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Reflection of rightward moving shocks of the
first and second families over a steady oblique
shock wave
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The reflection of rightward moving shocks (RMSs) belonging to the first and second
families, over an initially steady oblique shock wave (SOSW) produced by a wedge, is
studied in this paper. Various possible combinations of primary reflection (reflection at the
intersection point of the RMS and the SOSW) and secondary reflection (reflection, on the
wedge, of reflected shock waves of the primary reflection) are identified and the transition
conditions are studied. For an RMS of the first family, the shock reflection problem can
be shown to be equivalent to a shock interference problem. If the wedge angle is large,
then the problem is equivalent to a shock interaction problem with two incident shock
waves of the same family so that we have type VI, type V and type IV shock interferences.
Interestingly, when the wedge angle is small enough, deflection angle reversal is observed
for the SOSW so that the right part of the SOSW can no longer be regarded as one incident
shock wave. It is now the left part of the SOSW that becomes one incident shock wave.
As a result, for a small wedge angle, type I or type II shock interference is observed. If
the RMS belongs to the second family, then the primary reflection may have regular and
Mach reflections, and one reflected shock of this primary reflection reflects over the wall
as another pseudo-steady shock reflection, while the other reflected shock wave may be
smooth or have a kink or a triple point, as in single, transitional and double Mach reflection
of pseudo-steady shock reflection.

Key words: high-speed flow, shock waves

1. Introduction

Shock reflection is an important phenomenon in high-speed flow and is divided into steady
reflection, pseudo-steady reflection and unsteady reflection by Ben-Dor (1988), who also
documented the related knowledge in a monograph (Ben-Dor 2007).
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Figure 1. Illustration of shock reflection in supersonic flow: (a) steady symmetric RR, (b) steady symmetric
MR, (c) pseudo-steady RR, (d) pseudo-steady MR.

Steady shock reflection occurs when an incident oblique shock wave caused by a wedge
of wedge angle θw in a supersonic flow with upstream Mach number M0 reflects over
a reflecting surface. Both regular reflection (RR) as shown in figure 1(a), and Mach
reflection (MR) as shown in figure 1(b), exist depending on the conditions of inflow
Mach number and wedge angle. The transition condition between RR and MR has been
extensively studied since the work of von Neumann (1943, 1945). There are two transition
criteria: the von Neumann condition, which is the necessary condition for Mach reflection,
and the detachment condition, which is the sufficient condition for Mach reflection to
occur. In the M0–θw plane, these two conditions divide the space into a regular reflection
region where only regular reflection can occur, a Mach reflection region where only Mach
reflection can occur, and a dual solution domain (DSD) where both regular reflection and
Mach reflection are possible (Henderson & Lozzi 1975; Hornung, Oertel & Sandeman
1979; Teshukov 1989; Li & Ben-Dor 1996). A wedge-angle variation-induced hysteresis
was proposed by Hornung et al. (1979) and later proved by Chpoun et al. (1995) using
experimental study and Vuillon, Zeitoun & Ben-Dor (1995) using numerical simulation,
and a Mach number variation-induced hysteresis was demonstrated by Ivanov et al. (2001).
According to this hysteresis study, whether we have Mach reflection or regular reflection
in the dual solution domain depends on the history of the building of the actual steady flow
(Ben-Dor et al. 2002; Hornung 2014). In steady asymmetric shock reflection, where two
incident shock waves are from the opposite wedges of different geometry, it is possible
to have indirect Mach reflection (InMR), compared to the usual direct Mach reflection
(DiMR). Li, Chpoun & Ben-Dor (1999) and Ivanov et al. (2002) clarified the domains
of RR, MR and DSD, together with the regions to have DiMR or InMR for each triple
point.

Pseudo-steady shock reflection happens when a planar incident shock wave moving
with a constant velocity encounters a sharp compressive straight wedge immersed initially
in a still gas. Both regular and irregular reflections may occur, depending on the
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incident shock wave Mach number Ms, defined as the ratio between the shock speed
φ and the sound speed a0 in the still gas, and the reflecting wedge angle θw. Regular
reflection is displayed schematically in figure 1(c). There are, however, numerous types
of irregular reflections, including basically the von Neumann reflection, also called
weak Mach reflection or Guderley reflection (see § 3.3 of Ben-Dor 2006), and Mach
reflection in the usual sense. Mach reflection is further subdivided into single Mach
reflection (SMR), transitional Mach reflection (TMR) and double Mach reflection (DMR).
Figure 1(d) shows only the single Mach reflection case. For details of various types of
Mach reflection and their transition criteria, see the review of Ben-Dor (2006). Semenov,
Berezkina & Krassovskaya (2012) provided a slightly different classification of the Mach
reflection.

There are possible applications in which the moving incident shock wave encounters a
body immersed initially in a supersonic flow. In this case, there is a steady oblique shock
wave (SOSW) ahead of the body before the moving incident shock wave impinges the
wedge through reflecting over its oblique shock wave, if the reference frame is attached to
the body. This is the problem of reflection of a rightward moving shock (RMS) over an
SOSW considered in this paper.

This situation may occur when a supersonic or hypersonic vehicle encounters the shock
wave of an upstream vehicle moving more slowly; the shock wave of the latter may reflect
over the shock wave of the former (Klopfer, Yee & Kutler 1989). Another situation arises
from the disturbance in the form of an upstream shock wave that enters into a supersonic
inlet with oblique shock waves inside this inlet. Kudryavtsev et al. (2002) studied such
a case and showed that such a disturbance may force transition from regular reflection to
Mach reflection of the oblique shock wave inside the inlet. More generally, the reflection of
a moving shock wave over another shock wave has been studied before within the context
of shock-on-shock interaction (Kutler, Sakell & Aiello 1975; Li & Ben-Dor 1997; Law,
Felthun & Skews 2003; Smyrl 2006). Li & Ben-Dor (1997) illustrated the two possible
problems with such interaction: one is in interception of a supersonic vehicle with a
blast wave, and the other is in the encounter between two supersonic vehicles travelling
in opposite directions.

However, past studies about reflection of an RMS over an SOSW, or equivalently
shock-on-shock interaction, appeared to be restricted to the problem where the RMS
belongs to the second family, i.e. the flow stream is towards the left-hand side in the frame
co-moving with the RMS. The problem where the RMS is of the first family, for which the
flow stream is towards the right-hand side in the frame co-moving with the RMS, is also
important. One such example is the encounter of a supersonic projectile overtaking the
bow shock wave formed initially at the exit of a launched tube, studied experimentally by
Athira et al. (2020). It is thus interesting to study the difference between shock reflection
patterns for RMSs of the first and second families, and this forms the objective of the
present paper. It is expected that RMSs of the first and second families may cause different
reflection patterns.

The aim of this paper is to identify, through numerical simulation and transition
condition analysis, the possible shock reflection types for each family and the transition
conditions. We will examine the similarity of the present problem with the classical
Edney steady shock interaction (Edney 1968), since using a properly chosen reference
frame means that the problem can be made equivalent to Edney’s problem. Recall that,
depending on the location of interaction and the strength of the shock waves near the
interaction points, there are six types of shock/shock interferences (Edney 1968; Bramlette
1974; Frame & Lewis 1997; Grasso, Purpura & Délery 2003; Windisch, Reinartz & Muler
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Figure 2. Illustration of Edney’s six types of shock interaction.

2016); their flow patterns and the situations to produce them are illustrated in figure 2. It is
also interesting to examine whether the present reflection shares some similarity with the
classical pseudo-steady shock reflection problem shown in figures 1(c,d).The rest of this
paper will be organized as follows.

The problem that we consider will be defined in § 2, where we also provide the necessary
shock relations, some properties of RMSs of both families, and the numerical methods
used in this paper.

In § 3, we will study shock reflection for an RMS of the first family. The transition
condition is studied by switching the present problem to an equivalent steady shock
interaction problem where typically type I to type VI shock interferences are basic flow
patterns. Numerical simulation will be used to display the possible shock reflection
patterns. In this section, a flow deflection angle reversal will be observed, and its
significance in changing the role of incident shock waves and the reflection type is
discussed.

In § 4, we will study shock reflection for an RMS of the second family. The transition
condition is studied using a reference frame co-moving with the intersection point of the
RMS and the SOSW. Numerical simulation will be used to display the possible shock
reflection patterns. The global reflection pattern is subdivided into primary reflection
(reflection at the intersection point of the RMS and the SOSW) and secondary reflection
(reflection of the reflected shock from primary reflection). This not only allows us to go
into details of the primary reflection patterns, but also reveals some phenomena related to
secondary reflection.

Conclusions will be stated in § 5.
In this paper, we use ρ, p, u, v, a, M and γ to denote the density, pressure, the two

components of flow velocity, sound speed, Mach number and ratio of specific heats,
respectively. The sound speed is computed as a = √

γ p/ρ.
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Figure 3. Reflection between a right-going incident shock wave and an SOSW attached to a sharp wedge:
(a) initial state; (b) a typical moment.

2. Problem definition, shock relations and numerical method

This section defines the shock reflection problem where the RMS may belong to the first
and second families, provides the shock relations for both moving and steady-state shock
waves, discusses some properties of the RMS, and gives the numerical method used and
the method to identify a triple point structure.

2.1. Definition of the present shock reflection problem
The shock reflection problem that we consider is displayed schematically in figure 3(a).
A wedge of angle θw is immersed in an initially steady supersonic flow with Mach
number M0 and produces an SOSW with shock angle βw. A rightward moving normal
shock starting at the inlet and moving at constant speed φ impinges the oblique shock
wave to produce a shock reflection between a moving shock wave and an oblique
shock.

The left status of this RMS will be denoted with subscript l, and the flow parameters in
region (0) will be denoted with subscript r. In this paper we consider only the case where
Ml > 1, i.e. the inlet remains supersonic behind the RMS. The speed of the shock may
also be measured with the shock moving Mach number Ms = φ/ar, where ar is the sound
speed in region (0).

As shown in figure 3(b), that part of the RMS above the intersection point P of the RMS
and the SOSW will be denoted shock IS, meaning the incident shock wave. At reflection,
the unperturbed part of the SOSW (downstream of P) will be denoted shock SOR, with the
subscript OR meaning the original SOSW. The oblique shock wave newly created with
new inflow condition updated by the RMS will be denoted SNE.

