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Abstract

Potential data breach losses represent a significant part of operational risk and can be a serious concern for
risk managers and insurers. In this paper, we employ the vine copulas under a Bayesian framework to co-
model incidences from different data breach types. A full Bayesian approach can allow one to select both
the copulas and margins and estimate their parameters in a coherent fashion. In particular, it can incor-
porate process, parameter, and model uncertainties, and this is very important for applications in risk
management under current regulations. We also conduct a series of sensitivity tests on the Bayesian mod-
elling results. Using two public data sets of data breach losses, we find that the overall dependency structure
and tail dependence vary significantly between different types of data breaches. The optimally selected vine
structure and pairwise copulas suggest more conservative value-at-risk estimates when compared to the
other suboptimal copula models.

Keywords: Bayesian vine copula; Tail dependence; Data breach losses

1. Introduction

The recent decade has seen phenomenal growth in the market of cyber insurance globally, which
offers protection against privacy breaches and adverse cyber incidents. The surge is mainly driven
by increasing number of corporates demanding coverage for potential financial losses as a result of
various data privacy violations (Herath & Herath, 2011; Kshetri, 2020; Cole & Fier, 2021). Despite
a burgeoning market, relatively little is known about the actual loss patterns of such data risks,
which is unsettling from an actuarial perspective. Fahrenwaldt et al. (2018) underscored the lack of
data as a serious impediment to adequate pricing and reserving for cyber insurance products, and
this point was echoed by Xu & Hua (2019). They worked around the issue by developing purely
theoretical mathematical models to simulate cyber losses. Nonetheless, it is always paramount to
directly analyse the trends and relationships in actual data breach losses as more data become
available. In this paper, we examine empirically the distributions of real data breaches of differ-
ent breach types and the dependency structure between them through a Bayesian vine copula
framework.

Regardless of the modelling approach, a consensus amongst the previous studies on cyber losses
is that it is imperative to incorporate the dependency structure between different sources of risks
or losses for the purpose of proper loss aggregation (e.g. Bshme & Schwartz, 2010; Ogiit et al.,
2011; Fahrenwaldt et al., 2018; Eling & Jung, 2018; Xu & Hua, 2019). The dependency modelling
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techniques adopted for cyber insurance have evolved from linear correlation such as in B6hme
& Kataria (2006) to multivariate copulas (e.g. Xu & Hua, 2019) in recent years. Furthermore, the
majority of these studies consider dependencies between different mechanisms underlying the
cyber-attacks in a theoretical setup without empirical verification (e.g. Mukhopadhyay et al., 2006,
2013; Xu & Hua, 2019). Eling and Jung (2018) fitted a multi-dimensional vine copula to real-world
breach data using a two-step approach of first estimating the margins and then fitting the copula
via the R package “VineCopula.” The vine copula offers much more flexibility for describing the
dependency structure between multiple random variables compared to traditional multivariate
copulas. In the “VineCopula” package, the model identification process is based on the maxi-
mum spanning tree approach (for example, see Diffimann et al., 2013) (Package “VineCopula,”
https://cran.r-project.org/web/packages/VineCopula/VineCopula.pdf).

Building on Eling and Jung (2018)’s work, we further explore vine copula modelling of actual
data breaches with a one-step, integrated Bayesian method that is user-friendly to actuaries and
practitioners. This approach avoids the potential pitfalls present in the two-step inference function
for margins and maximum spanning tree methods, and it can readily be applied in pricing and
risk management decision-making as to be demonstrated later in the paper. While our results
confirm the asymmetric tail dependence between different types of data breaches as reported
by Eling and Jung (2018), we also illustrate the deficiency in using only the point estimates for
model parameters when simulating data breaches from an actuarial perspective. Considering the
industry’s limited, primal understanding about the joint loss distributions of actual cyber losses
as well as reservations in sharing of such data, the Bayesian modelling approach is both more
prudent in allowing for uncertainties and more convenient in incorporating proprietary informa-
tion. As such, our approach provides an appropriate modelling tool for insurers and policymakers
involved in the cyber insurance market. Moreover, we discover that the generalised beta type II
(GB2) distribution, a distribution that is often used for modelling traditional general insurance
claims (e.g. Shi & Yang, 2018), is also appropriate for modelling the marginal distributions of
breach data. As a distribution family with almost all of the conventional claim size modelling dis-
tributions such as the lognormal, gamma, Weibull, Pareto, and Burr distributions nested under it,
this finding carries significant implications for future modelling of data breach events and pricing
of cyber insurance.

Joe (1996) first proposed the idea of expressing the joint density function as a product of
conditional and unconditional copula densities and marginal densities. As the possible ways
of decomposition grow more than exponentially with the number of dimensions, Bedford and
Cooke (2002) introduced a graphical structure called R-vine to organise the construction. The
word “vine” was used because the dependency structure can be displayed visually resembling the
outlook of a grapevine. Aas et al. (2009) adopted a sequential maximum likelihood estimation pro-
cedure to compute the parameters of each pair copula separately. Diffimann et al. (2013) applied
the concept of a maximum spanning tree to select the optimal vine structure. Since then, there
have been a variety of vine copula applications in financial research (e.g. Brechmann et al., 2013;
Geidosch & Fischer, 2016; Fink et al., 2017) and more recently actuarial research (Chulia et al.,
2016; Eling & Jung, 2018; Zhou, 2019).

In this paper, we take an approach different to that in Eling and Jung (2018) and incorporate
the vine copula structure into a Bayesian framework for co-modelling incidences from different
data breach types. Previous applications of Bayesian vine copulas in other areas (e.g. finance, elec-
tricity, marketing) and simulation studies can be found in Smith et al. (2010), Min and Czado
(2010, 2011), Smith (2011, 2015), Smith and Khaled (2012), and Gruber and Czado (2015, 2018).
This Bayesian approach allows a simultaneous estimation of the margins and the copulas, which
can help avoid the potential bias under the usual inference function for margins (IFM) method.
Moreover, it can be used to integrate all of process, parameter, and model uncertainties in a
coherent manner. In particular, we allow for the uncertainty in model selection by setting prior
probabilities for the copula candidates and calculating the corresponding posterior probabilities.
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This method of copula selection is different to the traditional statistical criteria (e.g. Akaike infor-
mation criterion, AIC) commonly used in the actuarial literature regarding copulas and provides
a new perspective to the conventional process of copula identification. Furthermore, we tailor the
Bayesian framework to select between the few best vine copula structures for our breach data.
To the best of our knowledge, this paper provides the first attempt to implement simultaneous
Bayesian selections of both the vine copula tree structure and the pairwise copulas in an insurance
valuation problem. In the following analysis, we also present an important empirical finding that
the conventional maximum spanning tree method, despite being the default choice in vine copula
applications, does not lead to the most optimal structure for data breach events. This result is new
to the literature and has a significant implication on the continual search for the most efficient
and effective way to identify the best copula structure in modelling dependencies in insurance
and other data.

The paper is organised as follows. Section 2 covers the basics of vine copulas. Section 3 intro-
duces our Bayesian framework for vine copula modelling. Section 4 provides a description of the
data breach events collected from a public database. Section 5 presents the simulation results from
the Bayesian modelling and an example of application to risk management. Section 6 sets forth the
results of an extensive list of sensitivity tests. Section 7 applies the Bayesian models to another data
set of data breach losses and discusses the results and implications. Section 8 gives the concluding
remarks. The Appendix provides some key equations for the copulas adopted.

2. Vine Copulas

Sklar (1959) proved that for any multivariate distribution function, there exists a unique copula
function C that links the marginal distribution functions, given that those marginal functions are
continuous. This theory leads to the convenience that the dependency structure and the marginal
distributions can be selected separately. There are three specific aspects broadly defining the
dependency structure, namely the overall shape, level of association, and tail dependence. For the
bivariate case, there are a large number of choices, including the common ones like the Gaussian
copula, t copula, and Archimedean copulas (e.g. Joe, 1997; Nelsen, 1999). For the multivariate
case with three or more dimensions, however, there are severe limitations in their initial exten-
sions. Notably, the multivariate Gaussian and ¢ copulas and the multi-dimensional Archimedean
copulas give the same shape of dependence and tail dependence for each pair of random variables.
Some recently proposed solutions to overcome this inflexibility include the hierarchical (fully or
partially nested) Archimedean copulas (e.g. Okhrin et al., 2013) and the vine copulas (e.g. Joe,
2014; Czado, 2019), the latter of which is adopted here.

