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Abstract

As an extension of a central limit theorem established by Svante Janson, we prove a
Berry–Esseen inequality for a sum of independent and identically distributed random
variables conditioned by a sum of independent and identically distributed integer-valued
random variables.
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1. Introduction

As pointed out by Svante Janson in his seminal work [8], in many random combinatorial
problems the interesting statistic is the sum of independent and identically distributed (i.i.d.)
random variables conditioned on some exogenous integer-valued random variable. In general,
the exogenous random variable is itself a sum of integer-valued random variables. Here, we are
interested in the law of N−1(Y1 + · · · + YN) conditioned on a specific value of X1 + · · · + XN ,
that is, in the conditional distribution

LN :=L(N−1(Y1 + · · · + YN) | X1 + · · · + XN = m),

where m and N are integers and the (Xi, Yi) for 1 ≤ i ≤ N are i.i.d. copies of a vector (X, Y) of
random variables with X integer valued.

Janson [8] proved a general central limit theorem (with convergence of all moments) for
this kind of conditional distribution under some reasonable assumptions and gave several
applications in classical combinatorial problems: occupancy in urns, hashing with linear
probing, random forests, branching processes, etc. Following this work, one natural question
arises: is it possible to obtain a general Berry–Esseen inequality for these models?

The first Berry–Esseen inequality for a conditional model is given by Malcolm P. Quine
and John Robinson in [17]. They study the particular case of the occupancy problem, i.e. the
case when the random variable X is Poisson distributed and Y = 1{X=0}. To the best of our
knowledge, it is the only result in that direction for this kind of conditional distribution.
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Our paper is organized as follows. In Section 2 we present the model and we state our main
results (Theorems 1 and 2). In Section 3 we describe classical examples. The last section is
dedicated to the proofs.

2. Conditional Berry–Esseen inequality

For all n ≥ 1, we consider a vector of random variables (Xn, Yn) such that Xn is integer
valued and Yn real valued. Let Nn be a natural number such that Nn → ∞ as n goes to ∞. Let
(Xn,i, Yn,i)1≤i≤Nn be an i.i.d. sample distributed as (Xn, Yn) and define

Sn,k :=
k∑

i=1

Xn,i and Tn,k :=
k∑

i=1

Yn,i,

for k ∈ [[1,Nn]]. To lighten notation, define Sn := Sn,Nn and Tn := Tn,Nn . Let mn ∈Z be such
that P(Sn = mn)> 0. The purpose of the paper is to prove a Berry–Esseen inequality for the
conditional distributions

L(Un) :=L(Tn | Sn = mn).

Assumption 1. Suppose that there exist positive constants c1, c̃2, c2, c3, c̃4, c4, c5, c6, c7, and
η0 such that

(A1) γn := 2πσXn N1/2
n P(Sn = mn) ≥ c1,

(A2) c̃2 ≤ σXn := var (Xn)1/2 ≤ c2,

(A3) ρXn :=E[|Xn −E[Xn]|3] ≤ c3σ
3
Xn

,

(A4) c̃4 ≤ σYn := var (Yn)1/2 ≤ c4,

(A5) ρYn :=E[|Yn −E[Yn]|3] ≤ c5σ
3
Yn

,

(A6) the correlations rn := cov (Xn, Yn)σ−1
Xn
σ−1

Yn
satisfy |rn| ≤ c6 < 1,

(A7) for Y ′
n := Yn −E[Yn] − cov (Xn, Yn)σ−2

Xn
(Xn −E[Xn]), for all s ∈ [−ππ ],and for all

t ∈ [−η0 , η0],

|E[ei(sXn+tY ′
n)]| ≤ 1 − c7(σ 2

Xn
s2 + σ 2

Y ′
n
t2).

Obviously, Assumption 1 is very close to the set of assumptions of the central limit theorem
established in [8, Theorem 2.3]. In particular, (A1) is a consequence of mn = NnE[Xn] +
O(σXn N1/2

n ), (A3) and (A7) (see the proof of Theorem 2.3 of [8]). By [8, Lemma 4.1],
σ 2

Xn
≤ 4E[|X −E[X]|3] , so c̃2 can be chosen as 1/(4c3). (A6) is not very restricting and holds

in the examples provided in Section 3. Following [8], we introduce Y ′
n in (A7) in order to work

with a centred variable uncorrelated with Xn. If (X, Y ′) is a vector of centred and uncorrelated
random variables, then

|E[ei(sX+tY ′)]| = 1 − 1
2 (σ 2

Xs2 + σ 2
Y ′ t2) + o(s2 + t2),

so (A7) is reasonable if the vectors (Xn, Y ′
n) are identically distributed.
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Proposition 1. Assume that

mn = NnE[Xn] + O(σXn N1/2
n ),

that (Xn, Yn) converges in distribution to (X, Y) as n → ∞, and that, for every fixed r> 0,

lim sup
n→∞

E[|Xn|r]<∞ and lim sup
n→∞

E[|Yn|r]<∞.

