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Abstract

This paper argues from extensive research findings in design psychology and industrial design processes, as well as our
own observations, that interactive generative systems can be powerful tools for human designers. Moreover, interactive
generative systems can fit naturally into human design thinking and industrial design practice. This discussion is fo-
cused on aesthetic design fields like knitwear and graphic design, but is largely applicable to major branches of engi-
neering. Human designers and generative systems have complementary abilities. Humans are extremely good at perceptual
evaluation of designs, according to criteria that are extremely hard to program. As a result, they can provide fitness
evaluations for evolutionary generative systems. They can also tailor the biases that generation systems use to reach
useful solutions quickly. We discuss an application of these approaches: Kelly’s evolutionary systems for color scheme
design. Automatic design systems can work interactively with human designers by generating complete designs from
partial specifications, that can then be used as starting points for designing by modification. We discuss an application
of this approach: Eckert’s garment shape design system.
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1. INTRODUCTION: ACHIEVING HUMAN–
COMPUTER SYNERGY

The purpose of intelligent systems for supporting human
designers is to achieve human–computer synergy, to achieve
greater creativity and effectiveness than either humans or
artificial intelligence~AI ! systems can manage on their own.
This entails embedding intelligent systems into human de-
sign activities, not only to take over subtasks that humans
find difficult or tedious, but also to exploit the power of
human design thinking.

The argument of this paper is that generative systems for
automatic design can be powerful tools for human design-
ers, but need to be grounded in an understanding of design.
While the intrinsic structure of the design problem is the
most profound influence on what designers do, their strat-
egies and actions are powerfully constrained by their cog-
nitive capacities, and by the representations and operations
afforded by the tools they use. Effective tools must be en-

gineered to fit~1! the task,~2! the cognitive characteristics
of their users,~3! their users’ skills, and~4! the organiza-
tion of the design process within its industrial context. This
requires an awareness of design psychology and a thorough
study of the design processes in which a tool will be used.

Effective interactive AI systems should enable human de-
signers to exploit the strengths of AI systems, to perform
complex computations, handle multiple constraints, and ex-
plore alternative solutions. As interactive tools, generative
systems can exploit the strengths of human designers, to eval-
uate the characteristics and qualities of designs perceptu-
ally, and to use visual stimuli as triggers to imagine novel
designs. Automatic design systems can work interactively
in different roles~which can be combined!: evolving de-
signs iteratively with humans performing selection and
fitness evaluation; completing designs from partial specifi-
cations; and generating initial candidate designs for hu-
mans to modify.

1.1. The power of bias

For most interesting classes of artifacts, the space of possi-
ble designs is immense. At any stage in the construction of
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a design, the vast majority of possible changes are either
nonsensical or foolish. So to create a design that meets its
designers’ objectives, the generation process must be strongly
directed. In the generation of successive partial designs, this
direction can come from the expressive power of the repre-
sentation in which the design is expressed, from the range
of design creation actions available, and from the ways in
which these actions are selected. In the evaluation of suc-
cessive partial designs, it can come from the constraints the
design must meet and the qualities it must have.

Human designers combine all these sources of guidance.
Automatic design systems need strong direction to produce
appropriate rather than inappropriate artifacts: they need to
be biasedtoward producing some designs rather than oth-
ers. But when their users want to explore alternative de-
signs for reasons that cannot easily be programmed,bias is
harmful: Automatic design systems should cover the whole
space of appropriate designs, and not just a small subset of
it. In this paper, we argue that stand-alone generative sys-
tems have biases that are far too strong for many applica-
tions. A more fruitful approach is to build in constant domain
constraints~for instance in tailoring, that the sleeve crown
curve is the same length as the armhole curve!, and allow
users either to program constraints and biases, or to provide
the biasing themselves interactively.

1.2. Generative systems for visuospatial
conceptual design

In this paper we concentrate on the use of generative sys-
tems for design, in fields where design involves visuospa-
tial reasoning about shape and appearance, and especially
in fields where design is partly concerned with aesthetics.
The view of designing we present is grounded in the first
author’s extensive study of the knitwear design process~Eck-
ert, 1997a, see Section 5.1!, as well as the research litera-
ture on designing in engineering and architecture~see for
instance Schön, 1983; Akin, 1987; Cross, 1989!. Most of
this analysis is applicable to many branches of engineering,
though some require optimization and reuse of standard so-
lutions rather than support for variety, and electronics and
control engineering are distinct arts.

We are primarily concerned with what engineers term con-
ceptual design: the stage in which engineers make the ma-
jor decisions about what a machine does and how it works,
as opposed to embodiment design, in which these decisions
are fleshed out in exact detail. Other fields have a different
division of labor, and different terminology for the same dis-
tinction. For instance, in knitwear design, aesthetic design
by knitwear designers is followed by technical design by
technicians.

In Section 2 we consider the strengths and limitations of
generative systems as tools for conceptual design, to set a
context for Section 3, in which we discuss aspects of how
designers design that are vitally important for understand-

ing how to embed generative systems into human design
processes. In Section 4 we point out some problems in con-
ceptual design that interactive generative systems can alle-
viate. Sections 5 and 6 present two examples of interactive
automatic design systems based on psychological research
and design process analysis, for garment shape design and
for color scheme creation.

2. ROLE OF AUTOMATIC DESIGN IN
CONCEPTUAL DESIGN

The strength of generative systems as tools for conceptual
design is their ability to explore the whole of a space of
possible designs. A system’s design representation formal-
ism and its set of operators for constructing designs define
this space; they define the aspects of the final product that
are included in the design, and the level of abstraction at
which they are described. Generative methods have~or can
have! many characteristics that make them ideal tools to sup-
port human designers, who can control them by tuning the
characteristics of the search space or by guiding the search
itself. In the following sections we will see how they fit into
patterns of human cognition and work practice.

2.1. Strength of generative systems

For the purpose of this paper we use the term generative
systems in a broad sense, to cover methods that generate
designs based on a set of input specifications. These in-
clude evolutionary methods including genetic algorithms;
rewrite rule methods such as shape grammars~see Stiny,
1980; Knight, 1994!; and heuristic rule methods including
case-based reasoning~see Kolodner, 1993!.

Generative systems can be powerful tools to create new
designs fast, but require careful and elaborate research and
development by the programmer. Mistakes in the design of
a generative system are costly and difficult to change. In
most systems, however, the difficulty does not lie in gener-
ating new designs, but selecting those that are worth con-
sidering by a human user or the system itself for further
development. A system can generate all the alternative de-
signs that are consistent with~1! the inputs describing the
design task,~2! the generative rules and algorithms, and~3!
the constraints built into the representation formalism, to
map the entire space of designs. If this space is large, fur-
ther constraints are necessary to keep the number of de-
signs within manageable bounds. Restrictions on the space
of permitted designs can be built into the design represen-
tation formalism or the generative rules and algorithms, or
built into separate evaluation rules. These can ensure that
generative systems discard, or never generate, designs that
do not meet basic constraints and quality criteria. This ap-
proach can be used to generate designs using complex for-
mal or mathematical methods, or conforming to complex or
computationally difficult sets of constraints. Such designs
can be difficult or impossible for human designers to cre-
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ate, or so effort-intensive that human designers can only cre-
ate one or a few alternative designs when generating many
would be beneficial.

Generative systems create designs that are complete within
the scope of the design representation formalism. Thus, the
degree of completeness of the design is well understood.
This complete description can be used to create mappings
to different notations and visual displays.

2.2. Stand-alone generative systems

Although independent generative systems are extremely
valuable for modeling human design thinking, and have
achieved spectacular successes, notably the shape gram-
mars for Palladian villas~Stiny & Mitchell, 1978! and Frank
Lloyd Wright prairie houses~see Knight, 1994!, they are
complex and difficult to build. Moreover, each generative
system works only in a single style. They exploit strong bi-
ases to reach a small part of the space of possible designs.
However, to be widely applicable to under-constrained de-
sign tasks with large design spaces, such as architecture and
knitwear, generative systems need weaker built-in biases,
and an external source of guidance: a human user.

2.3. Users specifying biases for generative systems

Generative systems for design follow a cycle through prob-
lem specification, design generation, and design evaluation
~Fig. 1!, that is closely analogous to the cyclic pattern of
human design behavior~Figs. 2 and 3!. Evolutionary tech-
niques such as genetic algorithms create designs by iterat-
ing through this cycle many times. Heuristic rule-based
systems might only go through one cycle, while a shape
grammar might be used in either mode@see Chase~1998!
for a discussion of alternative modes of interaction with shape
grammars#.

Human users can interactively control the behavior of gen-
erative design systems by specifying the features that de-
signs must have. These characteristics may be constraints
that must be met, or desirable characteristics the design
should have~that can be computed after each design is cre-
ated!, or partial designs that the system should keep and
extend. These different types of specifications have differ-
ent implications for how a generative system must work.
However, all serve to direct the generative system to a small

part of the space of designs made possible by its represen-
tation formalism and operators. Kelly’s suite of evolution-
ary color design systems, described in Section 6, allows the
users to program constraints that generated designs must con-
form to, as an indirect but computationally feasible way of
specifying desirable emergent properties. The user controls
Eckert’s garment-shape design system, described in Sec-
tion 5, by supplying partial designs.

