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FIBRED ALGEBRAIC SEMANTICS FOR A VARIETY OF
NON-CLASSICAL FIRST-ORDER LOGICS AND

TOPOLOGICAL LOGICAL TRANSLATION

YOSHIHIRO MARUYAMA

Abstract. Lawvere hyperdoctrines give categorical algebraic semantics for intuitionistic predicate logic.
Here we extend the hyperdoctrinal semantics to a broad variety of substructural predicate logics over the
Typed Full Lambek Calculus, verifying their completeness with respect to the extended hyperdoctrinal
semantics. This yields uniform hyperdoctrinal completeness results for numerous logics such as different
types of relevant predicate logics and beyond, which are new results on their own; i.e., we give uniform
categorical semantics for a broad variety of non-classical predicate logics. And we introduce an analogue
of Lawvere–Tierney topology and cotopology in the hyperdoctrinal setting, which gives a unifying
perspective on different logical translations, in particular allowing for a uniform treatment of Girard’s
exponential translation between linear and intuitionistic logics and of Kolmogorov’s double negation
translation between intuitionistic and classical logics. In the hyerdoctrinal conception, type theories are
categories, logics over type theories are functors, and logical translations between them, then, are natural
transformations, in particular Lawvere–Tierney topologies and cotopologies on hyperdoctrines. The view of
logical translations as hyperdoctrinal Lawvere–Tierney topologies and cotopologies has not been elucidated
before, and may be seen as a novel contribution of the present work. From a broader perspective, this
work may be regarded as taking first steps towards interplay between algebraic and categorical logics;
it is, technically, a combination of substructural (or Lambekian) algebraic logic and hyperdoctrinal (or
Lawverian) categorical logic, as the hyperdoctrinal completeness theorem is shown via the integration of
the Lindenbaum–Tarski algebra construction with the syntactic category construction. As such this work
lays a foundation for further interactions between algebraic and categorical logics.

§1. Introduction. The present paper aims to connect algebraic substructural
logic with categorical predicate logic via Lawvere hyperdoctrines; in particular
we combine the algebraic approach to substructural logics as in Galatos–Jipsen–
Kowalski–Ono [10] with the categorical approach to (typed) predicate logic as in
Pitts [35], which originates in Lawvere [23]. While the correspondence between
propositional logics and their algebras is transparent and almost obvious in many
cases, there is no widely agreed conception of the correspondence between predicate
logics and their algebras; given a predicate logic, there is no broadly applicable,
automatic method to define its algebras.

We consider Lawvere hyperdoctrines to be a suitable framework to do this; given
a predicate logic, the corresponding hyperdoctrines can be defined in a canonical
manner, serving as the fibred algebras of it, as we shall explain below. Although
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1190 YOSHIHIRO MARUYAMA

Henkin–Monk–Tarski [12] give the classic concept of cylindric algebras as the
algebras of predicate logic, there is, in general, no canonical way to define cylindric
algebras for a given predicate logic, and cylindric algebras can actually be subsumed
under the framework of hyperdoctrines (see Jacobs [16]; note that fibrations and
hyperdoctrines are linked with each other via the Grothendieck construction).

The general framework of substructural logics over the Full Lambek calculus (FL
for short) encompasses a wide variety of logical systems (classical, intuitionistic,
linear, fuzzy, relevant, etc.), allowing for a uniform treatment of different non-
classical logics as well as classical logics. Logics over FL have been studied extensively
in the past few decades, especially by algebraic logicians interested in residuated
lattices, a monoidal extension of Heyting algebras (see, e.g., Galatos–Jipsen–
Kowalski–Ono [10] and Galatos–Ono [11]). Among other things, Ciabattoni–
Galatos–Terui [4, 5] have successfully applied the methods of algebraic logic and
universal algebra to the proof theory of logics over FL, proving that a propositional
logic admits cut elimination if and only if the variety of its algebras is closed
under algebraic completion (for more detailed, precise formulations, see Ciabattoni–
Galatos–Terui [4, 5]); this has led to developments of algebraic proof theory.

Yet there is no algebraic proof theory systematically developed for predicate
logics because there are no adequate algebraic models of them in the first place.
Although some efforts have been made towards the algebraic treatment of logics
over quantified FL (see, e.g., Ono [33, 34] and references therein), however, it seems
that there has been no adequate concept of algebraic models of them so far. Note that
complete residuated lattices can only give complete semantics for those classes of
substructural predicate logics for which completions (such as Dedekind–MacNeille
or Crawley) of Lindenbaum–Tarski algebras work in an adequate manner (see Ono
[33, 34]); for this reason, complete residuated lattices (or quantales) cannot serve
the purpose.

In the context as clarified above, we propose to employ Lawvere hyperdoctrines
and their extensions as fibred algebraic models of predicate logic, especially
substructural logics over quantified FL. Hyperdoctrines may be seen as fibred
algebras indexed by categories, which are supposed to represent type theories (or
sort structures). According to Pitts’ formulation [35] (see also [2, 3, 28, 29, 31, 32,
37]), a hyperdoctrine is a functor (or algebra-valued presheaf)

P : Cop → HA,

where HA is the category of Heyting algebras and their homomorphisms; there
are additional conditions on P (and C) to express quantifiers and other logical
structures, which shall be clarified below. The intuitive meaning of the base category
C is the category of types (aka. sorts) or domains of discourse, and then P(C ) is
the algebra of predicates on a type C. We can regard a hyperdoctrine as a fibred
Heyting algebra

(P(C ))C∈ C,

a bunch of Heyting algebras indexed by a category C. Note that toposes amount
to higher-order hyperdoctrines; they are interlaced by two functors, one taking
subobject hyperdoctrines and the other given by the tripos-to-topos construction
(see, e.g., Frey [9], Hyland–Johnstone–Pitts [14], and Pitts [36]).
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In general, a fibred algebra is a universal algebra indexed by a category; fibred
universal algebra studies a functor of form

P : Cop → Alg

apart from logical conditions to express quantifiers and others, where Alg is
an algebraic category (for basic concepts in category theory, see, e.g., Adámek–
Herrlich–Strecker [1]; but we do not use category theory in any heavy way, in order
to make the paper accessible to the algebraic logician as well as the categorical
logician). There is a general principle of completeness lifting: if a propositional
logic L is sound and complete with respect to a variety (or algebras of a monad,
which is a possibly infinitary variety) Alg, then the corresponding fibred algebras or
hyperdoctrines

P : Cop → Alg

give sound and complete semantics for the predicate logic that extends L with
quantifiers; that is to say, the soundness and completeness of propositional logic
with respect to algebras in Alg lifts to the soundness and completeness of predicate
logic with respect to fibred algebras P : Cop → Alg.

In the present paper we demonstrate this in the fairly general context of arbitrary
logics over the base system FL; this constitutes the first result of the paper.
The second result of the paper is concerned with Lawvere–Tierney topologies
and cotopologies on hyperdoctrines regarded as logical translations. In topos
theory, the double negation topology has been applied broadly for different
purposes. The generalised notion of Lawvere–Tierney topologies and cotopologies
on hyperdoctrines allows for a unified treatment of different logical translations,
in particular Girard’s exponential translation in linear logic and Kolmogorov’s
double negation translation in intuitionistic logic, as we shall see below (we call
the latter the Kolmogorov translation for historical reasons; see Ferreira–Oliva [8]).
The former allows us to embed intuitionistic logic into linear logic via the exponential
operator !; the latter allows us to embed classical logic into intuitionistic logic via
the double negation operator ¬¬. Since logics (or theories) are dual to algebraic
semantics (or models), we construct intuitionistic (resp. classical) hyperdoctrines
from linear (resp. intuitionistic) hyperdoctrines on the basis of suitable Lawvere–
Tierney (co)topologies on them. Lawvere–Tierney topologies on toposes work for
higher-order logic; Lawvere–Tierney topologies on hyperdoctrines, by contrast,
work for first-order logic as well as higher-order logic. In this sense, the latter is more
general than the former, making the notion of topology available in a more general
setting. And Lawvere–Tierney topologies and cotopologies on hyperdoctrines allow
us to obtain hyperdoctrinal analogues of logical translation theorems in a uniform
and modular manner. This constitutes the second result of the paper.

