance criteria, as generalized, do not provide a strict division of
language into two types of vocabulary, but they rather delineate the
acceptable ways in which meaning can be presented in model-theoretic
semantics. The framework of semantic constraints lets go of the strict
distinction between “fixed” and “nonfixed”; we see here that invariance
criteria for logicality can be generalized to this framework and therefore
have no inherent demand for such a distinction.

2. Invariance criteria are silent on the association of terms and operations,
and more generally on the relation between terms and their meanings.
This claim is recognizable already in the term-based setting, but its
impact is emphasized considerably in the generalized framework.

From 1 and 2 we come to the position that invariance criteria tell us how
to use model-theoretic semantics: models present meanings through the
structure imposed by the interpretation function. Models merely model:
the material used in their domains is thus irrelevant; invariance under
isomorphisms ensures this ground rule. We learn that the ground rules for
using model-theoretic semantics are moot in difficult cases where intended
meaning is not trivial, or where matching a term with its intended meaning
appears to go beyond what we’d admit as logical considerations. All these
together suggest that invariance criteria do not provide us with the desired
means for dividing up a language into its logical and nonlogical sections,
and that they rather serve as methodological meta-constraints on the proper
use of model-theoretic semantics.

There may be a lot to learn about a term through the ways its meaning
can be represented in model-theoretic semantics. Thus, I do not mean
to dismiss the significance of invariance as a tool for studying logicality.
I do, however, propose a shift of focus in the discussion, based on the
following two reflections: First, whatever invariance criteria teach us, it
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is through their role as meta-constraints in model-theoretic semantics—
we primarily learn something about model-theoretic semantics, and in
combination with further assumptions about meaning, we might draw more
fundamental conclusions on the logicality of terms or constraints. Secondly
and relatedly, the assignment of intended meaning, usually taken for granted,
should be considered more thoroughly and seriously in the study of logical
consequence. Where do intended meanings come from? How exactly are
they represented in model theory—what do models represent, and how do
semantic clauses capture meaning? Hopefully, we have provided sufficient
motivation to give these issues their proper due.

§8. Appendix A. Isomorphism and elementary equivalence. In this section
I discuss the definition of isomorphic models, which, as noted, is stronger
than the standard one. To be sure, the present definition of invariance under
isomorphisms for terms is consistent with the literature (it does not even
refer to the definition of isomorphism, which was employed in the case of
semantic constraints). Still, to clarify the relevant notions, we relate the
present definitions to standard results. For the standard results we need
compositionality and that the operations forming complex expressions are
invariant under isomorphisms.

Definition 9.1 (Elementary equivalence). Let M = 〈D, I 〉 and M ′ =
〈D ′, I ′〉 be models for L. We say that M and M ′ are elementary equivalent
(M ≡M ′) if for every phrase p, I (p) = T iff I ′(p) = T and I (p) = F iff
I ′(p) = F .

Proposition 9.2

1. Let M andM ′ be models. IfM ∼=M ′ thenM ≡M ′.
2. Let Δ be a set of semantic constraints. Assume that L is compositional

w.r.t. Δ, all fixed terms are isomorphism-invariant, and all the opera-
tions interpreting complex phrases according to Δ31 are isomorphism-
invariant. Then if M and M ′ are Δ-models that are isomorphic with
respect to the non-fixed vocabulary with respect to Δ, thenM ∼=M ′.

We remark that (1) is immediate and (2) is trivial. Moreover, the impli-
cation from isomorphism w.r.t. the nonlogical vocabulary to elementary
equivalence in standard first-order logic is a special case of this proposition.
Note that as a result, any constraint of the form ‘I (p) = T ’ for some
phrase p will be invariant under isomorphisms (see the discussion at the
end of Section 4).

31Let L be compositional w.r.t. Δ, and let p be a phrase that includes the terms
t1, ... , tn (in that order) with perhaps auxiliary symbols. Then there is an (n + 1)-place
operation OΔ

p such that for every Δ-model M = 〈D, I 〉, I (p) = OΔ
p (D, I (t1), ... , I (tn)).