Suppose further that the distribution of X has span 1 and that Y is not almost surely equal to
an affine function c + dX of X. Then, Assumption 1 is satisfied.

The proof is omitted since the proposition relies on Corollary 2.1 and Theorem 2.3 of [8].

Theorem 1. Under Assumption 1, τ 2
n := σ 2

Yn
(1 − r2

n)> 0 and we have

sup
x∈R

∣∣∣∣P
(

Un − NnE[Yn] − rnσYnσ
−1
Xn

(mn − NnE[Xn])

N1/2
n τn

≤ x

)
−�(x)

∣∣∣∣ ≤ C

N1/2
n

, (1)

where � denotes the standard normal cumulative distribution function and C is a positive
constant that depends only on c̃2, c2, c3, c̃4, c4, c5, c6, c7, η0, and c1.

Remark that the standardization of the variables Un involved in (1) is not the natural one.
The following theorem fixes this default of standardization.

Proposition 2. Under (A1), (A3), (A4), (A5), and (A7), there exist two positive constants d1
and d2 depending only on c3, c4, c5, c7, and c1 such that, for Nn ≥ 3,

|E[Un] − NnE[Yn] − rnσYnσ
−1
Xn

(mn − NnE[Xn])| ≤ d1 (2)

and

|var (Un) − Nnτ
2
n | ≤ d2N1/2

n . (3)

Theorem 2. Under Assumption 1, we have

sup
x∈R

∣∣∣∣P
(

Un −E[Un]

var (Un)1/2
≤ x

)
−�(x)

∣∣∣∣ ≤ C̃

N1/2
n

, (4)

where C̃ is a constant that depends only on c̃2, c2, c3, c̃4, c4, c5, c6, c7, η0, and c1.

Furthermore, as in [8], the results of Theorems 1 and 2 simplify considerably in the special
case when the vector (Xn, Yn) does not depend on n, that is, when we consider an i.i.d. sequence
instead of a triangular array. This is a consequence of Proposition 1.

3. Classical examples

In this section we describe the examples mentioned in [6] and [8]. Each example satisfies
the assumptions of Proposition 1, as shown in [8], leading to a Berry–Esseen inequality.
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3.1. Occupancy problem

In the classical occupancy problem, m balls are thrown uniformly at random into N urns.
The resulting numbers of balls (Z1, . . . , ZN) have a multinomial distribution. It is well known
that (Z1, . . . , ZN) is also distributed as (X1, . . . , XN) conditioned on {∑N

i=1 Xi = m}, where
the random variables Xi are i.i.d., with Xi ∼P(λ) for any arbitrary λ> 0. The classical
occupancy problem studies the number of empty urns U = ∑N

i=1 1{Zi=0}, which is distributed
as

∑N
i=1 1{Xi=0} conditioned on {∑N

i=1 Xi = m}. Now, if m = mn → ∞ and N = Nn → ∞ with
mn/Nn → λ ∈ (0 ,∞), we can take Xn ∼P(λn) with λn := mn/Nn, Yn = 1{Xn=0}, and apply
Proposition 1 to obtain a Berry–Esseen inequality for Un = ∑Nn

i=1 1{Zi=0}.

Remark 1. In [17], the authors proved a Berry–Esseen inequality for the occupancy problem
in a more general setting: the probability of landing in each urn may be different. The tools
they developed will be used below to prove our results.

Remark 2. Here, we need a result for triangular arrays, and not only for i.i.d. sequences.
Indeed, if we took Xn = X with X ∼P(λ), we would only have

mn = Nn(λ+ o(1)) = NnE[Xn] + o(Nn).

But Proposition 1 requires
mn = NnE[X] + O(N1/2

n ),

which is stronger. This remark goes for the following examples too.

3.2. Bose–Einstein statistics

This example is borrowed from [6] (see also [3]). Consider N urns and put m indistinguish-
able balls in the urns in such a way that each distinguishable outcome has the same probability
1/

(m+N−1
m

)
. Let Zk be the number of balls in the kth urn. It is well known that (Z1, . . . , ZN) is

distributed as (X1, . . . , XN) conditioned on {∑N
i=1 Xi = m}, where the random variables Xi are

i.i.d., with Xi ∼ G(p) for any arbitrary p ∈ (0 , 1). If m = n, N = Nn → ∞ with Nn/n → p, take
Xn ∼ G(pn) with pn = Nn/n to obtain a Berry–Esseen inequality for any sequence of variables
of the type Un = ∑Nn

i=1 f (Zi).