From a broader perspective, the hope of the present paper is to bridge between
algebraic logic, in which substructural logics over FL have been studied, and
categorical logic, in which Lawvere hyperdoctrines have been pursued. The two
disciplines are currently separated to some extent, but were tightly intertwined
with each other in their early days. For example, Lawvere’s original ideas on
categorical logic were seemingly of algebraic nature; in particular, Lawvere’s
functorial semantics [22] was directly concerned with universal algebra. Note also
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that Lambek’s categorical duality theory [20], too, was based on certain ideas of
algebraic logic and universal algebra, such as primal (or functionally complete)
algebras and their induced Stone dualities, combining them with categorical
methods to give what is called the general Stone–Gelfand duality. It would be fruitful
to restore vital interactions between the two fields yet again (note that interactions
between categorical and traditional universal algebras have been revitalised since
Hyland–Power [15]). This paper aims at taking modest first steps towards them.

A final remark before proceeding to the following sections is that we do not aim
at giving so-called semantics of proofs; we give semantics of provability just as the
topos semantics does, a principal reason for which is as follows. Not all logics over
FL have well-behaved proof theories, and yet we would like to develop a uniform
general theory for them. A well-known (notorious) case of this is classical logic,
which basically makes the identity of proofs trivialise as the Joyal Lemma shows
(i.e., Cartesian closed categories with dualising objects, the existence of which means
the validity of the double negation elimination, trivialise; see, e.g., Lambek–Scott
[21]); some fuzzy logics suffer from similar collapsing phenomena. And there is no
general method to remedy them (remedies for them are highly dependent upon the
nature of each logic; or there may be no such remedies). For this reason we do not
aim at semantics of proofs; rather we develop uniform semantics of provability for all
logics over the base system FL. And by doing so, we get special benefits: i.e., we can
relate and analyse different sorts of categorical logics in a single setting; the uniform
framework for various logics allows us to compare different categorical logics on
the one setting. The results about Lawvere–Tierney topologies and cotopologies
indeed embody such a comparison in terms of translations between different types
of hyperdoctrines.

The rest of the paper is organised as follows. In the following, we first give an
introduction to typed FL (Section 2). We then define FL hyperdoctrines, and prove
the soundness and completeness of the hyperdoctrinal semantics for logics over typed
FL (Section 3). And we introduce Lawvere–Tierney topologies and cotopologies
on hyperdoctrines, and give hyperdoctrinal translation theorems based on them
(Section 4); this may be regarded as the most original part of the present work.
We finally conclude by illustrating several directions of further research (Section
5). Prior knowledge of category theory is not much required, and we keep the
formulation as simple as possible while explaining the categorical details that the
purely algebraic logician may not be familiar with.

§2. Typed Full Lambek calculus. In this section we introduce the Typed Full
Lambek calculus with quantifiers, denoted TFL, which is basically a typed or many-
sorted version of the first-order Full Lambek calculus FL as in Ono [34]; we follow
the typing style of Pitts [35], and so this is basically the combination of Pitts [35]
and Ono [34].

Standard categorical logic discusses a typed version of intuitionistic (or coherent
or regular) logic, as seen, for example, in Pitts [35], Lambek–Scott [21], Jacobs
[16], and Johnstone [18]. Typed logic is more natural than single-sorted one from a
categorical point of view, and is more expressive in general, since it can be equipped
with various type constructors, which make the logic more powerful (if they do not

https://doi.org/10.1017/jsl.2021.41 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.41


FIBRED ALGEBRAIC SEMANTICS 1193

make it inconsistent). If one prefers single-sorted logic to typed logic, the latter can
be reduced to the former by allowing for one type (or sort) only.

To put it differently, typed logic is the combination of logic and type theory, and
has not only a logic structure but also a type structure, and the latter itself has a rich
structure as well as the former. For this reason, syntactic hyperdoctrines constructed
from typed systems of logic (which are discussed in relation to completeness in
the next section) are amalgamations of syntactic categories obtained from their
type theories on the one hand, and Lindenbaum–Tarski algebras obtained from
their logic parts on the other; in a nutshell, syntactic hyperdoctrines are type-fibred
Lindenbaum–Tarski algebras.

Another merit of typed logic is that the problem of empty domains is resolved
because it allows us to have explicit control on type contexts. This was discovered
by Joyal, according to Marquis and Reyes [24], and shall be touched upon later in
more detail.

TFL has the following logical connectives:

⊗,∧,∨, \, /, 1, 0,�,⊥,∀,∃.
Note that there are two kinds of implication connectives \ and /, owing to the
non-commutative nature of TFL.

In TFL, every variable x comes with its type �. That is, TFL has basic types,
which are denoted by letters like �, �, and

x : �

is a formal expression meaning that a variable x is of type �. Then, a (type) context
is a finite list of type declarations on variables:

x1 : �1, ... , xn : �n.

A context is often denoted Γ.
Accordingly, TFL has typed predicate symbols (aka. predicates in context) and

typed function symbols (aka. function symbols in context):

R(x1, ... , xn) [x1 : �1, ... , xn : �n]

is a formal expression meaning that R is a predicate with n variables x1, ... , xn of
types �1, ... , �n respectively; likewise,

f : � [x1 : �1, ... , xn : �n]

is a formal expression meaning that f is a function symbol with n variables x1, ... , xn
of types �1, ... , �n and with its values in �. Then, formulae-in-context ϕ [Γ] and
terms-in-context t : � [Γ] are defined in the usual, inductive way.

In the present paper, we do not consider any specific type constructor, but even if
type constructors such as products, sums, and function spaces are added, they
just make the syntactic category construction below more complex (since they
do not affect the propositional structure), and all proofs below can be directly
adapted to such cases in a modular manner. Note that if type constructors affect
the propositional structure, then proofs get essentially more difficult; this is the
case in higher-order logic with the proposition type Prop (aka. truth value type Ω),
which interlace the term structure with the propositional structure. Although we
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focus upon plainly typed predicate logic with no complicated type structure, still,
products (not as types but as categorical structures) shall be used in categorical
semantics in the next section, to the end of interpreting predicate and function
symbols (of arity greater than one).

TFL thus has both a type structure and a logic structure, dealing with sequents-
in-contexts:

Φ 
 ϕ [Γ],

where Γ is a type context, and Φ is a finite list of formulae: ϕ1, ... , ϕn. Although it
is common to write Γ | Φ 
 ϕ rather than Φ 
 ϕ [Γ], we employ the latter notation
in this paper, following Pitts [35], since TFL is an adaptation of Pitts’ typed system
for intuitionistic logic to the system of the Full Lambek calculus.

The syntax of type contexts Γ in TFL is the same as that of typed intuitionistic
logic in Pitts [35]. Note that it is allowed to add a fresh x : � to a context Γ: e.g.,

Φ 
 ϕ [Γ, x : �]

whenever Φ 
 ϕ [Γ]. On the other hand, it is not permitted to delete redundant
variables; the reason becomes clear in latter discussion on empty domains. It is
allowed to change the order of contexts (e.g., [Γ,Γ′] into [Γ′,Γ]). Now, in the
following, we explain logical rules of inference.

TFL has no structural rule other than the following cut rule:

Φ1 
 ϕ [Γ] Φ2, ϕ,Φ3 
 � [Γ]
Φ2,Φ1,Φ3 
 � [Γ]

(cut),

where � may be empty; this is allowed in the following L (left) rules as well. As
usual, we have the rule of identity

ϕ 
 ϕ [Γ]
(id ).