Generative systems for design can work interactively in
different ways that depend on how much the user constrains
the problem initially, and on what role the human takes in
the creation of designs. A potentially important role for gen-
erative systems is extending designs when the human de-
signer has already made some important decisions, to explore
and illustrate the implications of those decisions. Given a
tight but partial specification~perhaps expressed in terms
that require further effort to turn into a structural descrip-
tion, such as a garment shape described as a set of measure-
ments!, the system generates one or several complete designs,
taking over difficult or tedious algorithmic subtasks. Such a
system should ensure technical correctness, perhaps inter-
actively by interrogating the user, and might use aesthetic
heuristics. This is the primary function of the garment shape
design system we describe in Section 5.

Design by computer and design by human are not mutu-
ally exclusive. A partial or complete design produced by an
automatic design system may serve as a starting point for
humans to design by modification. If the design editor used
for this purpose does not maintain completeness and cor-
rectness, the automatic design system can propose further
completions and corrections of inconsistencies. This is how
we envisage the garment shape design system we describe
in Section 5 being used; we argue in Section 3 that this fits
naturally into human design thinking and current industrial
practice.

Fig. 1. Generative design cycle.

Fig. 2. Human design cycle.

Fig. 3. Design evaluation cycle in industry.
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2.4. Users in the generative loop

The great challenge of building generative systems is eval-
uating the generated designs for further development or fi-
nal presentation. In an interactive generative system this task
can be largely taken over by the user, as illustrated by Kelly’s
evolutionary systems for color scheme design, discussed in
Section 6. Given a loose specification~or set of constraints!
defining a large space of possible designs, an evolutionary
system creates a sequence of designs with the human user
selecting good designs for further development.

Generative systems can include evaluations of properties
of the design that can be determined directly from its struc-
tural features; computer-generated critiques of designs and
other decision-making can be extremely useful, and critiqu-
ing systems are a major area ofAI research~Silverman, 1992;
Fischer et al., 1993!. Often, however, the users require eval-
uations of emergent features of designs, for technical and
aesthetic reasons. These evaluations are likely to be ex-
tremely difficult to compute from the system’s representa-
tion of the design. They are also likely to depend on subtle
details of the design task and the context, which are hard or
impossible to model computationally, and which certainly
cannot be modeled for every individual design task. As we
describe in Section 3.3, humans are remarkably good at mak-
ing fast perceptual evaluations of complex and subtle prop-
erties of designs by looking at pictures and diagrams, and
professional designers’ talents and training make them es-
pecially good at this. This ability enables skilled users to
provide generative systems with quality evaluations quickly
and efficiently.

2.5. Generative systems as tools for designers

The creation and evaluation of complete designs has sev-
eral strong advantages for interactive systems to support hu-
man designers:

• A great number of designs can be produced, spanning
a large search space.

• The creation of new designs is relatively fast.

• New designs can be created using computational meth-
ods or conforming to computable constraints that are
difficult or impossible for humans to use.

• All designs are specified at a predictable and well-
understood level of completeness, abstraction, and
detail.

• All designs can be displayed in ways that suit the user,
for example, in pictures or schematic diagrams, and if
appropriate in a variety of different forms for different
purposes.

• All designs are specified precisely and unambiguously
at the built-in level of description.

3. CHARACTERISTICS OF DESIGNERS
AND DESIGNING

The term design covers a wide range of tasks, activities,
and products, but in all cases it entails solving what psy-

chologists call an ill-structured problem, to create a descrip-
tion of an artifact. An ill-structured problem~Simon, 1973!
is one for which a solution method cannot be derived from
the problem statement, so it cannot be solved by any linear
sequence of correct reasoning steps. Nor does it have a sin-
gle correct answer, but may have a range of different good
answers. The intrinsic structure of design problems dictates
that they are solved by making reasoning jumps that may
not be sound and so must be evaluated when they have been
made.~When we can perform a design task by using a sound
algorithmic method, we no longer think of what we do as
designing. Sometimes people treat problems that have al-
gorithmic solutions as design problems because the algo-
rithmic methods require too much computational effort or
too much mathematics.!

3.1. Design as a style of thinking:
The design synthesis loop

Designing is characterized by a distinct thinking style. Tal-
ented and successful designers are those who have an apti-
tude for it. Designers proceed by repeating the cycle shown
in Figure 2: analyze and reformulate the problem, imagine
a design, evaluate the design@Asimow ~1962!; see for in-
stance Cross~1989!#. Of course, designing is more com-
plex than this. Whenever possible, design problems are
decomposed into manageable chunks with relatively sim-
ple interactions; many of these chunks require linear prob-
lem solving rather than designing. In engineering and other
industries producing complex products, design often com-
prises a set of nested synthesize–evaluate–reformulate loops,
varying in duration from seconds to days. Rapid perceptual
evaluations are an integral part of idea generation in archi-
tecture and other fields@see Sections 3.4 and 3.5, and Gold-
schmidt~1991!, Purcell et al.~1994!, and Suwa et al.~1998!#.
Evaluations of other aspects of the design may be planned
tasks rather than alternations of mental activities, involv-
ing significant reasoning, and requiring significant design
effort before they are possible. Some complex design pro-
cesses use specialist personnel to perform particular eval-
uations. In some industries the outer synthesis–evaluation–
reformulation loops may involve building and evaluating
prototypes~as in Fig. 3!. In the knitwear industry designers
get feedback in the form of manufactured sample garments.
The generative design cycle of a generative system~Fig. 1!
closely matches human thought processes in design~Fig. 2!
and the organization of work in some design industries
~Fig. 3!.

What is produced in each design synthesis step depends
on the designer’s mental context, primarily on what the de-
signer is thinking about~what is in consciousness!, but also
on the designer’s recent experiences~the elements of long-
term memory that have recently been created or activated!.
It is also dependent on the designer’s knowledge and on the
mechanisms of human perception~see Section 3.4!. The con-
text includes the formulation of the problem, and the pre-
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vious version of the design that the designer is working from.
The designer’s search for a good design is typically a jagged,
spontaneous path, in which each step triggers new ideas in
a way that can only partially be controlled. In some aes-
thetic fields, such as knitwear design, designers actively en-
rich their context, by searching for sources of inspiration
that trigger the sorts of design ideas they want~Eckert, 1998;
Eckert & Stacey, 1998!.

Designs are typically evolved, by a sequence of modifi-
cations and extensions. They are seldom createdab initio;
instead designers alter previous designs and reuse compo-
nents and solutions to problems. This is true in fields de-
manding novelty, such as knitwear design~Eckert, 1997a,b!,
as well as in fields where reusing standard components and
methods is desirable, such as engineering. At the same time
the designs that are generated by reuse and modification, by
humans or generative systems, can spark off human imag-
ination @see Eckert~1998! for an analysis of the mecha-
nisms of inspiration#. Hence, we regard providing starting
points for humans to design by modification as an impor-
tant role for generative systems, and facilities for manual
editing as a valuable feature in an evolutionary generative
system.

3.2. Mental representations of designs

Imagining a new design, even as a small modification of an
old one, is a pattern synthesis operation of exceptional com-
plexity. Although imagining designs is a skill that develops
with increasing knowledge and experience, and can, to some
extent, be taught, successful professional designers are usu-
ally people who have a high degree of natural ability to vi-
sualize and imagine complex objects and patterns. In visual
domains like knitwear design, the ability to visualize de-
signs is the key talent, which is trained throughout the de-
signer’s working life; good designers can visualize and
mentally manipulate products often in considerable detail.
For example, some knitwear designers comment that they
see design ideas as realistic garments, which they can alter,
re-color and rotate mentally, and so find simulation soft-
ware useful only for marketing.

Many designers imagine designs visually with a lot of
detail even when it is not needed, and in consequence are
much more comfortable thinking in terms of concrete ob-
jects instead of abstractions. They frequently think about
relatively detailed concrete designs even when they are
merely placeholders for categories. This is especially true
in fields like knitwear design. For example, knitwear de-
signers use specific garments that they have seen or visual-
ized to represent and describe garments of a certain mood
and style that they wish to include in their collection@see
Eckert and Stacey~1999!#. Many engineers find it difficult
to use abstract formal methods for conceptual design, for
example, bond graphs describing functional relationships@see
for instance Karnopp et al.~1990! and Bracewell and Sharpe
~1993, 1996! for AI applications#, partly because they au-

tomatically include rich visuospatial detail in their mental
representations of designs, even when it gets in their way.
The concepts engineers use in conceptual design usually cut
across conceptual categories at a middle level of abstrac-
tion between category and particular product and include
physical principles and mechanisms, and often provisional
assumptions about size, shape, and orientation.

On the other hand, design ideas can often bevague—
designers only have a rough overall idea for the design; or
incomplete—only embodying decisions about parts of the
design; orinconsistent—embodying unresolved contradic-
tions. ~Inconsistency is a frequent problem when knitwear
designers specify garment shapes—see Section 5.!