3.3. Branching processes

Consider a Galton–Watson process, beginning with one individual, where the number of
children of an individual is given by a random variable X having finite moments. Assume
further that E[X] = 1. We number the individuals as they appear. Let Xi be the number of
children of the ith individual and Sk := ∑k

i=1 Xi. It is well known (see [8, Example 3.4]
and the references therein) that the total progeny SN + 1 is N ≥ 1 if and only if, for all
k ∈ {0, . . . ,N − 1},

Sk ≥ k and SN = N − 1. (5)

This type of conditioning is different from the one studied in the present paper, but, by [18,
Corollary 2] and [8, Example 3.4], if we ignore the cyclical order of X1, . . . , XN , it is proved
that X1, . . . , XN have the same distribution conditioned on (5) as conditioned on {SN = N − 1}.
Applying Proposition 1 with N = n and m = n − 1, we obtain a Berry–Esseen inequality for
any sequence of variables Un distributed as Tn = ∑n

i=1 f (Xi) conditioned on {Sn = n − 1}. For
instance, if f (x) = 1{x=3}, Un is the number of individuals with three children given that the
total progeny is n.
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3.4. Random forests

Consider a uniformly distributed random labelled rooted forest with m vertices and N roots
with N <m. Without loss of generality, we may assume that the vertices are 1, . . . ,m and, by
symmetry, that the roots are the first N vertices. Following [8], this model can be realized as
follows. The sizes of the N trees in the forest are distributed as (X1, . . . , XN) conditioned on
{∑N

i=1 Xi = m}, where the random variables Xi are i.i.d. and Borel distributed for any arbitrary
parameter μ ∈ (0 , 1), i.e.

P(Xi = l) = e−μl (μl)l−1

l!

(see, e.g. [5] or [7] for more details). Then the ith tree is drawn uniformly among the trees of
size Xi. Proposition 1 provides a Berry–Esseen inequality for any sequence of variables of the
type Un = ∑Nn

i=1 f (Zi) where Nn → ∞ and Z1, . . . , ZNn are the sizes of the trees in the forest.
For instance, if f (x) = 1{x=K}, Un is the number of trees of size K in the forest (see, e.g. [12],
[15], and [16]).

3.5. Hashing with linear probing

Hashing with linear probing is a classical model in theoretical computer science that
appeared in the 1960s. It was first studied from a mathematical point of view in [10]. For
more details on the model, we refer the reader to [1], [2], [5], [7], [9], and [14]. The model
describes the following experiment. One throws n balls sequentially into m urns at random
with m> n; the urns are arranged in a circle and numbered clockwise. A ball that lands in
an occupied urn is moved to the next empty urn, always moving clockwise. The length of the
move is called the displacement of the ball and we are interested in the sum of all displacements
which is a random variable denoted by dm,n. After throwing all balls, there are N := m − n
empty urns. These divide the occupied urns into blocks of consecutive urns. We consider
that the empty urn following a block belongs to this block. Following [5] and [11], Janson
[7] proved that the lengths of the blocks and the sums of displacements inside each block
are distributed as (X1, Y1), . . . , (XN, YN) conditioned on {∑N

i=1 Xi = m}, where the random
vectors (Xi, Yi) are i.i.d. copies of a vector (X, Y) of random variables, X being Borel distributed
with any arbitrary parameter μ ∈ (0 , 1) and Y given {X = l} being distributed as dl,l−1. In
particular, dm,n is distributed as

∑N
i=1 Yi conditioned on {∑N

i=1 Xi = m}. If m = mn → ∞ and
N = Nn = mn − n → ∞ with n/mn →μ ∈ (0 , 1), we take Xn following Borel distribution with
parameter μn := n/mn to get a Berry–Esseen inequality for dmn,n, by Proposition 1.

4. Proofs

Recall that Un is distributed as Tn conditioned on {Sn = mn}. Following the procedure of
[8], we consider the projection

Y ′
n = Yn −E[Yn] − cov (Xn, Yn)σ−2

Xn
(Xn −E[Xn]).

Then E[Y ′
n] = 0 and cov (Xn, Y ′

n) =E[XnY ′
n] = 0. Besides, (A7) and (A6) are verified by Y ′

n.
By (A6),

σ 2
Y ′

n
= σ 2

Yn
(1 − r2

n) ∈ [c̃2
4(1 − c2

6), c2
4],
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so (A4) is satisfied by Y ′
n. Finally, by the Minkowski inequality, (A3), (A5), and the fact that

|rn| ≤ 1,

‖Y ′
n‖3 ≤ ‖Yn −E[Yn]‖3 + |rn|σXnσYnσ

−2
Xn

‖Xn −E[Xn]‖3

≤ ρ1/3
Yn

+ σYnσ
−1
Xn
ρ

1/3
Xn

≤ σYn (c1/3
3 + c1/3

5 )

≤ σY ′
n
(1 − c2

6)−1/2(c1/3
3 + c1/3

5 ).