We call OΔ
p the operation interpreting p in L according to Δ. We say that OΔ

p is
invariant under isomorphisms if for any sets D and D′ and a bijection f : D → D′,
f(OΔ

p (D, I (t1), ... , I (tn))) = OΔ
p (D′, f(I (t1)), ... , f(I (tn))).
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§9. Appendix B. Other invariance criteria. The criterion of invariance
under isomorphisms as applied to logical terms has been accused of
overgenerating, based on various kinds of counterexamples other than those
we’ve been considering. First, there are terms whose meaning varies with
the cardinality of the domain. A quantifier Q∃\∀ that is interpreted as the
existential quantifier on domains of the size of a successor cardinal and
as the universal quantifier otherwise is invariant under isomorphisms, but
because it doesn’t seem to have a unified meaning is deemed by many as
intuitively nonlogical.

In addition, all the cardinality quantifiers are invariant under isomor-
phisms, including ∃2ℵ0 (there exist continuum many) and ∃ℵ1 (there exist ℵ1

many). The equality of the extensions of these quantifiers is independent of
the ZFC axioms of set theory, and so it seems highly undesirable to many
to permit them as logical terms.

The literature on logicality contains various accounts that modify the
isomorphism-invariance criterion. One line of proposals takes instead of
isomorphisms, a wider class of transformations, so that the class of invariant
terms becomes more exclusive. Two such proposals will be presented and
extended to the framework of semantic constraints. We shall see that indeed,
some semantic constraints will be ruled out by these proposals. However,
the lessons drawn in Section 5 will apply to these proposals just as well.

Thus, instead of invariance under isomorphisms, we can consider more
generally invariance under similarity relations, as in [4, 12]. Here, we take
a similarity relation to simply be a relation between models without further
conditions (but some conditions can be imposed if needed). Isomorphism,
as defined in the previous section, is a similarity relation.

Definition 10.1 (Invariance under similarity relations: semantic con-
straints). Let S be a similarity relation between models. We say that a
constraint C is invariant under S if for any models M and M ′, if M is a
{C}-model andMSM ′, thenM ′ is a {C}-model.32

Now we need to phrase the condition of invariance under an arbitrary
similarity relation with respect to terms. Since the similarity relation may
not necessarily be determined by a class of functions, we need a more general
treatment than the one we had for isomorphisms in Section 4. The definition
we give is in line with the specific cases of invariance under a class of
functions, and is indeed very close to some formulations in the literature.

Definition 10.2 (Invariance under similarity relations: terms). Let S be a
similarity relation between models, t a term, andOt its associated operation.
We say that t is invariant under S if for any models M andM ′, if I (t) = Ot(D)
andMSM ′ then I ′(t) = Ot(D ′).33

32Simply put: the class of models satisfying the relevant constraint is closed under S.
33To show that the definition is in line with standard usage, we compare it to Bonnay’s

definition of S-invariance of operators. Bonnay deals with quantifiers as second-level
predicates, and structures of the form 〈M,A〉 where M is a domain and A a subset of
that domain. Operators associated with quantifiers are then functions on such structures,
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From this definition, the equivalence of invariance under a similarity
relation of a term t and of its associated constraint Ct falls out immediately.
But this is no surprise, given the discussion (and proof) in Section 4.

Let us consider two cases of similarity relations: homomorphisms and
potential isomorphisms.

Definition 10.3 (Homomorphic models). We say that M = 〈D, I 〉 is
homomorphic to M ′ = 〈D ′, I ′〉 (MHomM ′) if there is a surjection f :
D → D ′ such that, when properly extended, gives for every phrase p:
f(I (p)) = I ′(p).

Feferman has endorsed a variant of invariance under homomorphisms as
a criterion for logicality.34 Applied to terms, we get the standard quantifiers
(∀ and ∃), but we don’t have the identity relation or any of the non-
standard cardinality quantifiers (Q∃\∀, ∃2ℵ0 and ∃ℵ1 , and also ∃ℵ0 , ∃≤3,
etc.). According to Feferman, his criterion ensures homogenous meaning
and absoluteness with respect to models of set theory.

As for semantic constraints, on the present definition of homomorphisms,
the following examples pass the criterion. We note that there may be
other, close ways of defining homomorphisms which would yield different
results.35

• I (Even) ∩ I (Prime) �= ∅.
• I (Unicorn) = ∅.
• I (Big) = I (Green).
• I (Blue) ⊆ I (Extended ).
• |I (Red )| ≤ 375.