Designers often think about designs visually in terms of
emergent propertiesthat they want the design to have, which
are often not closely related to the structural terms in which
a design must be specified before it can be realized. For
instance, there is a complex and subtle relationship be-
tween the aesthetic and technical characteristics of com-
plex knitted structures. For instance, designers might want
a color scheme to look “autumnal,” or a knitted fabric to
look like crochet-work. Many notations for describing de-
signs structurally obscure emergent properties. Designers
may have a clear and detailed view of the emergent effects
they want, but no idea how to construct a design to achieve
them.~This is a significant problem for knitwear designers
without a solid grounding in the technicalities of knitting.!
Conversely, if designers think in terms of the structural char-
acteristics of a design, especially when using a formal no-
tation, they can lose track of the emergent characteristics of
the whole. It can be difficult to keep structure and appear-
ance in mind. Alternative ways of formulating objectives
and design ideas can have a powerful effect on how a de-
sign is created and on the eventual result.

Generative systems can make emergent properties sa-
lient by creating visual representations by applying techni-
cal rules to a structural representation of the design. Each
visual representation displays information about some struc-
tural aspects of the design, and may conceal other informa-
tion; similarly, different visual representations can reveal
some emergent properties of the design and hide others.
Using computational representations and visual displays of
designs allows designers to work with structural and emer-
gent characteristics as they wish without losing track of in-
formation, or losing the connection between appearance and
structure.

3.3. Problem formulation by collecting constraints

An important part of designing is reformulating the prob-
lem by collecting constraints. Experienced designers prune
the design space as much as possible by collecting all the
available constraints and identifying the most important@see
for instance, Katz~1994!#. In knitwear design, for instance,
they look at customer requirements, materials, styles, and
contexts to zoom in quickly on one part of the design space.
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By discarding options, designers make fundamental deci-
sions about the product, which may later have costly con-
sequences, without being conscious that they are designing.
For example, when knitwear designers select yarns for their
entire collection they discard or choose certain yarns by look-
ing at one thread for a few seconds, when detailed technical
properties of the material later have great effects on the pro-
totyping time for the entire collection.

A generative system can be guided by the initial con-
straints that are set up by the user. On the other hand, it can
also overcome the problems caused when designers over-
constrain their designs too early and zoom in on a design
solution without exploring the design space fully, by gen-
erating a larger number of alternatives in more detail than is
possible for a human designer in the available time.

3.4. Perceptual evaluation of design quality

Experienced designers develop powerful skills forperceiv-
ing the characteristics of a design or partial design that they
see or imagine. They can perceptually recognize its features
and properties@Schön~1983! terms thisappreciatingits char-
acteristics#. Moreover, they can perceptually evaluate its
quality, along technical and aesthetic dimensions. Design-
ers’ powers of perceptual evaluation are precisely tuned to
the needs of any particular task. In other words, expert de-
signers recognize good designs when they see them, even
when they cannot imagine them or construct them. More-
over, they can recognize weak or partial resemblances to
what they want, and recognize which aspects of a design
are right or wrong; thus, they can recognize steps in the right
direction toward a successful design. The knowledge de-
signers use for perceptual evaluation is tacit: Designers know
when something looks right, even though they might not
always be able to articulate why. Training tacit perceptual
skills for design evaluation is a major feature of much de-
sign education, notably in fashion and knitwear design.

Most of the research on how designers use external vi-
sual representations@see Purcell and Gero~1998! for a thor-
ough review# has been on how and why architects sketch.
Notable contributions have been made by Schön~1983!,
Schön and Wiggins~1992!, Goldschmidt~1991, 1992, 1994!,
and Goel~1995!, who also studied mechanical engineers and
designers of instructional materials. Their research shows
that architects and others make a move in design space, eval-
uate what they have produced~typically by examining what
they have done with their latest sketch!, and reformulate their
problem by adding information to their understanding of it.
Goldschmidt~1991! reports that the architects in her exper-
iments alternated betweenseeing as~perceiving the design
their sketch depicts or suggests! andseeing that~perceiv-
ing that particular characteristics are true of the design!.

As Todd and Latham~1992! have argued in the context
of computer art, the remarkable human ability to recognize
subtle perceptual characteristics of designs can be ex-
ploited to achieve synergy between humans and generative

systems, by using the human in the generation—evaluation—
selection loop to evaluate and select new designs generated
by the system.

3.5. Visual displays as a stimulus for creativity

Visual displays of designs and sources of design ideas play
an important role in most designers’ creative processes. Re-
search on sketching~see the references cited above! has
shown that for designers in many fields, drawing sketches
to externalize their design ideas is a vital part of their cre-
ative thinking. Sketches are not only used to depict objects,
individual components, and spatial relationships in a form
of external memory, but also to overcome limitations in mem-
ory capacity. They also enable perceptual evaluations, acti-
vate knowledge held in long-term memory, and trigger design
ideas. Schön~1983! @see also Schön and Wiggins~1992!#
views designing as an interactive conversation with the
sketches, and points out that architects’ and other design-
ers’ ideas are changed by the feedback they get from their
sketches, even though they might not be conscious of the
influence the external representation has on the design. In
complex design fields, like much of engineering, designers
can switch quickly between different mental representa-
tions of designs when they think about different aspects of
them, and their sketches can represent several different types
of information using different notations~Stacey et al., 1997!.
Research on sketching@for instance Goel~1995!; see Pur-
cell and Gero~1998!# stresses the importance of restructur-
ing in the development of new ideas—making qualitatively
different reinterpretations of potentially ambiguous im-
ages; restructuring is prompted by dissatisfaction with the
existing form of the design~McFadzean et al., 1999!. The
ambiguity and vagueness that make sketches a problematic
means of communication~Stacey et al., 1999! are a benefit
for triggering alternative perceptions.

Not all designers externalize their designs during idea gen-
eration; some designers who have strong and vivid mental
imagery use sketches only to communicate their ideas to
others, but use their mental representations of designs to
trigger evaluations and new ideas.@Nonsketchers are com-
mon in knitwear design. Buildings are too complex for many
architects to work without externalization, though Frank
Lloyd Wright produced few sketches and claimed to design
in his head~Goldschmidt, 1995!.# Perceiving implicit and
emergent properties in mental images and restructuring them
is not impossible for strong visualizers@for instance, Peter-
son~1993!; see Purcell and Gero~1998!#, but recognizing
such properties is enormously facilitated by external visual
displays.

Previous designs and other visuospatial forms play an
essential role as sources of inspiration for designs that are
produced by adapting and combining preexisting design el-
ements, and generating new design elements by analogical
mapping and translation. Seeing and remembering sources
of visual ideas frequently triggers design invention.@See Eck-
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ert ~1997b, 1998! and Eckert and Stacey~1998, 1999! for
our study of the use of sources of inspiration in knitwear
design, a process in which they are consciously and explic-
itly used. See Goldschmidt~1995! for a discussion of prec-
edents and analogical thinking in architecture.#

The potential of preexisting visuospatial forms for stim-
ulating creativity is highlighted by Finke’s~1990! experi-
ments on imaginedpreinventive forms. Subjects were asked
to imagine combinations of simple geometric forms, and then
interpret the combined forms as practically usable objects
of a particular type, which they were able to do; moreover,
their success increased with the tightness of the constraints
placed on them.

The accumulated evidence about the use of images of dif-
ferent sorts in design thinking and in commercial design pro-
cesses indicates that displays of visuospatial forms related
in different ways to the results designers want to achieve
are a valuable source of triggers for designers’ own visuo-
spatial creation. Generative systems offer a variety of ways
for designers to tailor such displays interactively to their
own requirements. Design generators can provide starting
points for adaptation. Abstract form generators may also be
useful as sources of interesting forms requiring further trans-
lation into design elements. Computer-generated images typ-
ically lack the vagueness and ambiguity produced by the
imprecision of sketches, which may channel designers to-
ward literal interpretations of the images and limit their abil-
ity to restructure and modify them when imagining new
ideas.~But the appearance of sketchiness can be artificially
added; the value of doing this should be investigated exper-
imentally.! On the other hand, computer-generated images
are superior to sketches in their ability to reveal the emer-
gent global effects of complex forms.

3.6. Satisficing

Designers are usually looking for satisfactory solutions to
their problems, rather than the best solutions; they often have
no way to judge how easily they can obtain better solutions.
So they stop as soon as a design is judged good enough.
Simon ~1981, for instance! terms this strategysatisficing.
In industrial practice designers often have to settle for sub-
optimal designs because they are running out of time. For
instance, when a prototype of a knitted garment does not
look like what the designer intended, but it works, it is often
accepted. Designers have strongly pragmatic attitudes that
increase their willingness to use computer systems if they
can speed up the design process, thus leading to more or
better designs.

4. SOME PROBLEMS IN
CONCEPTUAL DESIGN

Conceptual design in engineering and other industries is
problematic: Many conceptual design processes are ineffi-
cient and ineffective, and mistaken decisions at this stage

can be difficult or impossible to correct later, with expen-
sive consequences. In engineering, the need to make con-
ceptual design more effective is widely appreciated in
industry and academia, with the widespread introduction of
concurrent engineering techniques, and many research
projects on computer support for conceptual design. By con-
trast, the inefficiency of the design process in our example
field of knitwear design has seldom been recognized~Eck-
ert, 1997a; Eckert & Demaid, 1997!. In this section, we ar-
gue that interactive generative systems can offer partial
technological solutions to some of the common difficulties
encountered in conceptual design.