Let X1, X5, . .., X, be a set of d-dimensional multivariate random variables. For instance, when
d =4, the joint density function f1234 can be expressed in terms of conditional and unconditional
densities:

S1234(x1, X2, X3, X4) = faj123(xalx1, %2, %3) 3112 (3|1, %2) foy1 (X220 )1 (1),

in which f; is the marginal density of X1, fo1 is the conditional density of X»|Xj, f3/12 is the condi-
tional density of X3|X1, X3, and f4)123 is the conditional density of X4|X1, X5, X3. Using the concept
of conditional probability Pr (A|B) = Pr (A N B)/ Pr (B) for two dependent events A and B, the
conditional densities above can be expressed for example as the following:

fa1(x2lx1) = c12(F1(x1), F2(x2))f2(x2)s
fa(x3lx1, x2) = 132 (Fra(x11x2), F3pp(x31x2) 1x2)f312 (31 %2),

B12(x31x2) = c23(Fa(x2), F3(x3))f3(x3),
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Figure 1. An example of a 4-dimensional D-vine.

Sap23(xalx1, x2, x3) = crap3(Fipps(x1|x2, x3), Faj23 (4] X2, x3) %2, x3) faj23 (X4 x2, x3),
Sa123(xalx2, X3) = c243(F23(x21%3), Fay3 (4] x3)1x3)fa)3 (x4x3),

Sa3(xalx3) = c34(F3(x3), Fa(x4))fa(x4),

where ¢ refers to a copula density, F is a distribution function, and the subscripts repre-
sent the dimensions and conditions involved. This process is called pair-copula construction
(PCC). Note that the joint density function can also be expressed as fiz34(x1,x2, x3,%4) =
c1234(F1(x1), F2(x2), F3(x3), Fa(x4))f1 (x1)fa(x2)f3(x3)fa(x4). It can then be deduced that a multi-
variate copula (c1334) can be decomposed into conditional and unconditional bivariate copulas
(c12> €13)2> €235 C14)23> C24)3, €34). As each bivariate copula can be selected separately from the oth-
ers, there is a huge amount of flexibility for modelling the entire dependency structure. However,
it is also clear that the derivation above is just one specific example, and there are actually numer-
ous ways to decompose the multivariate copula. For higher dimensions, it is extremely tedious to
deal with the different possible combinations.

Vines are a flexible graphical method that can be used for building multivariate copulas based
on a cascade of bivariate copulas. A d-dimensional R-vine is a sequence of d — 1 linked lay-
ers of trees. Tree 1 has d nodes N; and edges E;. Tree 2 has (d — 1) nodes N, = E; and edges
E», Tree 3 has (d — 2) nodes N3 = E; and edges E3, and so on, i.e. an edge in a tree becomes
a node in the next tree. There is a proximity condition such that for any two nodes connected
by an edge in a tree, they must represent two edges connected to the same node in the previ-
ous tree. Figure 1 provides a graphical vine representation of the 4-dimensional example above.
The edges 12, 23, and 34 represent the unconditional bivariate copula densities c12, ¢23, and ¢34,
respectively. The edges 13|2, 24|3, and 14|23 represent the conditional bivariate copula densi-
ties 13, €24;3, and c143. In fact, it is a special case of R-vine called D-vine, where no node is
connected to more than two edges (i.e. a path structure). Another special case, called C-vine, is
shown in Figure 2, in which tree i has a unique node that is connected to (d — i) edges (i.e. a star
structure). Including these two cases, there are indeed a total of d!2(4=2)"/(d=!/2=1 — 24 possible
combinations. This way of drawing trees of nodes and edges make the decomposition more man-
ageable, when compared to using the first principles to break down the joint density function as
above.

The construction of an appropriate R-vine requires making suitable choices on the overall vine
structure, the bivariate copulas, and the copula parameters. The state-of-the-art approach in the
literature is: (1) compute the copula data using the IFM method; (2) select the spanning tree that
maximises the sum of the absolute values of sample Kendall’s tau values across all connected pairs
in that tree for each layer; (3) select the bivariate copula with the lowest AIC value for each pair;
and (4) use maximum likelihood to estimate the parameters of the selected copulas sequentially.
The so-called simplifying assumption is usually taken such that all the bivariate copulas do not
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Figure 2. An example of a 4-dimensional C-vine.

depend on the conditioning values directly, though the arguments inside the copulas still depend
on the conditioning values'. The conditional arguments can be calculated from the correspond-
ing h-functions®. More details on the estimation process can be found in Aas et al. (2009) and
Diflmann et al. (2013).

Despite its practical convenience, this current standard approach has a number of potential
drawbacks. Firstly, the pre-estimation of the margins may induce bias in the estimation of the cop-
ulas. The underlying covariance between the copula parameter estimators and marginal parameter
estimators cannot be calculated. Also, the copula parameters are estimated sequentially, which
may cause more bias in the higher trees where the parameters are computed later in the sequence.
Secondly, the maximum spanning tree serves as a heuristic method to identify the optimal vine
structure amongst numerous possible combinations. The identified structure, however, may not
represent the truly optimal structure in probabilistic terms. Thirdly, it would be difficult to incor-
porate parameter and model uncertainties, as well as other relevant information such as experts’
opinions. Omitting these uncertainties and failing to use prior information could lead to a serious
underestimation of the aggregate risk. In the next section, we will introduce our Bayesian frame-
work to implement vine copula modelling. This Bayesian approach provides a sound and practical
way to address these potential issues.

3. Bayesian Framework

Suppose X represents the vector of observations of d multivariate random variables (monthly
data breach events of the four breach types, i.e. d=4), X; is the future values, ® denotes all
the unknown parameters, and M refers to the model choice. Under the Bayesian setting, the
joint distribution p(X¢, X, ®, M) is equal to p(Xy, X|0, M)p(©|M)p(M). The primary goal is to
derive the joint posterior distribution p(X, ®, M|X), given the observations X. This joint posterior
distribution can be used to deduce a variety of very useful Bayesian inferences via condition-
ing on and marginalising variables, such as the highest posterior probability of p(M|X) (i.e. the

'For example, the conditional bivariate copula density c132(Frj2(x1x2), Fa2(x3]x2)[x2) can be simplified as
c13)2(Fr2(x11x2), F32(x3x2)), i.e. c13)2 depends on the conditioning value x; only through its arguments Fij3(x;]x2) and
F3)2(x3x2) but not directly through x,. As noted in Hobaek Haff et al. (2010), this simplifying assumption is set for purely
practical purposes such that inferencing is fast, flexible, tractable, and robust. Though not all multivariate distributions can
be represented by such a simplified PCC, it can still provide a rather good approximation.

2Two examples of the h-functions are Fip(xi|xz)= aFZBWZ)CU(Fl (x1), Fa(x2)) and  Fips(xi|x2, x3) =

m Ci3j2(F1j2(x11%2), F3)2(x3x2)), under the simplifying assumption. We have derived some results in the Appendix.
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“best” model), the posterior distribution of the unknown parameters p(®|X, M) given a model
(or p(®|X) averaged across all the model candidates), and the predictive distribution of the future
values p(Xf|X, M) given a model (or p(Xf|X) averaged across all the model candidates). A com-
parison between two models M; and M, can be conducted by examining the posterior odds
p(M;|X)/p(M;]X), which is equal to the Bayes factor p(X|M;)/p(X|M,) times the prior odds
p(My)/p(M>).

For complex models, it is generally difficult to derive a closed-form expression for the joint pos-
terior distribution. With the rapidly advancing computing power nowadays, one can use Markov
chain Monte Carlo (MCMC) simulation to approximate the joint posterior distribution, in which
random samples are simulated from a Markov chain with its stationary distribution being equal
to the posterior distribution. In this paper, we use the software JAGS (Plummer, 2017) to per-
form MCMC simulations. They use the Gibbs sampling (GS) method, which involves successive
simulations from the full conditional posterior distribution of each variable in turn. It reduces
the multi-dimensional simulation from the joint posterior distribution into a sequence of one-
dimensional simulations. The programming language is user-friendly and is highly suitable for
building various Bayesian models’.

