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1. INTRODUCTION

It is now well known that with an increasing-returns-to-scale production technol-
ogy, tax distortions, or other types of nonconvexities, an otherwise standard real
business cycle (RBC) model can exhibit multiple rational expectations equilibria
(REE) that are locally nonunique or indeterminate. Near such equilibria, there
exist self-fulfilling dynamics driven by extraneous stochastic processes known as
“sunspots.”1

One critique of sunspot equilibria in RBC models is that these equilibria are
unstable under adaptive learning dynamics.2 Suppose agents know the correct
specification of a reduced-form model but do not know its parameter values and
act like econometricians in estimating them using adaptive learning techniques,
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learning almost always leads agents away from sunspot equilibria. Evans and
McGough (2005a, 2005b) find that stability results can differ by how the law
of motion of the economy is represented. With a general form representation,
sunspot solutions are not stable under learning. In the case of a common factor
representation, sunspot equilibria can be stable under learning. However, when
they restrict attention to versions of the reduced form model consistent with
calibrations of three structural models, they find that sunspot equilibria are always
unstable under adaptive learning. They identify this result as a “stability puzzle.”
Duffy and Xiao (2007) find that it is the structural parameter restrictions of this
class of models that prevent the equilibria from being simultaneously indetermi-
nate and stable under learning. Consequently, learnable sunspot equilibria only
occur when the economy exhibits empirically implausible dynamics, regardless
of which representation the agents use. In a recent paper, McGough et al. (2013)
expand this class of models to include cases in which there is negative externality
in capital inputs. They find that with this feature, it is possible to find learnable
sunspot REEs that do not possess implausible system dynamics.

An important conclusion that emerges from recent research is that stability prop-
erties of REEs under learning can differ when agents’ learning horizon changes.
The standard approach is the Euler equation learning: It lets agents forecast future
variables based on the Euler equation of the model, and the forecasts are typically
one-step-ahead. All the aforementioned papers use this approach. An alternative
learning algorithm is the infinite horizon learning approach put forth by Preston
(2005). Agents are assumed to use their belief functions to make forecasts for the
infinite horizon. Preston (2005) and Eusepi and Preston (2011) demonstrate that
with infinite horizon learning, both the stability property and transitional dynamics
of REEs can differ from those under the Euler equation learning. Infinite horizon
learning has proved handy when the economic problems call for long-term fore-
casts. For example, Evans et al. (2013) and Evans and Mitra (2013) use infinite
horizon learning to study fiscal policy and growth issues.

To our knowledge, no paper has studied the learnability of sunspot REEs in
RBC models using the infinite horizon approach. This paper undertakes this task.
We derive general conditions under which an REE is both indeterminate and stable
under learning and apply them to three specific structural models: the Farmer and
Guo (1994) model, the Schmitt-Grohé and Uribe (1997) model, and the Wen (1998)
model. We find that the REEs are always unstable under learning if the agents
do not know the steady state and include a constant term in their belief functions
(perceived law of motion). If the belief functions do not have a constant term,
then it is possible for the REE to be simultaneously E-stable and indeterminate.
However, we find that the parameter values required for this result to hold are not
within an empirically plausible range when applied to the three structural models.

This paper makes several contributions to the literature. First, this is the first
paper that studies the learnability of sunspot equilibria in RBC models under
infinite horizon learning. Evans et al. (2013) and Eusepi and Preston (2011) work
on models that are structurally similar to ours, but their analyses focus on the
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unique, determinate REE and do not consider the possibility of sunspots. Second,
our result complements those of Duffy and Xiao (2007) and Evans and McGough
(2005a, 2005b). This series of papers deepen our understanding of how model
dynamics surrounding the indeterminate equilibria of an RBC model may differ
when rational agents are replaced with adaptive agents who have different learning
horizons. Third, we contribute to the methodology for conducting this type of
analyses. We derive a set of analytical conditions for the REE to be E-stable under
infinite horizon learning. We prove analytically that when the perceived law of
motion of agents is consistent with the REE solution in its functional form, the
sunspot equilibria are always not stable under learning. We also demonstrate how
the agents’ optimal decision rule in infinite horizon is connected with the reduced
form of the model. This set of tools will contribute to future research in this area.

The rest of the paper is organized as follows. Section 2 derives the conditions for
learnability and indeterminacy using a generic model. Section 3 presents stability
results for three structural models. Section 4 concludes.

2. STABILITY CONDITIONS UNDER INFINITE HORIZON LEARNING

In this section, we analytically derive the necessary conditions for both inde-
terminacy and E-stability under infinite horizon learning. The conditions for
indeterminacy are standard. The main novelty here is to derive the conditions
for E-stability. Under infinite horizon learning, agents attempt to solve long-term
dynamic optimization problems given their beliefs about the law of motion of
aggregate variables. Since the problem starts at the agent level, we cannot derive
stability conditions with a general reduced form model of aggregate variables, as
in Duffy and Xiao (2007) and Evans and McGough (2005a). Agent-level decisions
require a specific economic environment. Our strategy is to use a well-known RBC
model with nonconvexities, the Farmer and Guo (1994) model, to solve for the
optimal behavioral equation and conduct stability analysis. We will show that the
critical difference between the Euler equation approach and the infinite horizon
approach lies in the functional form of the optimal consumption demand equation.
Based on this equation, we derive conditions for stability under learning. Although
the conditions are derived using a specific model, they can be easily generalized
to cover similar one-sector RBC models, as we demonstrate in Section 3.

2.1. The Model

This is the business cycle model considered by Farmer and Guo (1994). There are
a large number of identical agents. The representative agent solves

max
Ct ,Lt

E0

∞∑
t=0

ρt

(
logCt − A

L
1−γ
t

1 − γ

)
,
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subject to the constraint

Kt+1 = rtKt + wtLt + (1 − δ) Kt − Ct, (1)

where K stands for the capital, Y the output, C the consumption, and L the labor.
w and r stand for the real wage rate and real rental rate of capital prevalent in
competitive factor markets, respectively. Parameters satisfy γ ≥ 0, 0 < ρ < 1,
0 < δ < 1. E stands for expectations that may or may not be rational.

Increasing returns are the result of externalities in the production technology

Yt = Ka
t Lb

t

(
K̄α−a

t L̄
β−b
t

)
, (2)

where α + β > 1, α = a/λ, β = b/λ, a + b = 1, and 0 < λ < 1. K̄t and L̄t are
the average economy-wide levels of capital and labor. Without loss of generality,
we assume there are no fundamental shocks.

Since the Farmer and Guo (1994) model is well known, and many model details
have been presented in other publications, we will simplify our exposition here
by directly presenting the log-linearized version of the economic system. A hatted
variable x̂t is defined as log(xt )− log(x), where x stands for the steady-state value
of xt .