4.1. Ensuring systematic exploration

Failure to explore the space of possible designs adequately
is sometimes a major reason for unsatisfactory conceptual
design in engineering. Human designers frequently make
small modifications to existing designs, when a more radi-
cal approach would lead to better products. When they are
seeking innovative designs they often focus on the first prom-
ising ideas they think of, instead of systematically explor-
ing alternatives. A primary goal of prescriptive engineering
design methodologies is to compel designers to consider a
wider range of alternatives at a high level of abstraction.
Generative systems can support systematic exploration by
covering the complete design space defined by their rep-
resentation formalisms and operators. They can suggest
concepts that human experts have not thought of@for in-
stance, Chakrabarti and Tang’s~1996! mechanism genera-
tion system#.

4.2. Order of decisions

Design processes can be biased, often harmfully, when the
order in which particular decisions are made is constrained.
This can have catastrophic consequences when the design
process becomes committed to poor early decisions. One
motivation for concurrent engineering is to eliminate
decision-ordering biases that are due to the social organiza-
tion of the design process. Computer tools for design can
also impose an ordering of subtasks and decisions. Green
~1989, 1991; Green & Petre, 1996! discusses this within his
cognitive dimensionsframework for analyzing the charac-
teristics of computer interfaces.@See Stacey and Eckert
~1999! for a discussion of ways CAD systems can bias
designs.# Generative systems offer a way to limit decision-
ordering biases, by allowing designers to explore the con-
sequences of adopting different decision orderings and con-
straint priorities, and comparing the results.

4.3. Notations

Design can be influenced by the notations designers use to
represent their designs; they affect which aspects of the de-
sign are considered, and when, and the order in which de-
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cisions are made. In some situations they can determine the
terms in which designers think. Any notation for describing
a complex manufactured product can only represent some
aspects of the design. For instance, pattern books and knit-
ting machine CAD systems offer a variety of notations for
knitted structures, but knitwear designers and technicians
have no adequate way of describing significant aspects of a
knitted garment other than the real thing. Designers are hand-
icapped if the representations they use fail to highlight emer-
gent properties that they need to consider. Generative systems
can alleviate this problem by generating candidate designs
that are complete within the limitations of the systems’ rep-
resentation formalisms, and so can be displayed in a variety
of different visual representations that show different as-
pects of the design and reveal important emergent properties.

4.4. Communication and interpretation
of design ideas

Failures of communication between the members of design
teams can be a major problem in conceptual design. As we
have found for knitwear design~see Section 5.2! break-
downs in communication can be caused by a combination
of: inadequate or poorly used notations; cognitive and cul-
tural differences between team members; differing under-
standing of the task and the design depending on different
expertise and different concerns; as well as by the intrinsic
difficulty of communicating design ideas. On the other hand,
communication works well when designers make good use
of a complete notation. Unsuccessful interaction can also
be caused by designers trying to communicate ideas that
they have not worked out in sufficient detail: because they
do not know what they want; because they are required to
produce seemingly precise specifications of imprecise ideas;
because they have only developed some aspects of the de-
sign; or because they have not recognized inconsistencies
between different parts of the design.

Using CAD systems for designing and for communicat-
ing conceptual designs, rather than drafting, can force de-
signers to make provisional commitments to exact parameter
values when they want to express qualitative decisions and
approximate values. They make it difficult to combine dif-
ferent levels of abstraction in a single description of a design.
Sketching and verbal descriptions provide more flexibility,
but sketching involves a tradeoff between the effort in-
volved and the precision and detail of the information a
sketch conveys. Because sketches are imprecise, they re-
quire interpretation; interpreters may fail to recognize dif-
ferences from category norms, and may have different
standard meanings for the same categories. Sketches are lim-
ited as a means of communication by the lack of an agreed
meta-notation for communicating different levels of con-
creteness, precision, and commitment~Stacey et al., 1999!.

Interactive generative systems can contribute to reduc-
ing communication problems by enabling designers to cre-
ate complete and consistent representations of the designs,

which are either precise or have a well-understood degree
of vagueness.

5. OVERCOMING COMMUNICATION
PROBLEMS IN KNITWEAR DESIGN

The first author has developed~Eckert et al., in press! a pro-
totype design support system for garment shape design,
which enables the designer to specify designs rapidly and
incompletely, and see a graphic display immediately. It uses
novel mathematical techniques to construct Bézier curve
models of garment shapes conforming to the constraints im-
posed by the technical characteristics of knitted garments.

The system is designed to fit the cognitive characteristics
and the working patterns of professional knitwear design-
ers. It draws on an extensive study of the knitwear design
process across the industry~Eckert, 1997a!. It is intended
to enable knitwear designers to develop better conceptual
designs faster, and to communicate their design ideas more
effectively to their technicians. It illustrates several of the
themes we have discussed earlier in this paper.

5.1. Knitwear design

The design of knitted garments is a task shared between knit-
wear designers, who are responsible for deciding the visual
and tactile appearance of a garment, and knitting machine
technicians, who do a lot of detail design in the course of
using CAD systems to program knitting machines to man-
ufacture the garment. Knitwear design involves the cre-
ation of fabric and shape together; it is made complex by
the subtle interaction between the appearance of a knitted
structure and its technical properties, which is hard for a
designer to anticipate. A different yarn or a small change to
the design can make a garment impossible or much more
time-consuming to knit.

Designers begin working on a season withresearch, that
is, finding out what everyone else is up to, and collecting
sources of inspiration for their designs~Eckert, 1997b, 1998;
Eckert & Stacey, 1998!. Having decided what types of gar-
ments they require for the season’s collection, they produce
conceptual designs for individual garments. They describe
these conceptual designs for the knitwear technicians intech-
nical sketches, which comprise a brief verbal description, a
freehand sketch that may be quite rough, and a set of mea-
surements that may be incomplete and inconsistent. Design-
ers produce large numbers of technical sketches, of which
only a few are selected for sampling. The designers’ tasks
are in three distinct categories.Selection: designers select
yarns, inspirational material, and old designs.Modifica-
tion: designers translate, adapt, and combine elements of
previous designs and sources of inspiration.~Few garments
are designed entirely from scratch.! Mathematics: design-
ers need to perform computational tasks such as working
out pattern repeats and constructing garment shapes.
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Knitting machine technicians program industrial knitting
machines using highly sophisticated visual programming en-
vironments, which contain expert systems that translate de-
signs specified in a graphic symbolic notation into programs
in an assembler-like language. The different knitting ma-
chine manufacturers produce CAD systems using different
graphic representations and machine instruction languages.
The programs are tailored to the capabilities of a particular
knitting machine. The technicians require a thorough un-
derstanding of yarn properties and knitting machines, and
considerable technical skill in implementing knitting-time-
efficient programs.

5.2. The communication bottleneck

Communication between designers and technicians is a major
bottleneck in knitwear design, and failures of communica-
tion result in a great deal of inefficiency and the production
of unsatisfactory designs. Designers’ technical sketches are
frequentlyinaccurate, in that they do not correspond to the
designers’ intentions;incomplete, in that parts of the spec-
ification are missing; andinconsistent, in that interdepen-
dent values are contradictory. Moreover, technicians have
commented to us that only 30% of conceptual designs can
be manufactured at their intended price point. This commu-
nication breakdown has many causes including working
arrangements that make it difficult for designers and tech-
nicians to talk frequently~Eckert, 1997a, 1999; Eckert &
Demaid, 1997; Eckert et al., in press).

The technicians need to interpret the designers’ inten-
tions, to do what the designers have asked for, to fill in the
gaps, and to make sensible compromises between what the
designers want and what is technically feasible. But design-
ers and technicians use their different knowledge and expe-
rience to interpret design information differently. Technicians
think primarily about the structural properties of knitted gar-
ments in terms of the notation used by their CAD systems,
while designers usually visualize designs as complete gar-
ments, and so think primarily about their appearance. De-
signers are much more aware of changes in current fashion
than are technicians, so their use of category terms is based
on current norms, while that of the technicians is based on
designs they have produced previously. This has the conse-
quence that garments often vary less between seasons than
their designers intend.

Technicians’ interpretations of designs differ from their
designers’ intentions because the designers have no cost-
effective way to make their intentions clear. It is difficult
for them to indicate deviations from category norms on tech-
nical sketches: It is hard to indicate which bits of freehand
sketch are exact and which are merely approximate place-
holders for category information; and technicians frequently
ignore the sketches altogether~Stacey et al., 1999!. Simi-
larly, as the measurements given to technicians are fre-
quently faulty, technicians often treat deviations from
standard values as mistakes. Designers sometimes deliber-

ately provide incomplete sets of measurements to force their
technicians to talk to them.