In the following, we list the rules of inference for the logical connectives of TFL.
The following formulation is intuitionistic in the sense that only one formula is
allowed to appear on the right-hand side of sequents; nevertheless, we can treat
classical logic as an axiomatic extension of TFL, by adding to TFL exchange,
weakening, contraction, and the excluded middle (note that structural rules can be
expressed as axioms). There are two kinds of conjunction in TFL: multiplicative or
monoidal ⊗ and additive or Cartesian ∧:

Φ, ϕ, �,Ψ 
 � [Γ]
Φ, ϕ ⊗ �,Ψ 
 � [Γ]

(⊗L)
Φ 
 ϕ [Γ] Ψ 
 � [Γ]

Φ,Ψ 
 ϕ ⊗ � [Γ]
(⊗R)

Φ, ϕ,Ψ 
 � [Γ]
Φ, ϕ ∧ �,Ψ 
 � [Γ]

(∧L1)
Φ, ϕ,Ψ 
 � [Γ]

Φ, � ∧ ϕ,Ψ 
 � [Γ]
(∧L2)

Φ 
 ϕ [Γ] Φ 
 � [Γ]
Φ 
 ϕ ∧ � [Γ]

(∧R).
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There is only one disjunction in TFL, which is additive, since TFL is intuitionistic
in the aforementioned sense.

Φ, ϕ,Ψ 
 � [Γ] Φ, �,Ψ 
 � [Γ]
Φ, ϕ ∨ �,Ψ 
 � [Γ]

(∨L)

Φ 
 ϕ [Γ]
Φ 
 ϕ ∨ � [Γ]

(∨R1)
Φ 
 ϕ [Γ]

Φ 
 � ∨ ϕ [Γ]
(∨R2).

Due to non-commutativity, there are two kinds of implication in TFL, \ and /,
which are a right adjoint of ϕ ⊗ (-) and a right adjoint of (-) ⊗ � respectively.

Φ 
 ϕ [Γ] Ψ1, �,Ψ2 
 � [Γ]
Ψ1,Φ, ϕ\�,Ψ2 
 � [Γ]

(\L)
ϕ,Φ 
 � [Γ]
Φ 
 ϕ\� [Γ]

(\R)

Φ 
 ϕ [Γ] Ψ1, �,Ψ2 
 � [Γ]
Ψ1, �/ϕ,Φ,Ψ2 
 � [Γ]

(/L)
Φ, ϕ 
 � [Γ]
Φ 
 �/ϕ [Γ]

(/R).

There are two kinds of truth and falsity constants, monoidal and Cartesian ones.

Ψ1,Ψ2 
 ϕ [Γ]
Ψ1, 1,Ψ2 
 ϕ [Γ]

(1L) 
 1 [Γ]
(1R)

0 
 [Γ]
(0L)

Φ 
 [Γ]
Φ 
 0 [Γ]

(0R)

Φ 
 � [Γ]
(�R)

Φ1,⊥,Φ2 
 ϕ [Γ]
(⊥L).

Finally, we have the following rules for quantifiers ∀ and ∃, in which type contexts
explicitly change; notice that type contexts do not change in the rest of the rules
presented above.

Φ1, ϕ,Φ2 
 � [x : �,Γ]
Φ1,∀xϕ,Φ2 
 � [x : �,Γ]

(∀L)
Φ 
 ϕ [x : �,Γ]

Φ 
 ∀xϕ [Γ]
(∀R)

Φ1, ϕ,Φ2 
 � [x : �,Γ]
Φ1,∃xϕ,Φ2 
 � [Γ]

(∃L)
Φ 
 ϕ [x : �,Γ]

Φ 
 ∃xϕ [x : �,Γ]
(∃R).

As usual, there are eigenvariable conditions on the rules above: x does not appear
as a free variable in the bottom sequent of Rule ∀R; likewise, x does not appear as
a free variable in the bottom sequent of Rule ∃L. The other two rules do not have
eigenvariable conditions, and this is why contexts do not change in them.

The deducibility of sequents-in-context in TFL is defined in the usual way. In this
paper, we denote by FL the propositional (and hence no contextual) part of TFL.
Note that what is called FL in the literature often lacks ⊥ and �.

As is well known, the following propositional (resp. predicate) logics can
be represented as axiomatic (to be precise, axiom-schematic) extensions of FL
(resp. TFL): classical logic, intuitionistic logic, linear logic (without exponentials),
relevance logics, and fuzzy logics such as Gödel–Dummett logic (see, e.g., Galatos–
Jipsen–Kowalski–Ono [10]). Given a set of axioms (to be precise, axiom schemata),
say X, we denote by FLX (resp. TFLX ) the corresponding extension of FL (resp.
TFL) via X.
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Lemma 1. The following sequents-in-context are deducible in TFL :

• ϕ ⊗ (∃x�) 
 ∃x(ϕ ⊗ �) [Γ] and ∃x(ϕ ⊗ �) 
 ϕ ⊗ (∃x�) [Γ],
• (∃x�) ⊗ ϕ 
 ∃x(� ⊗ ϕ) [Γ] and ∃x(� ⊗ ϕ) 
 (∃x�) ⊗ ϕ [Γ],

where it is supposed that ϕ does not contain x as a free variable, and Γ contains type
declarations on those free variables that appear in ϕ and ∃x�.

A striking feature of typed predicate logic is that domains of discourse in semantics
can be empty; they are assumed to be non-empty in the usual Tarski semantics of
predicate logic. We therefore need no ad hoc condition on domains of discourse if we
work with typed predicate logic. This resolution of the problem of empty domains
is due to Joyal as noted in Marquis and Reyes [24].

A proof-theoretic manifestation of this feature is that the following sequent-in-
context is not necessarily deducible in TFL:

∀xϕ 
 ∃xϕ [ ],

where the context is empty. Nonetheless, the following is deducible in TFL:

∀xϕ 
 ∃xϕ [x : �,Γ],

where Γ is an appropriate context including type declarations on free variables in ϕ.
This means that we can prove the sequent above when a type � is inhabited. Here,
it is crucial that it is not allowed to delete redundant free variables (e.g., [x : �,Γ]
cannot be reduced into [Γ] even if x does not appear as a free variable in formulae
involved); however, it is allowed to add fresh free variables to a context.

§3. Full Lambek hyperdoctrine. It is well known that FL algebras (defined below)
provide sound and complete semantics for propositional logic FL (see, e.g., Galatos–
Jipsen–Kowalski–Ono [10]). In this section we show that fibred FL algebras, or FL
hyperdoctrines (defined below), yield sound and complete semantics for typed (or
many-sorted) predicate logic TFL.

We emphasise the simple, algebro-logical idea that single algebras (symbolically,
A with no indexing) correspond to propositional logic, and fibred algebras
(symbolically, (AC )C∈C indexed by a category C) correspond to predicate logic.
As universal algebra gives foundations for algebraic propositional logic, so fibred
universal algebra lays a foundation for algebraic predicate logic.

Definition 2 [10].

(A,⊗,∧,∨, \, /, 1, 0,�,⊥)

is called an FL algebra iff

• (A,⊗, 1) is a monoid ; 0 is a (distinguished) element of A;
• (A,∧,∨,�,⊥) is a bounded lattice, which induces a partial order ≤ on A;
• for any a ∈ A, a\(-) : A→ A is a right adjoint of a ⊗ (-) : A→ A : i.e., a ⊗ b ≤
c iff b ≤ a\c for any a, b, c ∈ A;

• for any b ∈ A, (-)/b : A→ A is a right adjoint of (-) ⊗ b : A→ A : i.e., a ⊗ b ≤
c iff a ≤ c/b for any a, b, c ∈ A.
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A homomorphism of FL algebras is defined as a map preserving all the
operations (⊗,∧,∨, \, /, 1, 0,�,⊥). FL denotes the category of FL algebras and
their homomorphisms.

Although 0 is just a neutral element of A with no axiom, the rules for 0 are
automatically valid by the definition of interpretations defined below.