The household’s optimization problem yields the Euler equation

Ĉt = EtĈt+1 − EtR̂t+1, (3)

and the labor supply curve
ŵt = Ĉt − γ L̂t , (4)

where R̂t stands for the gross real interest rate which, in linearized form, is related
to the rental rate r̂t by

RR̂t = rr̂t . (5)

The representative firm’s profit maximization problem yields the capital and
labor demand curves:

r̂t = Ŷt − K̂t , (6)

ŵt = Ŷt − L̂t . (7)

Finally, the production function is linearized as

Ŷt = aK̂t + bL̂t + �t, (8)

where �t = (α − a) ˆ̄Kt + (β − b) ˆ̄Lt represents the size of the externality effect.
In a symmetric equilibrium, all agents are identical. The economy-wide average

level of capital and labor K̄t and L̄t will be equal to Kt and Lt , respectively. Using
the three-factor market conditions (4)–(8), we can express output Ŷt , the real wage
ŵt , and the gross real interest rate R̂t as functions of Ĉt and K̂t :

Ŷt = α (1 − γ )

1 − β − γ
K̂t − β

1 − β − γ
Ĉt , (9)
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ŵt = 1 − β

1 − β − γ
Ĉt − αγ

1 − β − γ
K̂t , (10)

R̂t = −ρa
Y

K

β

1 − β − γ
Ĉt − ρa

Y

K

[
1 − α (1 − γ )

1 − β − γ

]
K̂t . (11)

These conditions are identical to those presented in Duffy and Xiao (2007).

2.2. The REE and Conditions for Indeterminacy

The reduced form model is obtained by combining the above conditions and is
given by

K̂t+1 = d1K̂t + d2Ĉt , (12)

Ĉt = d3EtĈt+1 + d4EtK̂t+1, (13)

where d1 = [ Y
K

α(1−γ )

1−β−γ
+ 1 − δ], d2 = −( C

K
+ Y

K
β

1−β−γ
), d3 = (1 + ρa Y

K
β

1−β−γ
)

and d4 = ρa Y
K

[1 − α(1−γ )

1−β−γ
]. The variables without time subscripts denote steady-

state values.
To obtain conditions for indeterminacy, the general reduced-form system of

equations (12) and (13) can be rewritten as(
d3 d4

0 1

)(
EtĈt+1

EtK̂t+1

)
=

(
1 0
d2 d1

) (
Ĉt

K̂t

)
,

or equivalently, (
Ĉt+1

K̂t+1

)
= J

(
Ĉt

K̂t

)
+ Vεt ,

where J is a 2 − by − 2 matrix, and εt = (Ĉt+1 − EtĈt+1) represents forecast
errors.

The necessary and sufficient conditions for indeterminacy are that both eigen-
values of J are less than one in modulus, which is the case if and only if the
determinant and trace of the Jacobian matrix J satisfy

−1 < det (J) < 1, (14)

−1 − det (J) < tr (J) < 1 + det (J) , (15)

where the determinant and trace of the Jacobian matrix J are given by

det (J) = d1

d3
,

tr (J) = 1 − d2d4 + d1d3

d3
.

These conditions are identical to those derived in Duffy and Xiao (2007).
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2.3. Conditions for Stability Under Learning

Optimal decision rule. A key difference between Euler equation learning and
infinite horizon learning is that in the latter case, agents explicitly incorporate
their life-time budget constraint into the decision-making process. They not only
make forecasts into the immediate future, but also make long-run forecasts that
cover their life-time (infinite horizon). These long-run forecasts feed back into
the actual law of motion (ALM) of the aggregate economy and can give rise
to distinct stability properties of the equilibrium under learning. The following
analysis closely follows the approach of other researchers who conduct stability
analysis under infinite horizon learning—for instance, those of Evans and Mitra
(2013) and Eusepi and Preston (2011).

The analysis starts with a derivation of the representative agent’s life-time
budget constraint. The agent’s two-period budget constraint is (1), which can be
rewritten as

K̂t+1 = wL

K
ŵt + RR̂t + wL

K
L̂t + RK̂t − C

K
Ĉt . (16)

We can iterate this equation forward, taking expectations in the process, and
apply the transversality condition and the labor supply condition (4) to get

K̂t = 1 − γ

γ

wL

KR

⎡
⎣Et

∞∑
j=0

(
1

R

)j

ŵt+j

⎤
⎦ −

⎡
⎣Et

∞∑
j=0

(
1

R

)j

R̂t+j

⎤
⎦

+
(

C

KR
− wL

γKR

)⎡
⎣Et

∞∑
j=0

(
1

R

)j

Ĉt+j

⎤
⎦ .

(17)

Iterating the Euler equation (3), we can obtain

Et

∞∑
j=0

(
1

R

)j

Ĉt+j = R

R − 1
Ĉt+ R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j . (18)

We use this expression to substitute out the infinite sum of expected future
consumption from the agent’s life-time budget constraint (17). The final expression
is the agent’s behavioral equation

Ĉt = γK (R−1)

γC − wL
K̂t + γK (R − 1)

γC − wL
R̂t − wL (1−γ ) (R−1)

R (γC − wL)
Et

∞∑
j=0

(
1

R

)j

ŵt+j

−γC − wL − γK (R − 1)

γC − wL
Et

∞∑
j=1

(
1

R

)j

R̂t+j . (19)

Hence, the agent’s optimal consumption decision today is a function of current
and expected future prices.

The behavioral equation indicates that the forecasts of future prices are crucial
for the final solution of the model. Under rational expectations, these forecasts are
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simply the conditional expectations of the relevant variables based on the true law
of motion of the economy. Under learning, they depend critically on the agents’
subjective beliefs.

Beliefs. Following the literature, we assume that the functional forms of the
agents’ subjective beliefs coincide with those under rational expectations. They
do not know the parameters of these functions and have to estimate them using
observed data. In the RBC model, the indeterminate REE solution is distinct from
the fundamental-based unique solution in two aspects. First, the solution takes
the form of a VAR(1) in both consumption and capital, whereas in the case of a
unique solution, consumption is uniquely pinned down by current capital. Second,
there is a sunspot variable in the consumption decision rule. The following setup
reflects these differences.

The agents’ beliefs or perceived laws of motion (PLM) are

R̂t = n1K̂t + n2Ĉt . (20)

ŵt = m1K̂t + m2Ĉt , (21)

Ĉt = a0 + akK̂t−1 + acĈt−1 + af ft + εt , (22)

K̂t = d1K̂t−1 + d2Ĉt−1, (23)

where we use bold letters to denote aggregate variables. Equations (20) and (21)
indicate that agents use aggregate consumption and capital data to forecast prices,
which are important for their own decisions. Equations (22) and (23) are the VAR
equations that agents use to forecast current consumption and capital. ft is the
sunspot variable, and εt is a white noise. This PLM system matches the functional
form of the indeterminate REE solution. It is also the same belief function in Duffy
and Xiao (2007) and Evans and McGough (2005a).