Hence, Y ′
n satisfies (A5). Consequently, all conditions hold for the vector (Xn, Y ′

n) too. Finally,

T ′
n :=

Nn∑
i=1

Y ′
n,i = Tn − NnE[Yn] − cov (Xn, Yn)σ−2

Xn
(Sn − NnE[Xn]).

So, conditioned on {Sn = mn}, we have

T ′
n = Tn − NnE[Yn] − rnσYnσ

−1
Xn

(mn − NnE[Xn]).

Hence, the conclusions in Theorems 1 and 2 for (Xn, Yn) and (Xn, Y ′
n) are the same. Thus,

it suffices to prove the theorems for (Xn, Y ′
n). In other words, we will henceforth assume

that E[Yn] =E[XnYn] = 0, rn = 0 and τ 2
n = σ 2

Yn
. Moreover, the constants c′

4, c̃′
4, c′

5, c′
6, and c′

7

for (X, Y ′) are linked to that of (X, Y) by the following relations: c′
4 = c4, c̃′

4 = c̃4(1 − c2
6)1/2,

c′
5 = (1 − c2

6)−3/2(c1/3
3 + c1/3

5 )3, c′
6 = 0, and c′

7 = c7. In the proofs we omit the primes.
The proofs of Theorems 1 and 2 intensively rely on the use of Fourier transforms through

the functions ϕn and ψn defined by

ϕn(s, t) :=E[exp{is(Xn −E[Xn]) + itYn}], ψn(t) := 2πP(Sn = mn)E[exp{itUn}]. (6)

The controls of these functions (respectively the controls of their derivatives) needed in the
proofs are postponed to Lemmas 1 and 2 in Section 4.4 (respectively Lemma 3). In particular,
(15)–(18) will be used several times below.

4.1. Proof of Theorem 1

We follow the classical proof of Berry–Esseen theorem (see, e.g. [4]) combined with the
procedure in [17]. As shown in [13, p. 285] or [4], the left-hand side of (1) is dominated by

2

π

∫ ησYn N1/2
n

0

∣∣∣∣ψn(uσ−1
Yn

N−1/2
n )

2πP(Sn = mn)
− e−u2/2

∣∣∣∣du

u
+ 24σ−1

Yn
N−1/2

n

ηπ
√

2π
,

where η > 0 is arbitrary. We choose to define

η := min
( 2

9 (c4c5)−1, η0
)
> 0. (7)
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From (15) of Lemma 1 and using Taylor’s expansion,

u−1
∣∣∣∣ψn(uσ−1

Yn
N−1/2

n )

2πP(Sn = mn)
− e−u2/2

∣∣∣∣
= u−1e−u2/2

∣∣∣∣eu2/2ψn(uσ−1
Yn

N−1/2
n )

2πP(Sn = mn)
− 1

∣∣∣∣
≤ e−u2/2 sup

0≤θ≤u

∣∣∣∣ ∂∂t

[
et2/2ψn(tσ−1

Yn
N−1/2

n )

2πP(Sn = mn)

]
t=θ

∣∣∣∣
≤ γ−1

n e−u2/2 sup
0≤θ≤u

{ ∫ πσXn N1/2
n

−πσXn N1/2
n

∣∣∣∣ ∂∂t

[
et2/2ϕNn

n

(
s

σXn N1/2
n

,
t

σYnN1/2
n

)]
t=θ

∣∣∣∣ ds

}
.

By (A1), γn ≥ c1. Now we split the integration domain of s into

A1 := {s : |s|< εσXn N1/2
n } and A2 := {s : εσXn N1/2

n ≤ |s| ≤ πσXnN1/2
n },

where
ε := min

( 2
9 (c2c3)−1, π

)
, (8)

and decompose

u−1
∣∣∣∣ψn(uσ−1

Yn
N−1/2

n )

2πP(Sn = mn)
− e−u2/2

∣∣∣∣ ≤ sup
0≤θ≤u

[I1(n, u, θ ) + I2(n, u, θ )],

where

I1(n, u, θ ) = γ−1
n

∫
A1

e−(u2+s2)/2
∣∣∣∣ ∂∂t

[
e(t2+s2)/2ϕNn

n

(
s

σXn N1/2
n

,
t

σYnN1/2
n

)]
t=θ

∣∣∣∣ ds, (9)

I2(n, u, θ ) = γ−1
n e−u2/2

∫
A2

∣∣∣∣ ∂∂t

[
et2/2ϕNn

n

(
s

σXn N1/2
n

,
t

σYn N1/2
n

)]
t=θ

∣∣∣∣ ds. (10)

Lemmas 5 and 6 state that there exists positive constants C1 and C2, depending only on c̃2, c2,
c3, c5, c7, and c1 such that, for Nn ≥ max (123c2

3, 123c2
5, 2),

∫ ησYn N1/2
n

0
sup

0≤θ≤u
I1(n, u, θ ) du ≤ C1

N1/2
n

, (11)

and ∫ ησYn N1/2
n

0
sup

0≤θ≤u
I2(n, u, θ ) du ≤ C2

N1/2
n

. (12)

So,

sup
x∈R

∣∣∣P( Un

N1/2
n σYn

≤ x
)

−�(x)
∣∣∣ ≤ C

N1/2
n
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with

C := max

(
C1 + C2 + 24

c̃4π
√

2π

(
min

(
2

9
c4c5, η0

))−1

, 123/2c3, 123/2c5,
√

2

)
.