Both first and second families are considered for the RMS. For an RMS of the first
family, one has pr > pl, and in the frame co-moving with the RMS, the flow stream is
towards the right-hand side. For an RMS of the second family, one has pr < pl, and in the
frame co-moving with the RMS, the flow stream is towards the left-hand side. Reflection
with an RMS of the first family may occur when one supersonic object penetrates the
shock wave of another supersonic object that has a smaller speed and is upstream initially.
Reflection with an RMS of the second family may occur when two supersonic objects
move in the opposite direction, with one penetrating the shock wave of another. In this
paper, we consider only the case that the penetrating object (here simplified as a wedge)
penetrates perpendicularly to the shock wave of the other.
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We will work with a reference frame co-moving with the intersection point P. It is
obvious that the intersection point P has velocity

V P = (uP, vP) = (Msar,Msar tanβw), (2.1)

where βw is the shock angle of the undisturbed (original) SOSW.
In the following, we will need repeatedly the oblique shock wave relations, which will,

for brevity, be abbreviated as

M2
d = fM(Mu, βud), pd = pu fp(Mu, βud), ρd = ρu fρ(Mu, βud), (2.2a–c)

where

fM(M, β) =
M2 + 2

γ − 1
2γ
γ − 1

M2sin2β − 1
+ M2cos2β

γ − 1
2

M2 sin2β + 1
,

fp(M, β) = 1 + 2γ
γ + 1

(
(M sinβ)2 − 1

)
,

fρ(M, β) = (γ + 1)(M sinβ)2

2 + (γ − 1)(M sinβ)2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

In (2.2a–c) and (2.3), the subscript u denotes the flow parameters upstream of the shock
wave, and d downstream; βud is the shock angle that is related to the flow deflection angle
θud by the shock angle relation

tan θud = fθ (Mu, βud), fθ (M, β) = 2
(
M2 sin2 β − 1

)
(
M2 (γ + cos 2β)+ 2

)
tanβ

. (2.4a,b)

For a given upstream Mach number Mu and flow deflection angle θud, there are two
solutions for βud; the smaller one corresponds to a weak solution, and the larger one
corresponds to a strong solution. There is a maximum value for the flow deflection angle
θ = θ(max)(Mu), which is determined by ∂fθ (Mu, βud)/∂βud = 0. The expression for the
detached angle is

sin2 βm = 1
γM2

u

[
γ + 1

4
M2

u − 1 +
√
(1 + γ )

(
1 + γ − 1

2
M2

u + γ + 1
16

M4
u

)]
,

tan θ(max) = 2[(M2
u − 1) tan2 βm − 1]

tanβm [(γM2
u + 2)(1 + tan2 βm)+ Mu(1 − tan2 βm)]

.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.5)
For a given Mu, there is a flow deflection angle at which the downstream shock wave

has sonic flow (i.e. Md = 1), beyond which the shock is a strong shock (with Md < 1),
compared to weak shock (with Md > 1) for a smaller flow deflection angle.

2.2. Shock relations for RMSs of the first and second families
For RMSs of both families, the flow parameters Ml, ul, ρl, pl on the left of an RMS can be
related to the flow parameters Mr, ur, ρr, pr on the right of the RMS and the shock speed
φ or the shock Mach number Ms.
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For an RMS of the first family, pl < pr and we have (Ben-Dor et al. 2001)

φ = ur − ar

√
γ + 1

2γ
pl

pr
+ γ − 1

2γ
(2.6)

and

ul = ur − ar

γ

(
pl

pr
− 1

)(
γ + 1

2γ
pl

pr
+ γ − 1

2γ

)−1/2

. (2.7)

For an RMS of the second family, pr < pl and we have (Ben-Dor et al. 2001)

φ = ur + ar

√
γ + 1

2γ
pl

pr
+ γ − 1

2γ
(2.8)

and

ur = ul + al

γ

(
pr

pl
− 1

)(
γ + 1

2γ
pr

pl
+ γ − 1

2γ

)−1/2

. (2.9)

Both (2.6) and (2.8) can be used to express the pressure ratio as a function of the Mach
numbers Mr and Ms:

pl

pr
= ψ, (2.10)

where

ψ = 2γ (Mr − Ms)
2 − (γ − 1)

γ + 1
. (2.11)

The shock relation for density and the sound speed expression can be used to give

ρl

ρr

=
1 + γ + 1

γ − 1
ψ

ψ + γ + 1
γ − 1

,
al

ar
=

√√√√√√√ψ
ψ + γ + 1

γ − 1

1 + γ + 1
γ − 1

ψ

. (2.12a,b)

Insert (2.7) for ul and (2.12a,b) for al into Ml =ul/al, and using (2.10) to replace pl/pr
by ψ , we get, for an RMS of the first family,

Ml =
Mr − 1

γ
(ψ − 1)

(
γ + 1

2γ
ψ + γ − 1

2γ

)−1/2

√√√√√√√ψ
ψ + γ + 1

γ − 1

1 + γ + 1
γ − 1

ψ

. (2.13)

Similarly, for an RMS of the second family, we have

Ml =

(
γ + 1

2
− Ms

Mr

)
1
ψ

+
(
γ − 1

2
+ Ms

Mr

)

γ

(
Ms

Mr
− 1

)√
γ + 1

2γ
1
ψ

+ γ − 1
2γ

. (2.14)
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Figure 4. The Mach number Ml as a function of Mr: (a) Ms = 5; (b) Ms = 30.

2.3. Properties of RMSs of both families
Now we display how Ml and pl/pr vary with respect to Mr or Ms. The variation of the
Mach number Ml with respect to Mr and Ms is computed by (2.13) and is displayed in
figures 4(a) for Ms = 5 and 4(b) for Ms = 30.

For an RMS of the first family, Ml → ∞ when ψ = 0, according to (2.13). By (2.11),
ψ = 0 means Mr = Ms + √

(γ − 1)/(2γ ). If Ms = 5, then Mr = 5.378, which is the
abscissa of point c in figure 4(a). The value of Ml towards the point c is infinite. The
condition pl = pr occurs when ψ = 1. If Ms = 5, then Mr = 6, which is the abscissa of
point d in figure 4(a). Thus Mr has a finite range of values for an RMS of the first family,
and we have 5.378 < Mr < 6 for Ms = 5. If Ms = 30, then Mr = 30.378, which is the
abscissa of point c in figure 4(b). The value of Ml towards the point c is infinite. The
condition pl = pr occurs when ψ = 1. If Ms = 30, then Mr = 31, which is the abscissa of
point d in figure 4(b). Thus Mr has a finite range of values for an RMS of the first family,
and we have 30.378 < Mr < 31 for Ms = 30.

For an RMS of the second family, Mr also has a finite range of values. The point a in
figure 4(a) corresponds to Mr = 1, at which Ml = 2.05 according to (2.14). The point b
corresponds to pl = pr, i.e. ψ = 1. With ψ = 1, (2.11) gives Mr = Ms − 1 = 4 for Ms =
5. The point a in figure 4(b) corresponds to Mr = 1, at which Ml = 1.96 according to
(2.14). The point b corresponds to pl = pr, i.e. ψ = 1. With ψ = 1, (2.11) gives Mr =
Ms − 1 = 29 for Ms = 30.

In figure 5(a), the variance of Ml with the change of Ms for Mr = 6 is displayed. For
an RMS of the first family, Ml → ∞ when ψ = 0, according to (2.13). By (2.11), ψ = 0
means Ms = Mr − √

(γ − 1)/(2γ ). If Mr = 6, then Ms = 5.622, which is the abscissa
of point b in figure 5(a). The value of Ml towards the point b is infinite. The condition
pl = pr occurs when ψ = 1. If Mr = 6, then (2.11) gives Ms = 5, which is the abscissa of
point a in figure 5(a). Thus Ms has a finite range of values for an RMS of the first family,
and we have 5 < Ms < 5.622 for Mr = 6. For an RMS of the second family, the point
d in figure 4(a) corresponds to Ms = 30, at which Ml =2.443 according to (2.14). The
point c corresponds to pl = pr, i.e. ψ = 1. With ψ = 1, (2.11) gives Ms = Mr + 1 = 7 for
Mr = 6.
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Figure 5. (a) The Mach number Ml as a function of Ms with Mr = 6; (b) pl/pr as a function of Ms with
Mr = 6.
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Figure 6. Domain of computation and boundary condition for the numerical simulation.

In figure 5(b), the variance of pl/pr (orψ) with the change of Ms for Mr = 6 is displayed.
For an RMS of the first family, by (2.11), ψ = 0 means Ms = Mr − √

(γ − 1)/(2γ ). If
Mr = 6, then Ms = 5.622, which is the abscissa of point b in figure 5(b). The condition
pl = pr occurs when ψ = 1. If Mr = 6, then (2.11) gives Ms = Mr − 1 = 5, which is the
abscissa of point a in figure 5(b). Thus Ms has a finite range of values for an RMS of the
first family, and we have 5 < Ms < 5.622 for Mr = 6. For an RMS of the second family,
the point d in figure 5(b) corresponds to Ms = 7.648, at which Ml =5.761 according to
(2.14). The point c corresponds to pl = pr, i.e. ψ = 1. With ψ = 1, (2.11) gives Ms =
Mr + 1 = 7 for Mr = 6.

2.4. Numerical method
Computational fluid dynamics (CFD) will be used to display shock reflection patterns for
specific input conditions. The compressible Euler equations of an ideal gas are solved
using the second-order implicit advection upstream splitting method (AUSM) (Liu 1996).
The computational domain and the boundary conditions are shown in figure 6. The lower
boundary is a wedge with wedge angle θw.

First we compute a steady supersonic flow with inflow Mach number M0. This
will give a simple supersonic flow with an oblique shock wave with shock angle βw.
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Figure 7. Mach contours with different meshes: (a) 250 × 250 cells, (b) 500 × 500 cells, (c) 1000 × 1000
cells.

Then, at the inlet upstream of the wedge, we set an RMS moving at a given Ms. The
original steady-state solutions are now considered as the right-hand state of this RMS. The
left-hand side flow parameters Ml, pl and ρl of this RMS are obtained from the expressions
(2.10)–(2.13).