The above equations describe the behavior of one agent. To examine its
economy-wide implications, we need to aggregate the behavior of all agents.
Following the literature, we seek a symmetric solution in which all agents are
identical. In that case, the optimal behavioral equation of an average agent looks
exactly the same as (19), except that Ĉt and K̂t now represent an average agent’s
consumption and capital stock. The PLMs (20)–(23) also keep their functional
forms. But we can now replace aggregate consumption and capital with their
economy-wide average values. For exposition purpose, we rewrite the PLM with
new notations, in slightly different order, as follows:

Ĉt = a0 + akK̂t−1 + acĈt−1 + af ft + εt , (24)

K̂t = d1K̂t−1 + d2Ĉt−1, (25)

R̂t = n1K̂t + n2Ĉt , (26)

ŵt = m1K̂t + m2Ĉt . (27)

There is a fundamental difference between the belief (24) and the other three
belief functions. Equation (24) is the agents’ belief about the law of motion of
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consumption, which, when combined with the behavioral equation (19), is self-
referential in nature: The forecast of future consumption can have an impact on
current consumption decisions, which in turn affect how agents forecast the future.
In essence, the data generating process is expectation dependent.3 In this case, there
is no guarantee that learning will converge to the equilibrium, or even converge at
all. The PLMs (25), (26), and (27), on the other hand, all correspond to equilibrium
conditions that are not self-referential. For example, (25) matches the true capital
accumulation process in its functional form. The determination of K does not
hinge on any expectations. In this case, its law of motion is usually learnable if
the agents possess a sufficient amount of data. For this reason, researchers often
assume that this type of PLMs is already learned by, or known to the agents when
conducting stability analysis.4 Evans and Mitra (2013), for example, make this
assumption when they examine the learnability of the REE for the Ramsey model
under infinite horizon learning. In this paper, we shall do the same: The true
parameters of (25)–(27) are assumed known to the agents.

Note that in (24), the PLM includes a constant term. In the REE, the value of this
constant term is always 0. The reason is that the variables in the linearized model
are all expressed as percentage deviations from steady-state values. As long as
the steady-state values are known, any constant terms would be eliminated when
the model is linearized. But under learning, agents do not observe the steady-state
values. It is natural to include a constant term in the PLM so that agents have
an opportunity to learn the steady-state values. Duffy and Xiao (2007) test the
robustness of their result by considering the case in which the steady-state values
are known to learning agents, and there is no constant term in the PLM. For
completeness of the inquiry, we consider this case too.

Suppose agents do observe the steady-state values accurately, and then the PLM
for consumption can be written as

Ĉt = akK̂t−1 + acĈt−1 + af ft + εt . (28)

In the following sections, we show that this distinction can lead to different
stability results.

E-stability conditions. Plugging the known laws of motion of capital, the wage
rate, and the gross interest rate into the decision rule (19), we can simplify the
average agent’s behavioral equation to

Ĉt = (1 − R) d1

d2R
K̂t + (R − d1) (R − 1) + d2d4R

d2R
Et

∞∑
j=1

(
1

R

)j

K̂t+j

+ (d3 − 1) Et

∞∑
j=1

(
1

R

)j

Ĉt+j . (29)

Current consumption depends on agents’ expected future consumption and
capital in the infinite horizon. The appendix offers a step-by-step derivation of
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this equation. Note that except the steady-state gross interest rate R, all the other
parameters are taken from the reduced form model (12) and (13). It turns out that
this is not coincidental. In the next section, we show that the optimal decision
rules for consumption in the Wen (1998) model and the Schmitt-Grohé and Uribe
(1997) model can also be expressed in this form. It is the structure of the model
that determines the functional form of this equation.

For stability analysis, we use the PLM (24) or (28) to compute the agent’s
forecasts of future consumption and capital, and plug them back into the behavioral
equation (29) to obtain a map between the PLMs to the model’s ALM.

To compute the agent’s forecasts, define Zt = (
Ĉt

K̂t
). We do so because the

endogenous variable C and the state variable K are both necessary in computing
an equilibrium solution. The other two variables w and R are not required. The
first two of the agent’s PLMs take the following form:

Zt = A + BZt−1 + Cft + ηt , (30)

where A = (
a0

0
), B = (

ac ak

d2 d1
), C = (

af

0
), and ηt = (

εt

0
).

The forecasts of future variables at any horizon T are determined as

EtZT = (I − B)−1
(
I − BT −t

)
A + BT −tEtZt , (31)

where I is a 2 × 2 identity matrix. When t → ∞, we can show that the infinite
sum of expectations in the decision rule can be written as

Et

∞∑
j=0

(
1

R

)j

Zt+j = (I − B)−1

[(
1

R − 1

)
I − (RI − B)−1B

]
A

+(RI − B)−1BEtZt . (32)

Using equation (32) to evaluate expectations in equation (29) determines the
ALM:

Ĉt = T0 + TzZt−1 + Tf ft + ξt , (33)

where T0 and Tf are scalars, Tz is a 1 × 2 matrix, and ξt is a white noise. The
appendix spells out the actual mathematical expressions of T0, Tf , and Tz. Note
that they are functions of A, B, and C in (30).

We can solve for the REE parameter values by applying the method of undeter-
mined coefficients to the T-mapping. The T-mapping is

a0 → − Ra0
(
d1 − R + R2d3 − Rd1d3 + Rd2d4

)
d3 (R − 1)

[
Rd1 + akd2 + ac (R − d1) − R2

] ,

ac → −
acd1 − Rac − akd2 + R2d3ac + d4akd

2
2 − Rd3acd1

+Rd4acd2 + Rd3akd2 + Rd4d1d2 − d4acd1d2

d3
[
Rd1 + akd2 + ac (R − d1) − R2

] ,
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ak → −R2d3ak − Rak + Rd4d
2
1 − d4acd

2
1 + Rd4akd2 + d4akd1d2

d3
[
Rd1 + akd2 + ac (R − d1) − R2

] ,

af → −af

(
d1 − R + R2d3 − Rd1d3 + Rd2d4

)
d3

[
Rd1 + akd2 + ac (R − d1) − R2

] .

And we can obtain
ac = 1 − d2d4

d3
, (34)

ak = −d1d4

d3
, (35)

a0 = 0, (36)

af is indeterminate. (37)

These values are identical to the REE solution obtained by Duffy and Xiao
(2007). The difference between their solution procedure and ours is that we take
conditional expectations of the PLM in infinite horizons, whereas they do so for
one future period. Under rational expectations, the two procedures should yield
the same result, which we have confirmed with (34)–(37).

It remains to see whether or not forecasting horizons matter for the stability
of the REE under learning. This is done by applying Evans and Honkapohja
(2001)’s E-stability principle. Specifically, let θ = ( a0, ac, ak, af )′ be a vector
of parameters in the PLM and T(θ) the vector of parameters in the ALM. A given
sunspot solution θ is said to be E-stable if the differential equation

dθ

dτ
= T (θ) − θ,

evaluated at θ is locally asymptotically stable. Here, τ denotes “notional” or
“virtual” time.

For this purpose, we compute

d [T (θ) − θ]

dθ
=

⎛
⎜⎜⎝

h1 0 0 0
0 h2 h3 0
0 h4 h5 0
0 h6 h7 0

⎞
⎟⎟⎠ , (38)

where the h’s represent combinations of the parameters of the model, which
are quite tedious and are provided in the appendix. The structure of this matrix
guarantees that one eigenvalue is equal to h1, which is the result of having a
constant term in the PLM. It can be shown that

h1 = λ1 = 1

R − 1
.

The structure of the matrix also implies that there is always a 0 eigenvalue.
Without loss of generality, let

λ2 = 0,
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where λ2 stands for an eigenvalue of this matrix. This 0 eigenvalue arises from the
fact that the T-mapping of af yields an indeterminate solution, as in Duffy and
Xiao (2007). The differential equation associated with this T-mapping is

daf

dτ
= T

(
af

) − af = −d1d4

d3ak

af − af . (39)

Integrating it yields

af (τ ) = af (0) exp

[∫ τ

0

(
−d1d4

d3ak

af − af

)
du

]
.