FL is an algebraic category (i.e., a category monadic over Set), or a variety in
terms of universal algebra, since the two adjointness conditions can be rephrased by
equations (see, e.g., Galatos–Jipsen–Kowalski–Ono [10]). An axiomatic extension
FLX of FL corresponds to an algebraic full subcategory (or sub-variety) of
FL, denoted FLX (algebraicity follows from definability by axioms); this is the
well-known, logic-variety correspondence for logics over FL (see Galatos–Jipsen–
Kowalski–Ono [10]).

Definition 3. An FL (Full Lambek) hyperdoctrine is an FL-valued
presheaf

P : Cop → FL

such that C is a category with finite products, and the following conditions on
quantifiers hold:

• For any projection � : X × Y → Y in C,P(�) : P(Y ) → P(X × Y ) has a right
adjoint, denoted

∀� : P(X × Y ) → P(Y ).

And the corresponding Beck–Chevalley condition holds, i.e., the following
diagram commutes for any arrow f : Z → Y in C(�′ : X × Z → Z below
denotes a projection):

P(X × Y ) P(Y )

P(X × Z) P(Z)
�

P(X×f)

�∀�

�
P(f)

�
∀�′

• For any projection � : X × Y → Y in C, P(�) : P(Y ) → P(X × Y ) has a left
adjoint, denoted

∃� : P(X × Y ) → P(Y ).

The corresponding Beck–Chevalley condition holds:

P(X × Y ) P(Y )

P(X × Z) P(Z)
�

P(X×f)

�∃�

�
P(f)

�
∃�′
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Furthermore, the Frobenius Reciprocity conditions hold: for any projection
� : X × Y → Y in C, any a ∈ P(Y ), and any b ∈ P(X × Y ),

a ⊗ (∃�b) = ∃�(P(�)(a) ⊗ b),
(∃�b) ⊗ a = ∃�(b ⊗ P(�)(a)).

For an axiomatic extension FLX of FL, an FLX hyperdoctrine is defined by
restricting the value category FL into FLX . An FL(resp. FLX ) hyperdoctrine is
also called a fibred FL(resp. FLX ) algebra.

The category C of an FL hyperdoctrine P : Cop → FL is called its base category
or type category, and P is also called its predicate functor; intuitively, P(C ) is the
algebra of predicates on a type, or domain of discourse, C.

Note that, in the definition above, we need two Frobenius Reciprocity conditions
due to the non-commutativity of FL algebras.

An FL hyperdoctrine may be seen as an indexed category, and thus as a fibration
via the Grothendieck construction. Although we formulate everything in terms of
indexed categories in this paper, we can do the same in terms of fibrations as well
(working with indexed categories would probably be simpler to those who are not
familiar with category theory). From a fibrational point of view, each P(C ) is called
a fibre of an FL hyperdoctrine P.

The FL (resp. FLX ) hyperdoctrine semantics for TFL (resp. TFLX ) is defined as
follows.

Definition 4. Fix an FL hyperdoctrine P : Cop → FL. An interpretation [[-]] of
TFL in the FL hyperdoctrine P consists of the following:

• assignment of an object

[[�]]

in C to each basic type � in TFL;
• assignment of an arrow

[[f : � [Γ]]] : [[�1]] × ··· × [[�n]] → [[�]]

in C to each typed function symbol f : � [Γ] in TFL where Γ is supposed to
be x1 : �1, ... , xn : �n(note that [[�1]] × ··· × [[�n]] makes sense because C has
finite products );

• assignment of an element

[[R [Γ]]]

in P([[Γ]]), which is an FL algebra, to each typed predicate symbol R [Γ]
in TFL; if the context Γ is x1 : �1, ... , xn : �n, then [[Γ]] denotes [[�1]] × ··· ×
[[�n]].

Then, terms are inductively interpreted in the following way:
• [[x : � [Γ1, x : �,Γ2]]] is defined as the following projection in C :

� : [[Γ1]] × [[�]] × [[Γ2]] → [[�]].

• [[f(t1, ... , tn) : � [Γ]]] is defined as:

[[f]] ◦ 〈[[t1 : �1 [Γ]]], ... , [[tn : �n [Γ]]]〉,
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where it is supposed that f : � [x1 : �1, ... , xn : �n], and t1 : �1 [Γ], ... , tn :
�n [Γ]. Note that 〈[[t1 : �1 [Γ]]], ... , [[tn : �n [Γ]]]〉 above is the product (or
pairing) of arrows in C.

Formulae are then interpreted inductively in the following manner:
• [[R(t1, ... , tn) [Γ]]] is defined as

P(〈[[t1 : �1[Γ]]], ... , [[tn : �n[Γ]]]〉)([[R [x : �1, ... , xn : �n]]]),

where R is a predicate symbol in context x1 : �1, ... , xn : �n.
• [[ϕ ⊗ � [Γ]]] is defined as

[[ϕ [Γ]]] ⊗ [[� [Γ]]].

The other binary connectives ∧,∨, \, / are interpreted in the same way. [[1 [Γ]]]
is defined as the monoidal unit of P([[Γ]]). The other constants 0,�,⊥ are
interpreted in the same way.

• [[∀xϕ [Γ]]] is defined as

∀�([[ϕ [x : �,Γ]]]),

where � : [[�]] × [[Γ]] → [[Γ]] is a projection in C, and ϕ is a formula in context
[x : �,Γ]. Similarly, [[∃xϕ [Γ]]] is defined as

∃�([[ϕ [x : �,Γ]]]).

Finally, satisfaction of sequents is defined as follows:
• ϕ1, ... , ϕn 
 � [Γ] is satisfied in an interpretation [[-]] in an FL hyperdoctrine

P iff the following holds in P([[Γ]]) :

[[ϕ1 [Γ]]] ⊗ ··· ⊗ [[ϕn [Γ]]] ≤ [[� [Γ]]].

In case the right-hand side of a sequent is empty, ϕ1, ... , ϕn 
 [Γ] is satisfied in
[[-]] iff

[[ϕ1 [Γ]]] ⊗ ··· ⊗ [[ϕn [Γ]]] ≤ 0

in P([[Γ]]). In case the left-hand side of a sequent is empty, 
 ϕ [Γ] is satisfied
in [[-]] iff 1 ≤ [[ϕ[Γ]]] in P([[Γ]]).

An interpretation of TFLX in an FLX hyperdoctrine is defined by replacing FL and
TFL above with FLX and TFLX respectively.

In the following, we show that the FL (resp. FLX ) hyperdoctrine semantics is
sound and complete for TFL (resp. TFLX ). Let [[Φ [Γ]]] denote

[[ϕ1 [Γ]]] ⊗ ··· ⊗ [[ϕn [Γ]]]

when Φ is ϕ1, ... , ϕn.
Intuitively, an arrow f in C is a term, and P(f) is a substitution operation (this

is exactly true in syntactic hyperdoctrines defined later); then, the Beck–Chevalley
conditions and the functoriality of P tell us that substitution commutes with all
the logical operations (namely, both propositional connectives and quantifiers).
From such a logical point of view, the meaning of the Beck–Chevalley conditions
is transparent; they just say that substitution after quantification is the same as
quantification after substitution.
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Proposition 5. If Φ 
 � [Γ] is deducible in TFL(resp. TFLX ), then it is satisfied
in any interpretation in any FL(resp. FLX ) hyperdoctrine.

Proof. Fix an FL or FLX hyperdoctrine P and an interpretation [[-]] in P. Initial
sequents in context are satisfied because a ≤ a in any fibre P(C ). The cut rule
preserves satisfaction, since tensoring preserves ≤ and ≤ has transitivity. It is easy
to verify that all the rules for the logical connectives preserve satisfaction.

Let us consider universal quantifier ∀. To show the case of Rule ∀R, assume that

[[Φ [x : �,Γ]]] ≤ [[ϕ [x : �,Γ]]]

in P([[�]] × [[Γ]]). It then follows that

[[Φ [x : �,Γ]]] = P(� : [[�]] × [[Γ]] → [[Γ]])([[Φ [Γ]]]),

where � is a projection in C, and note that Φ does not include x among its free
variables by the eigenvariable condition. We thus have

P(�)([[Φ [Γ]]]) ≤ [[ϕ [x : �,Γ]]].