To test the accuracy with a different choice of grid density, we consider an RMS of
the first family with θw = 25◦,Ms = 2.45 and Mr = 3. Three grids are tested. The coarser
grid has 250 × 250 cells, the middle grid has 500 × 500 cells, and the finest grid has
1000 × 1000 cells. The Mach contours at the same typical instant are displayed in figure 7
for the three grids. The shock wave patterns calculated with the middle and finest grids
have little difference, as shown in figure 7, so the finest grid is used for the subsequent
numerical simulations.

2.5. Solution and identification of steady and moving triple points
The problem studied in this paper may display a shock reflection configuration with
several moving triple points. The typical flow structure for a triple point configuration
is shown in figure 8, where we distinguish between an upward triple point and a downward
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Figure 8. A triple point structure: (a) upward triple point; (b) downward triple point.

triple point. It involves an incident shock (labelled i), a reflected shock (labelled r), a Mach
stem (labelled m) and a slipline (labelled s). The flow in the vicinity of a steady triple point
is determined by the von Neumann triple point theory: the flow properties in the adjacent
regions (regions (0)–(3) in figure 8) are connected by oblique shock wave relations with
an assumed slipline angle θs, and this slipline angle is finally determined by the pressure
balance condition (p3 = p2) and flow parallel condition (θ03 = θs, θ02 = θ01 − θs). The
pressure balance condition states that the pressure behind the reflected shock wave is
balanced with that behind the Mach stem; the flow parallel condition states that the flow
streams across the slipline are parallel.

In the following, we need an efficient method to identify a moving triple point structure
through numerical solution of unsteady flow, i.e. to identify which of the shock waves of
a triple point are the incident one, the reflected one and the Mach stem, from numerical
solutions. For this, we will use the triple point structure identification (TPSI) method of
Wang & Wu (2021); see the Appendix for how to use it.

3. Reflection types and transition conditions for an RMS of the first family

In this section, we first display one shock reflection pattern and make a transformation to
show that this reflection pattern can be related to type V shock interaction, and suggest
that the present shock reflection problem with an RMS of the first family (called the
original problem below) can be reduced to an equivalent shock interference problem
(called the equivalent problem below), i.e. the shock interference problem of Edney (1968)
or shock interaction with double wedge geometry (Olejniczak, Wright & Candler 1997),
which produce, for instance, type VI, V, IV shock interferences. A link is thus established
between the input parameters of the original problem and the input parameters of the
equivalent problem. Using this link, possible shock reflection patterns and transition
conditions are discussed. A flow deflection angle reversal is observed, which alters the
role of shock SOR and shock SNE, so that type I and type II shock interactions also occur.

3.1. A shock reflection pattern that can be interpreted as type V shock interference
We compute here an initially steady supersonic flow with M0 = 6 and θw = 30◦. This will
give an SOSW. Then, at the inlet, we set an RMS of the first family moving at Ms = 5.498.
The original flow parameters in region (0) are now considered as the right-hand state
of this RMS. The left-hand side flow parameters of this RMS are set to Ml = 10.889
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(obtained from (2.13) for the first family), pl = 0.127pr and ρl = 0.288ρr (obtained from
(2.10)–(2.12a,b)).

The Mach contours at some typical instant where the major reflection structure is well
formed are displayed in figure 9(a). The shock reflection pattern, with typical triple point
structure illustrated, is displayed in figure 9(b). The shock reflection pattern displayed in
figure 9(b) has five triple points (labelled Tp1, Tp2, Tp3, Tp4, Tp5), identified using the
TPSI method given in Appendix. The incident shock, reflected shock, Mach stem and
slipline are marked with i, r, m and S, with subscripts 1, 2, 3, 4, 5 for the corresponding
triple points. For instance, i1, r1, m1, S1 mark, respectively, the incident shock, reflected
shock, Mach stem and slipline of triple point Tp1. Note that this flow structure is similar to
the reflection pattern of that given by Wang & Wu (2021) using M0 = 6, θw = 22.5◦ and
Ms = 5.58. This similarity means that the five triple points structure may occur at close
but different conditions. The schematic display in figure 9(b) has more details than that
of Wang & Wu (2021): we display here streamlines for each triple (these streamlines are
based on the flow relative to the frame co-moving with that triple point). The direction
of a streamline indicates how pressure changes across any shock wave. The pressure
downstream of a shock is larger than that upstream. Consider, for instance, triple point
Tp3. For an RMS of the first family, pl < pr according to figure 5(b), thus one streamline
relative to triple point Tp3 points from region (r) to region (l) when crossing the RMS
(shock ‘Is’ in figure 9b) of figure 3(a).

The five triple points structure displayed in figure 9(b) is in fact a type V shock
interference, which occurs in Edney’s shock interaction problem (Edney 1968) and in the
double wedge shock reflection problem (cf. Olejniczak et al. 1997; Hu et al. 2010; Xiong
et al. 2018); see figure 10 for an illustration of type V shock interference produced by
double wedge reflection.

The switch of the five triple points structure shown in figure 9(b) to type V shock
interference is shown schematically in figure 11. The flow is measured in the reference
frame co-moving with the intersection point P of shock IS and shock SOR (see figure 3b).
The picture of the original flow structure shown in figure 11(a) is flipped upside down
to become the picture shown in figure 11(b), which is further rotated in the clockwise
direction to become the picture shown in figure 11(c).

The establishment of equivalence between the original problem and a shock interaction
problem allows us to anticipate more shock reflection patterns for other sets of input
parameters, as will be discussed in § 3.2. It is well-known that type V shock interference is
caused by the interaction of two incident steady shock waves from the same family (Keyes
& Hains 1973; Grasso et al. 2003). The switch of the observed shock reflection pattern of
the present problem, as shown in figure 9(b), to the type V shock interference means that
the RMS of the first family (Is) and the initially steady-state shock wave (SOR) constitute
two incident shock waves of the same family when the reference frame co-moving with
the intersection point P of IS and SOR is used.

It is also well-known that the interaction of two shock waves of the same family
may also lead to type VI and type IV shock interference (Keyes & Hains 1973; Grasso
et al. 2003). By switching between the original problem (present shock reflection with
an RMS of the first family) and the equivalent problem (steady shock interaction
problem), as illustrated in figure 12, we anticipate that the present shock reflection
problem may produce a shock reflection pattern other than the type V shock reflection
pattern, i.e. we may also have type VI and type IV shock reflection patterns as shown in
figure 12(a). However, as we will see in § 3.4, the problem is even more complex than
this.
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Figure 9. Shock reflection patterns: (a) Mach contours; (b) shock pattern.
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Figure 10. Schematic illustration of the double wedge reflection of type V.
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Figure 11. Schematic illustration of the procedure to switch to type V shock interference.
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Figure 12. Correspondence between possible shock reflection patterns of the original problem (a) and
possible shock interference patterns of the equivalent problem (b).

3.2. Link of parameters between the original problem and the equivalent problem: flow
deflection angle reversal

To anticipate the shock reflection patterns of the original problem (reflection between
the RMS and the SOSW with input parameters Ms, Mr and θw) using the knowledge of
the equivalent problem (steady shock interaction between two incident shock waves with
input parameters θ1, θ2 and M), we need to make a link between the input parameters
of the present problem and those of the equivalent problem. The parameters used to
establish such a link are labelled in figure 13. The link is obtained directly by using
the frame co-moving with the intersection point P of IS and SOR. Here, θ1 is the flow
deflection angle across the first incident shock wave IS (or the first wedge angle as shown
in figure 10), and θ2 is that across the second incident shock wave SOR and measured with
respect to the free-stream flow direction (or the second wedge angle as shown in figure 10).
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Figure 13. Flow parameters in the frame co-moving with the intersection point P of IS and SOR for an RMS
of the first family. Only type V shock interference is considered.

The difference
	θ = θ2 − θ1 (3.1)

measures the flow deflection angle across the shock wave SOR. Now we provide the
expressions for the link between θ1, θ2, M and Ms, Mr, θw. The parameters θ1, θ2, M
follow from Ms, Mr, θw by switching flow parameters from the ground frame to the frame
co-moving with the intersection point P.

On the ground frame, the Mach number Md and speed of sound ad in zone (d) (i.e.
downstream of the steady shock wave SOR) follow from the steady shock wave relation
of SOR. The flow velocities (ud, vd) of zone (d) in the ground frame are given by
ud = Mdad cos θw, vd = Mdad sin θw. In regions (r) and (l), the velocities are ur = Mrar
and ul = Mlal, where Mr and Ml are given input flow parameters.

Now we derive the flow parameters in the frame co-moving with P. The superscript (P)
is used to denote flow parameters in this co-moving frame. The velocity of the intersection
point P of IS and SOR is given by (2.1). Thus the flow velocities of region (r), region (l)
and region (d) in the co-moving frame are

(u(P)r , v(P)r ) = (ur − uP,−vP) region (r),

(u(P)l , v
(P)
l ) = (ul − uP,−vP) region (l),

(u(P)d , v
(P)
d ) = (ud − uP, vd − vP) region (d).

⎫⎪⎪⎬
⎪⎪⎭ (3.2)

Putting (3.2) into M(P)
l =

√
(u(P)l )2 + (v

(P)
l )2/al and θ

(P)
l = arctan |v(P)l /u(P)l |, and

using the definition of the Mach number, we get the following expressions for the Mach
number M(P)

l and flow deflection angle θ(P)l in region (l):

M(P)
l =

√
(Mlal − Msar)2 + (Msar tanβw)2

al
,

θ
(P)
l = arctan

(∣∣∣∣ Msar tanβw

Mlal − Msar

∣∣∣∣
)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.3)

Putting (3.2) into θ(P)r = arctan |v(P)r /u(P)r |, we get the following expressions for the flow
deflection angle θ(P)r in region (r):

θ(P)r = arctan
(∣∣∣∣Ms tanβw

Ms − Mr

∣∣∣∣
)
. (3.4)
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The flow deflection angle θ(P)d in region (d) is then computed by

θ
(P)
d =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan

∣∣∣∣∣v
(P)
d

u(P)d

∣∣∣∣∣ , if u(P)d > 0, v(P)d < 0,

π − arctan

∣∣∣∣∣v
(P)
d

u(P)d

∣∣∣∣∣ , if u(P)d < 0, v(P)d < 0,

π + arctan

∣∣∣∣∣v
(P)
d

u(P)d

∣∣∣∣∣ , if u(P)d < 0, v(P)d > 0,

2π − arctan

∣∣∣∣∣v
(P)
d

u(P)d

∣∣∣∣∣ , if u(P)d > 0, v(P)d > 0.