As long as ak → − d1d4
d3

exponentially as τ → ∞, af will converge to a finite
value. As Evans and Honkapohja (2001) demonstrate, one zero eigenvalue of
d[T(θ)−θ ]

dθ
does not alter the stability property of the REE.

E-stability of the REE requires that all other eigenvalues of the matrix (38) be
negative. We state the conditions for stability in the next proposition.

PROPOSITION 1. If the agent’s PLM for consumption is (24), the necessary
conditions for the Farmer and Guo (1994) model to be E-stable under infinite
horizon learning are

λ1 = 1

R − 1
< 0, (40)

λ3λ4 = d1

d3R2 + (d2d4 − d1d3 − 1) R + d1
> 0, (41)

λ3 + λ4 = − d1 − d3R
2

d3R2 + (d2d4 − d1d3 − 1) R + d1
− 1 < 0. (42)

Proof. See the appendix.

If the agent’s PLM for consumption is (28), then the first condition in the above
proposition will drop out. It is straightforward to state the following.

COROLLARY 1. If the agent’s PLM for consumption is (28), the necessary
conditions for the Farmer and Guo (1994) model to be E-stable under infinite
horizon learning are (41) and (42).

3. STABILITY RESULTS FOR THREE STRUCTURAL MODELS

In this section, we apply the stability conditions to three structural models and
examine whether or not sunspot equilibria can be stable under infinite horizon
learning. The three models are the Farmer and Guo (1994) model, Wen (1998)’s
RBC model with variable capacity utilization rate, and Schmitt-Grohé and Uribe
(1997)’s RBC model with a balanced budget tax policy. It is well known that under
the Euler equation learning, the indeterminate equilibria in these three structural
models are not stable under learning.
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3.1. The Farmer and Guo (1994) Model

Since we already derived the learnability conditions for this model in the previous
section, all we need to do here is to apply them and check for stability under
learning.

It turns out that we need not use all of the stability conditions in (40)–(42).
E-stability requires that all three eigenvalues of the Jacobian in (38) be negative;
if we can prove that one eigenvalue is positive, an instability conclusion follows.
This is exactly the case here: The first eigenvalue of the matrix is 1/(R − 1),
where R = 1 + r − δ is the value of the gross interest rate in the steady state and
is necessarily higher than 1 as long as the net interest rate r − δ is positive, which
is required in an RBC model. Therefore, 1/(R − 1) is positive. We can state the
following proposition.

PROPOSITION 2. The REE of the Farmer and Guo (1994) model cannot be
both indeterminate and E-stable since condition (40) is always violated when the
REE is indeterminate.

A closer look at the Jacobian matrix in (38) reveals that the T-mapping that gives
rise to the eigenvalue λ1 = 1/(R − 1) is T (a0). In other words, the instability result
arises because the agents’ perceived law of motion contains a constant term. As we
argue in the previous section, it is possible for the agents not to include a constant
term in their forecasts, provided that they have knowledge of the steady-state
values of economic aggregates. We consider this possibility next.

If the perceived law of motion is (28), then E-stability requires that conditions
(41) and (42) hold. These two conditions are sufficiently complicated to rule out
any analytical evaluation of their signs. We turn to numerical analyses. The model
has three critical parameters: capital share a, labor share b, and the level of the
externality 1/λ (note that α = a/λ, β = b/λ). The combinations of these three
parameters lead to various levels of increasing returns, and result in indeterminate
REEs. Our strategy is to search over a range of plausible calibrations for these
parameters to look for indeterminate REEs that are learnable. In order to do so,
we also need to calibrate the rest of the parameters of the model. For those, we
simply use the original values from Farmer and Guo (1994): ρ = 0.99, δ = 0.025,
γ = 0.

For the three parameters a, b, and λ, we do a comprehensive search over the
range 0.01–0.99 at a step size of 0.01. For each combination of parameters, we
check numerically if the REE is simultaneously indeterminate and E-stable by
evaluating the conditions (14), (15) and (41)–(42). The results are presented in
Table 1. Note that we only report the values for two parameters because the model’s
restriction is a + b = 1.

The results show that some REEs can qualitatively be simultaneously indeter-
minate and E-stable. For example, if labor share is 0.88 and capital share is 0.12,
and the level of increasing returns is 1.19, then the indeterminate REE is stable
under infinite horizon learning. However, the parameter values required for this
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TABLE 1. Searched parameters and E-stability result

Parameter Definition Search range Range for E-stability

a Capital share 0.01–0.99 0.01–0.12
1/λ Externality 1.01–5.00 1.19–3.57

result to hold are generally out of the range of those deemed empirically plausible
by the literature. A labor share of 0.88 is much too high compared with 2/3—a
standard value researchers use to calibrate the U.S. economy. The required size of
the externality effect, 1.19, is also too high. Most research suggests that the level
of increasing returns in the U.S. economy and other advanced economies is quite
mild (see Basu and Fernald, 1997).

Hence, we conclude that for the Farmer and Guo (1994) model, indeterminate
REEs are generally not stable under infinite horizon learning, even when agents’
PLMs do not include a constant term.

3.2. A Variable Capacity Utilization Model

The model. The details of this model are presented in the appendix. Consider
the reduced form of the model

K̂t+1 = d1K̂t + d2Ĉt ,

Ĉt = d3EtĈt+1 + d4EtK̂t+1,

where d1 = [1 + (1 − α
θ
) Y

K

α∗(1+γ )

1+γ−b∗ ], d2 = −[ C
K

+ (1 − α
θ
) Y

K
b∗

1+γ−b∗ ], d3 =
− βb∗−(1+γ )

1+γ−b∗ , and d4 = (1 − β) 1+γ−b∗−α∗(1+γ )

1+γ−b∗ . All parameters are defined in the
appendix.

Since this system is in exactly the same form as (12) and (13) in the Farmer and
Guo (1994) model, the indeterminacy conditions remain (14) and (15).

For the purpose of deriving the optimal consumption decision rule in infinite
horizons, we find it convenient to reformulate the agent’s budget constraint as

Ct + Kt+1 = RtKt + wtLt ,

where Rt = rtut + 1 − δt denotes the gross real rate of interest. Iterating the
log-linearized version of this equation into infinite horizon, and apply the labor
supply condition, we obtain

K̂t = −1 + γ

γ

wL

KR

⎡
⎣ŵt + Et

∞∑
j=1

(
1

R

)j

ŵt+j

⎤
⎦ −

⎡
⎣R̂t + Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦

+
(

C

KR
+ wL

γKR

) ⎡
⎣Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j

⎤
⎦ . (43)
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The Euler equation is identical to the one in the Farmer and Guo (1994) model.
Making use of it to substitute out the infinite sum of expected future consumption
in (43), we have the agent’s optimal decision rule

Ĉt = γK (R − 1)

γC + wL
K̂t + γK (R − 1)

γC + wL
R̂t + wL (1 + γ ) (R − 1)

R (γC + wL)
ŵt

+wL (1 + γ ) (R − 1)

R (γC + wL)
Et

∞∑
j=1

(
1

R

)j

ŵt+j

−γC + wL − γK (R − 1)

γC + wL
Et

∞∑
j=1

(
1

R

)j

R̂t+j .