The relation of homomorphism is non-symmetric, and the property
of invariance under homomorphisms is not closed under negation of
constraints (or complement, if a constraint is identified with a class
of models). The following semantic constraints are not invariant under
homomorphisms:

• I (Blue) ∩ I (Green) = ∅.
• I (Big) �= I (Green).
• |I (Red )| = 375.
• |I (Red )| ≥ 375.

assigning T to structures where the second element falls under the quantifier’s extension in
the structure’s domain and F otherwise. Bonnay then defines: “We say that an operator Q
is S-invariant iff, for any structures M, M′, if MSM′, then Q(M) iff Q(M′)” [4, p. 39].
Now,Q(M) is a short way from saying that M fixes the quantifier according to its associated
operation.

34The criterion he ultimately proposes (in [12]) is not simply invariance under homomor-
phisms, but rather the following, more restrictive one, which does not so easily render itself
to generalization to the framework of semantic constraints: an operation is logical if and
only if it is �-definable from monadic homomorphism-invariant operations.

35For the delicacy of the criterion of invariance under homomorphisms to slight variations
in framework, see [10].
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We make two observations with respect to invariance under homomor-
phisms as a criterion for semantic constraints. First, it seems that the
boundary delineated is rather arbitrary: is there a reason to distinguish
between the relation of being mutually exclusive and its complement? In
addition, while constraints setting the exact cardinality or a lower bound
on the cardinality of a term’s extension are excluded, constraints setting an
upper bound are not.

Secondly, we see that the same phenomena observed in Section 6 with
respect to the criterion of invariance under isomorphism can be observed
here: the points regarding Unicorn hold just the same.36 The same will
apply to the criterion of invariance under potential isomorphisms, due to
Bonnay [4], to which we turn next, in advance of further elaboration of this
point.

Definition 10.4 (Potentially isomorphic models). We say that M =
〈D, I 〉 and M ′ = 〈D ′, I ′〉 are potentially isomorphic (M ∼=p M ) if there is
a non-empty set of partial isomorphisms F from D to D ′, meaning that for
every f ∈ F :

• for every d ∈ D, there is a g ∈ F such thatf ⊆ g and d ∈ dom(g), and
for every d ′ ∈ D′, there is a g ∈ F such that f ⊆ g and d ′ ∈ ran(g),

• when appropriately extended, we have for every phrase p, f(I (p) ∩
dom(f)) = I ′(p) ∩ ran(f).

Bonnay’s criterion for logical terms too blocks some counterexamples to
isomorphism-invariance: we have both absoluteness and some assurance of
homogenous meaning (so Q∃\∀, ∃2ℵ0 and ∃ℵ1 are all blocked, though not
∃ℵ0 , ∃≤3, for which the intuitions are less clear). More generally, potential
isomorphisms distinguish between finite cardinalities, but not between
infinite ones.

The semantic constraints invariant under potential isomorphisms include
all those having to do with set-theoretic relations such as being mutually
exclusive and subset inclusion, as well as their complements. As for
“cardinality-constraints”, similar to the case of terms, we have con-
straints having to do with countable (finite and infinite) cardinalities
(e.g., ‘|I (Red )| = 375’) but not those involving uncountable cardinalities
(e.g., ‘I (realNumber) = 2ℵ0 ’).

It can easily be observed that even though some of the putative
counterexamples to the isomorphism-invariance criterion for logical terms
are blocked, the lessons we drew in the previous sections still apply. The
alternative invariance conditions can be adopted as meta-constraints as
suggested with respect to isomorphism invariance—an option I shall not
discuss here.

36Interestingly, if we look at a term such as maleWidow, understood as ‘a male that is
a widow’ we observe that here ‘I (maleWidow) = ∅’ and ‘I (Male) ∩ I (Widow) = ∅’ come
apart: the former is invariant under homomorphisms and the latter isn’t.
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[11] K. Došen, Logical constants as punctuation marks. Notre Dame Journal of Formal

Logic, vol. 30 (1989), no. 3, pp. 362–381.
[12] S. Feferman, Logic, logics and logicism. Notre Dame Journal of Formal Logic, vol. 40

(1999), no. 1, pp. 31–55.
[13] G. Frege, Sense and reference. The Philosophical Review, vol. 57 (1948), no. 3,

pp. 209–230.
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