(3.5)

The expression (3.2) is used to compute the right-hand sides of the above expressions.
The corresponding parameters θ1, θ2 and M in the equivalent problem, as shown in

figure 13, can thus be expressed as

θ1 = θ(P)r − θ
(P)
l ,

θ2 = θ
(P)
d − θ

(P)
l ,

M = M(P)
l .

⎫⎪⎪⎬
⎪⎪⎭ (3.6)

To identify the co-moving flow field, apart from parameters θ1, θ2 and M, the Mach
number in the co-moving frame with point P in region (r) and region (d), denoted M1 (or
M(P)

r ) and M2 (or M(P)
d ) are also needed. With the required flow velocity components given

by (3.2), the Mach numbers M1 (or M(P)
r ) and M2 (or M(P)

d ) in the equivalent problem are
obtained as

M1 = M(P)
r =

√
(u(P)r )2 + (v

(P)
r )2

ar
,

M2 = M(P)
d =

√
(u(P)d )2 + (v

(P)
d )2

ad
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.7)

For a given set of Ms, Mr and θw, (3.6) provides the final set of relations to find the input
parameters θ1, θ2 and M of the equivalent shock interaction problem, and (3.7) provides
the final set of relations to find Mach numbers M1 and M2. Recall that we have defined
	θ = θ1 − θ2, which can be regarded as the flow deflection angle of the second attached
shock wave of the equivalent double wedge shock reflection.

For Mr = 6 and Ms = 5.498, the variations of θ1, θ2 and 	θ for θw ∈ [0◦, 40◦] are
displayed in figure 14(a), and the variations of M, M1 (or M(P)

r ) and M2 (or M(P)
d ) for

the same range of θw are displayed in figure 14(b). It is seen that, with increasing θw,
the angle θ1 decreases monotonically from 33.36◦ to 8.19◦, and both M and M1 increase
monotonically. However, the curves for θ2, 	θ = θ2 − θ1 and M2 are non-monotonic. For
increasing θw, they first decrease, then increase, and finally decrease. The Mach number
M2 is smaller than M1. When θw → 0, the SOSW is an infinitely weak oblique shock wave,
and the flow parameters in region (r) are almost the same as those in region (d).
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Figure 14. Variation of parameters with respect to θw for Mr = 6 and Ms = 5.498: (a) variation of θ1, θ2 and
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	θ ; (b) variation of M, M1 and M2.

Two important phenomena are observed. The first is that M2 is below 1 for θw ∈
[0◦, 24.18◦], and above 1 for θw ∈ [24.18◦, 40◦]. This defines a condition that the incident
shock wave SOR becomes a strong one in the moving frame, which would be a condition for
transition between types V and IV. In § 3.3, we indeed observe type IV shock interaction.
The second phenomenon is that the difference 	θ is negative for θw ∈ [0◦, 9.18◦], while
it is positive for θw ∈ [9.18◦, 40◦]. This will be referred to flow deflection angle reversal,
and this reversal will make the shock wave SOR no longer an incident one but a reflected
one, and type I and type II shock interference will occur; see § 3.4 for more details.

Similar phenomena are observed for other sets of conditions, as can be seen from
figure 15 for Mr = 6 and Ms = 5.2.

3.3. Discussion of the transition condition and possible shock reflection patterns
The above correspondence of the present unsteady shock reflection problem to the
equivalent shock interaction problem provides the input conditions θ1, θ2 and M for
anticipating possible shock reflection patterns and for possible transition conditions.
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Figure 16. The six different domains in the Ms–θw plane with possible different shock reflection patterns for
Mr = 6. The numbers 1, 2, 3, 4, 5 correspond to the test cases in table 1.

Conventional transition criteria for shock interaction. Transition conditions have been
well studied for Edney’s six types of shock interferences (Crawford 1973; Bramlette 1974;
Grasso et al. 2003) and for the double wedge shock interaction problem (Olejniczak
et al. 1997; Hu et al. 2010; Xiong et al. 2018). According to these studies, type VI and
type V shock interactions may occur if a weak shock intersects another weak shock of
the same family. The transition between type VI and type V shock interactions occurs
when the merged shock wave reaches sonic condition behind it. Type IV and type III
shock interferences occur when the downstream incident shock wave is a strong one.
The transition between type V and type IV shock interference thus occurs when the
downstream incident shock wave reaches sonic condition behind it. The transition between
type III and type IV shock interference occurs when the slipline of the upper triple point
intersects the wall at an angle beyond the detachment condition of the reflected shock
wave. Type I and type II shock interferences occur when the two incident shock waves
are weak and of different families, and transition between type I and type II occurs when
the detachment of one reflected shock wave is reached. Note that if types VI, V and IV
shock interferences are due to double wedge geometry, then more interference patterns are
observed and the transition conditions are given by Olejniczak et al. (1997).

For any set of Ms, Mr and θw of the original problem, we compute θ1, θ2 and M for
the equivalent shock interaction problem using the method in § 3.2. With θ1, θ2 and M
thus obtained, we use the conventional transition criteria for shock interaction to build
the transition conditions and draw these transition conditions back in the Ms–θw plane.
The transition conditions thus obtained are displayed in figure 16 for Mr = 6. Note that,
according to figure 5(b), the parameter range of Ms is Ms ∈ [5.01, 5.62]. The parameter
range of θw is chosen to be θw ∈ [0◦, 45◦], which covers the detachment condition θw =
θmax(Mr) of the steady oblique shock SOR, computed by (2.5) (the situation with θw >
θmax(Mr) is not considered in this paper).
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Case θw (deg.) Mr Ms θ1 (deg.) 	θ (deg.) M M1 M2 Pressure ratio pl/pr

1 40 6 5.498 8.19 27.9 13.1 8.54 2.87 0.127
2 30 6 5.498 14.1 37.6 7.60 4.77 1.44 0.127
3 10 6 5.498 28.9 2.1 3.71 1.81 0.615 0.127
4 5 6 5.498 32.3 −5.01 3.26 1.38 0.775 0.127
5 2 6 5.1 5.11 −5.50 1.51 1.33 1.11 0.778

Table 1. Test cases for an RMS of the first family in figure 16. Here, θw, Ms and Mr are given, while θ1, θ2
and M are computed by (3.6), 	θ by (3.1), M1, M2 by (3.7), and pl/pr by (2.10).

Five cases are provided in table 1 and marked also in figure 16. These will be used for
CFD computation to display the various shock reflection patterns that may appear in the
regions of figure 16.

The six regions labelled A,B,C,D,E,F in figure 16 represent possible different shock
reflection patterns. The shock polars at points 1, 2, 3 and some point inside region D are
given in figures 17(a–d). According to transition analysis of the equivalent problem, region
A should have type VI shock interference, region B should have type V shock interference,
and region D should also have type VI shock interference but with the reflected expansion
wave replaced by a shock wave (this is named type I by Olejniczak et al. (1997)). The line
θw = θAB(Mr,Ms) separates region (A,D) and region B. It is the condition that the merged
shock wave (of the two incident shock waves of the equivalent problem) reaches the sonic
condition. The line separating regions A and D is the condition that the reflected expansion
fan of type VI shock interference begins to be replaced by a shock wave. Region C should
have type IV shock interference. The line θw = θBC(Mr,Ms), which separates regions B
and C, is the sonic condition (M2 = 1) of the equivalent problem for transition between
type VI and type V shock interference, i.e. the downstream incident shock wave of the
equivalent problem reaches the sonic condition.

The shock polar presentation of some types of reflections is shown in figure 17. Figures
17(a–c) correspond to cases 1–3, which are points 1–3 in figure 16. Figure 17(d) is
the shock polar for some point in region D, for which θw = 29.577◦, Mr = 6, Ms =
5.017, M = 4.39, M1 = 4.36, M2 = 1.11, θ1 = 0.358◦ and 	θ = 39.4◦. Point (n), with
n = 1 − 8, on the shock polar figures corresponds to region (n) illustrated in the subfigure
inside the shock polar figure.

The line θw = θCE(Mr,Ms), which separates region C from the regions below it, is due
to flow deflection angle reversal (see § 3.2) and is of particular interest, so the discussion
about it and the regions below it will be presented separately, in § 3.4. Due to this reversal,
shock polars for regions E and F are provided separately in figure 18.

The numerical results for case 1, which lies in the type VI region of figure 16, are
displayed in figure 19. We observe two incident shock waves, a merged shock wave, an
expansion wave and a slipline, which is indeed type VI shock interference according to
figure 12.

The numerical results for case 2, which lies in the type V region of figure 16, is indeed
type V shock interference, according to the numerical results shown before in figure 9.

Case 3 lies in the type IV region of figure 16, and the numerical results are displayed in
figure 20. An enlarged partial view of the Mach contours is given in figure 20(a). An
enlarged partial view of pressure is displayed in figure 20(b). The global view of the
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Figure 17. Shock polars of the equivalent problem: (a) case 1; (b) case 2; (c) case 3; (d) a point in region D.

pressure contours is displayed in figure 20(c). The streamlines marked in figure 20(c)
are based in the frame co-moving with P. The structure is the same as type IV shock
interference as displayed in figure 12: it has two incident shock waves, a Mach stem and a
jet.

3.4. Type I and type II shock interference due to flow deflection angle reversal
The line θw = θCE(Mr,Ms) in figure 16, which separates regions C and E, is of particular
interest. This line corresponds to 	θ = 0, where 	θ , defined by (3.1), is the flow
deflection angle across shock SOR. Thus the line θw = θCE(Mr,Ms) corresponds to the
condition with flow deflection angle reversal discussed in § 3.2; see figure 14(a). Below this
line, the shock SOR, which is the downstream incident shock for type IV, V and VI shock
interference when θw > θCE(Mr,Ms), can no longer be regarded as an incident shock wave
of the equivalent problem, but should be regarded as a reflected shock one. This means that
the newly generated shock oblique shock wave SNE (see figure 3b) should be one incident
shock wave, apart from the RMS (IS). The shock IS and the shock SNE then constitute
two incident shock waves of different families, which should have type I and type II
shock interaction (Keyes & Hains 1973; Grasso et al. 2003). The line θw = θEF(Mr,Ms) in
figure 16 is the transition condition between type I and type II shock interference. Region
E above θw = θEF(Mr,Ms) should have type II shock interference, and region F below
θw = θEF(Mr,Ms) should have type I shock interference.
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Figure 18. Shock polars for the asymmetric shock reflection problem (with deflection angle reversal for SNE
and IS in figure 3): (a) case 4; (b) case 5.