In the literature, there is a long list of bivariate copulas to choose from. We consider the
Clayton copula and its rotations, Frank, and Gaussian copulas as the major model choices.
The Clayton copula function is C(uy, uy) = (”1_9 + uz_g —1)"Y for > 0, u; = Fi(x;), and
up = F>(x;), and the 90°, 180°, and 270° rotations can be obtained from u; — C(1 — uy, up),
Uy +uy —14+C(A—up, 1 —up), and u; — C(uy, 1 — uy), respectively. It has lower tail depen-
dence? (i.e. in the lower-left quadrant), and its rotations have tail dependence in the lower-
right, upper-right, and upper-left quadrants. The Frank copula function is given as C(uy, uz) =

—In(1+ &2 (_9”162(;2(;;??9”2)_1))/9 for —oo < 6 < oo. It has no tail dependence and is sym-

metric over all the four quadrants. The Gaussian copula function is expressed as C(uy, uz) =
Dy (D (1), D (up)), in which P, is the distribution function of the standard bivariate normal
distribution with association parameter —1 < 6 < 1 and ®~! is the inverse distribution func-
tion of the standard normal. Like the Frank copula, it has no tail dependence and is symmetric.
This list of copulas covers a variety of features which would be suitable for different dependency
structures in the data.

To make a Bayesian selection between the model candidates for each pair of random variables,
we express the effective copula density as a weighted average of those of the individual models, i.e.
c(u, up) =) wijcj(u1, uz), in which the weight wj is equal to one when the corresponding copula
density ¢; is chosen and is zero otherwise. The highest posterior probability of p(M|X) (reflected
by the highest E(w;|X)) would then indicate the most optimal model from a Bayesian perspective.
The predictive distribution of the future values can be obtained from either p(X¢|X, M) or p(X¢|X),
depending on the purpose of the analysis. The former (Bayesian model selection, BMS) can be
used when the purpose is to identify a single model which provides key insights into the nature
of the data or to heuristically collect a few promising models for further examination, while the
latter (Bayesian model averaging, BMA) can be adopted if one wants to incorporate more model
uncertainty into the prediction. Note that when the data patterns are complex, the model with the
highest posterior probability from a finite list of models may not sufficiently represent the true
underlying mechanism, and accordingly, one may prefer to use the model averaging approach
(over all the models covered or just a few selected models).

Regarding the prior p(M), a popular choice for model selection is the discrete uniform prior.
It is an uninformative prior in the sense that all the model candidates are being favoured equally

3The JAGS code for implementing a Bayesian vine copula structure can be provided upon request. If greater flexibility
and more specific features are needed, one may develop his or her own MCMC algorithm (e.g. Min & Czado, 2010, 2011).
4Lower tail dependence is defined as A; = lin% % It measures the association in the lower-left-quadrant tail. There
u—

is lower tail dependence if 0 < Ay <1 and no lower tail dependence if A;, = 0.
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Table 1. Summary statistics of PRC monthly data breach events from

2005 to 2019.

Type of Data Breach Average Standard Deviation
H 49,321,500 280,911,769
| E ....................... 1,403,474 .............. 7)327)305 -

before the analysis. Since we do not have other information relevant for the data breach events,
we employ this uninformative prior in our study. For the prior p(®|M), we assume uninforma-
tive uniform priors for the copula parameters and uninformative gamma priors for the marginal
parameters”. In the absence of subjective inputs or experts’ opinions, setting uninformative pri-
ors would minimise the influence of the prior assumptions. Moreover, we assume that the priors
are independent with one another, as it is often difficult to understand how they are associated a
priori.

4. Data

We collect 9,015 data breach events from 2005 to 2019 from the Privacy Rights Clearinghouse
(PRG, https://privacyrights.org/) and focus on the non-zero monthly events of four breach types
including hacking/malware (H), loss of physical records of data (P), loss of electronic devices
containing sensitive data (E), and other unintended disclosure (D)®. A frequently used database
for empirical cyber risk studies (e.g. Edwards et al., 2016; Eling & Loperfido, 2017; Eling & Jung,
2018), the PRC database stores information of publicly verifiable breach events since 2005 that
encroach on the privacy of citizens of the United States. The loss resulting from such incidents is
measured by the number of personal records being breached. The breach may occur in any type of
organisation or business entity ranging from government bodies to listed companies’. Currently,
it is the most comprehensive and biggest data breach database that is free of charge and accessible
to the general public. For the purpose of this analysis, we sum up the losses arising from different
incidents that are under the same breach type and have happened in the same month and fit our
Bayesian model to these monthly aggregated losses. As shown in Table 1, the standard deviations
of the losses far exceed the means of the losses. It highlights the critical importance of assessing
adequately the level of uncertainty of data breach losses for risk management purposes.

Figure 3 displays the relationships between the D and H losses and between the P and E losses
in logarithmic scale. There is a positive relationship (v = 0.18) between the H and D losses, which

°In Section 5, for all the copula and marginal parameters, the prior variances are set as large as possible, as long as the
resulting range is valid theoretically and also the JAGS simulation process runs smoothly. The priors can be taken as, say,
Uniform(0, 5) for the Clayton copula parameter, Uniform( — 5, 5) for the Frank copula parameter, Uniform( — 0.9, 0.9) for
the Gaussian copula parameter, and Gamma(c, 8) for the marginal parameters, in which o and 8 are chosen such that the
prior standard deviation is several times larger than the prior mean. Note that if the prior variance is too large, however, the
JAGS program may clash, and in those cases, one can reduce the prior variance accordingly and may also set the prior mean
closer to certain preliminary estimate such as the method of moments estimate and maximum likelihood estimate in order to
avoid this programming issue.

®These four categories constitute a refined categorization on the original five known data breach types in the database
where portable devices and stationary computer loss are combined to form a new category focusing on loss of electronic
devices (E). These data account for around 85% of all the non-zero loss data breach events covered in the database. Eling &
Jung (2018) studied the hacking, loss of electronic devices, unintended disclosure, and insider attack (instead) breach types
from 2005 to 2016 only. They applied the usual sequential estimation method mentioned in Section 2 when fitting the vine
copulas and used standard statistical criteria to identify the bivariate copulas and the marginal distributions.

7The PRC database has grouped the organizations into seven categories, and Eling & Jung (2018) analyzed the breaches
by industry but found generally weaker dependence compared to breach type.
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Figure 3. The left graph plots the hacking/malware (H) losses against other unintended disclosure (D) losses; the right graph
plots the losses of electronic devices containing sensitive data (E) against the losses of physical records of data (P). The losses
are in logarithmic scale.

seem to have some form of lower tail dependence (as circled in the graph; non-parametric estimate
of 0.34; e.g. Frahm et al., 2005). By contrast, there is a negative relationship (z = —0.04) between
the P and E losses, with some tail dependence in the upper-left quadrant (non-parametric estimate
of 0.18). These patterns clearly call for different copula functions to be used for the two pairs of
random variables and highlight the importance of having the flexibility offered by the vine copula
structure under which a specific bivariate copula can be selected for each pair of random variables.
For instance, the association between the H and D losses looks like what the Clayton copula can
describe, while the association between the P and E losses may be modelled by a suitable rotation
of the Clayton copula. Note that these are only very preliminary observations, as the final optimal
copula choices depend on formal Bayesian inferencing (Section 5) and also the tree level involved.
The variables in the higher trees are conditioned on a larger number of other variables, which
would then dilute or distort some of the original patterns in the raw data.

4.1. GB2 as marginal distribution

The losses of each breach type appear to have a right-skewed and long-tailed distribution. For the
margins, we use the generalised beta type II (GB2) distribution (e.g. Chan et al., 2018). The GB2
density function is

T(p+q) ﬂ(%)“f’*l
F(P)T(g) (1 + £+

in which x > 0, —00 < a < 00, b > 0,p > 0, and g > 0. The distribution function can be

expressed as
X a
F (x) = Fgeta (%()%)a) >

where Fpet, is the distribution function of the Beta(p, q) distribution. The GB2 distribution nests
a range of commonly used loss distributions as special cases, such as gamma (a = 1, b= fq,

g — o0), Weibull (b= 84" p = 1, g— 00), lognormal (a — 0, b= (ac)?/?¢'/%, p = %+]

ac)?’
q — 00), and Pareto (a = 1, p = 1). In contrast to the usual frequentist approach of test(iné a
finite set of traditional loss distributions on the data, incorporating the GB2 distribution into the
Bayesian framework can take into account the uncertainty in selecting the model distribution, as
the GB2 distribution itself generalises a big family of important distributions. In this way, model
uncertainty can be integrated coherently within the Bayesian framework and there is no need
to choose one (amongst gamma, Weibull, lognormal, Pareto etc.) explicitly based on a certain
goodness-of-fit test.

flx) =
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Figure 4. Histograms of copula data from fitted GB2 distributions under IFM method (H: hacking/malware; P: loss of physical
records of data; E: loss of electronic devices containing sensitive data; D: other unintended disclosure). The parameter esti-
mates are a =10.65,b=6.84,p=1.61,q=0.64forH,a=1.00,b=26.79, p=0.44,qg =1.20 for P,a = 0.28, b = 22.30, p = 4.78,
q=>5.69 for E, and 0 =1.60, b=9.40, p =0.31, 9 =0.37 for D.
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Figure 5. Autocorrelations of selected copula’s parameter between D and P (left) and cross-correlations between selected
copulas’ parameters of DP and DH (right) (H: hacking/malware; P: loss of physical records of data; D: other unintended
disclosure).