Since ∀� : P([[�]] × [[Γ]]) → P([[Γ]]) is a right adjoint of P(�), it follows that

[[Φ [Γ]]] ≤ ∀�([[ϕ [x : �,Γ]]]) = [[∀xϕ [Γ]]].

We next show the case of ∀L. Assume that

[[Φ1 [x : �,Γ]]] ⊗ [[ϕ [x : �,Γ]]] ⊗ [[Φ2 [x : �,Γ]]] ≤ [[� [x : �,Γ]]].

The adjunction condition for universal quantifier gives us

P(�)(∀�([[ϕ [x : �,Γ]]])) ≤ [[ϕ [x : �,Γ]]],

where � : [[�]] × [[Γ]] → [[Γ]] is a projection. Yet we also have

P(�)(∀�([[ϕ [x : �,Γ]]])) = P(�)([[∀xϕ [Γ]]]) = [[∀xϕ [x : �,Γ]]].

Since tensoring respects ≤, these together imply that

[[Φ1 [x : �,Γ]]] ⊗ [[∀xϕ [x : �,Γ]]] ⊗ [[Φ2 [x : �,Γ]]] ≤ [[� [x : �,Γ]]].

It remains to show the case of existential quantifier ∃. In order to prove that Rule
∃L preserves satisfaction, assume that

[[Φ1 [x : �,Γ]]] ⊗ [[ϕ [x : �,Γ]]] ⊗ [[Φ2 [x : �,Γ]]] ≤ [[� [x : �,Γ]]].

This is equivalent to the following:

[[Φ1 [x : �,Γ]]] ⊗ [[ϕ [x : �,Γ]]] ⊗ [[Φ2 [x : �,Γ]]] ≤ P(�)([[� [Γ]]]),

where � : [[�]] × [[Γ]] → [[Γ]] is a projection. Since

∃� : P([[�]] × [[Γ]]) → P([[Γ]])

is left adjoint to P(�), it follows that

∃�([[Φ1 [x : �,Γ]]] ⊗ [[ϕ [x : �,Γ]]] ⊗ [[Φ2 [x : �,Γ]]]) ≤ [[� [Γ]]].

This is equivalent to the following:

∃�( P(�)([[Φ1 [Γ]]]) ⊗ [[ϕ [x : �,Γ]]] ⊗ P(�)([[Φ2 [Γ]]]) ) ≤ [[� [Γ]]].

https://doi.org/10.1017/jsl.2021.41 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.41


FIBRED ALGEBRAIC SEMANTICS 1201

Repeated applications of the two Frobenius Reciprocity conditions give us

[[Φ1 [Γ]]] ⊗ ∃�([[ϕ [x : �,Γ]]]) ⊗ [[Φ2 [Γ]]] ≤ [[� [Γ]]].

Then we finally have the following:

[[Φ1 [Γ]]] ⊗ [[∃xϕ [Γ]]] ⊗ [[Φ2 [Γ]]] ≤ [[� [Γ]]].

To show the case of ∃R, assume that

[[Φ [x : �,Γ]]] ≤ [[ϕ [x : �,Γ]]].

The adjunction condition for existential quantifier tells us that

[[ϕ [x : �,Γ]]] ≤ P(�)(∃�([[ϕ [x : �,Γ]]])),

where � : [[�]] × [[Γ]] → [[Γ]] is a projection. We thus have the following:

[[Φ [x : �,Γ]]] ≤ P(�)(∃�([[ϕ [x : �,Γ]]])) = [[∃xϕ [x : �,Γ]]].

This completes the proof. �

Syntactic hyperdoctrines are then defined as follows towards the goal of proving
completeness. They are the hyperdoctrinal categorificaton of Lindenbaum–Tarski
algebras.

Definition 6. The syntactic hyperdoctrine of TFL is defined as follows ; that of
TFLX is defined by replacing FL and TFL below with FLX and TFLX .

We first define the base category C. An object in C is a context Γ up to α-
equivalence (i.e., the naming of variables does not matter). An arrow in C from an
object Γ to another Γ′ is a list of terms [t1, ... , tn] (up to equivalence) such that
t1 : �1 [Γ], ... , tn : �n [Γ] where Γ′ is supposed to be x1 : �1, ... , xn : �n.

The syntactic hyperdoctrine P : Cop → FL is then defined in the following way.
For an object Γ in C, let

FormΓ = {ϕ | ϕ is a formula in context Γ}.

Define an equivalence relation ∼ on FormΓ as follows: for ϕ,� ∈ FormΓ, ϕ ∼ � iff
both ϕ 
 � [Γ] and � 
 ϕ [Γ] are deducible in TFL. We then define

P(Γ) = FormΓ/∼

with an FL algebra structure induced by the logical connectives.
The arrow part of P is defined as follows. Let [t1, ... , tn] : Γ → Γ′ be an arrow in

C where Γ′ is x1 : �1, ... , xn : �n. Then we define P([t1, ... , tn]) : P(Γ′) → P(Γ) by

P([t1, ... , tn])(ϕ) = ϕ[t1/x1, ... , tn/xn],

where it is supposed that t1 : �1 [Γ], ... , tn : �n [Γ], and that ϕ is a formula in context
x1 : �1, ... , xn : �n.

Intuitively, P(Γ) above is a Lindenbaum–Tarski algebra sliced with respect to
each Γ. It is straightforward to verify that the operations of P(Γ) above are well
defined, and P(Γ) forms an FL algebra. We still have to check that P defined above
is a hyperdoctrine; this is done in the following lemma.
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Lemma 7. The syntactic hyperdoctrine P : Cop → FL(resp. FLX ) is an FL(resp.
FLX ) hyperdoctrine. In particular, it has quantifier structures satisfying the Beck–
Chevalley and Frobenius Reciprocity conditions.

Proof. Since substitution commutes with all the logical connectives,
P([t1, ... , tn]) defined above is always a homomorphism of FL algebras. Thus,
P is a contravariant functor.

We have to verify that the base category C has finite products, or equivalently,
binary products. For objects Γ,Γ′ in C, we define their product Γ × Γ′ as follows.
Suppose that Γ is x1 : �1, ... , xn : �n, and Γ′ is y1 : �1, ... , ym : �m. Then, Γ × Γ′ is
defined as

x1 : �1, ... , xn : �n, y1 : �1, ... , ym : �m.

An associated projection � : Γ × Γ′ → Γ′ is defined as

[y1, ... , ym] : Γ × Γ′ → Γ′,

where the context of each yi is taken to be x1 : �1, ... , xn : �n, y1 : �1, ... , ym : �m
(rather than y1 : �1, ... , ym : �m). The other projection is defined in a similar way. It
is easily verified that these indeed form a categorical product in C.

In order to show that P has quantifier structures, let � : Γ × Γ′ → Γ′ denote the
projection in C defined above, and then consider P(�), which we have to show has
right and left adjoints. The right and left adjoints of P(�) can be constructed as
follows. Recall Γ is x : �1, ... , xn : �n. Let ϕ ∈ P(Γ × Γ′); here we are identifying ϕ
with the equivalence class to which ϕ belongs, since every argument below respects
the equivalence. Then define ∀� : P(Γ × Γ′) → P(Γ′) by

∀�(ϕ) = ∀x1...∀xnϕ,

where the formula on the right-hand side actually denotes the corresponding
equivalence class. Similarly, we define ∃� : P(Γ × Γ′) → P(Γ′) by

∃�(ϕ) = ∃x1...∃xnϕ.