(a) (b)

Figure 19. Type VI shock interaction for θw = 40◦, Mr = 6, Ms = 5.498: (a) Mach contours; (b) pressure
contours.

Case 4 in table 1 lies in region E, where we should have type II shock interference.
The numerical solution for case 4 is displayed in figure 21, which is indeed type II
shock interference. Figure 21(a) shows the Mach contours, figure 21(b) gives the pressure
contours, and figure 21(c) shows the Mach contours and streamlines seen from the frame
co-moving with the intersection point P. In this case, shock SOR is one reflected shock of
the type II shock interference, and shock IS and the newly generated SOSW(SNE) are the
two incident shock waves according to the streamlines shown in figure 21(c). The shock
SR2 is the other reflected shock wave.

Case 5 in table 1 lies in region F, where we should have type I shock interference.
The numerical solution for case 5 is displayed in figure 22, which is indeed type I
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(a)

(c)

(b)

Is
SOR

SR2

Figure 20. Type IV shock interaction for θw = 10◦, Mr = 6, Ms = 5.498: (a) Mach contours; (b) pressure
contours; (c) global view of pressure contours.

(a)

(c)

(b)

Is
SOR

SR2

SNE

Figure 21. Type II shock interaction for θw = 5◦, Mr = 6, Ms = 5.498: (a) Mach contours; (b) pressure
contours; (c) Mach contours and streamlines in the co-moving frame.

shock interference. Figure 22(a) shows the Mach contours, figure 22(b) gives the pressure
contours, and figure 22(c) shows the Mach contours and streamlines seen from the frame
co-moving with the intersection point P of IS and SOR. In this case, shock SOR is one
reflected shock of the type I shock interference, and shock IS and the newly generated
SOSW(SNE) are the two incident shock waves according to the streamlines shown in
figure 22(c). The shock SR2 is the other reflected shock wave.
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(a)

(b)

(c)

Is
SOR

SR2

SNE

Figure 22. Type I shock interaction for θw = 2◦, Mr = 6, Ms = 5.498: (a) Mach contours; (b) pressure
contours; (c) Mach contours and streamlines in the co-moving frame.

Note that type I and type II shock interactions are called regular reflection and Mach
reflection in asymmetric shock reflections (Li et al. 1999; Ivanov et al. 2002).

4. Reflection types and transition conditions for an RMS of the second family

This section is divided into five subsections, devoted respectively to display of some shock
reflection patterns (using CFD) including the subdivision of the global reflection structure
into primary and secondary reflection structures, the method for transition analysis of
primary reflection, the method for transition analysis of secondary reflection, and the
transition conditions for various shock reflection patterns.

4.1. Some shock reflection patterns: primary and secondary reflections
As noted in § 1, shock reflection for an RMS of the second family has been studied before
within the context of shock-on-shock interaction. Li & Ben-Dor (1997) considered an
oblique incident shock wave and derived analytical solutions for various shock reflection
patterns. Law et al. (2003) performed some numerical simulation for shock-on-shock
interaction, considering both oblique and normal incident shock waves. These studies
have considered the influence of shock angle of the incident shock. Here, we study shock
patterns and transition conditions for a normal shock, as for an RMS of the first family,
with the emphasis on the role of shock speed. More subtypes of shock reflection patterns
are expected to be found here.

Since the shock reflection patterns may be rather complex, it is convenient to consider
the global reflection pattern to be a combination of primary reflection and secondary
reflection. The primary reflection is the direct reflection at the intersection of the RMS
(IS) and the SOSW (SOR). It may produce regular reflection (RR) and Mach reflection
(MR). The secondary reflection is the reflection of reflected shock waves from primary
reflection. It may also produce regular reflection and Mach reflection; the latter will be
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Case θw (deg.) Mr Ms Pressure ratio pl/pr

1 15 5 30 729
2 30 5 30 729
3 42 8.2 10 3.61

Table 2. Test cases for an RMS of the second family. The parameters θw, Ms and Mr are specified. The
pressure ratio pl/pr is computed by (2.10).
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Figure 23. Shock reflection patterns for case 1: (a) Mach contours; (b) shock pattern.

called irregular reflection (IR) to follow the terminology in past studies of pseudo-steady
reflection.

Three properly chosen test cases showing different primary shock reflection structures,
with θw, Ms and Mr as given in table 2, are used for numerical simulation.

For case 1, the Mach contours at a typical instant are displayed in figure 23(a), and
the reflection pattern, displaying the main flow structures and ignoring some details about
interaction between shock waves and sliplines, is displayed in figure 23(b). The primary
reflection, i.e. the direct reflection at the intersection of the RMS (IS) and the SOSW
(SOR), is a Mach reflection, with Mach stem Tp1Tp2. The secondary reflection of the lower
reflected shock wave, reflected from the triple point Tp2, is an irregular reflection on the
wedge, which produces another triple point Tp3. There is a kink (K) on the reflected shock
wave from triple point Tp1.

For case 2, the Mach contours at a typical instant are displayed in figure 24(a), and
the reflection pattern, with some details ignored, is displayed in figure 24(b). The primary
reflection is a regular reflection. The secondary reflection of the lower reflected shock wave
is an irregular reflection on the wedge, which produces another triple point Tp3. There is
an additional triple point Tp4 on the reflected shock from triple point Tp1.

For case 3, the Mach contours at a typical instant are displayed in figure 25(a) and the
reflection pattern is displayed in figure 25(b). The primary reflection at point P is a regular
reflection. The secondary reflection of the lower reflected shock wave produces a regular
reflection at point R on the wedge. The reflected shock from point R further interacts
with the slipline from the primary interaction point P, and this interaction produces a
transmitted shock wave above that slipline. Similarly to case 2, there is an additional triple
point Tp4 on the reflected shock from the primary interaction point P. The reflected shock
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Figure 24. Shock reflection patterns for case 2: (a) Mach contours; (b) shock pattern.
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Figure 25. Shock reflection patterns for case 3: (a) Mach contours; (b) shock pattern.

from Tp4 will interact with the transmitted shock from R. The full details are not displayed
here since in this study we are concerned mainly with the primary and secondary reflection
structures.

For an RMS of the second family, four possible primary–secondary reflection
configurations, labelled RR-RR, RR-IR, MR-RR, MR-IR, are shown in figure 26. The
RR-RR configuration (figure 26a) means that the RMS (IS) and the SOSW (SOR) have
regular reflection at their direct intersection point (P), and the reflected shock (RS2) of
this reflection has regular reflection on the wall (at point R). The RR-IR configuration
(figure 26b) means that the RMS (IS) and the SOSW (SOR) still have regular reflection
at their direct intersection point (P) , and the reflected shock (RS2) of this reflection has
irregular reflection on the wall (with its Mach stem at point N on the wall). The MR-RR
configuration (figure 26c) means that the RMS (IS) and the SOSW (SOR) have Mach
reflection (with Mach stem Tp1Tp2), and the reflected shock (RS2) of this reflection has
regular reflection on the wall (at point R). The MR-IR configuration (figure 26d) means
that the RMS (IS) and the SOSW (SOR) also have Mach reflection (with Mach stem
Tp1Tp2) , and the reflected shock (RS2) of this reflection has irregular reflection on the wall
(with its Mach stem at point N on the wall). Types RR-RR and RR-IR have been predicted
and found numerically before (cf. Li & Ben-Dor 1997; Law et al. 2003). The MR-RR
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Figure 26. Possible flow patterns for an RMS of the second family. The reflection at the intersection point P is
the primary reflection. The reflection of one reflected shock from primary reflection on the wedge is secondary
reflection.

configuration is not observed in our numerical simulation, as will be further mentioned at
the end of § 4.4. The MR-IR configuration shown in figure 23(a) is different from the case
reported before. (Previous studies appear to have reported not an RS2 that further produces
Mach reflection on the wall, but a curved RS2 directly connected to the wall, the condition
for which will be studied in § 4.5.)

Apart from the secondary reflection of RS2 on the wall, the reflected shock RS1 may also
have secondary reflection structure; see § 4.5 for further discussion.

4.2. Method to find transition condition for primary reflection
The primary reflection, i.e. reflection between IS and SOR at their intersection point (P), is
an asymmetric reflection, and the reflection type can be decided in the frame co-moving
with the intersection point P of IS and SOR, through looking for the von Neumann criterion
and detachment criterion as by Li et al. (1999) and Ivanov et al. (2002) for steady
asymmetric reflection. The flow parameters that need to be used for deriving the transition
conditions are displayed in figure 27. We will use the superscript (P) for flow parameters
in the frame co-moving with the intersection point P.

The flow velocity of region (0) in figure 27 is

(u(P)0 , v
(P)
0 ) = (ur − uP,−vP) = ((Mr − Ms)ar,−Msar tanβw), (4.1)

where (uP, vP), the velocity of the intersection point P, is given by (2.1). Putting (4.1) into

M(P)
0 =

√
(u(P)0 )2 + (v

(P)
0 )2/ar and θ(P)0 = arctan |v(P)0 /u(P)0 |, and using (2.1), we get the

following expressions for the Mach number and flow angle in region (0):

M(P)
0 =

√
(Mr − Ms)2 + (Ms tanβw)2,

θ
(P)
0 = arctan

(
Ms tanβw

Ms − Mr

)
.

⎫⎪⎪⎬
⎪⎪⎭ (4.2)
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Figure 27. Schematic illustration of the asymmetric shock reflection in the co-moving frame with
intersection point P (case RR-RR).