4.2. Proof of Proposition 2

Proof of (2). We adapt the proof given in [8]. Using the definition of �n given in (6), and
differentiating under the integral sign of (15) of Lemma 1, we naturally have

|E[Un]| =
∣∣∣∣ −iψ ′

n(0)

2πP(Sn = mn)

∣∣∣∣
≤ γ−1

n Nn

∫ πσXn N1/2
n

−πσXn N1/2
n

∣∣∣∣∂ϕn

∂t

(
s

σXn N1/2
n

, 0

)∣∣∣∣
∣∣∣∣∣ϕNn−1

n

(
s

σXn N1/2
n

, 0

)∣∣∣∣∣ ds.

Using (18) of Lemma 3 with t = 0, (A2), (A3), and (A5), we deduce that∣∣∣∣∂ϕn

∂t

(
s

σXnN1/2
n

, 0

)∣∣∣∣ ≤ s2

2

ρ
1/3
Yn
ρ

2/3
Xn

σ 2
Xn

Nn
≤ c2/3

3 c4c1/3
5

2Nn
s2.

Then, using (16) of Lemma 2 (with l = 1 and t = 0) and for Nn ≥ 3,

∫ πσXn N1/2
n

−πσXn N1/2
n

∣∣∣∣∂ϕn

∂t

(
s

σXn N1/2
n

, 0

)∣∣∣∣
∣∣∣∣ϕNn−1

n

(
s

σXn N1/2
n

, 0

)∣∣∣∣ ds

≤ c2/3
3 c4c1/3

5

2Nn

∫ +∞

−∞
s2e−2c7s2/3 ds.

So, (2) holds with

d1 := 2−1c2/3
3 c4c1/3

5 c−1
1

∫ +∞

−∞
s2e−2c7s2/3 ds.

Proof of (3) Since τ 2
n = σ 2

Yn
and E[Un] is bounded, it suffices to show that the quantity

|E[U2
n] − Nnσ

2
Yn

| is bounded by some d′
2N1/2

n to prove (3). Proceeding as before,

E[U2
n]

= −ψ ′′
n (0)

2πP(Sn = mn)

= −γ−1
n Nn(Nn − 1)

∫ πσXn N1/2
n

−πσXn N1/2
n

e−isvn

(
∂ϕn

∂t

(
s

σXn N1/2
n

, 0

))2

ϕNn−2
n

(
s

σXn N1/2
n

, 0

)
ds

(13)

− γ−1
n Nn

∫ πσXn N1/2
n

−πσXn N1/2
n

e−isvn
∂2ϕn

∂t2

(
s

σXn N1/2
n

, 0

)
ϕNn−1

n

(
s

σXn N1/2
n

, 0

)
ds, (14)
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where

vn := (mn − NnE[Xn])

(σXnN1/2
n )

.

First, by (18) of Lemma 3 with t = 0 and by (16) of Lemma 2 (with l = 2 and t = 0), we have,
for Nn ≥ 3,

∫ πσXn N1/2
n

−πσXn N1/2
n

∣∣∣∣∂ϕn

∂t

(
s

σXn N1/2
n

, 0

)∣∣∣∣2∣∣∣∣ϕNn−2
n

(
s

σXn N1/2
n

, 0

)∣∣∣∣ ds

≤ c4/3
3 c2

4c2/3
5

4N2
n

∫ +∞

−∞
s4e−c7s2/3 ds.

Finally, by (A1), the term (13) is bounded by

d′′
2 := c4/3

3 c2
4c2/3

5

4c1

∫ +∞

−∞
s4e−c7s2/3 ds.