Let us show that ∀� is the right adjoint of P(�). We first assume P(�)(�) ≤ ϕ in
P(Γ × Γ′) for � ∈ P(Γ′) and ϕ ∈ P(Γ × Γ′). Then it follows from the definition of
P and � that

P(�)(� [Γ]) = � [Γ,Γ′],

where we are making explicit the two different contexts of�; the role ofP(�) just lies
in changing contexts. Since the ≤ of P(Γ × Γ′) is induced by its lattice structure, we
have ϕ ∧ � = �. It follows from the definition of P(Γ × Γ′) that ϕ ∧ � 
 � [Γ,Γ′]
and � 
 ϕ ∧ � [Γ,Γ′] are deducible in TFL (resp. TFLX ), whence � 
 ϕ [Γ,Γ′] is
deducible as well. By repeated applications of rule ∀R, it follows that

� 
 ∀x1...∀xnϕ [Γ′]

is deducible. This implies that both � 
 � ∧ ∀x1...∀xnϕ [Γ′] and � ∧ ∀x1...∀xnϕ 

� [Γ′] are deducible, whence � ≤ ∀x1...∀xnϕ in P(Γ′).
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We show the converse. Assume that � ≤ ∀x1...∀xnϕ in P(Γ′). By arguing as in
the above,

� 
 ∀x1...∀xnϕ [Γ′]

is deducible. By enriching the context,

� 
 ∀x1...∀xnϕ [Γ,Γ′]

is deducible. Since

∀x1...∀xnϕ 
 ϕ [Γ,Γ′]

is deducible by rule ∀L, the cut rule tells us that � 
 ϕ [Γ,Γ′] is deducible; note
that the contexts of two sequents-in-context must be the same when applying the
cut rule to them. It finally follows that P(�)(�) ≤ ϕ in P(Γ × Γ′). Thus, ∀� is the
right adjoint of P(�). Similarly, ∃� can be shown to be the left adjoint of P(�).

The Beck–Chevalley condition for ∀ can be verified as follows. Letϕ ∈ P(Γ × Γ′),
� : Γ × Γ′ → Γ′ a projection in C, and �′ : Γ × Γ′′ → Γ′′ another projection in C
for objects Γ,Γ′,Γ′′ in C. Then, we have

P([t1, ... , tn]) ◦ ∀�(ϕ) = (∀x1...∀xnϕ)[t1/y1, ... , tn/ym],

where it is supposed that Γ is x1 : �1, ... , xn : �n, Γ′ is y1 : �1, ... , ym : �m, and t1 :
�1 [Γ′′], ..., tm : �m [Γ′′]. We also have the following:

∀�′ ◦ P([t1, ... , tn])(ϕ) = ∀x1...∀xn(ϕ[t1/y1, ... , tn/ym]).

The Beck–Chevalley condition for ∀ thus follows. The Beck–Chevalley condition
for ∃ can be verified in a similar way. The two Frobenius Reciprocity conditions for
∃ follow immediately from Lemma 1. �

The syntactic hyperdoctrine is a free or classifying hyperdoctrine; it is the
combination of the classifying category C and the free algebras P(Γ)’s.

Now, there is the obvious, canonical interpretation of TFL (resp. TFLX ) in the
syntactic hyperdoctrine of TFL (resp. TFLX ); it is straightforward to see:

Lemma 8. If Φ 
 � [Γ] is satisfied in the canonical interpretation in the syntactic
hyperdoctrine of TFL(resp. TFLX ), it is deducible in TFL(resp. TFLX ).

The lemmata above give us the completeness result: If Φ 
 � [Γ] is satisfied in
any interpretation in any FL (resp. FLX ) hyperdoctrine, then it is deducible in TFL
(resp. TFLX ). Combining soundness and completeness, we obtain:

Theorem 9. The following are equivalent:

• Φ 
 � [Γ] is deducible in TFL(resp. TFLX ),
• Φ 
 � [Γ] is satisfied in any interpretation in any FL(resp. FLX ) hyperdoctrine.

Let us finally give set-theoretical examples of hyperdoctrines and remark on
what set-theoretical semantics look like in light of the hyperdoctrinal approach to
semantics.

Any complete FL algebra yields an FL hyperdoctrine as a contravariant Hom
functor into the algebra in the following way:
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Proposition 10. Let Ω ∈ FL with Ω being complete. Then,

HomSet(-,Ω) : Setop → FL(resp. FLX )

is an FL(resp. FLX ) hyperdoctrine.

Proof. Let� : X × Y → Y be a projection in Set. We define∀� and∃� as follows:
given v ∈ Hom(X × Y,Ω) and y ∈ Y , let

∀�(v)(y) :=
∧

{v(x, y) | x ∈ X}

and

∃�(v)(y) :=
∨

{v(x, y) | x ∈ X}.

These morphisms give the required quantifier structures satisfying the Beck–
Chevalley and Frobenius Reciprocity properties. �

If Ω is the two element Boolean algebra, the functor above comes down to
the contravariant powerset functor, the hyperdoctrinal interpretation with which
amounts to the standard Tarski semantics of classical logic. So the hyperdoctrinal
semantics may be seen as a vast generalisation of the classic Tarski semantics.

The above hyperdoctrine and corresponding semantics may be regarded as the
Ω-valued powerset functor and Ω-valued semantics, respectively; this is related to
algebra-valued models of set theory as we shall remark in the concluding section
below. The Ω-valued semantics of substructural logic have been developed essentially
in the context of algebraic substructural logic, independently of any categorical
semantics (see, e.g., Ono [33, 34]); yet the hyperdoctrinal semantics even encompass
those semantics.

The algebraic completeness of algebras Ω actually prevents us from proving the
logical completeness of the semantics with respect to those complete algebras. To
be precise, assuming completeness prevents us from obtaining completeness for any
axiomatic extension TFLX of TFL; such incompleteness phenomena have been
observed in various settings (see, e.g., Ono [33]). Yet at the same time, if Ω is not
complete, in general, HomSet(-,Ω) cannot interpret quantifiers; this is because ∀ and
∃ in HomSet(-,Ω) are actually infinitary meets and joins in Ω. In algebraic predicate
logic, thus, the notion of safe valuations has been applied in order to address this
issue; yet they require ad hoc constraints to interpret quantifiers in non-complete
algebras (see, e.g., Ono [34]). If we restrict the hyperdoctrine semantics to the Ω-
valued models HomSet(-,Ω), we can encounter the same problem, and we do need
the same, safe valuation technique to show the completeness theorem with respect
to those models. Yet from a categorical point of view, there is no a priori reason to
stick to set-theoretical models, and in the general hyperdoctrinal setting as above,
completeness comes for free (i.e., without any cost of ad hoc manipulations) via the
syntactic hyperdoctrine construction, just as completeness holds for free in algebraic
propositional logic via the Lindenbaum–Tarski algebra construction. This would
suggest that hyperdoctrines or fibred algebras give the right notion of algebras of
predicate logic that directly extend the salient features of algebraic propositional
logic; there is, to the best of the author’s knowledge, no other such concept of
algebras of predicate logic that works for a broad variety of logical systems in a
uniform and modular manner.
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The above functor is actually part of a dual adjunction: given Ω ∈ FL, the
following dual adjunction holds between Set and FL, induced by Ω as a dualising
object:

Hom FL(-,Ω)op � Hom Set(-,Ω) : Setop → FL.

As this example suggests, hyperdoctrines tend to arise from the predicate functor
parts of dual adjunctions induced by dualising objects. The dual adjunction between
frames and topological spaces (see Johnstone [17]) gives a hyperdoctrine for
geometric predicate logic; likewise, the dual adjunction between convex algebras and
convex spaces as in [25] gives a hyperdoctrine for convex geometric logic. Coalgebraic
dualities as in [19, 26] give hyperdoctrines for modal predicate logics. There could
be a systematic study of these phenomena at the interface of duality theory and
categorical logic. In general, categorical dualities for propositional logics (see, e.g.,
[27, 30]) often give hyperdoctrinal models of the predicate logics that extend them
with typed quantifiers (as studied in [29]).