The shock angles β(P)1 and β(P)2 for the shocks IS and SOR in the frame co-moving with P
are related to (u(P)0 , v

(P)
0 ) by

β
(P)
1 = arccos

(
|v(P)0 |

|(u(P)0 , v
(P)
0 )|

)
,

β
(P)
2 = arccos

(
|u(P)0 cosβw + v

(P)
0 sinβw|

|(u(P)0 , v
(P)
0 )|

)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.3)

The expressions (4.2) and (4.3) provide the input parameters M(P)
0 , θ(P)0 , β(P)1 and β(P)2

to be used for deriving the von Neumann condition and detachment condition using the
method to find the transition condition of steady asymmetric reflection. In this paper, the
shock waves IS and SOR are assumed to be weak shock waves viewing from the co-moving
frame with point P. The case that they are strong shock waves is not considered.

The flow deflection angles θ(P)1 and θ(P)2 across the shocks IS and SOR shown in figure 27
are obtained from

tan θ(P)k = fθ (M
(P)
0 , β

(P)
k ), k = 1, 2 (weak solution), (4.4)

and the Mach number and pressure in regions (1) and (2) are computed as

(M(P)
k )2 = fM(M

(P)
0 , β

(P)
k ), p(P)k = pr fp(M

(P)
0 , β

(P)
k ), k = 1, 2. (4.5)

Referring to figure 27 for notations for shock angles and flow deflection angles, the
pressures p(P)3 and p(P)4 downstream of the reflected shock waves are computed by

tan θ(P)13 = fθ (M
(P)
1 , β

(P)
13 ), p(P)3 = p(P)1 fp(M

(P)
1 , β

(P)
13 ),

tan θ(P)24 = fθ (M
(P)
2 , β

(P)
24 ), p(P)4 = p(P)2 fp(M

(P)
2 , β

(P)
24 ).

}
(4.6)
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The expressions in (4.6) are solved along with the flow parallel condition

θ
(P)
13 = θ

(P)
1 − θ

(P)
s ,

θ
(P)
24 = θ

(P)
2 + θ

(P)
s ,

⎫⎬
⎭ (4.7)

and pressure balance condition

p(P)3 = p(P)4 . (4.8)

In (4.7), θ(P)s is the slipline angle as shown in figure 27, and is assumed positive if it
deflects in the anticlockwise direction relative to the direction of (u(P)0 , v

(P)
0 ).

For given Mr and Ms, the detachment condition θw = θ
(D)
w (Mr,Ms) is the condition of

θw at which either θ(P)13 reaches its detached angle or θ(P)24 reaches its detached angle, i.e.

θ
(P)
13 = θmax(M

(P)
1 ) or θ

(P)
24 = θmax(M

(P)
2 ). (4.9)

See (2.5) for the expression for the detached angle.
For given Mr and Ms, the von Neumann condition θw = θ

(N)
w (Mr,Ms) is the condition

of θw at which

p(P)m = p(P)3 or p(P)m = p(P)4 , (4.10)

where the pressure p(P)m downstream of a strong shock wave with flow deflection angle θ(P)s

and with the upstream Mach number M(P)
0 is calculated from

p(P)m = pr

(
1 + 2γ

γ + 1

((
M(P)

0 sinβ(P)s

)2 − 1
))

, (4.11)

with β(P)s being the strong shock wave solution of tan θ(P)s = fθ (M
(P)
0 , β

(P)
s ).

4.3. Method for transition condition of secondary reflection of RS2

The secondary reflection, i.e. reflection of the reflected shock RS2 on the wedge, at point
R as shown in figure 26, is a pseudo-steady reflection similar to that shown in figures
1(c,d). To find the transition condition of such a reflection, we need to know the velocity
of RS2. For RR-IR and RR-RR as shown in figure 26, this velocity can be found easily, and
the transition condition will be considered in this subsection. For MR-IR and MR-RR in
figure 26 this velocity can not be found easily.

Now consider pseudo-steady reflection of RS2 on the wedge. In a conventional study
of pseudo-steady reflection, as shown in figures 1(c,d), the incident shock is in a vertical
direction, i.e. the angle βR displayed in figure 27 satisfies βR + θw = 90◦. Here it satisfies

βR = θ
(P)
0 − θ

(P)
2 + β

(P)
24 − θw. (4.12)

To find the transition condition, we need the speed VR of the intersection point R between
RS2 and the wedge surface. Note that R moves along the surface of the wedge. The flow
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βR
ω
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(r)

A

P

(1)

(2) R

Figure 28. Flow parameters for determining the velocity of R.

parameters used for this are displayed schematically in figure 28, from which it can be seen
that the following geometrical relation holds:

RA
sinω

= PA
sinβR

, (4.13)

with ω = βR − (βw − θw). The speed of R is related to the speed VP of point P by VR =
VP(RA/PA), where VP = Msar/ cos(βw) is the modulus of V P already given by (2.1).
Using (4.13) for RA/PA, we get

VR = sin(βR − (βw − θw))

cos(βw) sin(βR)
Msar. (4.14)

Now we use superscript (R) to denote flow parameters in the frame co-moving with R.
The Mach number M(R)

d in region (d) is thus

M(R)
d = VR

ad
− Md, (4.15)

where Md is the ground frame Mach number in region (d) calculated by M2
d = fM(Mr, βw),

and ad is the sound speed in region (d) that follows from the sound speed expression and
the oblique shock wave relation for density and pressure.

Now, with M(R)
d and βR determined, the transition condition between RR and IR at

point R can be decided as for pseudo-steady reflection. Out of various suggested criteria
for the termination of RR, Ben-Dor (2006) pointed out that the one that best agrees with
pseudo-steady shock tube experimental data is from the length scale concept of Hornung
et al. (1979). This concept suggests that in pseudo-steady flows, RR terminates when the
flow behind the reflection point, R, of the RR becomes sonic in a frame co-moving with R.
With M(R)

k (k = 1, 2) denoting the Mach number in region (k) (k = 1, 2) of figure 28(a) in
the frame co-moving with R, this criterion implies that the transition occurs when

M(R)
2 = 1, (4.16)

where M(R)
2 can be derived from the oblique shock wave relations

(M(R)
2 )2 = fM(M

(R)
1 , β

(R)
12 ), (4.17)

where M(R)
1 is calculated from (M(R)

1 )2 = fM(M
(R)
d , βR), and β(R)12 is the weak solution of

tan θ(P)d1 = fθ (M
(R)
1 , β

(R)
12 ), with θ(P)d1 determined by tan θ(P)d1 = fθ (M

(R)
d , βR).
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Figure 29. Transition criteria: (a) in the Ms–θw plane for Mr = 5; (b) in the Mr–θw plane for Ms = 10.
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Figure 30. Shock polars for the primary reflection (in the frame co-moving with P): (a) case 1; (b) case 2; (c)
case 3.

4.4. Transition conditions in the Ms − θw and Mr − θw planes
The transition conditions are expressed in either the Ms–θw plane for fixed Mr, or the
Mr–θw plane for fixed Ms. The transition conditions in the Ms–θw plane for Mr = 5 are
displayed in figure 29(a), and the transition conditions in the Mr–θw plane for Ms = 10 are
displayed in figure 29(b). The shock polars for primary reflection in three cases (cases 1
and 2 shown in figure 29(a), and case 3 in figure 29(b) – see also table 2) are displayed
in figure 30, with the I polar obtained from inflow Mach number M(P)

0 , and the R1 and R2

polars obtained from shock deflection angles θ(P)1 and θ(P)2 .
In figure 29(a), the range of Ms is Ms ∈ [6.1, 32]. In figure 29(b), the range of Mr is

Mr ∈ [2, 8.9]. This range is chosen from the requirement that Ms > Mr + 1 for an RMS
of the second family.

Regions with RR, double solution (DSD) and MR shown in figure 29 are reflection types
for primary reflection. Inside region C (Mach reflection), the line θw = θmin(Mr,Ms) is the
critical angle to have one or more strong incident shock wave in the co-moving frame of
the intersection point P of Is and SOR. The flow pattern below θw = θmin(Mr,Ms) will
be discussed further in § 4.5. The dual solution domain is bounded below by the von
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Neumann criterion θw = θ
(N)
w (Mr,Ms) computed by (4.10), and bounded above by the

detachment criterion θw = θ
(D)
w (Mr,Ms) computed by (4.9). It is interesting to note that

regular reflection occurs for large θw, while MR occurs for small θw, which appears to be
counter-intuitive. A similar phenomenon is observed for an RMS of the first family, where
type IV shock interference occurs at smaller θw while type VI shock interference occurs at
larger θw.

The line θw = θRR,IR(Mr,Ms) in figure 29 is the critical condition for transition of
secondary reflection, i.e. for transition of the reflected shock wave RS2 over the wedge,
in a region where the primary reflection is a regular reflection. On the left-hand side of
θw = θRR,IR(Mr,Ms), we have RR-IR. On the right-hand side of θw = θRR,IR(Mr,Ms), we
have RR-RR. In a region where the primary reflection is a Mach reflection, there is no
simple way to obtain a similar transition criterion for the secondary reflection, since the
velocity of the triple point Tp2 is not known. As stated in § 4.1, the MR-RR configuration
(figure 26c) did not appear in our numerical simulation. Since there is no simple way to
derive the velocity of triple point Tp2, no conclusion can be drawn about whether MR-RR
is possible.

Now let us return to the shock polars displayed in figure 30. For case 1, the R1 and R2
polars have no intersection so the reflection type is MR. For case 2, the R1 and R2 polars
have an intersection that is above the other two intersection points (the intersection point
of the R1 and I polars, and the intersection point of the R2 and I polars), which means that
case 2 is in the DSD domain. For case 3, the intersection point of the R1 and R2 polars is
below the other two intersection points (the intersection point of the R1 and I polars, and
the intersection point of the R2 and I polars), so the reflection type for case 3 is RR.

For another set of conditions, the results are similar. For instance, figure 31(a) presents
the transition conditions in the Mr–θw plane with Ms = 20. It can be seen that the transition
criteria are similar to those shown in figure 29(b) for Ms = 10. It is interesting to note
that there is a non-monotonic variation for the detachment condition especially after
Mr ≈ 17. This non-monotonicity is made evident through displaying, in figure 31(b), the
shock polars at points 1, 2 and 3 (with different Mr but with θw = 10.3◦, Ms = 20) from
figure 31(a). We observe MR for point 1, DSD for point 2, and MR again for point3.