Technicians usually produce programs and prototypes
from the technical sketches with little interaction with the
designers. The only feedback designers usually get on a tech-
nical sketch is a finished sample garment several weeks later.
As many of these garments are very different from their in-
tentions, the designers feel ignored, while the technicians
do not trust the designers’ assertions.

The communication problem would be alleviated by a
cost-effective means for designers to produce complete, con-
sistent, technically correct conceptual designs, which clearly
indicate deviations from standard values.

5.3. Objectives for intelligent computer
support for knitwear design

The system is designed to compensate for designers’ some-
times inadequate skills in garment shape construction, and
quite rational unwillingness to devote time to generating cor-
rect sets of measurements when producing many designs
quickly under time pressure. But it relies on the designers’
well-honed abilities to recognize good designs when they
see them, and to recognize similarities and differences be-
tween garment designs from pictures~Fig. 4!.

Graphical editing of garment shapes requires a tool with
the following features:

• Shape curves that always conform to domain con-
straints.

• Shape curves that can be configured to conform to cus-
toms and company standards.

• Shape curves that are constrained to be consistent with
other parts of the design.

• The ability to switch between making changes that are
consistent with the rest of the design, and making
changes that freely violate consistency requirements.

CAD System
visual feedback

accurate

Fig. 4. Overcoming the communication bottleneck.
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• Visually appealing curves that look right to the user.

• An interface that is reasonably intuitive for a user with
no knowledge of the underlying mathematics.

• Curves that are generated using the minimum number
of assumptions that are not derived directly from the
users’ input.

Displaying and editing garment shapes graphically requires
a complete and consistent description, which, as we pointed
out in Section 5.2, is not to be taken for granted.

The first author has implemented a prototype design sup-
port system~described in Fig. 5! in VisualWorks 3.0, a di-
alect of Smalltalk-80. This is intended to enable knitwear
designers to create garment shape designs that are com-
plete, consistent, and technically correct, and provide tech-
nicians with designs that leave no scope for misinterpretation.
It should eliminate the need to perform the algorithmic sub-
tasks involved in shape construction that knitwear design-
ers find difficult and tedious, while ensuring conformance
to current fashion and company standards. Informal evalu-
ation with design experts has been positive.

The system uses the representations, categories, and terms
used in the knitwear industry. It displays the garment in three
representations that designers are accustomed to: measure-
ments, cutting patterns, and two-dimensional outlines. The
system enables designers to identify the category of a gar-
ment using the terms they would use to give a short verbal
description, for example “straight tunic with set-in sleeve
and round neck”~this corresponds to the example shown in
Fig. 6!. This is done by selecting the categories of the body,
sleeves, and neck from pull-down menus.@A complete sys-
tem would begin with a selection of the general category of
garment~“pullover,” “cardigan,” and so on!, and display
menus for the corresponding set of shape elements. A sys-
tem for tailoring would need to include darts.#

Interface Mathematical Model

Fig. 5. System overview.

Fig. 6. Example of output generated by the shape design system.
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The user can define all or some of the measurements of
the garment by filling in numbers on a form. In the example
shown in Figure 6~in the bottom left-hand window! the user
has only defined five measurements; the rest have been com-
pleted automatically by the system.

5.4. Automatic design: Measurement completion

The basic representation for each design is a set of measure-
ments~left bottom window in Fig. 6!. If the set of measure-
ments is incomplete, the system fills in the remaining
measurements, by choosing default values according to the
verbal description~that is, the category selections!. The
present implementation of the system uses one set of mea-
surements for each combination of sleeve and side line, and
one set of measurements for the neckline.

We intend to develop the system to use more sophisti-
cated rules for adapting default values to fit explicit mea-
surements, a mechanism for creating company-specific
defaults, and templates, rules for adapting defaults, and ex-
plicit measurements to correspond to body shape measure-
ments, and case-based reasoning for completing sets of
measurements “in the style of” another garment.

5.5. Automatic design: Shape construction

The set of measurements is developed into a garment shape
description by first translating the measurements into a set
of Cartesian coordinates for each garment part, and then
joining these coordinates with straight lines and Bézier curves
~Bézier, 1968; Faux & Pratt, 1979!. Bézier curves have the
twin advantages that direct manipulation by moving con-
trol points is fairly intuitive, as the curve moves in the same
direction as the point; and that mathematical computation
of the curves from the control points is fairly simple. Bézier
curves give easy control over the end tangent vectors, which
are important domain constraints. Moreover, Bézier curves
correspond much more closely than spline curves to the
curves constructed by professional designers; commercial
systems for garment shape modeling using spline curves pro-
duce unsatisfactory results.

The internal representation of each garment part is a list
of coordinate sets, labeled by the names of the lines they
describe, containing the measurement-derived end points and
the Bézier control points for each line. The Bézier curves
are calculated using a mathematical model of garment shapes
that incorporates the constraints that garment shape curves
must meet, which are more restrictive for knitwear than for
tailored garments~Eckert, 1997a!. This calculation uses a
novel method for generating Bézier curves with a particular
overall length~Eckert, 1997a!, which is used to ensure con-
sistency between different curves that need to have the same
length~namely armholes and sleeve crowns!.

As in industrial practice, the sleeve is calculated after the
body shape. If there is a mathematical inconsistency in the
measurements between different garment parts, the sleeve

will be altered to match the body because a designer is more
likely to specify the overall dimensions of the garment, that
is, the body dimensions, correctly. The user can identify a
consistent but nonsensical specification~e.g., an extremely
long sleeve! by looking at the two-dimensional outline of
the suggested garment.

5.6. Interactive shape design using
mathematical models

The automatically generated garment shapes are intended
to be used as starting points for design by modification. We
intend to extend the system to include a graphic interface
that will allow the user to modify garment shapes directly
by towing around control points in the cutting pattern and
two-dimensional outline representations, as well as by tweak-
ing measurements. In this version, the automatic design com-
pletion module will be used at the beginning of the shape
design process, to create an initial design from partial or
inconsistent inputs for further editing, and during the edit-
ing process to resolve conflicts when the designer deliber-
ately chooses to make a change that is inconsistent with other
aspects of the current design.

5.7. Anticipated influence on the design process

The system enables designers to define garment shapes
within a few minutes. A technical sketch can then be gen-
erated automatically; this is usually a time-consuming pro-
cess. As the specified garment shape is technically correct,
it will lead to shorter sampling times for each garment, or
to more refined designs. So far, all technical innovations in
the knitwear industry have led to more complex products
rather than to cheaper sampling.

6. DIALOGUE WITH COLORS

Kelly ~1999! has implemented a family of evolutionary sys-
tems to assist artists and designers in selecting color com-
binations, when they are chosen for their aesthetic and
expressive value. These systems work by allowing the user
to choose a succession of randomly generated color schemes
with progressively smaller variations. The user does not have
to worry about constructing a color scheme incrementally,
but only evaluates complete schemes. The different evolu-
tionary systems use the same design generation algorithm,
but use different mechanisms for specifying constraints to
be imposed on the design generation process. These differ-
ent types of constraints correspond to different ways of for-
mulating the perceptual properties that a color scheme should
have, so that the suite of systems together constitutes a flex-
ible tool for generating color designs with different desired
characteristics.

Appropriate color selection is an important consideration
whenever psychological responses to the designed artifact
are an issue. Where the product is subject to fashion trends,
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inappropriate color selection many jeopardize the commer-
cial success of the whole project. Color design is demand-
ing even for professional designers who specialize in this
field. Humans can discriminate a large number of color sen-
sations, which can be combined into a vast range of color
schemes. Further, the expressive effect that they produce is
complex and not yet fully understood. Modern color tech-
nology and its underlying color science~see Hunt, 1995!
are complex and involve ways of specifying colors that may
not be easily understood, or may be regarded as counterin-
tuitive by designers. Color CAD software allows the de-
signer to work in a way that is more conducive to human
creativity, but still produces a design specification in the
notation required by the technology involved.

The aim of Kelly’s~1999! research has been to produce
generic tools that exploit the findings of color science and
psychophysics, as well as practitioner lore in art and de-
sign, in helping designers with this color selection task. The
systems are concept demonstrators for methods to be used
in task-specific CAD systems. However, generic tools of
this type may well be useful in situations where a color con-
sultant must design a palette of colors that will visually unify
a group of products that have not yet been designed. For
instance, this is common practice in the clothing and inte-
rior décor industries, where yarn manufacturers decide on
their color palettes according to fashion forecasts before their
clients start designing. An application to specifying the text
and background colors of World Wide Web pages would need
to use algorithms modified to ensure that only color com-
binations containing color differences large enough to af-
ford good text visibility would be presented to the users.

6.1. The color scheme design problem

Color design is not just a matter of preference, pleasant-
ness, and like and dislike. It also involves issues of the ap-
propriateness of the meaning expressed by colors. Should
the design be warm or cool, dynamic or tranquil, restrained
or extravagant, or any of the other meanings that colors can
carry? The space of possible color designs is vast: The num-
ber of perceptibly different colors is about 1,350,000 for
practical colorants~Pointer & Attridge, 1980!. However, the
range of available colors may be far smaller in practice be-
cause the available technology provides a finite number of
alternative colors, and because it simply cannot produce cer-
tain colors. Importantly, computer screens are restricted to
the gamut of colors that can be produced by mixing red,
green, and blue~RGB! light, which is only a subset of the
colors humans can see.