§4. Hyperdoctrinal Lawvere–Tierney topology as Girard and Kolmogorov trans-
lation. In the hyerdoctrinal setting, type theories are categories, logics over them
are functors, and logical translations between them are natural transformations;
we elaborate on this idea in the present section, introducing the generalised notion
of Lawvere–Tierney topologies and cotopologies on hyperdoctrines (rather than
toposes), which allow for a uniform treatment of logical translations, such as the
Kolmogorov’s double negation translation and the Girard’s exponential translation
as we shall see below.

In the following, HA and BA denote the category of Heyting algebras and the
category of Boolean algebras, respectively. IL and CL hyperdoctrines are defined as
FL hyperdoctrines with values in HA and BA, respectively. Note that both IL and
CL hyperdoctrines are FLX hyperdoctrines for suitable sets of axioms X.

Given a Heyting algebra, the fixpoints of double negation, namely those elements
that validate the double negation elimination, form a Boolean algebra; this is an
algebraic version of the Kolmogorov translation between intuitionistic and classical
propositional logics. In the following, we explore how this extends to predicate
logics and hyperdoctrines through the concept of Lawvere–Tierney topologies and
cotopologies, which give a unifying perspective on different logical translations.
In particular, exponential ! is understood as a Lawvere–Tierney cotopology on
substructural hyperdoctrines.

Lawvere–Tierney topologies originally come from topos theory, and they induce
topologies on hyperdoctrines (this is just for motivating the following discussion,
which itself does not require any substantial knowledge of topos theory): given a
topos C with a subobject classifier Ω, a Lawvere–Tierney topology on Ω corresponds
to a natural transformation on the subobject hyperdoctrine Sub : C → HA

j : Sub C(-) → Sub C(-)

such that jC is a closure operator on SubC(C ) for every C ∈ C (see, e.g., Jacobs
[16]). Having this correspondence in mind, let us define the concept of Lawvere–
Tierney topologies and cotopologies on hyperdoctrines in the following manner,
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which allow us to capture different logical translations uniformly in the general
hyperdoctrinal setting.

Definition 11. For an FL hyperdoctrine P : Cop → FL, a Lawvere–Tierney
topology on P is a natural transformation

j : P → P

such that

jC : P(C ) → P(C )

is a closure operator on P(C ) for each C ∈ C. We also call a Lawvere–Tierney
topology a Lawvere–Tierney operator.

Dually, a Lawvere–Tierney cotopology (or co-operator) for P is a natural
transformation

j : P → P

such that

jC : P(C ) → P(C )

is an interior operator on P(C ) for each C ∈ C.

Examples we are going to discuss below would clarify what the definition above
means in logical contexts. The above transformation j on the subobject hyperdoctrine
Sub : C → HA of a topos, of course, forms a Lawvere–Tierney topology on Sub.

Let us introduce intuitionistic linear logic with exponential !, which allows us to
have control over structural rules and simulate intuitionistic logic within linear logic.
An exponential ! on an FL algebra A is defined in algebraic terms as follows (see
Coumans–Gehrke–Rooijen [7]):

Definition 12. An exponential ! on an FL algebra A is a unary operation
satisfying the following:

• a ≤ b implies ! a ≤! b;
• ! ! a =! a;
• ! a ≤ a;
• !� = 1;
• ! a⊗! b =! (a ∧ b).

We denote by FL!
e (where e means exchange) the category of commutative FL

algebras with exponential ! and maps preserving both exponential ! and FL algebra
operations ; they give the algebraic counterpart of intuitionistic linear logic with !,
which we denote simply by ILL.

ILL hyperdoctrines are defined as FL hyperdoctrines with values in FL!
c .

Note that the above definition of Lawvere–Tierney topologies and cotopologies
obviously generalises to ILL hyperdoctrines, i.e., just by replacing FL with FL!

e in
the above definition.

The exponential operation ! induces a Lawvere–Tierney cotopology on an ILL
hyperdoctrine P : Cop → FL!

e : that is, ! can naturally be considered as a natural
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transformation

! : P → P
such that

!C (a) =! a

for anyC ∈ C and a ∈ P(C ). The naturality condition in the definition of Lawvere–
Tierney cotopologies means that the following diagram commutes: given f : C →
D,

P(D) P(D)

P(C ) P(C )
�

P(f)

�!D

�

P(f)

�
!C

The diagram above indeed commutes because the following hold:

!P(f)(x) = P(f)(!x),

where note that P(f) is a homomorphism. In addition to this,

!C : P(C ) → P(C )

is an interior operator on P(C ), and thus we have verified the following:

Proposition 13. The exponential ! : P → P forms a Lawvere–Tierney cotopology
on an ILL hyperdoctrine P : Cop → FL!

e .

Another example of Lawvere–Tierney topology is the double negation topology.
Just in the same way as above, the double negation operation ¬¬ in Heyting algebras
yields a Lawvere–Tierney topology ¬¬ : P → P on an intuitionistic hyperdoctrine
P : Cop → HA.

Given a Lawvere–Tierney (co)topology j on a hyperdoctrine, we can construct
another functor Pj in the following manner:

Proposition 14. A Lawvere–Tierney (co)topology j on a given FL or FL!
e

hyperdoctrine P induces another functor Pj such that

Pj(C ) = {jC (x) | x ∈ P(C )}
and

Pj(f : C → D)(x) = P(f)(x),

which is well defined as a functor. In particular, P(f)(x) is an element of Pj(C ).

Proof. This follows from the naturality of the Lawvere–Tierney (co)topology j:
there is some y ∈ P(D) such that x = jD(y), and the naturality of transformation
j gives us

P(f)(x) = P(f)(jD(y)) = jC (P(f)(y)),

and jC (P(f)(y)) is an element of Pj(C ). �
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Note that Pj amounts to taking the fixpoints of j with respect to each C, since jC
is a closure or interior operator, and therefore idempotent in either case.

By the proposition above, the double negation Lawvere–Tierney topology ¬¬ on
an intuitionistic hyperdoctrine P : Cop → HA induces a functor

P¬¬ : Cop → BA,

where note that P¬¬(C ) forms a Boolean algebra because the elements of
P¬¬(C ) are classical propositions, i.e., those elements that validate the double
negation elimination. Likewise, the exponential Lawvere–Tierney cotopology ! on a
substructural hyperdoctrine P : Cop → FL!

e induces a functor

P! : Cop → HA,

where note that P!(C ) forms a Heyting algebra because the elements of P!(C ) are
structural propositions, i.e., those admitting the structural rules. Furthermore, in
the following, we show that P¬¬ and P! are actually intuitionistic and classical
hyperdoctrines, respectively.

Theorem 15. Let P : Cop → FL!
e be an ILL hyperdoctrine. Then, the following

functor induced by the exponential Lawvere–Tierney cotopology ! on P

P! : Cop → HA

forms an IL hyperdoctrine: i.e., it has the quantifier structure as required.

Proof. Let us fix a projection � : C ×D → D. We have to prove that

P!(�) : P!(D) → P!(C ×D)

has both right and left adjoints. By the adjoint functor theorem, it suffices to show
that P!(�) preserves limits and colimits, namely infimums and supremums in the
present case. Let us first prove that it preserves infimums. To show this, suppose that

∧
{xi | i ∈ I } ∈ P!(D),

for xi ∈ P!(D). It then holds that !xi = xi and !
∧
{xi | i ∈ I } =

∧
{xi | i ∈ I },

since any element of P!(D) is a fixpoint of the exponential operation !. We then have

P!(�)(
∧

{xi | i ∈ I }) = P!(�)(!
∧

{xi | i ∈ I })

= P(�)(!
∧

{xi | i ∈ I })

= !
∧

{P(�)(xi) | i ∈ I }

= !
∧

{P!(�)(xi) | i ∈ I }

=
∧

{P!(�)(xi) | i ∈ I }.