The non-monotonicity might be due to the combined effects of the variations of the
equivalent flow parameters (M( p)

0 , β(P)1 and β(P)2 , computed by (4.2) and (4.3)) with respect
to Mr, and these variations are shown in figure 32.

4.5. Brief discussion of refection of secondary shock waves RS1 and RS2

The reflection of the secondary shock waves RS1 and RS2 shown in figure 26 may involve
more patterns than discussed above. However, a complete study of all the possibilities is
beyond the scope of this paper. Here we simply make an incomplete discussion.

4.5.1. Reflection of the secondary shock wave RS1
In conventional pseudo-steady shock reflection, where a moving shock wave reflects over
a wedge immersed initially in a still gas (as shown in figure 1d), the reflected shock wave
(like RS1 here) in the case of Mach reflection may be smooth (a situation called single
Mach reflection, SMR), have a kink (a situation called transitional Mach reflection, TMR),
or have a new triple point (a situation called double Mach reflection, DMR); see figures 12
and 22 of Ben-Dor (2006) for more detailed classification of subtypes (such as direct,
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Figure 32. Dependence of some equivalent flow parameters on Mr for Ms = 20: (a) equivalent Mach number
M(P)

0 ; (b) equivalent shock angles β(P)1 and β(P)2 .

stationary, inverse Mach reflections, DMR+, DMR−, or terminated RR) and transition
conditions between various types of shock reflection.

It would be possible that for the present problem, the reflected shock wave RS1 from
point Tp1 of figure 23(b), or point P of figures 24(b) and 25(b), may also have a kink (point
K) or an additional triple point. Indeed, in case 1 (MR-IR), we observe a kink according to
figure 23(a), and this kink is marked K in figure 23(b). In this case, the primary reflection
may be regarded as transitional Mach reflection. Previous studies (cf. Li & Ben-Dor 1997;
Law et al. 2003) showed cases not with such a kink, but with a smooth RS1. Now we also
show a case with a smooth RS1. This case has Ms = 20, Mr = 8, θw = 5◦, corresponding
to point 4 in figure 31(a), and this point is in the region below θw = θmin(Mr,Ms) (below
which the incident shock is strong). The Mach contours and pressure contours for this
condition are displayed in figures 33(a,b), respectively. In this case, RS1 is smooth and the
primary reflection can be regarded as a single Mach reflection. However, we are unable to
find a case for which the primary reflection (in the case of Mach reflection) is a double
Mach reflection.
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(a)

(b)

Figure 33. Shock reflection patterns for point 4 in figure 31(a) (Ms = 20, Mr = 8, θw = 5◦): (a) Mach
contours; (b) pressure contours.

The finding that we may have a smooth RS1 or a kink on RS1 raises the issue of
determining further transition criteria to distinguish the conditions for SMR, TMR or
possibly DMR for the present problem. Since TMR is observed above θw = θmin(Mr,Ms),
and SMR is observed below, one may wonder whether θw = θmin(Mr,Ms) is the transition
condition between SMR and TMR. However, this requires further study since transition
conditions between SMR, TMR and DMR are far more complex than this even in the
conventional pseudo-steady shock reflection problem, according to the studies by Li &
Ben-Dor (1995) and Semenov et al. (2012).

In the conventional pseudo-steady shock reflection problem, the entire reflection process
was treated as a combination of the shock-reflection process and the flow-deflection
process (Li & Ben-Dor 1995). The transition condition between TMR and DMR requires
knowledge of the velocity of the kink or the additional triple point, and simplified
models, as given in the appendices of Li & Ben-Dor (1995), are already complex in the
conventional pseudo-steady shock reflection case. If we follow the same approach, then the
present problem is much more complicated since we need to know in addition the velocity
of the triple point (Tp1) of figures 26(c,d). Li & Ben-Dor (1997) provides a theory to
estimate the velocity or trajectory in the equivalent shock-on-shock interaction problem.
Thus, to derive transition conditions for various types of RS1 following the same approach
as Li & Ben-Dor (1995) and Li & Ben-Dor (1997), one would have to combine the triple
point trajectory theory of Li & Ben-Dor (1995) for a kink or a second triple point on RS1,
and the theory of Li & Ben-Dor (1997) for the triple point Tp1 shown in figures 26(c,d).
It appears that such an analytical study would be highly complex, if not impossible, if one
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Figure 34. For primary reflection of RR, the region with RS2 being strong is displayed as the dashed region.
Transition criteria in the Mr–θw plane for (a) Ms = 10, (b) Ms = 20.

wished to derive transition conditions for various possible types of RS1, similar to that
given in figure 10 of Li & Ben-Dor (1995) for the conventional pseudo-steady problem.
Such a study will thus not be considered in the present paper, but may be considered in the
future.

4.5.2. Reflection of the secondary shock wave RS2 on the wall
The reflection pattern of RS2 on the wall might also have more subtypes than shown in
figure 26, if it were considered as the incident shock in the conventional pseudo-steady
shock reflection problem. We immediately have the same difficulty as shown above for RS1
if one wants to investigate more details about the possible flow structure and the transition
conditions, so such an issue is not considered in this study. We simply consider the subcase
when RS1 becomes strong with respect to its reflection point on the wall.

The Mach contours displayed in figure 23(a) correspond to case 1 in figure 29(a), for
which RS2 has Mach reflection, while the work of Li & Ben-Dor (1997) and Law et al.
(2003) shows only a curved RS2. Here we examine under which conditions this might
occur.

In figure 26, RS2 is considered as a weak shock. In fact, RS2 may be also a strong shock
wave seen from the reference frame attached to its intersection point on the wedge (point
R of figure 26), according to the critical line θw = ω(Mr,Ms) shown in figures 34(a,b)
(which are obtained when the primary reflection is RR), which use the same conditions as
figures 29(b) and 31(a). The critical line θw = ω(Mr,Ms) is the condition above which
RS2 is weak and below which RS2 is strong, in the frame co-moving with point R of
figure 26. Shock reflection with RS2 strong happened to be computed by Law et al. (2003),
who used a reference frame in which both shock waves are moving. Using the present
frame (attached to the wedge), their cases in their figure 13(a,c) correspond to Ms = 7.077,
Mr = 4.431, θw = 6◦ (called case 1 here), and Ms = 7.077, Mr = 4.431, θw = 12◦ (called
case 2 here). These two cases will be used for comparison here.

For Ms = 7.077, the transition conditions, similar to those shown in figure 34, are
displayed in figure 35(a). Figure 35(b) is the anticipated flow pattern. Cases 1 and 2 are
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Figure 35. Shock reflection with strong RS2: (a) transition criteria showing the critical line below which RS2
is strong (for Ms = 7.077); (b) hypothetical flow pattern (NR means no reflection).

shown as circles in figure 35(a). The mentioned two cases of Law et al. (2003) are indeed
below the critical line θw = ω(Mr,Ms), i.e. RS2 is strong in the reference frame co-moving
with R.

The Mach contours for both cases computed here are displayed in figure 36(a,b). They
compare well with numerical results of figure 13(a,c) of Law et al. (2003). The flow pattern
in figure 36(a) is indeed similar to the anticipated flow pattern shown in figure 35(b).

Thus, at the condition well below the critical line θw = ω(Mr,Ms), we recover the shock
reflection part of previous studies, for which the reflected shock RS2 is a curved strong
shock.

5. Conclusion

This paper addressed the reflection of a rightward moving shock (RMS) wave over a steady
oblique shock wave (SOSW), the latter generated by a wedge immersed initially in a steady
supersonic flow. Both families (the first and second families) are considered for the RMS
wave. The shock patterns and transition conditions are studied.

For a rightward moving incident shock wave of the first family, we used a transformation
to show that for a sufficiently large wedge angle, the original shock reflection problem can
be switched to an equivalent steady shock interaction problem where the RMS and the
right part of the SOSW are the two incident shock waves of the same family. Thus type
VI, V, IV shock interactions may occur.

For a rightward moving incident shock wave of the first family reflecting over the steady
shock produced by a wedge with a small wedge angle, a flow deflection angle reversal is
observed, and the right part of the SOSW can no longer be regarded as one incident shock
wave. Now the left part of the SOSW becomes one incident shock wave. This situation
produces type I or type II shock interference.

For a rightward moving incident shock wave of the second family, studied previously
within the context of shock-on-shock interaction, we decomposed the reflection into a
combination of primary reflection (between the RMS and the SOSW) and secondary
reflection (reflection of the reflected shock waves from primary reflection) and
identified the transition conditions in the shock speed–wedge angle plane for major
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(a)

(b)

Figure 36. (a) Mach contours for case 1 (Ms = 7.077, Mr = 4.431, θw = 6◦). (b) Mach contours for case 2
(Ms = 7.077, Mr = 4.431, θw = 12◦).

reflection phenomena. For secondary reflection, one reflected shock wave impinges the
wall to create regular reflection (RR) or irregular reflection (IR), and the other reflected
shock wave is similar to the reflected wave of the classic pseudo-steady shock reflection
(i.e. pseudo-steady shock reflection by a moving shock wave off a wedge immersed
initially in a still gas). This other reflected shock wave may be smooth, or have a kink
or another triple point similar to single Mach reflection, transitional Mach reflection and
double Mach reflection observed from the classical pseudo-steady shock reflection. Hence
there are quite a number of combinations of shock reflection patterns, more than predicted
before in shock-on-shock interaction studies. However, the critical conditions for transition
between various possible shock patterns of secondary reflected shock waves need more
study in the future.

The large number of shock reflection patterns and the complexity of transition between
various reflection patterns revealed in this study for reflection of RMSs of the two families
on an SOSW enrich our knowledge of shock reflection or shock interaction. In this paper,
we mainly considered the primary reflection patterns and their transition conditions, with
some details about the secondary reflection not fully considered. These details may be
considered in future studies.
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Figure 37. Illustration of identification of the shock structure of a moving triple point. (a) Original ground
frame solution near triple point Tp4. (b) Solution in the frame co-moving with the triple point Tp4.
(c) Numerical solution in the rotated frame. (d) Flow structure with the incident shock, reflected shock and
Mach stem pertinent to triple point Tp4 identified in the original ground frame.
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Appendix. Triple point structure identification (TPSI) method

When CFD gives numerical results from which one perceives a number of moving triple
points, it is difficult to determine which shock waves are the incident one, reflected one
and Mach stem, as illustrated in figure 8 for steady flow. The TPSI method proposed by
Wang & Wu (2021) makes it easier to identify the nature of various shock waves connected
to a numerically computed moving triple point.