As a preliminary analysis, we fit the GB2 distribution to each breach type separately (using
maximum likelihood as a starting point). All the resulting chi-square test values for testing the
goodness-of-fit are found to be not statistically significant (p-values of 0.13 (H), 0.10 (P), 0.57 (E),
0.29 (D)) and so the null hypothesis is not rejected. Moreover, Figure 4 shows that the histograms
of the copula data (between 0 and 1) from the fitted GB2 distributions under the IFM method look
fairly like the uniform distribution, which again suggests that the GB2 is a reasonable distribution
for the data.

5. MCMC Simulation Results

For each chain of our MCMC simulations, we omit the first 60,000 iterations and apply a thin-
ning of 40 (i.e. sampling every 40th iteration) when collecting the posterior samples. The resulting
10,000 samples are used for obtaining the required inferences. We notice that the autocorrelations
and cross-correlations over successive iterations are negligible and there is no issue in conver-
gence to the stationary distribution. For instance, Figure 5 illustrates that the autocorrelations of
the selected copula’s parameter between the D and P losses and also the cross-correlations between
the selected copulas’ parameters of the edges DP and DH are insignificant. All the estimated Monte
Carlo errors are also within 2% of the sample standard deviations, which further indicate that the
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Figure 6. The most optimal R-vine (C-vine) in terms of DIC (H: hacking/malware; P: loss of physical records of data; E: loss of
electronic devices containing sensitive data; D: other unintended disclosure).

level of convergence is satisfactory. Moreover, the results given by different chains with reason-
ably spaced initial values are very close. It means that the simulations are generally robust to the
selection of initial values.

Figure 6 demonstrates the vine copula structure with the lowest Deviance Information
Criterion (DIC) value. The DIC is calculated as the posterior mean of —2 In p(X|®) plus the effec-
tive number of parameters. The most optimal structure, amongst all the 24 possible R-vines, turns
out to be a C-vine (DIC =6,941). In Tree 1, D is the unique node connected to the other three
nodes. In Tree 2, the edge DH (bivariate copula between D and H) from Tree 1 becomes the
unique node. Table 2 gives the posterior mean of the weight w; of bivariate copula density c; for
each edge in each tree. In Tree 1, the highest weights (italic figures in Table 2) of the edges DP and
DH come from the Clayton copula, and the highest weight of DE comes from the 90° rotation. In
Tree 2, the highest weights of HP|D and HE|D belong to the Clayton copula and the 90° rotation,
respectively. In Tree 3, the highest weight of PE|DH arises from the 270° rotation. These copulas
with the most weights can be seen as the “best” models under Bayesian inferencing. This approach
of Bayesian copula selection is more unified with the entire estimation process, when compared
to the ad hoc approach of using a standard statistical measure like the AIC to choose the pairwise
copulas consecutively.

There are a number of interesting observations on the posterior estimates. First, the final
choices for DH in Tree 1 (Clayton) and PE|DH in Tree 3 (270° rotation) are broadly in agree-
ment with the graphs in Figure 3. The former has lower tail dependence while the latter has tail
dependence in the upper-left quadrant. Moreover, in Tree 1, the choices are quite certain as the
highest weights are 0.78 to 0.86, but in Tree 3, the highest weight is only 0.51 and there is a sec-
ond highest weight of 0.26. There are a few potential reasons behind the less certain choice in
Tree 3. Generally speaking, at the higher trees, the variables are conditioned on a larger number
of other variables, which may mix up or dilute the patterns. They tend to have lower dependence
and so the effects between fitting different copulas would become less distinct. Furthermore, as
shown in Figure 3 (right graph), there seems to be some form of upper tail dependence (opposite
to lower tail dependence) as well, which would also make the 180° rotation a competitive candi-
date. The tail dependence properties of the copula choices for DP, DH, and DE are broadly in line
with the coefficients of tail dependence (lower tail of 0.22, lower tail of 0.34, bottom-right of 0.28,
respectively) estimated non-parametrically (e.g. Schmidt & Stadtmiiller, 2006). Table 3 provides
the posterior means of the parameters of the selected copulas from p(®|X, M) (i.e. BMS). It is
worth noting that while the lower trees appear to have stronger relationships (larger implied t’s
from calculated 6’s), in line with the rationale of the maximum spanning tree in pulling together
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Table 2. Posterior means of weights of bivariate copula candidates for each edge in each tree in the most
optimal vine copula structure (H: hacking/malware; P: loss of physical records of data; E: loss of electronic
devices containing sensitive data; D: other unintended disclosure).

wj Treel Tree 2 Tree3

Copula DP DH DE HP|D HE|D PE|DH
Clayton 078 08 000 061 000 003
90° 0.00 0.00 0.86 0.01 0.78 0.02
e
e
Frank 0.05 0.12 0.03 0.09 0.17 0.07
Gaussian 014 009 009 022 005 009

Table 3. Posterior estimates (mean, median, standard deviation, tail quantile, correlation, Kendall’s tau)
of parameters of selected copulas in the most optimal vine copula structure (H: hacking/malware; P: loss
of physical records of data; E: loss of electronic devices containing sensitive data; D: other unintended
disclosure).

Copula Mean Median SD 2.5% 97.5% MLE

DP 0.36 0.34 0.14 0.12 0.66 0.25
HE|D 0.67 0.67 0.15 0.38 0.96 0.50
Correlatlon [ DP R DH R DE [ HP|D [ HE|D [ pE|DH
vav [ 100 R v042v5. SRR 0..11 . _001 R v_0!0'5 R .0.14
DH 0.25 1.00 0.23 0.01 —0.03 0.05
vHE|vD R ;0_65 R _v0.0v3. . v._0..02 . 007 R 1;0.0 R _.0.08
PE|DH 0.14 0.05 0.02 —0.06 —0.08 1.00
Tau FE DP e, DH IR DE [ HP|D [ HE|D [ pE|DH
DH 0.17 1.00 0.14 0.01 —0.02 0.04
.DE. S 008 [ .0.14. [ 1‘_00 - _(').01' I ._0..0.2 R .0.0.2
PE|DH 0.10 0.04 0.02 —0.03 —0.05 1.00

those with stronger associations first, there is an exception of HE|D in Tree 2, which has the
largest implied T (= —0.25) in magnitude. This result pinpoints that though the maximum span-
ning tree is a convenient and practical method to find a reasonable vine structure, the resulting
choice may not be the truly optimal structure overall, at least in terms of the DIC being used here.
Difimann et al. (2013) also commented that the maximum spanning tree method does not nec-
essarily lead to the global optimum (e.g. likelihood, AIC). Further evidence on this issue using
Bayesian inferencing is provided in Section 6.
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Table 4. Goodness-of-fit test statistics (Kolmogorov-Smirnov and AIC; rank-
ings amongst six copula candidates in brackets) of selected copulas in the
most optimal vine copula structure (H: hacking/malware; P: loss of physical
records of data; E: loss of electronic devices containing sensitive data; D: other
unintended disclosure).