Second, we study the term (14). We want to show that

�n: = γ−1
n

∫ πσXn N1/2
n

−πσXn N1/2
n

e−isvn
∂2ϕn

∂t2

(
s

σXn N1/2
n

, 0

)
ϕNn−1

n

(
s

σXn N1/2
n

, 0

)
ds + σ 2

Yn

is bounded by some d′′′
2 /N

1/2
n . By (15) with t = 0,

∫ πσXn N1/2
n

−πσXn N1/2
n

e−isvnϕNn
n

(
s

σXn N1/2
n

, 0

)
ds = 2πP(Sn = mn)σXn N1/2

n = γn,

so

�n = γ−1
n

∫ πσXn N1/2
n

−πσXn N1/2
n

e−isvn

(
∂2ϕn

∂t2

(
s

σXn N1/2
n

, 0

)
+ σ 2

Yn
ϕn

(
s

σXn N1/2
n

, 0

))

× ϕNn−1
n

(
s

σXn N1/2
n

, 0

)
ds

= γ−1
n

∫ πσXn N1/2
n

−πσXn N1/2
n

e−isvnE[Yn
2f (s)]ϕNn−1

n

(
s

σXn N1/2
n

, 0

)
ds,

where

f (s) = −(eisσ−1
Xn

N−1/2
n (Xn−E[Xn]) −E[eisσ−1

Xn
N−1/2

n (Xn−E[Xn])]).
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Applying Taylor’s theorem yields

|f (s)| ≤ |s| sup
u

∣∣∣∣ − i
Xn −E[Xn]

σXn N1/2
n

eiuσ−1
Xn

N−1/2
n (Xn−E[Xn])

+E

[
i
Xn −E[Xn]

σXn N1/2
n

eiuσ−1
Xn

N−1/2
n (Xn−E[Xn])

]∣∣∣∣
≤ |s|

N1/2
n

(∣∣∣∣Xn −E[Xn]

σXn

∣∣∣∣ +E

[∣∣∣∣Xn −E[Xn]

σXn

∣∣∣∣
])

.

Thus, using Hölder’s inequality,

|E[Yn
2f (s)]| ≤ |s|

N1/2
n

E

[
Yn

2
(∣∣∣∣Xn −E[Xn]

σXn

∣∣∣∣ +E

[∣∣∣∣Xn −E[Xn]

σXn

∣∣∣∣
])]

≤ σ 2
Yn

|s|
N1/2

n

(
ρ

2/3
Yn

σ 2
Yn

ρ
1/3
Xn

σXn

+ 1

)

≤ |s|c2
4

N1/2
n

(c2/3
5 c1/3

3 + 1),

where the last inequality is obtained using (A2)–(A5). Now, by (A1) and the upper bound in
(16) (with l = 1 and t = 0), we get, for Nn ≥ 3,

|�n| ≤ c2
4

c1N1/2
n

(c2/3
5 c1/3

3 + 1)
∫ +∞

−∞
|s|e−s2c7(Nn−1)/Nn ds ≤ d′′′

2

N1/2
n

,

with

d′′′
2 := c2

4c−1
1 (c2/3

5 c1/3
3 + 1)

∫ +∞

−∞
|s|e−2s2c7/3 ds.

Finally,
|var (Un) − Nnσ

2
Yn

| ≤ (d2
1 + d′′

2 + d′′′
2 )N1/2

n =: d2N1/2
n .

The proof of (3) is complete.

4.3. Proof of Theorem 2

Write ∣∣∣∣P
(

Un −E[Un]

var (Un)1/2
≤ x

)
−�(x)

∣∣∣∣
≤

∣∣∣∣P
(

Un

N1/2
n σYn

≤ anx + bn

)
−�(anx + bn)

∣∣∣∣ + |�(anx + bn) −�(x)|,

where

an := var (Un)1/2

N1/2
n σYn

and bn := E[Un]

N1/2
n σYn

.
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The previous estimates of E[Un] and var (Un) yield

|an − 1| ≤ |a2
n − 1| ≤ d2c̃−2

4 N−1/2
n and |bn| ≤ d1c̃−1

4 N−1/2
n .

Then, for N1/2
n ≥ 2c̃−2

4 d2, an ≥ 1
2 and applying Taylor’s theorem to �, we obtain

|�(anx + bn) −�(x)| ≤ |(an − 1)x + bn| sup
t

e−t2/2

√
2π

≤ N−1/2
n√
2π

max (d2c̃−2
4 , d1c̃−1

4 )(|x| + 1)e−(|x|/2−d1c̃−1
4 )2/2,

the supremum being over t between x and anx + bn. The last function in x being bounded, we
can define

C′ := 1√
2π

max (d2c̃−2
4 , d1c̃−1

4 ) sup
x∈R

[(|x| + 1)e−(|x|/2−d1c̃−1
4 )2/2].

Finally, we apply (1), and (4) holds with C̃ := C + max (C′, 2c̃−2
4 d2).

4.4. Technical results

Recall that

vn = (mn − NnE[Xn])

(σXn N1/2
n )

and γn = 2πP(Sn = mn)σXn N1/2
n .