The method is, in fact, simple. Pick up the velocity of the triple point, say V TP, from
numerical solutions at two different instants. The original flow velocity V by numerical
computation is then subtracted from V TP to get V (TP) = V − V TP. We then use V (TP) to
draw the streamlines and Mach contours. This gives the streamlines and Mach contours in
the frame co-moving with the triple point. We then rotate the frame in such a way that the
local inflow streamlines are horizontal, until the flow structure is comparable to that shown
in figure 8 and from which it is clear which shock waves are the incident one, reflected one
and Mach stem.

Consider the triple point Tp4 in figure 24(b) (case 2 in table 2). Figure 37(a) displays
the Mach contours and streamlines in the ground frame. Using the numerical results, we
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measured V Tp4 = (23ar, 20.2ar). Figure 37(b) displays the Mach contours and streamlines
in the frame co-moving with the triple point, i.e. using V (TP) = V − V TP.

Figure 37(c) shows the results by rotation of figure 37(b) in such a way the inflow is
horizontal. It is then clear from figure 37(c) which shocks are the incident one, reflected
one and Mach stem, now marked in figure 37(c).

By correspondence between figures 37(a) and 37(c), the nature of shock waves pertinent
to triple point Tp4 is identified, as shown now in figure 37(d), which gives the flow
structure in the original ground frame.

Here we showed the details of determining only an upward triple point. The method is
similar for a downward triple point.

REFERENCES

ATHIRA, C.M., RAJESH, G., MOHANAN, S. & PARTHASARATHY, A. 2020 Flow interactions on supersonic
projectiles in transitional ballistic regimes. J. Fluid Mech. 894, A27.

BEN-DOR, G. 1988 Steady, pseudo-steady and unsteady shock wave reflections. Prog. Aerosp. Sci. 25,
329–412.

BEN-DOR, G. 2006 A state-of-the-knowledge review on pseudo-steady shock-wave reflections and their
transition criteria. Shock Waves 15, 277–294.

BEN-DOR, G. 2007 Shock Wave Reflection Phenomena. Springer. (Imprint: Springer).
BEN-DOR, G., IGRA, O., ELPERIN, T. & LIFSHITZ, A. 2001 Handbook of Shock Waves. Academic Press.
BEN-DOR, G., IVANOV, M., VASILEV, E.I. & ELPERIN, T. 2002 Hysteresis processes in the regular reflection

2 Mach reflection transition in steady flows. Prog. Aerosp. Sci. 38, 347–387.
BRAMLETTE, T. 1974 Simple technique for predicting type III and IV shock interference. AIAA J. 12,

1151–1152.
CHPOUN, A., PASSEREL, D., LI, H. & BEN-DOR, G. 1995 Reconsideration of the oblique shock wave

reflection in steady flows. Part 1. Experimental investigation. J. Fluid Mech. 301, 19–35.
CRAWFORD, D.H. 1973 A graphical method for the investigation of shock interference phenomena. AIAA J.

11, 1590–1592.
EDNEY, B. 1968 Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in

the presence of an impinging shock. Tech Rep. 115. The Aerospace Research Institute of Sweden.
FRAME, M.J. & LEWIS, M.J. 1997 Analytical solution of the type IV shock interaction. J. Propul. Power 13,

601–609.
GRASSO, F., PURPURA, C.B. & DÉLERY, J. 2003 Type III and type IV shock/shock interferences: theoretical

and experimental aspects. Aerosp. Sci. Technol. 7, 93–106.
HENDERSON, L.F. & LOZZI, A. 1975 Experiments on transition of Mach reflection. J. Fluid Mech. 68,

139–155.
HORNUNG, H.G. 2014 Mach reflection in steady flow. I. Mikhail Ivanov s contributions, II. Caltech stability

experiments. AIP Conf. Proc. 1628, 1384–1393.
HORNUNG, H.G., OERTEL, H. & SANDEMAN, R.J. 1979 Transition to Mach reflection of shock waves in

steady and pseudo-steady flows with and without relaxation. J. Fluid Mech. 90, 541–560.
HU, Z.M., GAO, Y.L., MYONG, R.S., DOU, H.S. & KHOO, B.C. 2010 Geometric criterion for RR↔MR

transition in hypersonic double-wedge flows. Phys. Fluids 22, 016101.
IVANOV, M.S., BEN-DOR, G., ELPERIN, T., KUDRYAVTSEV, A. & KHOTYANOVSKY, D. 2001

Flow-Mach-number-variation-induced hysteresis in steady flow shock wave reflections. AIAA J. 39,
972–974.

IVANOV, M.S., BEN-DOR, G., ELPERIN, T., KUDRYAVTSEV, A.N. & KHOTYANOVSKY, D.V. 2002 The
reflection of asymmetric shock waves in steady flows: a numerical investigation. J. Fluid Mech. 469, 71–87.

KEYES, J.W. & HAINS, F.D. 1973 Analytical and experimental studies of shock interference heating in
hypersonic flows, NASA TN D-7139.

KLOPFER, G.H., YEE, H.C. & KUTLER, P. 1989 Numerical study of unsteady viscous hypersonic blunt body
flows with an impinging shock. In 11th International Conference on Numerical Methods in Fluid Dynamics
(ed. by D.L. Dwoyer, M.Y. Hussaini & R.G. Voigt), pp. 337–343. Springer.

KUDRYAVTSEV, A.N., KHOTYANOVSKY, D.V., IVANOV, M.S., HADJADJ, A. & VANDROMME, D. 2002
Numerical investigations of transition between regular and Mach reflections caused by free-stream
disturbances. Shock Waves 12, 157–165.

936 A18-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

53
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.53


Reflection of rightward moving shocks

KUTLER, P., SAKELL, L. & AIELLO, G. 1975 Two-dimensional shock-on-shock inter action problem. AIAA
J. 13 (3), 361–367.

LAW, C., FELTHUN, L.T. & SKEWS, B.W. 2003 Two-dimensional numerical study of planar
shock-wave/moving-body interactions. Shock Waves 13 (5), 381–394.

LI, H. & BEN-DOR, G. 1995 Reconsideration of pseudo-steady shock wave reflections and the transition
criteria between them. Shock Waves 5, 59–73.

LI, H. & BEN-DOR, G. 1996 Application of the principle of minimum entropy production to shock wave
reflections. I. Steady flows. J. Appl. Phys. 80, 2027–2037.

LI, H. & BEN-DOR, G. 1997 Analytical investigation of two-dimensional unsteady shock-on-shock
interactions. J. Fluid Mech. 340, 101–128.

LI, H., CHPOUN, A. & BEN-DOR, G. 1999 Analytical and experimental investigations of the reflection of
asymmetric shock waves in steady flow. J. Fluid Mech. 390, 25–43.

LIU, M.S. 1996 A sequel to AUSM: AUSM+. J. Comput. Phys. 129, 364–382.
VON NEUMANN, J. 1943 Oblique reflection of shock. Explos. Res. Rep. 12. Navy Dept., Bureau of Ordinance,

Washington, DC.
VON NEUMANN, J. 1945 Refraction, intersection and reflection of shock waves. NAVORD Rep. 203–245, Navy

Dept., Bureau of Ordinance, Washington, DC.
OLEJNICZAK, J., WRIGHT, W.J. & CANDLER, G.V. 1997 Numerical study of inviscid shock interactions on

double-wedge geometries. J. Fluid Mech. 352, 1–25.
SEMENOV, A.N., BEREZKINA, M.K. & KRASSOVSKAYA, I.V. 2012 Classification of pseudo-steady shock

wave reflection types. Shock Waves 22, 307–316.
SMYRL, J.L. 2006 The impact of a shock-wave on a thin two-dimensional aerofoil moving at supersonic speed.

J. Fluid Mech. 15, 223–240.
TESHUKOV, V.M. 1989 On stability of RR of shock waves. Zh. Prikl. Mekh. Tekh. Fiz. 2, 26–33.
VUILLON, J., ZEITOUN, D. & BEN-DOR, G. 1995 Reconstruction of oblique shock wave reflection in steady

flows. Part 2. Numerical investigation. J. Fluid Mech. 301, 37–50.
WANG, M.M. & WU, Z.N. 2021 Reflection of a moving shock wave over an oblique shock wave. Chin.

J. Aeronaut. 34, 399–403.
WINDISCH, C., REINARTZ, B.U. & MULER, S. 2016 Investigation of unsteady Edney type IV and VII

shock–shock interactions. AIAA J. 54, 1846–1861.
XIONG, W., LI, J., ZHU, Y. & LUO, X. 2018 RR–MR transition of a type V shock interaction in inviscid

double-wedge flow with high-temperature gas effects. Shock Waves 28, 751–763.

936 A18-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

53
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.53

	1 Introduction
	2 Problem definition, shock relations and numerical method
	2.1 Definition of the present shock reflection problem
	2.2 Shock relations for RMSs of the first and second families
	2.3 Properties of RMSs of both families
	2.4 Numerical method
	2.5 Solution and identification of steady and moving triple points

	3 Reflection types and transition conditions for an RMS of the first family
	3.1 A shock reflection pattern that can be interpreted as type V shock interference
	3.2 Link of parameters between the original problem and the equivalent problem: flow deflection angle reversal
	3.3 Discussion of the transition condition and possible shock reflection patterns
	3.4 Type I and type II shock interference due to flow deflection angle reversal

	4 Reflection types and transition conditions for an RMS of the second family
	4.1 Some shock reflection patterns: primary and secondary reflections
	4.2 Method to find transition condition for primary reflection
	4.3 Method for transition condition of secondary reflection of RS2
	4.4 Transition conditions in the Ms-w and Mr -w planes
	4.5 Brief discussion of refection of secondary shock waves RS1 and RS2
	4.5.1 Reflection of the secondary shock wave RS1
	4.5.2 Reflection of the secondary shock wave RS2 on the wall


	5 Conclusion
	A Appendix. Triple point structure identification (TPSI) method
	References