Color design is made more problematic by the complex
and varying relationship between color stimuli and the sen-
sations that they produce. Color stimuli change their appear-
ance when seen in varying contexts. In art and design this
concept is embraced by terms like color interaction and color
dynamics, while in science and engineering it is encom-
passed by the term color appearance modeling. In conven-

tional color design methodology, this means that the designer
must make initial color choices while imagining their ap-
pearance in the whole that has yet to emerge. Subsequent
editing of the colors alters the appearance of the whole de-
sign, not just the color that is explicitly altered. In most cases,
the later stages of the color design processes are biased by
the first selections. In practice, this problem is often circum-
navigated by selecting colors from existing combinations
found in objects or images~Eckert, 1998!.

In color design, designers formulate what they want to
achieve in terms of emergent properties of the whole de-
sign. But what can be manipulated are the structural prop-
erties of a display: For computer monitors, the RGB values
of different regions or mathematical transformations of them
~though in some cases other structural properties like the
sizes and proportions of regions can be altered at the same
time!. The challenge then is to map emergent properties and
constraints onto sets of RGB values.

6.2. Guided random generation of color schemes

Kelly’s ~1999! color scheme generator~illustrated schemat-
ically in Fig. 7! represents color schemes as sets of RGB
values. These are displayed on the screen as random pat-
terns of colored squares; the user can select one of these for
further development. Random vectors are added to the RGB
values of the current selected design to create a set of new
designs. This cycle is repeated until the user picks a satis-
factory color scheme; the size of the random vectors de-
creases at each stage. From the user’s perspective, this
process is analogous to Darwinian evolution, with the user
determining fitness for survival and reproduction. This evo-
lutionary approach took the work of Dawkins~1986!, Sims
~1991!, and Todd and Latham~1992! as its point of depar-
ture. Dawkins developed interactive computer programs to
produce a graphic illustration of the power of repeated se-
lection in Darwinian evolution. Sims and Latham and Todd
took Dawkins’ basic idea and applied it to the design of com-
plex three-dimensional computer graphic scenes. Their work
includes, but does not specialize in, color design.

It has not proved possible to find a universally satisfac-
tory rate at which the reduction in variation should take place,
and so the user can override the automatic calculation of
vector size using an on-screen slider@following Todd and
Latham~1992!#. The system could be extended to enable
faster convergence on a final design usingevolutionary di-
rection ~Todd & Latham, 1992!: Two designs are selected
to define a vector in the design space; subsequent designs
are constrained to lie on the vector, between the two origi-
nal designs or beyond the second. A design generation
method based on genetic crossover could be used to pro-
long the search.

6.3. Using an evolutionary system for color design

As the space of possible color designs is vast, and the rela-
tionship between colors and aesthetic effects is subtle and
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can only be predicted to a limited degree, color design is
well suited to an evolutionary approach in which designers
home in on the scheme they want by repeatedly selecting
from a range of alternatives generated by an evolutionary
design system. The evaluation and selection of color schemes
is initially based on the recognition of faint resemblances to
the user’s design intentions, and, later on, subtle discrimi-
nation between similar strong candidates for a final solu-
tion. This is consistent with good practice in art and design.
This approach allows rapid navigation of the design space,
and only requires the designer to appraise complete color
schemes, so avoiding the problems of perceived color chang-
ing with visual context and designs being biased by the or-
der in which designers make decisions.

But there is an uneven relationship between human per-
ception of colors and the physical color space describable
in RGB values; for instance, the green region of the physi-
cal color map is far larger than the yellow region. So using
the physical color map without correction for the character-
istics of human color perception biases a color generation
system strongly toward certain regions of the perceptual color
space. However, a color map that is completely unbiased
with respect to human perception is unobtainable because
the characteristics of the perceptual color space varies with
context and task. For instance, the map obtained by mea-
suring small perceptually equal color differences differs from

that obtained by measuring large perceptually equal color
differences. The field of colorimetry uses several numerical
notations for colors, which can be computed from each other
by a sequence of mathematical transformations. For in-
stance, CIE LAB is reasonably perceptually even with re-
spect to small color differences. The current implementation
of Kelly’s system uses raw RGB values, which entail a phys-
ical color map that is convenient from the perspective of
computer graphics but strongly biased with respect to hu-
man perception. Kelly~1999! has considered the use of math-
ematical transformations of RGB values, such as CIE LAB,
to obtain a perceptually less biased color space. The disad-
vantage of this is that it represent the whole of the color
space humans can see with positive values of the dimen-
sions of Lightness, A~roughly redness-greenness! and B
~roughly blueness-yellowness!, so the color scheme gener-
ation system would specify colors that computer monitors
cannot display.

People frequently want color schemes that are extreme in
one respect or another, for instance having very high con-
trast, and so are difficult or slow to reach using a method
that searches the color space evenly. So the generation of
color schemes by an evolutionary system for consideration
by a user should be strongly biased. It should be biased to-
ward generating color schemes that satisfy the constraints
and the evaluatable emergent properties that the users re-

Fig. 7. Interactive evolution of color schemes.
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quire. It should also minimize undesired bias toward par-
ticular parts of the perceptual color map. Kelly’s first color
generation system, described in Section 6.2, was criticized
in user trials because it was insufficiently biased: Designers
who had a vague idea in mind often found it impossible to
identify a promising candidate for refinement from a set of
equally hopeless choices. It was also criticized because it
was biased in the wrong ways: It proved difficult to obtain
color schemes that had notably high or low contrast; or that
inclined to one color without excluding others, for instance,
designs that were “reddish” or “whiteish.” Experimentation
and theoretical analysis revealed that it was not possible to
make all the desirable extreme designs easy to get at with
one algorithm; making one type easy to reach aggravated or
introduced other kinds of biases.

6.4. Programming biases

Kelly ~1999! has addressed the problems described in Sec-
tion 6.3, by developing six two-stage evolutionary color

scheme generation systems. Each of these systems has a pre-
liminary stage in which the user programs in a bias of a
different kind, that the iterative color scheme generator uses
to produce color schemes with particular desired character-
istics. In the first stage of all six programs, the user is given
immediate visual feedback by the display of a number of
designs that fit the current specification. The relationship
between the bias programming stage and the evolutionary
design stage is shown in Figure 8.

6.4.1. Program 1—Color naming

The user selects and deselects regions in color space ap-
proximately relating to the eleven basic color naming cat-
egories identified by Berlin and Kay~Berlin & Kay, 1969;
Hardin & Maffi, 1997!. This is done by clicking on rectan-
gles showing typical colors within each category. In doing
this the search space is expanded or contracted, according
to the number of categories selected. In the iterative stage,
color schemes containing colors lying outside these regions
are simply discarded. Both the presence of these color cat-
egories and the historical order of their appearance~black

Fig. 8. Actively biased evolutionary design of color schemes.
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and white; red, yellow, and green; blue, brown, purple, and
pink; and orange and gray! is surprisingly consistent in a
large number of languages~Berlin & Kay, 1969; Hardin &
Maffi, 1997!, and probably reflects the underlying neuro-
physiology of color vision. In this way the program exploits
a function of color cognition that is highly familiar to its
users, be they professional designers or nonexperts. The pro-
gram uses deliberate imprecision. In the first stage, the user
makes specifications of the form: “I want red and yellow,
but I don’t yet know which red or yellow.” The second evo-
lutionary stage removes this imprecision. Colors that do not
belong to the specified naming categories are simply culled
and never presented to the user.

6.4.2. Program 2—Partitioning color space.

This works in the same way as the color-naming pro-
gram. However, in this case the user selects from 64 divi-
sions of RGB color space. The approach still involves the
deliberate imprecision of the color-naming program, but here
the scale of the imprecision is reduced by the larger number
of categories controlled.

6.4.3. Program 3—Color harmony heuristics

The heuristics this program uses is the 19th and early 20th
century idea that the appearance of harmony results from
colors sharing particular characteristics.@Todd and Latham
~1992! comment on the idea drawn from genetics that if a
feature or parameter value does not vary, either it is un-
important or the value isright.# The users first select a di-
mension of color appearance that they wish to control, and
then set a value that all the colors in the design will share.
The choices are hue, lightness, chroma~which is similar to
saturation!, and derived dimensions that approximate to per-
ceptual whiteness and perceptual blackness. In the evolu-
tionary second stage, the RGB values for each color are used
to compute values for lightness, hue, and chroma in the CIE
Lchabcolor space~CIE, 1986!. The value of one dimension
is fixed while the other two are varied. The new color is
translated back to the RGB color space and checked to en-
sure it is within the color gamut of a monitor~i.e., it can be
created from red, green, and blue light!.