(44)

As in the previous section, the agents’ current consumption decisions are tied to
expected future prices.

Agents’ subjective beliefs coincide in their functional forms with the MSV
solution of the model:

Ĉt = a0 + akK̂t−1 + acĈt−1 + af ft + εt , (45)

K̂t = d1K̂t−1 + d2Ĉt−1, (46)

R̂t = n1K̂t + n2Ĉt , (47)

ŵt = m1K̂t + m2Ĉt . (48)

As we explain in the previous section, beliefs (46)–(48) can be assumed known or
learned by the agents. Plugging these conditions and the labor market and goods
market equilibrium conditions into (44), we obtain a reduced form decision rule
for the consumer

Ĉt = (1 − R) d1

d2R
K̂t + (R − d1) (R − 1) + d2d4R

d2R
Et

∞∑
j=1

(
1

R

)j

K̂t+j

+ (d3 − 1) Et

∞∑
j=1

(
1

R

)j

Ĉt+j . (49)

This equation looks exactly the same as the optimal decision rule (29) that
we derived for the Farmer and Guo (1994) model. A proof can be found in the
appendix. Note that because the parameters d1 – d4 are defined differently, this
decision rule is in fact not quantitatively the same.

Results. Because the agents’ optimal decision rule and the PLMs or beliefs
coincide with those of the Farmer and Guo (1994) model in functional forms, the
derivation of the E-stability conditions follows the same process and the derived
conditions are the same. We therefore state the following proposition.

PROPOSITION 3. The necessary conditions for the REE in the Wen (1998)
model to be E-stable are identical to those in Proposition 1 and Corollary 1.
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TABLE 2. Searched parameters and E-stability result

Parameter Definition Search range Range for E-stability

α Capital share 0.01–0.99 0.01–0.22
η Externality 0.01–5.00 0.03–1.70

If the agents’ PLM includes a constant term, as in (45), the critical eigenvalue
λ = 1/(R − 1) again governs the E-stability of the REE. In this model, the
steady-state gross interest rate R is defined differently: R = ru + 1 − δ. After
substituting out r and u using the model’s optimal conditions, we obtain R =
1 + αY/K − δ = 1 + θ−1

θ
r

θ−1
θ , which is restricted to be higher than 1 by the

structure of the model. It immediately follows that the REE is not E-stable. We
have the following proposition.

PROPOSITION 4. If the perceived law of motion is (45), the REE of the Wen
(1998) model cannot be both indeterminate and E-stable since condition (40) is
always violated when the REE is indeterminate.

It remains to check if the REE can be E-stable if we allow the agents to use a PLM
of the form

Ĉt = akK̂t−1 + acĈt−1 + af ft + εt .

As in the Farmer and Guo (1994) model, a numeric search is necessary to
analyze the stability properties of the REE under learning. For this model, two
parameters are critical: capital share α (labor share is 1 − α) and the size of the
externality η. We calibrate the rest of the parameters as in Wen (1998): β = 0.99,
δ = 0.025, γ = 0. We then search through the other two parameters. The results
are presented in Table 2.

We find that the REE in the Wen (1998) model can qualitatively be simultane-
ously indeterminate and E-stable. For example, when capital share is 0.22 and the
size of the externality effect is 0.09, the sunspot equilibria are stable under infinite
horizon learning. Our concern is still about empirical plausibility. Although 0.09
is a reasonable value for the size of increasing returns, the maximum value for the
capital share required for the REE to be E-stable is 0.22. This is close to but still
not quite consistent with the value that the literature suggests.

3.3. A Model of Tax Distortions

The model. As shown in Schmitt-Grohé and Uribe (1997), indeterminacy can
arise from an endogenous distortionary labor-income tax under a balanced-budget
fiscal policy rule even with a constant-returns-to-scale production technology.

It can be shown that the reduced form of the model is again in the form

K̂t+1 = d1K̂t + d2Ĉt ,

Ĉt = d3EtĈt+1 + d4EtK̂t+1,

https://doi.org/10.1017/S1365100516000973 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100516000973


INSTABILITY OF SUNSPOTS UNDER IHL 1993

TABLE 3. Searched parameters and E-stability result

Parameter Definition Search range Range for E-stability

a Capital share 0.01–0.99 0.01–0.07
τ Tax rate 0.01–0.50 0.06–0.32

where d1 = [ Y
K

(1−τ)a
1−b−τ

+ 1 − δ], d2 = [ Y
K

b(1−τ )
b−1+τ

− C
K

], d3 = [1 − βa Y
K

(1−τ )b
b−1+τ

],

and d4 = aβ Y
K

[1 + (1−τ)a
b−1+τ

]. All parameters and model details are defined in the
appendix.

To obtain conditions for stability under infinite horizon learning, we need to de-
rive the agent’s optimal decision rule for consumption. Since the process involved
is very similar to that of the Farmer and Guo (1994) model and the Wen (1998)
model, we skip the details here. As in those two models, the optimal decision rule
can again be written as

Ĉt = (1 − R) d1

d2R
K̂t + (R − d1) (R − 1) + d2d4R

d2R
Et

∞∑
j=1

(
1

R

)j

K̂t+j

+ (d3 − 1) Et

∞∑
j=1

(
1

R

)j

Ĉt+j . (50)

The appendix provides a proof.
Under learning, the perceived laws of motion will again take the form of (45)–

(48). It immediately follows that the following proposition is true.

PROPOSITION 5. The necessary conditions for the REE in the Schmitt-Grohé
and Uribe (1997) model to be E-stable are identical to those in Proposition 1 and
Corollary 1.

Results. If the perceived law of motion includes a constant term, the critical
eigenvalue will be λ = 1/(R − 1), where R is the steady-state gross interest rate
and is necessarily greater than 1. We therefore have the following proposition.

PROPOSITION 6. If the perceived law of motion has a constant term, the REE
of the Schmitt-Grohé and Uribe (1997) model cannot be both indeterminate and
E-stable since condition (40) is always violated when the REE is indeterminate.

It remains to check if the REE can be E-stable if we allow the agents to use a PLM
of the form

Ĉt = akK̂t−1 + acĈt−1 + af ft + εt .

We turn to numerical analysis. For this model two parameters are critical: capital
share a (labor share is b = 1 − a) and the tax rate τ . We calibrate the rest of the
parameters as in Schmitt-Grohé and Uribe (1997): β = 0.99, δ = 0.025. We then
search through the other two parameters. The results are presented in Table 3.
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As in the previous two models, the REEs can qualitatively be simultaneously
indeterminate and E-stable, but the required parameters for this to happen are
generally out of the range of empirical plausible values. A capital share of 0.07 is
much too low, compared with empirical findings.

4. CONCLUDING REMARKS

Previous research examines the stability of sunspot equilibria in one-sector RBC
models under Euler equation learning. Inspired by Preston (2005), who finds that
E-stability conditions under infinite horizon learning can be different, we conduct
stability analysis of sunspot equilibria in three prominent RBC models using
infinite horizon learning techniques. We find that at least for these three models,
sunspot equilibria are generally not stable under learning. Our result holds when
the law of motion of the economy is written in a general form representation. If a
common factor representation is adopted, as in Evans and McGough (2005a), then
stability results may be different. This is a possible direction for future research.