Moreover,

ϕn(s, t) =E[exp{is(Xn −E[Xn]) + itYn}] and ψn(t) = 2πP(Sn = mn)E[exp{itUn}].
Lemma 1. We have

ψn(t) = 1

σXn N1/2
n

∫ πσXn N1/2
n

−πσXn N1/2
n

e−isvnϕNn
n

(
s

σXn N1/2
n

, t

)
ds. (15)

Proof. Indeed, since ∫ π

−π
eis(Sn−mn) ds = 2π1{Sn=mn},

we have

ψn(t) = 2πP(Sn = mn)E[exp{itUn}]
= 2πE[exp{itTn}1{Sn=mn}]

=
∫ π

−π
E[exp{is(Sn − mn) + itTn}] ds

=
∫ π

−π
e−is(mn−NnE[Xn])ϕNn

n (s, t) ds,

which leads to (15) after the change of variable s′ = sσXnN1/2
n . �

Now we give controls on the function ϕn and its partial derivatives (see Lemmas 2 and 3).
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Lemma 2. Under (A7), for any integer l ≥ 0, |s| ≤ πσXnN1/2
n , and |t| ≤ η0σYn N1/2

n , we obtain∣∣∣∣ϕNn−l
n

(
s

σXn N1/2
n

,
t

σYnN1/2
n

)∣∣∣∣ ≤ e−(s2+t2)·c7·(Nn−l)/Nn . (16)

Proof. The proof is a mere consequence of the inequality 1 + x ≤ ex that holds for any
x ∈R. �
Lemma 3. For any s and t, we have∣∣∣∣∂ϕn

∂t

(
s

σXn N1/2
n

,
t

σYn N1/2
n

)∣∣∣∣ ≤ σYn

N1/2
n

(|s| + |t|) (17)

and∣∣∣∣∂ϕn

∂t

(
s

σXn N1/2
n

,
t

σYnN1/2
n

)∣∣∣∣ (18)

≤ σYn

N1/2
n

|t| + σYn

Nn

[
s2

2

(
ρXn

σ 3
Xn

)2/3(
ρYn

σ 3
Yn

)1/3

+ |st|
(
ρXn

σ 3
Xn

)1/3(
ρYn

σ 3
Yn

)2/3

+ t2

2

(
ρYn

σ 3
Yn

)]
.

Proof. We apply Taylor’s theorem to the function defined by

(s, t) �→ f (s, t) = ∂ϕn

∂t

(
s

σXn N1/2
n

,
t

σYn N1/2
n

)
.

We obtain (17) using

| f (s, t) − f (0, 0)| ≤ |s| sup
θ,θ ′∈[0,1]

∣∣∣∣∂f

∂s
(θs, θ ′t)

∣∣∣∣ + |t| sup
θ,θ ′∈[0,1]

∣∣∣∣∂f

∂t
(θs, θ ′t)

∣∣∣∣
and (18) using

| f (s, t) − f (0, 0)| ≤ |s|
∣∣∣∣∂f

∂s
(0, 0)

∣∣∣∣ + |t|
∣∣∣∣∂f

∂t
(0, 0)

∣∣∣∣ + s2

2
sup

θ,θ ′∈[0,1]

∣∣∣∣∂2f

∂2s
(θs, θ ′t)

∣∣∣∣
+ |st| sup

θ,θ ′∈[0,1]

∣∣∣∣ ∂2f

∂t∂s
(θs, θ ′t)

∣∣∣∣ + t2

2
sup

θ,θ ′∈[0,1]

∣∣∣∣∂2f

∂2t
(θs, θ ′t)

∣∣∣∣.
The partial derivatives of f are estimated by mixed moments of Xn and Yn and then bounded
above by Hölder’s inequality. �

The following lemma is a result due to Quine and Robinson [17, Lemma 2].

Lemma 4. Define

l1,n := ρXnσ
−3
Xn

N−1/2
n and l2,n := ρYnσ

−3
Yn

N−1/2
n .

If l1,n ≤ 12−3/2 and l2,n ≤ 12−3/2, then, for all

(s, t) ∈ R :=
{

(s, t) : |s|< 2
9 l−1

1,n, |t|< 2
9 l−1

2,n

}
,
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we have ∣∣∣∣ ∂∂t

[
e(s2+t2)/2ϕNn

n

(
s

σXn N1/2
n

,
t

σYn N1/2
n

)]∣∣∣∣
≤ C4(|s| + |t| + 1)3(l1,n + l2,n) exp

{ 11
24 (s2 + t2)

}
,

with C4 := 161.

Remark 3. We make explicit the constant C4 appearing at the end of the proof of Lemma 2 of
[17]. For all v and s in R2 as defined in [17], we have

(|v| + 2|s|)
(|v| + |s| + 1)3(�1,n + �2,n)

e−(v2+s2)/24 ≤ 108 · √6 · e−1/2 ≤ 161.

By (A2) and (A3),
l1,n ≤ c3N−1/2

n ≤ c2c3σ
−1
Xn

N−1/2
n ,

which implies that σXn N1/2
n ≤ c2c3l−1

1,n. Similarly,

l2,n ≤ c5N−1/2
n ≤ c4c5σ

−1
Yn

N−1/2
n ,

and σYn N1/2
n ≤ c4c5l−1

2,n. Now we are able to establish (11).