6.4.4. Program 4—Integral color

The user chooses a color that they wish the color scheme,
as a whole, to incline toward, without necessarily excluding
small amounts of other colors. In effect they choose be-
tween redishness, blackishness, greenishness, and so on. This
is implemented by specifying the integral color, which is
the color that results from averaging the RGB values of the
colors in the design. This technique is borrowed from the
photographic industry~Kodak, 1947! . Unlike the other pro-
grams, this system uses an evolutionary process for bias se-
lection. Evolution proceeds by selection between rows of
color schemes that share the family resemblance, which re-
sults from having the same integral color. In the second stage
new designs are generated by adding small random vectors

to the color data, and then correcting the design to restore
the specified integral color. This correction is achieved by a
process of iterated optimization in which the distance in RGB
space between the current and specified integral colors pro-
vides the cost function. This program was found to make it
difficult to produce highly contrasting color schemes.

6.4.5. Program 5—Contrast

The user adjusts a slider that controls “contrastiness,” that
is, some measure of the total color variance within the de-
sign. The new designs generated by the evolutionary sys-
tem are adjusted by a process of iterated optimization to
have the desired contrastiness. The algorithm used here re-
flects but does not exactly follow several models to be found
in the color science literature~Feldman, 1993; Soen et al.,
1987; Luciano & Ronchi, 1989!. Contrastiness is derived
from the root mean square of the color differences between
each of the colors in the design and the integral color of the
whole, in an approximately uniform color space known as
Hunter LAB ~Hunter & Harold, 1987!. This program made
it difficult to control general inclination to some color.

6.4.6. Program 6—Integral color plus contrast

The user adjusts four sliders to set the bias, three of which
control the hue, chroma, and lightness values of the integral
color, and one of which controls the contrastiness. New de-
signs are adjusted to the desired integral color and contrasti-
ness using iterated optimization. This program ran noticeably
slower than any of the others.

These six programs were compared in a trial in which
professional designers and amateurs were observed and then
given a questionnaire. Designing color schemes by inter-
active evolution was quickly and easily learned, and was
valued as an effort-effective method of color design. The
users preferred the programs that gave the most control, es-
pecially those based on color naming and the partitioning
of color space. Users reported two conflicting ways in which
they found the programs irritating or unhelpful: They were
coerced toward a final design too quickly; and they were
obstructed from moving quickly toward a strong idea they
had in mind. This suggests that this aspect of the interaction
should be placed under user control.

6.5. Programming emergent properties

A more ambitious idea that Kelly~1999! has developed theo-
retically but not so far implemented, is that the first stage of
a two-stage system should allow the designer to specify the
expressive character of the color scheme. Useful findings
from psychology have been identified in Kelly~1999! that
indicate that broad categories of adjectival meaning can be
identified that are elicited by similar colors or color com-
binations. These can be summarized by a small number of
semantic dimensions, such as warmth, activity, potency
~strength!, and pleasantness~Sivik, 1974; Kobayashi, 1981!.
Kelly ~1999! has implemented goodness functions that ap-
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proximately model warmth, activity, and~less well! strength.
A functioning program of this kind is a matter for further
research and development.

7. CONCLUSION

Analyses of human design thinking and the social organi-
zation of design processes, and the capabilities of genera-
tive systems for design, indicate that interactive generative
systems can be powerful tools that increase the creativity
and productivity of human designers. The success of exist-
ing interactive generative systems in art and design in-
creases our confidence that there are places for interactive
generative systems in a wide variety of design tasks, and
that such systems can be easy, intuitive, and enjoyable to
use as well as effective.

Computer designers and human designers have the po-
tential to complement each others’ strengths and compen-
sate for each others’ weaknesses. Automatic design systems
are good at performing algorithmic subtasks that humans
find difficult or tedious, handling large numbers of con-
straints, and systematically exploring a design space to gen-
erate large numbers of alternative designs. Humans are good
at performing perceptual evaluations of the quality of de-
signs using criteria that can be precisely tailored to the de-
mands of each task and that are extremely difficult to
program, so they can act as a generative system’s fitness
function.

Generative systems fit more naturally into human design
behavior than one might expect. Much designing~in some
fields nearly all! is selecting and adapting promising start-
ing points: Generative systems can provide these while ex-
ploring the consequences of designers’ initial decisions.
Designers are provoked to generate new ideas by stimuli
that change and enrich their mental context, especially
those relevant and unexpected, such as interesting-looking
mistakes.

Interactive generative systems offer ways to alleviate some
significant problems encountered by individual designers and
design teams.

• By generating many alternatives, they can enable the
exploration of a larger fraction of the space of possible
designs, so alleviating the tendency of designers to use
their first good idea rather than look for a better one.

• By presenting relatively complete designs for human
evaluation, they can alleviate biases on the design pro-
cess due to the order in which decisions get made.

• They can help members of design teams communicate
by presenting relatively complete designs that have been
checked for technical correctness, so eliminating ob-
vious errors in specifications and overcoming the lim-
itations of inadequate notations.

Generative systems can be lightweight, general-purpose
tools, like Kelly’s suite of evolutionary systems for color

design, or special purpose systems integrated into a single
industry’s working methods, like Eckert’s garment shape
design system. But the development of any effective sys-
tem for commercial use requires a clear understanding of
the designers’ task, and an understanding of the industrial
context in which it will be embedded. This will require em-
pirical study, but the large body of research on design psy-
chology and design processes provides a solid foundation.

ACKNOWLEDGMENTS

Claudia Eckert’s research has been supported by SERC ACME
grant No. GR0J 40331 for the knitwear project at the University
of Loughborough Department of Computer Studies; by ESRC grant
No. L12730100173 for the MIND project at the Open University
Computing Department; and by Open University Research Devel-
opment Fund grant No. 717 at the Open University Department of
Design and Innovation. Graham Perkins of the Department of Com-
puter and Information Sciences, De Montfort University, Milton
Keynes, contributed valuable technical advice and guidance to the
implementation of the shape design system. Ian Kelly’s research
has been supported by an EPSRC studentship at the Open Univer-
sity Computing Department. Three anonymous reviewers made
valuable comments on an earlier version of this paper.

REFERENCES

Akin, Ö. ~1987!. Psychology of architectural design. Pion, London, UK.
Asimow, W.~1962!. Introduction to design. Prentice-Hall, Englewood Cliffs,

NJ.
Berlin, B., & Kay, P.~1969!. Basic color terms. University of California

Press, Berkeley, CA.
Bézier, P.~1968!. How Renault uses numerical control for car body design

and tooling. Paper SAE 6800010, Society for Automotive Engineers.
Bracewell, R.H. & Sharpe, J.E.E.~1993!. Application of bond graph meth-

odology to concurrent conceptual design of multidisciplinary systems.
Proc. IEEE Conf. Sys., Man and Cybernet. ’93.

Bracewell, R.H., & Sharpe, J.E.E.~1996!. Functional descriptions used in
computer support for qualitative scheme generation—“Schemebuilder.”
Artificial Intelligence in Engineering Design, Analysis and Manufac-
ture 10(4), 333–346.

Chakrabarti, A., & Tang, M.~1996!. Generating Conceptual Solutions on
FuncSION: Evolution of a functional synthesiser. InArtificial Intelli-
gence in Design ’96, ~Gero, J.S. and Sudweeks, F., Eds.!, pp. 603–622.
Kluwer Academic Publishers, Dordrecht, Holland.

Chase, S.C.~1998!. User interaction models for grammar based design
systems. Proceedings of Design Computing on the Net ’98.Inter-
national Journal of Design Computing 1. http:00www.arch.usyd.edu.au0
kcdc0journal0.

CIE ~1986!. Colorimetry, 2nd. ed.Document 15.2, Commission Interna-
tionale De L’Eclairage.

Cross, N.G.~1989!. Engineering design methods. John Wiley, Chichester,
UK.

Dawkins, R.~1986!. The blind watchmaker. Longman, Harlow, UK.
Eckert, C.M.~1997a!. Intelligent support for knitwear design. PhD The-

sis. Department of Design and Innovation, The Open University, Mil-
ton Keynes, UK.

Eckert, C.M.~1997b!. Design inspiration and design performance.Proc.
78th World Conference of the Textile Institute, vol. 1, pp. 369–388.
Textile Institute, Manchester, UK.

Eckert, C.M.~1998!. Sources of inspiration in knitwear design. Report
No. 98010. The Open University, Milton Keynes, UK.

Eckert, C.M.~1999!. The communication bottleneck in knitwear design:
Analysis and computing solutions. Report No. CUED0C-EDC0TR71.
Cambridge University Engineering Design Centre~submitted for pub-
lication!.

318 C. Eckert et al.

https://doi.org/10.1017/S089006049913405X Published online by Cambridge University Press

https://doi.org/10.1017/S089006049913405X


Eckert, C.M., & Demaid, A.~1997!. Concurrent design.Proc. 78th World
Conf. Textile Inst., vol. 3, pp. 101–122. Textile Institute, Manchester,
UK.

Eckert, C.M., Cross, N.G., & Johnson, J.H.~in press!. Overcoming com-
munication difficulties in the design process by intelligent support for
conceptual design.Design Studies 21.

Eckert, C.M., & Stacey, M.K.~1998!. Fortune favours only the prepared
mind: Why sources of inspiration are essential for continuing creativ-
ity. Creativity and Innovation Management 7(1), 9–16.