NOTES

1. An incomplete list of important works in this area includes Benhabib and Farmer (1994),
Farmer and Guo (1994), Schmitt-Grohé and Uribe (1997), and Wen (1998) among others. The closest
theoretical and empirical precursors to this line of work are Shell (1977), Azariadis (1981), Cass and
Shell (1983), and Guesnerie (1986).

2. This has been examined extensively in the literature, e.g., by Evans and Honkapohja (2001) for
the Farmer and Guo (1994) model, Rudanko (2002) for the Schmitt-Grohé and Uribe (1997) model,
Duffy and Xiao (2007) for the Farmer and Guo (1994), Schmitt-Grohé and Uribe (1997), and Wen
(1998) models.

3. As our narration above has made clear, the agents are not aware of this mechanism—they do
not think that their own forecast is affecting the true consumption process. From their point of view,
they are merely using aggregate data to forecast prices.

4. If the purpose of the analysis is not just equilibrium stability, then the distinction of a known
PLM and an unknown PLM still matters. For example, if the goal is to understand the short-run
dynamics of capital under adaptive learning, then the simulation of the learning process itself is useful.
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APPENDIX A

A.1. DERIVATION OF THE DECISION RULE (29) FOR THE FARMER AND GUO
(1994) MODEL

We start by iterating forward equations (11) and (10):

ŵt + Et

∞∑
j=1

(
1

R

)j

ŵt+j = − αγ

1 − γ − β

⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

+ 1 − β

1 − γ − β

⎛
⎝Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j

⎞
⎠ ,

(A.1)

R̂t + Et

∞∑
j=1

(
1

R

)j

R̂t+j = −ρa
Y

K

[
1 − α (1 − γ )

1 − γ − β

] ⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

−ρa
Y

K

β

1 − γ − β

⎛
⎝Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j

⎞
⎠ .

(A.2)
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To derive the decision rule (29), we find it convenient to keep (19) in a form similar to
(17). More specifically, it looks like

K̂t = −γ − 1

γ

wL

KR

⎛
⎝ŵt + Et

∞∑
j=1

(
1

R

)j

ŵt+j

⎞
⎠ −

⎛
⎝R̂t + Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎞
⎠

+
(

C

KR
− wL

γKR

)⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦ .

(A.3)

Substituting equations (A.1) and (A.2) into equation (A.3), we can reduce it to the
following form:

K̂t =
{

γ − 1

γ

wL

KR
× αγ

1−γ −β
+ ρa

Y

K

[
1 − α (1 − γ )

1 − γ − β

]}⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

+
[
−γ − 1

γ

wL

KR
× 1 − β

1 − γ − β
+ ρa

Y

K

β

1 − γ − β

] ⎛
⎝Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j

⎞
⎠

+
(

C

KR
− wL

γKR

) ⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦

=
{

1

R

wL

K

α (γ − 1)

1 − γ − β
+ 1

R
a

Y

K

[
1 − α (1 − γ )

1 − γ − β

]} ⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

+
[

wL

γKR

(
1 + γβ

1 − γ − β

)
+ ρa

Y

K

β

1 − γ − β

] ⎛
⎝Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j

⎞
⎠

+
(

C

KR
− wL

γKR

) ⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦

=
{

1

R

[
a

Y

K

[
1 − α (1 − γ )

1 − γ − β

]
− wL

K

α (1 − γ )

1 − γ − β

]} ⎛
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1

R
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⎞
⎠
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R
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K

β
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K

β
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⎝Ĉt + Et

∞∑
j=1

(
1

R
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C
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Ĉt + R
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R
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⎦

https://doi.org/10.1017/S1365100516000973 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100516000973


INSTABILITY OF SUNSPOTS UNDER IHL 1997

=
{

1

R

[
r − r

α (1 − γ )
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K
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)
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∞∑
j=1

(
1

R

)j

Ĉt+j

⎞
⎠

+
(

C

KR
− wL

γKR

)⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦

=
{

1

R

[
R −

[
Y

K

α (1 − γ )

1 − γ − β
+ 1 − δ

]]} ⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

+
[

1

R

(
C

K
+ Y

K

β

1 − γ − β

)
+ wL

γKR
− C

KR

]

×
⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦

+
(

C

KR
− wL

γKR

) ⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦

=
{

1

R

[
R −

[
Y

K

α (1 − γ )

1 − γ − β
+ 1 − δ

]]} ⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

+ 1

R

(
C

K
+ Y

K

β

1 − γ − β

) ⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦
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= R − d1

R
Et

⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

−d2

R

⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦ .

(A.4)

The derivation takes many steps. Throughout the steps, we repeatedly use the steady-state
version of the optimal and equilibrium conditions to simplify the parameters.

(A.2) can be rewritten as

R̂t + Et

∞∑
j=1

(
1

R

)j

R̂t+j = −d4

(
K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

)

+ (1 − d3)

(
Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j

)
.

(A.5)

Substituting (A.5) for Et

∞∑
j=1

(
1

R
)
j

R̂t+j into equation (A.4), and moving Ĉt to the left-

hand side, we obtain the decision rule (29).

A.2. PROOF OF PROPOSITION 1.

By combining (A.2) and (18), we obtain

Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j = Rd3

Rd3 − 1
Ĉt − Rd3

Rd3 − 1

d4

d3
Et

∞∑
j=1

(
1

R

)j

K̂t+j . (A.6)

We then use this expression to substitute out the infinite sum of consumption in (29).
The behavioral equation now becomes

Ĉt = (1 − d3R) d1

d2d3R
K̂t + d2d4R + (d1 − R) (1 − d3R)

d2d3R
Et

∞∑
j=1

(
1

R

)j

K̂t+j . (A.7)

We then plug in the PLMs, and obtain the following T-mappings from the PLMs to the
ALMs:

T0 = − Ra0

(
d1 − R + R2d3 − Rd1d3 + Rd2d4

)
d3 (R − 1)

[
Rd1 + akd2 + ac (R − d1) − R2

] , (A.8)

T′
z =

⎛
⎝ − acd1−Rac−akd2+R2d3ac+d4akd2

2 −Rd3acd1+Rd4acd2+Rd3akd2+Rd4d1d2−d4acd1d2

d3[Rd1+akd2+ac(R−d1)−R2]
−R2d3ak−Rak+Rd4d2

1 −d4acd
2
1 +Rd4akd2+d4akd1d2

d3[Rd1+akd2+ac(R−d1)−R2]

⎞
⎠ , (A.9)

Tf = −af

(
d1 − R + R2d3 − Rd1d3 + Rd2d4

)
d3

[
Rd1 + akd2 + ac (R − d1) − R2

] . (A.10)

The sunspot solution (34)–(37) is obtained by solving the fixed points for these T-
mappings.
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By applying Evans and Honkapohja (2001)’s E-stability principle, we obtain the differ-

ential matrix (38). h’s are given by h1 = 1

R − 1
, h2 = R(1 − d2d4) − d1

d3R2 + (d2d4 − d1d3 − 1)R + d1
,

h3 = Rd2d3

d3R2 + (d2d4 − d1d3 − 1)R + d1
, h4 = − Rd1d4

d3R2 + (d2d4 − d1d3 − 1)R + d1
, h5 =

d1(Rd3 − 1)

d3R2 + (d2d4 − d1d3 − 1)R + d1
, h6 = d3(R − d1)

d3R2 + (d2d4 − d1d3 − 1)R + d1
āf , and h7 =

d2d3

d3R2 + (d2d4 − d1d3 − 1)R + d1
āf , where āf denotes the REE value of af . The eigen-

values of this matrix are λ1 = 0, λ2 = 1

R − 1
and

λ3 = R − 2d1 + Rd1d3 − Rd2d4 + R
√

d2
1 d2

3 − 2d1d2d3d4 − 2d1d3 + d2
2 d2

4 − 2d2d4 + 1

2
[
d3R2 + (d2d4 − d1d3 − 1) R + d1

] ,

(A.11)

λ4 = R − 2d1 + Rd1d3 − Rd2d4 − R
√

d2
1 d2

3 − 2d1d2d3d4 − 2d1d3 + d2
2 d2

4 − 2d2d4 + 1

2
[
d3R2 + (d2d4 − d1d3 − 1) R + d1

] .