Copula KS AlC

DP (Clayton) 0.12 (2) —4.01(1)
beb(c‘[»ayto»ﬁ)u B 009(1) e ...._.7..5.8(.1.)
|-|P|D(c[ayton) 009 (2) e _320(1)
HE|D (90°) 0.10 (1) —24.71 (1)

Table 3 also contains the posterior medians, standard deviations, and tail quantiles of the
copula parameters, and the corresponding correlations and Kendall’s tau estimates between
the parameters. The posterior distributions of the copula parameters are largely symmetric. All
the parameters are significantly different from zero (based on the ¢ test at 5% significance level).
Since the maximum likelihood estimates correspond roughly to the posterior modes under uni-
form priors, they are also included in the table for comparison. While their relative sizes are similar
to those of the posterior means and medians, they are all smaller by about 0.1 or more. As these
maximum likelihood estimates are obtained from the IFM method and then the usual sequen-
tial estimation method, the extent that they are smaller would be a reflection of the biases being
introduced in the multi-step estimation process. From a Bayesian perspective, it is also desirable
to estimate all the parameters jointly such that the associations amongst the parameters can also
be assessed. In Table 3, a few posterior correlations are significantly different from zero. This kind
of dependence should then be taken into account when using the calibrated model to simulate the
future values.

Table 4 shows some additional test results on the goodness-of-fit of the selected copulas in
Table 2 above, based on the posterior means of the parameters (BMS), but outside the Bayesian
system. The tests include a bivariate version of the Kolmogorov-Smirnov test and the AIC, as
follows:

KS = max [Pr(X; < x1j, Xz < x2,) — Clunj, ua)|
AIC=—2] + 2,

where Pr(-) denotes the empirical probability, C represents the selected copula, 1 j = Fi(x1)),

upj = Fa(xz), and Tis the computed log-likelihood. The ranking of the test statistic value of each
selected copula amongst the initial list of copula choices is given in brackets. The AIC values
agree that the selected copulas under the Bayesian framework are the best choices. On the other
hand, while the Kolmogorov-Smirnov test values indicate that the selected copulas under the
Bayesian framework are one of the two best choices for four of the pairs, the values for DE and
PE|DH suggest otherwise. These differences may be caused by the fact that these two pairs have
weaker relationships than the other pairs and so their patterns may not be as clear-cut as the
others, leading to less consistent conclusions between different statistical criteria. Moreover, this
test requires the copula data obtained from the IFM method, which means that the consideration
of whether a copula is suitable or not is separate from the consideration of the margins. This view
is different to the rationale of coherent selection and estimation within our Bayesian framework.
Nevertheless, all the test values are statistically insignificant and none of the selected copulas are
rejected under the Kolmogorov-Smirnov test.

We now examine an application to risk management to see the impact of using an appro-
priate vine copula. Taking reference of the Solvency II regulations in Europe, we calculate the
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Table 5. Posterior estimates of monthly value-at-risk for a portfolio aggregating
events of all four breach types under five different dependence assumptions, including
BMS, BMA, multivariate t, multivariate Gaussian, and independence copulas.

Value-at-Risk (in 10,000 s)

Copula 90% 95% 99% 99.5%
vBMS S 67 SR 3.66 R 18.’14.0 SR .99’304.
BMA 67 338 18,338 126,610
GaUSSIan R 64 R 297 e, 12’142 SR 66,120
Ind. 58 244 8,202 37,028

value-at-risk (VaR) of the monthly total data breach losses (aggregating events from all the four
breach types into one portfolio)®. While the selected copulas in Table 2 are fairly dominating and
so using p(Xy|X, M) (i.e. BMS) appears to be reasonable, the results from using p(Xy|X) (i.e. BMA)
are also obtained for comparison. Moreover, a few other different assumptions are also included
in the analysis. The first is simply assuming the four breach types are independent of one another.
The second is adopting a multivariate Gaussian copula as well as a multivariate ¢ copula®, which
are restrictive in the sense that they impose the same shape of dependence and tail dependence
across all pairs of breach types. Table 5 sets forth the posterior estimates of the risk measures under
these five assumptions. First, assuming independent data breach types ignores the underlying rela-
tionships and clearly underestimates the VaR. While the multivariate Gaussian copula allows for
the relationships between the losses, it does not take tail dependence into account and so the
resulting risk measures are still smaller than the others. Compared to the multivariate Gaussian
copula, the multivariate ¢ copula, with tail dependence, gives larger estimates only by some extent,
probably because it still lacks the flexibility of dealing with each pair differently and the degree of
freedom is 14 on average which is quite large. The 99.5% VaR estimates under the BMS produced
by our Bayesian model are significantly larger than the three sets of estimates above, highlight-
ing the critical importance of catering for the dependency structure properly when assessing the
extreme tail. Further, it is interesting to see that the Bayesian model under the BMA gives the
largest 99% and 99.5% VaR estimates. This difference reflects a substantial impact of incorporat-
ing copula model uncertainty into the framework!?. It suggests that the practice of choosing a
copula based on the AIC or similar measures and then relying solely on its results could lead to a
significant underestimation of the aggregate risk. Figure 7 plots the extreme right tails of the sim-
ulated posterior (kernel) densities of the monthly total data breaches (in logarithmic scale) under
the five assumptions. All the five posterior distributions appear to be skewed to the right. The
BMA and BMS ones have the thickest tails, followed by those from the multivariate ¢, multivariate
Gaussian, and then independence copulas.

81f data were sufficient, it would be interesting to compare our approach against using extreme-value copulas with
extreme-value distributions for the purpose of capital assessment. However, we only have about 123 monthly data points,
which make the latter approach practically infeasible. Moreover, it often becomes rather arbitrary when choosing the data
thresholds for fitting extreme-value kind of models, due to the usual difficulty in striking a balance between the degree of
compliance to the extreme value theory and a sufficient sample size.

°The 4-dimensional Gaussian and t copula functions are ®4(® " (uy), ® (uy), ®~(u3), ®~(1y)) and
tyalty L), t L(uy), t; Lus), t L(uy)), in which t; ! is the Student t inverse distribution function, t,4 is the distribu-
tion function of the standard 4-dimensional ¢ distribution,D is the dispersion matrix, and v is the degree of freedom. We
assume an uninformative uniform prior for the non-zero non-diagonal components in C, in which D= CBC, C is a lower
triangular matrix, and B is a diagonal matrix with positive entries, such that D is positive definite. The latter copula converges
to the former when v approaches infinity. Both are implemented in a Bayesian setting together with the margins.

10Note that the losses here are expressed in terms of the number of records. Without detailed information about the
monetary sizes of the different data breaches, it would be difficult to assess the financial impact further. As a supplementary
analysis, Section 7 analyses another data set of data breach losses and provides a further discussion on the financial impact.
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Figure 7. Simulated posterior densities of monthly total data breaches under five different dependence assumptions,
including BMS, BMA, multivariate t, multivariate Gaussian, and independence copulas.

Under Solvency II in Europe, all of process error, parameter error, and model error must
be taken into account sufficiently. For instance, QIS5 Technical Specifications (CEIOPS, 2010)
stated that “it is important to assess the model error that results from the use of a given valua-
tion technique.” It described model error and parameter error as the “uncertainty which is related
to the measurement of the risk and is not an intrinsic property of the risk.” It would be inade-
quate to simply use the empirical or fitted distribution to assess the aggregate tail risk, which then
includes only the inherent risk (process error). This full allowance for all uncertainties is partic-
ularly important when data are scarce — in our analysis, not just that there are merely about 123
monthly data points, but also that data breaches and cyber losses represent a new kind of insurance
opportunities, the development of which is still at its infant stage. Ignoring the potential impact
of model uncertainty and parameter uncertainty for a new market is a significant omission in risk
management and capital assessment under the current regulations in Europe. Over time, as more
data can be collected and more other information can be obtained about data breaches and cyber
losses, more confidence can be given to the modelling process and the extent of model error and
parameter error would then naturally be reduced.

6. Sensitivity Testing

In this section, we perform a range of sensitivity tests on the Bayesian modelling results discussed
in the previous section. Firstly, we experiment with a number of different priors for the cop-
ula parameters and the copula selection. While the uniform distribution is often a reasonable
default choice, it would be informative to explore the consequences of taking other possible alter-
natives. Table 6 compares the posterior means and standard deviations of the copula parameters
(BMS) obtained from using uninformative logistic, normal, or Cauchy priors!! instead against the

UFor the Clayton copula parameter, the logistic, normal, and Cauchy priors are truncated from below at 0. For the
Gaussian copula parameter, the three priors are truncated from above at 1 and from below at -1. For Kendall’s tau, the priors
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Table 6. Posterior estimates (mean, standard deviation) of parameters of selected copulas from eight different pri-
ors, using the most optimal vine copula structure (H: hacking/malware; P: loss of physical records of data; E: loss of
electronic devices containing sensitive data; D: other unintended disclosure).