Eckert, C.M., & Stacey, M.K.~1999!. Sources of inspiration: A language
of design.Proc. 4th Design Thinking Res. Symposium, Massachusetts
Institute of Technology, Cambridge, MA.

Faux, I., & Pratt, M.~1979!. Computational geometry for design and man-
ufacture. Ellis Horwood, Chichester, UK.

Feldman, U.~1993!. Quantifying the dimensions of color experience. PhD
Thesis. Massachusetts Institute of Technology, Cambridge, MA.

Finke, R.A.~1990!. Creative imagery: Discoveries and inventions in vi-
sualization. Lawrence Erlbaum, Hillsdale, NJ.

Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G., & Sumner, T.~1993!. Em-
bedding critics in design environments.Knowledge Engineering Re-
view 8(4), 285–307.

Goel, V. ~1995!. Sketches of thought. MIT Press, Cambridge, MA.
Goldschmidt, G.~1991!. The dialectics of sketching.Creativity Research

Journal 4(2), 123–143.
Goldschmidt, G.~1992!. Serial sketching: Visual problem solving in de-

signing.Cybernetics and Systems: An International Journal 2, 191–
219.

Goldschmidt, G.~1994!. On visual design thinking: The vis kids of archi-
tecture.Design Studies 15(2), 158–174.

Goldschmidt, G.~1995!. Visual displays for design: Imagery, analogy and
databases of visual images. InVisual Databases in Architecture: Re-
cent Advances in Design and Decision-Making, ~Koutamanis, A., Tim-
mermans, H. and Vermeulen, I., Eds.!, pp. 53–76. Avebury, Aldershot,
UK.

Green, T.R.G.~1989!. Cognitive dimensions of notations. InPeople and
Computers IV, ~Sutcliffe, A. and Macaulay, L., Eds.!, Cambridge Uni-
versity Press, Cambridge, UK.

Green, T.R.G.~1991!. Describing information artefacts with cognitive di-
mensions and structure maps. InPeople and Computers VI, ~Diaper,
D. and Hammond, N.V., Eds.!, Cambridge University Press, Cam-
bridge, UK.

Green, T.R.G., & Petre, M.~1996!. Usability analysis of visual program-
ming environments: A ‘cognitive dimensions’ framework.Journal of
Visual Languages and Computing 7, 131–174.

Hardin, C.L., & Maffi, L. ~1997!. Color categories in thought and lan-
guage. Cambridge University Press, Cambridge, UK.

Hunt, R.W.G.~1995!. The reproduction of colour. Fountain Press, Kingston-
upon-Thames, UK.

Hunter, R.S., & Harold, R.W.~1987!. The measurement of appearance,
2nd ed. John Wiley, New York.

Karnopp, D.C., Margolis, D.L., & Rosenberg, R.C.~1990!. System dynam-
ics: A unified approach, 2nd ed. John Wiley, Chichester, UK.

Katz, I. ~1994!. Coping with the complexity of design: Avoiding conflicts
and prioritizing constraints.Proc. Sixteenth Annu. Meeting Cognitive
Sci. Soc.Lawrence Erlbaum, Hillsdale, NJ.

Kelly, I. ~1999!. An evolutionary interaction approach to computer aided
colour design. PhD Thesis. Department of Computing, The Open Uni-
versity, Milton Keynes, UK.

Knight, T.W.~1994!. Transformations in design: A formal approach to sty-
listic change and innovation in the visual arts. Cambridge University
Press, Cambridge, UK.

Kobayashi, S.~1981!. The aim and method of the color image scale.Color
Research & Application 6(2), 93–107.

Kodak~1947!. Improvements in or relating to a method and apparatus for
making photographic colour prints. British Patent No. 660,099.

Kolodner, J.~1993!. Case-based reasoning. Morgan Kaufmann, San Ma-
teo, CA.

Luciano, D.F., & Ronchi, L.R.~1989!. On a possible assessment of the
perceptual environmental color.AIC—Color ’89, p. 187.

McFadzean, J., Cross, N.G., & Johnson, J.H.~1999!. Notation and cogni-
tion in conceptual sketching.Proc. VR’99, Visual and Spatial Reason-
ing in Design. MIT Press, Cambridge, MA.

Peterson, M.A.~1993!. The ambiguity of mental images: Insights regard-
ing the structure of shape memory and its function in creativity. InIm-

agery, Creativity and Discovery: A Cognitive Approach, ~Roskos-
Ewoldsen, B., Intons-Peterson, M.J. and Anderson, R.E., Eds.!, pp. 151–
186. Elsevier, Amsterdam.

Pointer, M.R., & Attridge, G.G.~1980!. The gamut of real surface colors.
Color Research and Application 5(3), 145–155.

Purcell, A.T., & Gero, J.S.~1998!. Drawings and the design process.De-
sign Studies 19, 389–430.

Purcell, A.T., Gero, J.S., Edwards, H., & McNeill, T.~1994!. The data in
design protocols: The issue of data coding, data analysis in the devel-
opment of models of the design process. InArtificial Intelligence in
Design ’94, ~Gero, J.S. and Sudweeks, F., Eds.!, pp. 225–252. Kluwer
Academic Publishers, Dordrecht, Netherlands.

Schön, D.A.~1983!. The reflective practitioner: How professionals think
in action. Basic Books, New York.

Schön, D.A., & Wiggins, G.A.~1992!. Kind of seeing and their function in
designing.Design Studies 13(2), 135–156.

Silverman, B.G.~1992!. Survey of expert critiquing systems: Practical and
theoretical frontiers.Communications of the ACM 35(4), 106–127.

Simon, H.A.~1973!. The structure of ill-structured problems.Artificial In-
telligence 4, 181–201.

Simon, H.A.~1981!. Sciences of the artificial. MIT Press, Cambridge, MA.
Sims, K.~1991!. Artificial evolution for computer graphics.ACM Trans-

actions on Computer Graphics 25, 319–328.
Sivik, L. ~1974!. Color meaning and perceptual dimensions: A study of

color samples. Göteborg Psychological Report, Vol. 4, No. 1, Univer-
sity of Göteborg.

Soen, T., Shimada, T., & Akita, T.~1987!. Objective evaluation of color
design.Color Research & Application 12(4), 187–195.

Stacey, M.K., & Eckert, C.M.~1999!. CAD system bias in engineering
design.Proc. 12th Int. Conf. Eng. Design, Vol. 3, pp. 1413–1418. Tech-
nical University of Munich, Munich, Germany.

Stacey, M.K., Eckert, C.M., & McFadzean, J.~1999!. Sketch interpreta-
tion in design communication.Proc. 12th Int. Conf. Engin. Design,
Vol. 2, pp. 923–928. Technical University of Munich, Munich, Ger-
many.

Stacey, M.K., Rzevski, G., Sharpe, H.C., Petre, M., & Buckland, R.A.
~1997!. Intelligent support for conceptual design: A flow modelling
approach.Proceedings of the 11th International Conference on Engi-
neering Design, vol. 3, pp. 261–266. Heurista, Tampere, Finland.

Stiny, G.~1980!. Introduction to shape and shape grammars.Environment
and Planning B: Planning and Design 7, 343–351.

Stiny, G., & Mitchell, W.J.~1978!. The Palladian grammar.Environment
and Planning B: Planning and Design 5, 5–18.

Suwa, M., Gero, J.S., & Purcell, T.~1998!. Analysis of cognitive processes
of a designer as the foundation for support tools. InArtificial Intelli-
gence in Design ’98, ~Gero, J.S. and Sudweeks, F., Eds.!, pp. 229–247.
Kluwer Academic Publishers, Dordrecht, Netherlands.

Todd, S., & Latham, W.~1992!. Evolutionary art and computers. Aca-
demic Press, London.

Claudia Eckert’s research on intelligent support systems
for knitwear design began with her M.Sc. in Applied Arti-
ficial Intelligence at the University of Aberdeen. This work
has led to two research council funded projects and a Ph.D.
in Design Studies at the Open University. She is now a re-
search associate in the Engineering Design Centre at the Uni-
versity of Cambridge, working on intelligent signposting
techniques for guiding engineering design processes. Her
research interests include design process modelling and de-
sign communication.

Ian Kelly worked as an art teacher in Brighton for 18 years
before taking an M.A. in Computing in Design at the Uni-
versity of Middlesex, and going on to do a Ph.D. in Com-
puting at the Open University, on evolutionary techniques
for color scheme design.

Interactive generative systems 319

https://doi.org/10.1017/S089006049913405X Published online by Cambridge University Press

https://doi.org/10.1017/S089006049913405X


Martin Stacey, after studying psychology at Oxford and
Carnegie Mellon, did a Ph.D. on AI techniques for model-
driven scientific discovery at the University of Aberdeen.
As a research fellow at the Open University, he developed
his current research interests in intelligent design support

systems, the human computer interaction aspects of com-
puter aided design, and the psychology of design. In 1996
he moved across the road to become Senior Lecturer in the
Department of Computer and Information Sciences at De
Montfort University, Milton Keynes.

320 C. Eckert et al.

https://doi.org/10.1017/S089006049913405X Published online by Cambridge University Press

https://doi.org/10.1017/S089006049913405X