(A.12)
It is immediate that (41) is obtained by multiplying (A.11) by (A.12) and (42) is obtained

by summing (A.11) and (A.12).

A.3. DERIVATIONS FOR THE WEN (1998) MODEL

A.3.1. The Model

In the model economy, the representative agent chooses sequences of consumption {C},
hours to work {L}, rate of capacity utilization {u}, and capital stock {K} to maximize
her life-time utility. Wen’s original model setup is a social planner’s problem. In order to
consider infinite horizon learning, we slightly modify the model and consider a decentralized
maximization problem as follows. The agent’s problem is

max{Ct ,Lt ,Kt+1,ut}
E0

∞∑
t=0

βt

(
log Ct − L

1+γ
t

1 + γ

)
,

subject to the constraint

Ct + Kt+1 − (1 − δt )Kt = rt (utKt ) + wtLt ,

δt = 1

θ
uθ

t ,

where 0 < α < 1, 0 < β < 1, γ ≥ 0, η > 0, and θ > 1. The depreciation rate of capital
stock, δt ∈ (0, 1) is increasing in capacity utilization rate, ut . θ > 1 ensures that the optimal
capacity utilization rate ut lies in (0, 1). wt represents the wage rate. rt is the rental rate
paid to utilized capital stocks, in line with the firm’s profit maximization problem where
the cost of each firm is expressed in terms of the utilized capital. The firm’s problem is

max
{Lt ,Kt }

Yt − wtLt − rt (utKt ) ,
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subject to the production technology Yt = ēt (utKt )
αL1−α

t , ēt = (ūt K̄t )
αηL̄

(1−α)η
t where

0 < α < 1 and η > 0.
Of particular note is the production externality, ēt , a function of mean productive capacity,

ūt K̄t , and mean labor hours, L̄t . The optimal capacity utilization rate is ut = (α
Yt

Kt

)1/θ ,

which implies ut = (αK
α(1+η)−1
t L

(1−α)(1+η)
t )1/[θ−α(1+η)]. So the reduced-form aggregate

production function evaluated at this optimal rate is of the form Yt = Ka∗
t Lb∗

t , where

a∗ = α(1 + η)τK , b∗ = (1 − α)(1 + η)τN , τK = θ − 1

θ − α(1 + η)
, and τN = θ

θ − α(1 + η)
.

A.3.2. Derivation of the Behavioral Equation

We offer a step-by-step derivation for the decision rule. In this model, the two equilibrium
conditions for the prices are

ŵt = a∗γ
1 + γ − b∗ K̂t + 1 − b∗

1 + γ − b∗ Ĉt , (A.13)

R̂t = − (1 − β)

[
1 − a∗ (1 + γ )

1 + γ − b∗

]
K̂t − (1 − β)

b∗

1 + γ − b∗ Ĉt . (A.14)

We iterate forward these two equations to obtain

ŵt + Et

∞∑
j=1

(
1

R

)j

ŵt+j = a∗γ
1 + γ − b∗

⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

+ 1 − b∗

1 + γ − b∗

⎛
⎝Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j

⎞
⎠ ,

(A.15)

R̂t + Et

∞∑
j=1

(
1

R

)j

R̂t+j = − (1 − β)

[
1 − a∗ (1 + γ )

1 + γ − b∗

] (
K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

)

− (1 − β)
b∗

1 + γ − b∗

⎛
⎝Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j

⎞
⎠ .

(A.16)
We rewrite the agent’s decision rule (44) as

K̂t = −γ + 1

γ

wL

KR

⎛
⎝ŵt + Et

∞∑
j=1

(
1

R

)j

ŵt+j

⎞
⎠ −

⎛
⎝R̂t + Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎞
⎠

+
(

C

KR
+ wL

γKR

)⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦ .

(A.17)
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We then plug (A.15) and (A.16) into (A.17) to get

K̂t =
{
−γ + 1

γ

wL

KR
× a∗γ

1 + γ − b∗ −
[
− (1 − β)

[
1 − a∗ (1 + γ )

1 + γ − b∗

]]}

×
⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

+
[
−γ + 1

γ

wL

KR
× 1 − b∗

1+γ −b∗ + (1 − β)
b∗

1+γ −b∗

] ⎛
⎝Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j

⎞
⎠

+
(

C

KR
+ wL

γKR

)⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦

=
{
− 1

R

wL

K

a∗ (γ + 1)

1 + γ − b∗ + 1

R
α

Y

K

θ − 1

θ

[
1 − a∗ (1 + γ )

1 + γ − b∗

]} ⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

+
[
− wL

γKR

(
1 − γ b∗

1+γ −b∗

)
+ 1

R
α

Y

K

θ − 1

θ

b∗

1+γ −b∗

] ⎛
⎝Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j

⎞
⎠

+
(

C

KR
+ wL

γKR

)⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦

=
{

1

R

[
α

Y

K

θ − 1

θ

[
1 − a∗ (γ + 1)

1 + γ − b∗

]
− wL

K

a∗ (γ + 1)

1 + γ − b∗

]} ⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

+
[
− wL

γKR
+ 1

R
(1 − α)

Y

K

b∗

1 + γ − b∗ + 1

R
α

Y

K

θ − 1

θ

b∗

1 + γ − b∗

]

×
⎛
⎝Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j

⎞
⎠

+
(

C

KR
+ wL

γKR

) ⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦

=
{

1

R

[
α

Y

K

θ − 1

θ
− α

Y

K

θ − 1

θ

a∗ (γ + 1)

1 + γ − b∗ − Y

K

a∗ (γ + 1)

1 + γ − b∗ + α
Y

K

a∗ (γ + 1)

1 + γ − b∗

]}

×
⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠
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+
[
− wL

γKR
+ 1

R

(
1 − α

θ

) Y

K

b∗

1+γ −b∗ + 1

R

C

K
− 1

R

C

K

] ⎛
⎝Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j

⎞
⎠

+
(

C

KR
+ wL

γKR

)⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦

=
{

1

R

[
1

β
− 1 −

(
1 − α

θ

) Y

K

a∗ (γ + 1)