Mean Uniform Logistic Normal Cauchy Uniform Logistic Normal Cauchy
Copula on copula parameter on Kendall’s tau

DP 0.36 0.39 0.38 0.37 0.33 0.36 0.36 0.34
HE|D 0.67 0.69 0.71 0.74 0.64 0.69 0.70 0.72
oy 021 B 023 B ,.0..22. B 021 B 6,20 . 0..22,. B 021 B 0..20
SD SR Umform . Log|st|c . ”No.rr.ﬁél“ . Cauchy . Umform . .L.(;)g.i;ti.c“ . Normal . Cauchy
Copu[a B on Copmaparameter ettt A oireduieieus o onKendallstau I oomtnt.|
DP 0.14 0.13 0.13 0.14 0.14 0.13 0.13 0.14
HE|D 0.15 0.17 0.17 0.2 0.16 0.18 0.18 0.19

previous estimates. Another alternative of assuming uninformative uniform, logistic, normal, or
Cauchy priors for Kendall’s tau and then converting it into the copula parameter is also tested.

It can be seen from Table 6 that the posterior means and standard deviations are fairly con-
sistent across different prior assumptions. It means that our Bayesian framework is reasonably
robust to the prior settings and that the priors used are adequately vague priors. This result is also
reasonable in the sense that as the selected copulas are fairly dominating, the MCMC simulation
would give similar results for any reasonable prior choices.

Moreover, we examine the effects of using unequal prior probabilities of p(M) rather than the
discrete uniform distribution. Table 7 compares the posterior means of the weights under different
settings of prior probabilities. It is observed that when much larger prior probabilities are given to
the other copula candidates, the final posterior weights of those pairs with stronger relationships
(all of Tree 1 and most of Tree 2 cases) still indicate the same optimal choices as previously, though
the weights become a little lower. Despite the reasonable robustness of our results, it is important
to note that certain prior information can be incorporated into a more informative prior if it
is available and relevant. For instance, a high prior probability can be allocated to a particular
copula if some other related data of similar nature but with a bigger size demonstrate the kind of
dependence possessed by that copula.

We then compare the situations when model uncertainty and parameter uncertainty do not
exist. The former can be removed by using the selected copulas directly without allowing for
Bayesian copula selection. The latter condition can be created by removing the prior distributions
and treating the parameter estimates as fixed values. Table 8 shows the simulated estimates of
the above-mentioned risk measures under the three ways of allowing for uncertainties. Parameter
uncertainty clearly makes the most significant contribution to the aggregate risk, as revealed by

are truncated from above at 1 and from below at —1 in general; in particular, the priors are further truncated from below at 0
for the Clayton copula and the 180° rotation or from above at 0 for the 90° and 270° rotations. Again, the scale parameters
of the priors are set as large as possible, given that the range is valid and that there is no interruption in the JAGS simulation
process. For the copula parameters, the mean parameters are taken as 0.5 and the scale parameters as 5 in the priors. For
Kendall’s tau, the mean parameters are set as 0.2 and the scale parameters as 2 in the priors.
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Table 7. Posterior means of weights of selected copulas (in brackets) for each edge in each tree in the most optimal vine
copula structure, using different sets of prior probabilities (H: hacking/malware; P: loss of physical records of data; E: loss
of electronic devices containing sensitive data; D: other unintended disclosure).

wj Treel Tree 2 Tree3
Priors DP DH DE HP|D HE|D PE|DH
Uniform 0.78 (Clayton) ~ 0.80 (Clayton)  0.86(90°)  0.61 (Clayton)  0.78(90° 0.51(270°)

50% 180° 10% Others 0 68 (Clayton
50% Frank 10% Others 0.60 (Clayton
50% Gauss; 10% Others  0.49 (Clayton

0.85 (Clayton
0.66 (Clayton

) (
) 0.87 (90° ) 0.45 (Clayton) 0.90 (9Q° 0 67 (180°)
) (
0.59 (Clayton) (

)
0.80(90°) 0.4 (Clayton)  0.65(90°) 0.3 (270°)
)

)
) .
)
) 0.69 (90°) 0.56 (Gauss) 0.65 (90° 0.38 (Gauss)

Table 8. Simulated estimates of monthly value-at-risk for a portfolio aggregating events
from all four breach types under three different ways of allowing for uncertainties, includ-
ing BMS and BMA, having model error removed, and having both parameter error and model
error removed.

Value-at-Risk (in 10,000 s)

Copula 90% 95% 99% 99.5%
BMS 67 366 18,140 99 304
.No Mode[ Error e 64 R 335 R 13’307 R 67,234
”No Model&Parameter Errors - 23 - 7l - v1‘,139m - 3,693

Table 9. Posterior means of weights of bivariate copula candidates for each edge in each tree
in the most optimal vine copula structure, using mixtures of copulas (H: hacking/malware; P:
loss of physical records of data; E: loss of electronic devices containing sensitive data; D: other
unintended disclosure).

wj Treel Tree2 Tree3
Copula DP DH DE HP|D HE|D PE|DH
Clayton i T R i
90° 0.15 0.13 0.22 0.15 0.25 0.14
I I T ety
e s o s o o o
Frank 0.17 0.19 016 0.17 0.22 0.15
Gaussian 0.17 0.18 0.17 0.18 0.18 0.16

the much smaller calculated risk measures when it is excluded. Model uncertainty also plays an
important part, though to a lesser extent. Insurance loss data are usually limited in size, and it is
highly inappropriate to overlook the substantial impact of parameter and model uncertainties.

We also allow the prior weights of the copulas to be a continuous variable between zero and
one instead (with the sum of all the prior weights being one). In this way, the effective copula
density becomes a “mixture” of different copula densities, which can offer more flexibility for
modelling the dependency structure. Table 9 gives the posterior means of the weights under the
new prior assumption. It is interesting to see that while the copulas with the largest weights (italic)
are the same as before (except Tree 3, marginally), the weights are more spread out across different
candidates. It is a clear sign of this alternative setting being able to exploit and mingle the various
features of the different copulas to cope with the data complexity. However, the resulting DIC
value increases to 6,956, which implies that the enhanced model sophistication cannot be justified
by the better fitting.
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Table 10. Posterior means of weights of marginal distribution candidates based on dummy prior weights
and continuous prior weights, using the most optimal vine copula structure (H: hacking/malware; P: loss
of physical records of data; E: loss of electronic devices containing sensitive data; D: other unintended

disclosure).

wj Dummy Prior Weights Continuous Prior Weights
Marginal Distribution H P E D H P E D

| Gamma ............... 000 ..... o 29 ...... 0..0.1 ..... ooo ...... 021 ..... . o 040 ..... 0.0.4
We|bu|[ FS 000 000 000 ooo 001 001 001 001
Lognormal 0.99 0.71 0.99 0.00 0.35 0.46 0.30 0.42
Pareto 001 ooo 000 100 043 025 029 052

We further incorporate the selection of vine structure directly into the Bayesian framework.
First, we choose the vine structures with the two lowest DIC values and also the optimal structure
from the maximum spanning tree. Then, we express the effective joint density as a weighted aver-
age of those of the three structures, i.e. f(x1, X2, X3, %4) =Y wjﬁ(xl, X2, X3, X4), where the weight
w; is equal to one if the corresponding joint density f; is selected and is zero otherwise. From a
Bayesian perspective, the best vine structure would have the highest posterior probability. The
posterior means of the weights of the three vine structures (from two lowest DICs and maximum
spanning tree) included are 0.54, 0.46, and 0, respectively, and the results of which are consis-
tent with those from the use of DIC values (6,941, 6,942, 6,946). (Based on maximum likelihood,
given the margins, their corresponding log-likelihood values are 17.69, 16.77, 15.33; the AIC val-
ues are —23.37, —21.54, —18.65; and the BIC values are —6.50, —4.67, —1.78, respectively.) This
test reemphasises the fact that the maximum spanning tree may not identify the truly optimal
structure, despite being a convenient heuristic method which is widely applied.