The last equality holds because !
∧

({P!(�)(xi) | i ∈ I }) is actually the infimum of
P!(�)(xi)’s in P!(C ×D), which can be verified in the following way. We first have

!
∧

{P!(�)(xi) | i ∈ I } ≤ P!(�)(xi),
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for any i ∈ I , since !xi = xi and P!(�) preserves !. Suppose that there is some
z ∈ P!(C ×D) such that z ≤ P!(�)(xi) for any i ∈ I . Then we have got ! z = z and

z ≤
∧

{P!(�)(xi) | i ∈ I },

which implies that

z =! z ≤!
∧

{P!(�)(xi) | i ∈ I }.

This means that !
∧

({P!(�)(xi) | i ∈ I }) is the infimum of P!(�)(xi)’s. We have thus
shown that P!(�) preserves limits. The case of colimits can be verified in the same
way. �

This is an analogue of the Girard translation formulated in terms of hyper-
doctrines and Lawvere–Tierney (co)topology. The above theorem is more general
than Girard’s translation theorem in the sense that the latter corresponds to
the case of syntactic hyperdoctrines in the former. Although in this paper we
do not explicitly discuss substructural logics enriched with modalities and their
hyperdoctrinal semantics, nevertheless, our methods work for them as well, yielding
the corresponding soundness and completeness results in terms of hyperdoctrines
with values in FL algebras with modalities; Girard’s exponential ! is just a special
case.

Now, the double negation translation version is as follows.

Theorem 16. Let P : Cop → HA be an IL hyperdoctrine. Then, the following
functor induced by the double negation Lawvere–Tierney topology ¬¬ on P

P¬¬ : Cop → HA

forms an CL hyperdoctrine: i.e., it has the quantifier structure as required.

Proof. The argument to show this is mostly the same as above. Fix a projection
� : C ×D → D. We prove that

P¬¬(�) : P¬¬(D) → P¬¬(C ×D)

has both right and left adjoints. It suffices to show that P¬¬(�) preserves limits and
colimits. To show that it preserves limits, suppose

∧
{xi | i ∈ I } ∈ P¬¬(D),

for xi ∈ P¬¬(D). It then holds that ¬¬xi = xi and ¬¬
∧
{xi | i ∈ I } =

∧
{xi | i ∈

I }. We then have

P¬¬(�)(
∧

{xi | i ∈ I }) = P(�)(¬¬
∧

{xi | i ∈ I })

= ¬¬
∧

{P(�)(xi) | i ∈ I }

=
∧

{P¬¬(�)(xi) | i ∈ I }.

The preservation of colimits can be shown in the same way. �
While the double negation topology in topos theory is concerned with (theories

over) higher-order logic, the above translation theorem is for (theories over) first-
order logic in general; there is no similar result known for Heyting categories or
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logoses, the first-order version of toposes. Note that intuitionistic hyperdoctrines
and Heyting categories are linked with each other via the subobject hyperdoctrine
functor and the partial equivalence category functor (which is the first-order version
of the tripos-to-topos construction); the above theorem, thus, can be recast in terms
of Heyting categories, though the hyperdoctrinal formulation appears more natural.

Let us finally remark on the naturality condition of Lawvere–Tierney topology
on hyperdoctrines. From a logical point of view, the naturality condition means
that the operator j commutes with substitution of terms for variables. Let us, for
example, consider the syntactic hyperdoctrine for intuitionistic predicate logic

P : Cop → HA.

Recall that an object of C is a collection of typed variables, and an arrow of C is
a term. Then, P maps a collection of variables x1, ... , xn to the Heyting algebra
of formulas ϕ(x1, ... , xn) with those variables, and P(t) is the substitution of t
for variables concerned. The double negation Lawvere–Tierney topology on the
hyperdoctrine P is indeed a natural transformation because substitution commutes
with double negation:

(¬¬ϕ)[t/x] = ¬¬(ϕ[t/x]).

Extending Lawvere hyperdoctrines to a substructural setting, thus, we can give a
uniform treatment of different logical translations through the concept of Lawvere–
Tierney topologies and cotopologies on hyperdoctrines.

§5. Concluding remarks. We have developed the hyperdoctrinal or fibred alge-
braic theory of substructural predicate logics, and given a uniform understanding
of logical translation theorems on the basis of Lawvere–Tierney topologies and
cotopologies on them. Let us finally comment upon further directions of research.

5.1. Fibred algebraic completions and cut elimination for substructural predicate
logics. Unlike the case of substructural propositional logics, there has, so far,
been no systematic theory of algebraic cut elimination for substructural predicate
logics, since there has been no adequate concept of algebras of them available
for that purpose. Hyperdoctrines or fibred algebras as we have introduced in
this paper could serve as a framework in which to develop a systematic theory
of algebraic cut elimination. By a systematic theory, we mean, in particular, the
predicate logic counterpart of the propositional result that a logic enjoys the cut
elimination if and only if the corresponding algebras are closed under algebraic
completions (see Ciabattoni–Galatos–Terui [4, 5]). Extending the propositional
correspondence between cut elimination and algebraic completion, we could show
something like this: a predicate logic admits the cut elimination if and only if
the corresponding fibred algebras are closed under fibred algebraic completions.
Completions and canonical extensions of hyperdoctrines for coherent logic have
been studied systematically by Coumans [6]; we could extend the methods so as
to be applicable for substructural logics. It is technically similar to proving the
translation theorems above to prove that hyperdoctrines or fibred algebras are closed
under completions; this could be applied to give algebraic cut elimination proofs for
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substructural predicate logics over FL in a uniform, systematic manner as achieved
in the propositional substructural logic case.

5.2. Algebra-valued models of set theory and consistency problems on substructural
set theory. Another potential application could be found in set theory, just as
intuitionistic hyperdoctrines yield Heyting-valued models of set theory via the
tripos-to-topos construction originally due to Hyland–Johnstone–Pitts [14]. We can
reformulate it in the present context of FL hyperdoctrines. To do this, we work in the
internal logic of FL hyperdoctrinesP : Cop → FL: i.e., we have types X and function
symbols f corresponding to objects X and arrows f in C respectively, and also those
predicate symbols R on a type C ∈ C that correspond to elements R ∈ P(C ).

We can then define a category T[P] as follows. An object of T[P] is a partial
equivalence relation, i.e., a pair

(X,EX )

such that X is an object in the base category C, and EX is an element of P(X × X )
and is symmetric and transitive in the internal logic of P:

EX (x, y) 
 EX (y, x) [x, y : X ]

and

EX (x, y), EX (y, z) 
 EX (x, z) [x, y, z : X ].

An arrow from (X,EX ) to (Y,EY ) is then defined as F ∈ P(X × Y ) such that (i)
extensionality:

EX (x1, x2), EY (y1, y2), F (x1, y1) 
 F (x2, y2) [x1, x2 : X, y1, y2 : Y ];

(ii) strictness:

F (x, y) 
 EX (x, x) ∧ EY (y, y) [x : X, y : Y ];

(iii) single-valuedness:

F (x, y1), F (x, y2) 
 EY (y1, y2) [x : X, y1, y2 : Y ];

(iv) totality:

EX (x, x) 
 ∃y F (x, y) [x : X ].

Such an F is called a functional relation.
Now, if Ω is a locale,

T[Hom Set(-,Ω)]

is the Higgs topos of Ω-valued sets, which is in turn equivalent to the category of
sheaves on Ω; it has given a number of applications to consistency and independence
problems in both classical and intuitionistic set theories. For a complete FL algebra
Ω, which is a quantale with additional operations, T[HomSet(-,Ω)] may be seen as
the category of Ω-valued sets. Quantale sets in the sense of Höhle-Kubiak [13] can be
regarded as objects in T[HomSet(-,Ω)]. We could interpret substructural set theories
in the category of Ω-valued sets, and thereby might be able to solve consistency
and independence problems in them. Presumably the most challenging problem
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in this context is the consistency of Łukasiewicz predicate logic with the naive
comprehension principle, which White [38] claimed to have proven, yet generally
considered to be an open problem even now.
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