1 + γ − b∗

]} ⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

+
[
− wL

γKR
+ 1

R

(
1 − α

θ

) Y

K

b∗

1+γ −b∗ + 1

R

C

K
− 1

R

C

K

] ⎛
⎝Ĉt +Et

∞∑
j=1

(
1

R

)j

Ĉt+j

⎞
⎠

+
(

C

KR
+ wL

γKR

)⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦

=
{

1

R

[
R −

[
1 +

(
1 − α

θ

) Y

K

a∗ (γ + 1)

1 + γ − b∗

]]} ⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

+
[

1

R

[
C

K
+

(
1 − α

θ

) Y

K

b∗

1 + γ − b∗

]
− wL

γKR
− C

KR

] ⎛
⎝Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j

⎞
⎠

+
(

C

KR
+ wL

γKR

)⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦

=
{

1

R

[
R −

[
1 +

(
1 − α

θ

) Y

K

a∗ (γ + 1)

1 + γ − b∗

]]} ⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

+
[

1

R

[
C

K
+

(
1 − α

θ

) Y

K

b∗

1 + γ − b∗

]
− wL

γKR
− C

KR

]

×
⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦

+
(

C

KR
− wL

γKR

)⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦
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=
{

1

R

[
R −

[
1 +

(
1 − α

θ

) Y

K

a∗ (γ + 1)

1 + γ − b∗

]]} ⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

+ 1

R

[
C

K
+

(
1 − α

θ

) Y

K

b∗

1 + γ − b∗

] ⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦

= R − d1

R

⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

−d2

R

⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦ .

(A.18)

Equation (A.16) can be rewritten as

R̂t + Et

∞∑
j=1

(
1

R

)j

R̂t+j = −d4

(
K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

)

+ (1 − d3)

(
Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j

)
.

(A.19)

We then plug this equation into (A.18) to obtain the behavioral equation.

A.4. DERIVATIONS FOR THE SCHMITT-GROHÉ AND URIBE (1997) MODEL

A.4.1. The Model

The representative agent chooses paths for consumption Ct and hours Lt to solve her
infinite-horizon utility maximization problem. The agent’s problem is reformulated as

max
Ct ,Lt

E0

∞∑
t=0

βt (log Ct − ALt),

subject to the budget constraint

Kt+1 = wtLt + rtKt + (1 − δ) Kt − Ct − G,

G = τtwtLt .

where G denotes government revenue that is financed with taxes on labor income at rate
τt ∈ (0, 1). Parameters satisfy 0 < β < 1, 0 < δ < 1, and A > 0. The firm’s problem is
standard.

A.4.2. Derivations of the Behavioral Equation

The equilibrium conditions for the prices are

ŵt = − aτ

1 + τ − b
K̂t + (1 − b) (1 − τ)

1 + τ − b
Ĉt , (A.20)
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R̂t = −βa
Y

K

[
1 − a (1 − τ)

1 − τ − b

]
K̂t − βa

Y

K

b (1 − τ)

1 − τ − b
Ĉt . (A.21)

We iterate these two equations to get

ŵt + Et

∞∑
j=1

(
1

R

)j

ŵt+j = − aτ

1 − τ − b

⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

+ (1 − b) (1 − τ)

1 − τ − b

⎛
⎝Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j

⎞
⎠ ,

(A.22)

R̂t + Et

∞∑
j=1

(
1

R

)j

R̂t+j = −βa
Y

K

[
1 − a (1 − τ)

1 − τ − b

] ⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

−βa
Y

K

b (1 − τ)

1 − τ − b

⎛
⎝Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j

⎞
⎠ .

(A.23)
The optimal decision of the agent is

K̂t = − τ − 1

τ

wL

KR

⎛
⎝ŵt + Et

∞∑
j=1

(
1

R

)j

ŵt+j

⎞
⎠ −

⎛
⎝R̂t + Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎞
⎠

+
(

C

KR
− 1 − τ

τ

wL

KR

) ⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦ .

(A.24)

We then plug (A.22) and (A.23) into (A.24) to get

K̂t =
{

τ −1

τ

wL

KR
× aτ

1−τ −b
−

[
−βa

Y

K

[
1 − a (1−τ)

1−τ −b

]]}⎛
⎝K̂t +Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

+
[
− τ − 1

τ

wL

KR
× (1 − b) (1−τ )

1−τ −b
+ βa

Y

K

b (1 − τ)

1 − τ − b

] ⎛
⎝Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j

⎞
⎠

+
(

C

KR
− 1 − τ

τ

wL

KR

) ⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦
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=
{

1

R

wL

K

a (τ − 1)

1 − τ − b
+ 1

R
a

Y

K

[
1 − a (1 − τ)

1 − τ − b

]} ⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

+
{

wL

τKR

[
(1 − τ) + bτ (1 − τ)

1 − τ − b

]
+ 1

R
a

Y

K

b (1 − τ)

1 − τ − b

} ⎛
⎝Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j

⎞
⎠

+
(

C

KR
− 1 − τ

τ

wL

KR

)⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦

=
{

1

R

[
a

Y

K

[
1 − a (1 − τ)

1 − τ − b

]
− wL

K

a (1 − τ)

1 − τ − b

]} ⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

+
[

1−τ

τ

wL

KR
+ 1

R
b

Y

K

b (1 − τ)

1 − τ − b
+ 1

R
a

Y

K

b (1 − τ)

1 − τ − b

] ⎛
⎝Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j

⎞
⎠

+
(

C

KR
− 1−τ

τ

wL

KR

)⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦

=
{

1

R

[
r − r

a (1 − τ)

1 − τ − b
− Y

K

a (1 − τ)

1 − τ − b
+ r

a (1 − τ)

1 − τ − b

]} ⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

+
[

1−τ

τ

wL

KR
+ 1

R

Y

K

b (1 − τ)

1 − τ − b
+ 1

R

C

K
− 1

R

C

K

] ⎛
⎝Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j

⎞
⎠

+
(

C

KR
− 1−τ

τ

wL

KR

)⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦

=
{

1

R

[
R −

[
Y

K

a (1 − τ)

1 − τ − b
+ 1 − δ

]]} ⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

+
[

1

R

(
C

K
+ Y

K

b (1 − τ)

1 − τ − b

)
+ 1−τ

τ

wL

KR
− C

KR

] ⎛
⎝Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j

⎞
⎠

+
(

C

KR
− 1−τ

τ

wL

KR

) ⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦
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=
{

1

R

[
R −

[
Y

K

a (1 − τ)

1 − τ − b
+ 1 − δ

]]} ⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

+ 1

R

(
C

K
+ Y

K

b (1 − τ)

1 − τ − b

) ⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦

= R − d1

R

⎛
⎝K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

⎞
⎠

−d2

R

⎡
⎣ R

R − 1
Ĉt + R

R − 1
Et

∞∑
j=1

(
1

R

)j

R̂t+j

⎤
⎦ .

(A.25)

Equation (A.23) can be rewritten as

R̂t + Et

∞∑
j=1

(
1

R

)j

R̂t+j = −d4

(
K̂t + Et

∞∑
j=1

(
1

R

)j

K̂t+j

)

+ (1 − d3)

(
Ĉt + Et

∞∑
j=1

(
1

R

)j

Ĉt+j

)
.

(A.26)

Substituting (A.26) for Et

∞∑
j=1

( 1
R
)
j
R̂t+j into equation (A.25) and collecting terms with Ĉt

on the left-hand side yields the decision rule.
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