We also replace the GB2 distribution with a mixture of the gamma, Weibull, lognormal, and
Pareto distributions, using the same rationale in the copula selection and vine structure selec-
tion above. Both dummy prior weights (0 or 1) and continuous prior weights (0 to 1) are tested.
Correspondingly, Table 10 provides the resulting posterior means of the weights of different
marginal distributions for each breach type. Amongst the four two-parameter distribution candi-
dates, the Pareto or Lognormal distribution is clearly the optimal choice when the prior selection
can only be one distinct distribution. However, when a mixture distribution is allowed in the
prior, the posterior weights of the individual candidates are more dispersed (except for Weibull).
Interestingly, the optimal choices under the two prior assumptions match with each other for the P
and D losses but not for the H and E losses. Furthermore, we realise that the DIC value of the latter
is a lot smaller than that of the former. These results imply that the two-parameter distributions
may be insufficient to capture all the salient features of the data breach losses. Practitioners trying
to model cyber losses with two-parameter distributions should thus exercise extra caution, espe-
cially for pricing and reserving purposes, as the losses may then be substantially underestimated.
The consequent effects on the vine copula model are also examined. Although the best copula
choices remain the same as before, the copula parameter estimates (BMS) are significantly, system-
atically smaller under the dummy prior weights. This deviation further confirms the insufficiency
of using the two-parameter distributions for analysing the data breach events in this paper.

Furthermore, we incorporate a time trend into the GB2 distribution in order to allow for
possible changes in data breach sizes over time. Since the mean of the GB2 distribution is

r(p+3)r(a-2) - . .
equal to bW, we set b(t) = b(t — 1) + pu + £(¢), in which b(#) becomes a time-varying
parameter, p is the drift term, and e(t) is the normal error term (with zero mean) at month ¢.
Uninformative uniform, normal, and inverse gamma priors are used for b(1), i, and the error
term’s variance, respectively. Approximate ¢ test statistics are then calculated on p for the four
breach types via dividing the posterior means by the posterior standard deviations. It turns out
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that the time drifts of the P and E losses are statistically significant while those of the D and
H losses are not. At the same time, the posterior means of some copula parameters are some-
what smaller than previously. It appears that some of the potential relationships between the data
breach losses across time are now captured by the newly added temporal trends and accordingly
the levels of association reflected in some of the copulas are reduced.

We also experiment with adding a time trend into the dependency structure to allow for possi-
for HE|D in Tree 2 (with the largest copula parameter estimate in magnitude in Table 3), where
s(t) =s(t — 1) + u + &(t), p is the drift term, and &(¢) is the normal error term at month ¢. The
priors are set in the same way as above. Based on the ¢ test statistic calculated (—1.37), the time
drift is not statistically significant, which means that there is no need to use a dynamic copula in
this case.

Finally, we test two simplified vine structures (i.e. truncated vines), one of which has the vari-
ables set simply as independent in Tree 3, and the other having all the variables in Trees 2 and 3
being independent with one another (e.g. Brechmann et al., 2012). Their DIC values are 6,942 and
7,051, which are higher than that of the optimal full model above (6,941), suggesting that these
two vine structures are rather over-simplified and comparatively not as suitable for modelling the
breach data.

ble changes in dependency over time. As an illustration, we assume a time-varying t =

7. Further Analysis on Department of Health and Human Services (HHS) Data set

In this section, we study a new data set containing healthcare data breaches from 2009 to 2020,
obtained from the ongoing public database maintained by the U.S. Department of Health and
Human Services (HHS). Recently, this database has been analysed by McLeod and Dolezel (2018)
in the field of cyber-analytics. There are 3,241 data breach incidents reported during the investiga-
tion period with the incident description, number of individuals affected, and type of breach made
known to the public. We examine the severity of the monthly data breach losses in terms of the
number of affected individuals from all the incidents reported in the month by four major breach
types, as well as the dependency structure between the different breach types. The four major
breach categories include the losses that are mainly caused by theft (T), hacking (H), unautho-
rised access (U), and mishandling of documents (M). The category for mishandling of documents
includes incidences that can be mainly described as either loss of documents or improper dis-
posal of documents. Essentially, the first three data breach categories are concerned with malicious
breach attempts, whereas the last category covers negligence in handling confidential or sensitive
information. Categorisation of the incidents depends on both the type of breach as specified in the
database and incident description provided in the database. Altogether, the number of incidents
covered by the four categories accounts for 95% of all the data breach events reported during the
study period. Table 11 provides a summary of the descriptive statistics of the monthly losses by
breach type. Again, the standard deviations of the losses are much larger than the means, which
suggest a high level of uncertainty in the future outcomes. Compared to the summary statistics
in Table 1, however, the coefficients of variation of the losses in the HHS data tend to be smaller
than those of the PRC data. For both data sets, the hacking breach type contributes to a larger
number of losses than the other types of losses, indicating that hacking is a very serious issue in
data security.

The most optimal structure for the HHS data set is a C-vine (DIC=1,593). In Tree 1, T is
the unique node linked to the others. In Tree 2, the edge TU from Tree 1 becomes the unique
node. Table 12 provides the posterior weight of bivariate copula density for each edge in each
tree. In Tree 1, the highest weights (italic figures in Table 12) of TH, TU, and TM come from the
Frank copula, Gaussian copula, and 90° Clayton rotation. In Tree 2, the highest weights of HU|T
and UM|T belong to the Clayton copula and the 270° rotation. In Tree 3, the highest weight of
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Table 11. Summary statistics of HHS monthly data breach events
from 2009 to 2020 (T: theft; H: hacking; U: unauthorised access; M:
mishandling of sensitive/confidential documents).

Type of Data Breach Average Standard Deviation
T 213,599 715,842
L 975,148 [ 2’444’0,78 .

U 128,943 338,098

Table 12. Posterior means of weights of bivariate copula candidates for each edge in each
tree in the most optimal vine copula structure (T: theft; H: hacking; U: unauthorised access; M:
mishandling of sensitive/ confidential documents).

wj Treel Tree2 Tree3
Copula TH TU ™ HU|T UM|T HM|TU
Clayton 0.00 0.04 0.03 0.40 0.18 0.14
2700- - v0.02‘ v 0.v24v ‘ '0.10 - VO.OV4 ‘ 025 o -0.19
Frank 0.70 0.22 0.18 0.14 0.15 0.21
Gauss|an R 011 [ 026 i 022 i 022 i 016 T 026 A

HM|TU arises from the Gaussian copula. It can be seen that different pairs of random variables
call for different copula choices under the Bayesian setting.

There are some similarities between the HHS results here and the PRC results in Section 5.
First, the optimal structure is a C-vine in both cases, while the other structures like a D-vine are
suboptimal. Second, the hacking breach type, despite having the largest number of losses, is not
chosen as the unique node in Tree 1 under the Bayesian framework for both data sets. It reflects
that whether a breach type would be selected as the unique node depends mainly on how it is
associated with the other breach types but less on its size. Nevertheless, there are significant dif-
ferences in the components of the two vines. Firstly, all the selected copulas for the PRC data
have tail dependence, but only half of the selected copulas for the HHS data have tail dependence.
Moreover, the posterior weights of the selected copulas are lower for the HHS data than for the
PRC data. These results are in line with the fact that the HHS data have comparatively fewer
extreme losses than the PRC data do. For instance, as noted earlier, the coefficients of variation
of the losses in the HHS data are smaller. So, using the HHS data, those copulas with tail depen-
dence would be less needed while the other copulas without tail dependence would become more
competitive in the Bayesian selection process.

Table 13 gives the posterior means, medians, standard deviations, and tail quantiles of the
parameters of the selected copulas from the BMS. The copula parameters are significantly dif-
ferent from zero, except for TM and HM|TU. As a comparison, the corresponding maximum
likelihood estimates are quite close to the posterior means and medians. The lower trees tend to
have stronger relationships (larger implied t’s from calculated 8’s) than the higher ones.

Table 14 (top panel) reports the posterior estimates of the VaR of the monthly total data breach
losses under the five assumptions of BMS, BMA, multivariate ¢, multivariate Gaussian, and inde-
pendence copulas for the HHS data. We adopt the method in Jacobs (2014) and convert the
number of events into dollar terms. It is a regression model given as dollar loss = exp[7.68 4-0.76
x In(events)]. This empirically deduced equation can serve as a rough approximation of the real
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Table 13. Posterior estimates (mean, median, standard deviation, tail quantile) of parameters of selected
copulas in the most optimal vine copula structure (T: theft; H: hacking; U: unauthorised access; M: mishan-
dling of sensitive/ confidential documents).