Lemma 5. There exists a positive constant C1, depending only on c3, c5, and c1 such that, for
Nn ≥ 123 max (c2

3, c2
5), ∫ ησYn N1/2

n

0
sup

0≤θ≤u
I1(n, u, θ ) du ≤ C1

N1/2
n

.

Proof. The definitions of η in (7) and ε in (8) imply that, for s ∈ A1 and u and θ as in the
integral in the statement above, we have

|s|< εσXn N1/2
n ≤ 2

9 l−1
1,n and |θ | ≤ |u| ≤ ησYn N1/2

n ≤ 2
9 l−1

2,n,

which ensures that (s, θ ) ∈ R as specified in Lemma 4. Moreover, for Nn ≥ 123 max (c2
3, c2

5),
l1,n ≤ 12−3/2 and l2,n ≤ 12−3/2. Now using Lemma 4 in (9) and by (A1), we get

∫ ησYn N1/2
n

0
sup

0≤θ≤u
I1(n, u, θ ) du

≤ γ−1
n C4(l1,n + l2,n)

∫ ησYn N1/2
n

0

∫
A1

(|s| + |u| + 1)3e−(s2+u2)/24 ds du

≤ N−1/2
n c−1

1 C4(c3 + c5)
∫
R2

(|s| + |u| + 1)3e−(s2+u2)/24 ds du,

and the result follows with

C1 := c−1
1 C4(c3 + c5)

∫
R2

(|s| + |u| + 1)3e−(s2+u2)/24 ds du.

�

https://doi.org/10.1017/jpr.2019.7 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.7


A conditional Berry–Esseen inequality 89

Remark 4. Actually, Lemma 5 is valid as soon as Nn ≥ max (c2
3, c2

5): the constants in the proof
of Lemma 2 of [17] can be improved.

Now we are able to prove (12).

Lemma 6. There exists a positive constant C2, depending only on c1, c̃2, c2, c3, and c7 such
that, for Nn ≥ 2, ∫ ησYn N1/2

n

0
sup

0≤θ≤u
I2(n, u, θ ) du ≤ C2

N1/2
n

.

Proof. We use the controls (16) with t = θ and l = 1, (17), and |ϕn| ≤ 1 to get∣∣∣∣∣ ∂∂t

[
et2/2ϕNn

n

(
s

σXn N1/2
n

,
t

σYn N1/2
n

)]
t=θ

∣∣∣∣∣
= eθ

2/2
∣∣∣∣ϕNn−1

n

(
s

σXnN1/2
n

,
θ

σYnN1/2
n

)∣∣∣∣
×

∣∣∣∣θϕn

(
s

σXn N1/2
n

,
θ

σYn N1/2
n

)
+ N1/2

n

σYn

∂ϕn

∂t

(
s

σXn N1/2
n

,
θ

σYn N1/2
n

)∣∣∣∣
≤ (|s| + 2|θ |)eθ2/2−(s2+θ2)·c7(Nn−1)/Nn

for s ∈ A2 and u and θ as in the integral in the statement of the lemma. Finally, using (10), we
get, for Nn ≥ 2,

∫ ησYn N1/2
n

0
sup

0≤θ≤u
I2(n, u, θ ) du

≤ 2γ−1
n

∫ +∞

0

∫ +∞

εσXn N1/2
n

sup
0≤θ≤u

[
(s + 2θ ) exp

(
θ2

2

(
1 − 2c7

Nn − 1

Nn

))]

× e−u2/2−s2·c7(Nn−1)/Nn ds du

≤ 2c−1
1

∫ +∞

0

∫ +∞

εσXn N1/2
n

(s + 2u)e− min (1,c7)u2/2−s2c7/2 ds du

≤ e−Nnc7ε
2σ 2

Xn
/2

(
c−1

1 c−1
7

√
2π√

min (1, c7)
+ 4c−1

1

min (1, c7)

1

c7εσXn N1/2
n

)

≤ C′
2e−C′′

2 Nn ,

where

C′
2 := c−1

1 c−1
7

( √
2π√

min (1, c7)
+ 4

min (1, c7) min ((2/9)(c2c3)−1, π )c̃2

)

and

C′′
2 := c̃2

2/2c7 min
( 2

9 (c2c3)−1, π
)2.
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The result follows, writing

C′
2e−C′′

2 Nn = C′
2(C′′

2)−1/2

N1/2
n

(C3Nn)1/2e−C3Nn ≤ C′
2(C′′

2)−1/2

N1/2
n

(1/2)1/2e−1/2 =:
C2

N1/2
n

,

since x1/2e−x is maximum in 1
2 . �
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