Copula Mean Median SD 2.5% 97.5% MLE
TH —2.13 —2.11 0.55 —2.95 —1.34 —241
TU —0.13 —0.14 0.05 —0.19 —0.07 —0.11
HM|TU —0.01 0.01 0.13 —0.21 0.12 —0.03

Table 14. Posterior estimates of monthly value-at-risk for a portfolio aggregating events
of all four breach types under five different dependence assumptions, including BMS, BMA,
multivariate t, multivariate Gaussian, and independence copulas.

HHS Value-at-Risk (in $1 m)

Copula 90% 95% 99% 99.5%
e 9 .............. 3.1 ............... 596 ............. 2,267 |
t o 9 30 a 474 1,545
Gaussian 9 28 429 1,481
|nd . s 293 . e

.P.R.c ................................ ValueatR|sk(|n$1m) ....................
cOpu[a 90% 95% 99% T 995%
BMS 58 211 4,092 14,896
Gauss|an 55 180 3’016 10’935
Ind. 52 155 2,238 7,038

loss, as there are no available data in monetary terms and there is no general method to estimate
the loss. As in the previous section, treating different data breach types as independent omits the
underlying relationships and produces the smallest VaR. For the 90% and 95% VaR, assuming any
of the copula models considered leads to about 20% increase in the tail estimate, when compared
to the independence copula. For the 99% and 99.5% VaR, the multivariate Gaussian and t copulas
leads to about 60% increase in the tail estimate. Under the BMS and BMA, the 99% and 99.5%
VaR estimates are larger by about 90% or more, in which the BMA still produces the largest tail
estimates. Table 14 (bottom panel) also presents the posterior VaR estimates for the PRC data used
in Section 5. Similarly, for the 90% and 95% VaR, using any of the copula models brings about an
20% increase in the tail estimate, and for the 99% and 99.5% VaR, the multivariate Gaussian and
t copulas generates a 60% increase in the tail estimate. Under the BMS and BMA, the 99% and
99.5% VaR estimates increase by around 80% or more from those under the independence copula.
These results illustrate that both allowing for the dependency structure adequately and incorpo-
rating model uncertainty can play a vital role in the assessment of capital. Without addressing
these uncertainties properly, there could be significant underestimation of the aggregate risk level
and insufficient capital for covering adverse events.
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8. Concluding Remarks

In this paper, we have adopted a Bayesian framework to implement the vine copula structure for
modelling data breach events jointly. We have observed varying levels of tail dependence between
different breach types, based on both the optimal copulas selected and non-parametric estimation
of tail dependence coefficients. An insurer providing cover on these types of losses must make
a sufficient allowance for the dependency structure when calculating premiums and reserves. As
demonstrated earlier, while the estimated severities of data breaches at 90% confidence level are
not too different (within 20%) from one another regardless of whether they are simulated by the
vine copula, or the multivariate elliptical copulas, or the independence model, the differences
are drastic for the 99% and 99.5% VaR. They range from about 50% when comparing between
the vine and multivariate ¢ copulas to being more than double between the vine copula and the
independence model. Therefore, the assumptions made on the underlying dependencies between
risks could have huge impacts on the required capital and other risk management considerations.
Regulators and insurers should be keenly aware of model risk and take proper measures to prevent
underestimation of risks, especially given the short history of development in the line of cyber
insurance business.

With the continual advancement in technology in our fast-paced society, the cyber insurance
market is destined for rapid expansion in the foreseeable future, and more knowledge and data in
this arena would become accessible over time. Considering our evolving understanding and the
dynamic nature of cyber claims, the proposed Bayesian modelling framework is naturally tailored
for businesses interested in cyber risk estimation. Besides being capable of incorporating exclusive
information provided by subject matter experts, where available, this Bayesian approach allows for
a simultaneous determination of the vine structure, copulas, and margins and estimation of all the
unknown parameters in a coherent way. It not only avoids introducing biases as under the IFM
and sequential estimation methods but also integrates process, parameter, and model uncertainties
in one unified setting. A proper allowance for all uncertainties is of utmost importance in the
area of risk management under current regulations. Moreover, we also note that the numerical
results are quite robust to the prior specifications and that a mixture of copulas can provide more
modelling flexibility.

It is often quite difficult to use the maximum likelihood to estimate the copula and marginal
parameters jointly. The Bayesian approach does not have this problem and can generate all the
estimates coherently from MCMC simulation. Furthermore, by taking all kinds of uncertainties
into account, the proposed Bayesian model provides an opportunity to improve the forecasting
performance and the computation of risk measures. Particularly, failing to assess model uncer-
tainty appropriately may lead to a serious miscalculation of such regulatory reporting items as
reserves and capital.

We have shown how to implement the selection between a few “best” vine structures in the
Bayesian framework. However, as the number of possible combinations grows rapidly with the
number of dimensions, the scalability of our approach is limited. Our suggestions are that the
proposed approach is more suitable for lower dimensions and that for higher dimensions it can
be applied in conjunction with other ways of identifying the vine structure such as the standard
information criteria, maximum spanning tree, and subjective inputs of grouping the variables in
the order of importance. Recently, Gruber and Czado (2018) developed a reversible jump MCMC
algorithm for moving within a large model candidate space and showed that it can achieve quick
convergence to desirable models. They claimed that their algorithm is suitable for up to around
10 dimensions, and so future research for more scalable Bayesian methods is called for. Moreover,
further work is needed to make this kind of advanced algorithms more accessible to industry prac-
titioners and other academics, like the user-friendly platforms offered by WinBUGS (Spiegelhalter
etal., 2003) and JAGS, for wider use in actuarial practice and research.
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Appendix
Let X and Y be two bivariate random variables linked by the copula function C(y, v) for u = Fx(x)
and v = Fy(y). If it is the Clayton copula C(u,v) = w?4+v? -1 for 6 > 0, the copula
density is

2

d
)= Cluv) =(1 +0)(u? v — 1)y OO

and the corresponding h-functions are derived as

d
Lo = v 0,
u

d
a—C(u, V) =@ v —1)"V/o-1, 701
v

If it is the 90° rotation of the Clayton copula C(u,v)=v—((1 — W +vf — 1)1/ the
copula density is
) =14+ 0)((1 —w)™ 4v70 —1)7V02(1 — =01y 7071,

and the h-functions are given as

%C(u, N=(1—uw) " +v 0 — 1)~ V011 — )07,

0
a—C(u, v)=1-—((1- u)fe +v0 — 1)71/9711/7971.
v
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If it is the 180° rotation C(u, V) =u+v—1+((1—u)?+ 1 —v)"? —1)"1/9 the copula
density is

cu)=1+0)Q -+ =) =) V20— 11—y,

and the h-functions are

%cw, W)= 1= (A m W) (=) — 1) — gy,

%C(u, NW=1—(1—-wl+1-—»"?—1) V11 -y oL

If it is the 270° rotation C(u, v) = u — (u=? + (1 —v)=? —1)71/? the copula density is
V) =1+ + 1 -y =)V 2y (1 -y
and the h-functions are

9
5, Cwy) =1- W+ Q=) -1V
u

a%c(”’ V=w’+0-v -1 1 -yl

(exp (<61)—1)(exp 6v)—1)

For the Frank copula C(u,v)=—In(1+ oxp CO)—1

the copula density is

)/0 given —oco < 6 < oo,

0 exp (— Ou) exp (— Ov)
exp(—60) — 1+ (exp (— Ou) — 1)(exp (— Ov) — 1)

c(u,v) =

0 exp (— Ou) exp (— 6v)(exp (— Ou) — 1)(exp (— Ov) — 1)
(exp (— 0) — 1 + (exp (— Ou) — 1)(exp (— Ov) — 1))?

and the corresponding h-functions are derived as

iC( - exp (—Ou)(exp (—6Ov) — 1)
ou HY= exp (—0) — 1+ (exp (— Qu) — 1)(exp (— Ov) — 1)’
iC( - exp (— Ov)(exp (—Ou) — 1)
gy V= exp (—0) — 1+ (exp (— Ou) — 1)(exp (— Ov) — 1)
For the Gaussian copula C(u, v) = ®,(® ! (u), ®~1(v)) given —1 < 0 < 1, the copula density
is
o v) = J% exp (— L@ (), 81D — (@ w), &1 ()),
10 10 . .
where D = |: 01 :| and I = |:0 1], and the h-functions are given as
9 (T ) 6D (w)
guctun=0 (T ),
9 e O Hu)—001(v)
jctun == (),
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