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Effective finiteness of solutions to certain
differential and difference equations
Patrick Ingram

Abstract. For R(z, w) ∈ C(z, w) of degree at least 2 in w, we show that the number of rational
functions f (z) ∈ C(z) solving the difference equation f (z + 1) = R(z, f (z)) is finite and bounded
just in terms of the degrees of R in the two variables. This complements a result of Yanagihara, who
showed that any finite-order meromorphic solution to this sort of difference equation must be a
rational function. We prove a similar result for the differential equation f ′(z) = R(z, f (z)), building
on a result of Eremenko.

Malmquist [11] showed that if R(z, w) ∈ C(z, w) is a rational function and f (z) is a
meromorphic solution to the differential equation

f ′(z) = R(z, f (z)),(1)

then either R(z, w) is a polynomial of degree at most 2 in w (and hence (1) is a linear
or Ricatti equation) or else f (z) is a rational function. Eremenko [3] established a
bound on the degree of f in the latter case (for more general first-order ordinary
differential equations). In the case that R is a polynomial in both variables, Gundersen
[5] established bounds on the number of solutions to (1), in terms of the degree of R
in w and the number of distinct roots z of the leading coefficient (see also [4, 6]).

A difference-equation analog of Malmquist’s Theorem was derived by Yanagihara
[16], who showed that any finite-order meromorphic solution f to

f (z + 1) = R(z, f (z)),(2)

is rational, assuming that degw(R) ≥ 2. The purpose of this note is to establish
a result complementary to Yanagihara’s, specifically that the number of rational
solutions to (2) is finite and bounded just in terms of the degree of R in each
variable. Indeed, our proof is effective in the sense that it gives us an in-principle
computable list of rational functions, which must contain all solutions. As our
methods apply to (1) with minor modifications and offer a different approach to
computing the finite set of solutions in certain cases, we treat that as well, although
in the differential context, this largely amounts to a new approach to a known
result.
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Theorem 1 Let R(z, w) ∈ C(z, w). There exist explicit constants B1 and B2, depending
just on degw(R) and degz(R), such that the following hold:
(A) If degw(R) ≥ 2, then there are at most B1 rational functions f solving (2), and the

set of solutions is effectively computable.
(B) If degw(R) ≥ 3, then there are at most B2 rational functions f solving (1), and the

set of solutions is effectively computable.

Indeed, we show that we may take

Bx = (degw(R) + x)degz(R)
(degw(R) + x)(degw(R)+x)(3 degz(R)+1) − 1

(degw(R) + x)(degw(R)+x) − 1
,(3)

although these are surely not optimal bounds, and refinements here would be of
interest.

Our proof proceeds roughly as follows, focusing on the difference-equation case.
First, we bound the degree of a rational function f solving (2). This is similar in flavor
to the argument behind Yanagihara’s result, which makes estimates on the Nevanlinna
characteristic of a putative solution, but once restricted to the setting of rational
functions, we can do this by purely elementary means. We then show that the rational
solutions to (2) of a given degree correspond to an algebraic subset of some projective
space, whose irreducible components have degree summing to at most some bound,
which depends only on the degrees of R in the two variables. This would prove the
result, but for the possibility that some of these irreducible components have positive
dimension.

Changing gears, we use an arithmetic argument (a height bound) to show that
if R and the solutions to (2) in question happen to all have algebraic coefficients,
then the Zariski closure of this set of solutions cannot have any components of
positive dimension. This is then the base case of an induction on transcendence
rank, which proves the result over any finitely generated subfield of C. Because R and
any finite collection of solutions to (2) can be defined over some finitely generated
extension, this resolves the general case. The crux of the induction is essentially that we
may replace some transcendental values appearing in the coefficients of our various
rational functions with values from some subfield, in such a way as to preserve (2).
The consideration of the heights of the coefficients of solutions seems to be novel here,
although Eremenko’s arguments in [3] use the related function-field height.

While our results produce an effectively computable finite set, the computations
involved are not necessarily practical, even in simple cases. For instance, consider the
following variation of an example of Yanagihara:

f (z + 1) = f (z) + 1 + 2z3

f (z) .

Then, it is a consequence of the various lemmas below than any rational solution has
degree at most 9, and any solution in Q(z) can be written with integer coefficients of
absolute value at most 8.2 × 1040, which gives a finite search space, but one too large
to exhaust. (And, a priori, these might not be all solutions, as our proof provides here
only that the coefficients will be algebraic of degree at most 8 × 1012.) Meanwhile, for
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this example, an elementary consideration of the zeros and poles of a putative solution
show that we can have only f (z) = z2.

We also note that while we prove bounds on the size of the set of solutions below
when R has coefficients in C, we only discuss computation of the finite set of solutions
(which depends on the theory of heights) when R has coefficients inQ. This is only for
simplicity, though, and if R has transcendental coefficients, one may simply appeal to
the (somewhat more complicated) theory of heights over finitely generated extensions
of Q due to Moriwaki [13].

This paper raises a few questions, and we mention two here for future considera-
tion. First, an anonymous referee proposes the following.

Question 2 In analogy with the statement of Malmquist’s Theorem, is it true that the
number of solutions to (1) is bounded as in Theorem 1 whenever R is not linear or a
quadratic polynomial in w?

The second question is motivated by Remark 11 below.

Question 3 Given an factional linear transformation σ(z) ∈ C(z), do there exist
any finite-order meromorphic solutions to f ○ σ(z) = R(z, f (z)) other than rational
solutions?

Note that if one restricts σ to be an affine linear transformation, then one can
make some progress by combining Yanagihara’s proof from [16] with an estimate
of Bergweiler [1] on the characteristic of a composition of functions, but even this
appears to give a much weaker result.

1 Degrees of solutions

Our first lemma is a standard result on the elimination of variables. For the rest of the
paper, we set d = degw(R). In general, if F is a polynomial in several variables, deg(F)
will mean the total degree of F.

Lemma 4 Given P, Q ∈ C[z, X1 , X0], homogeneous of degree d in X1 and X0 and with
no common factor, there exists a nonzero Res(P, Q) ∈ C[z] and A i , B i ∈ C[z, X1 , X0],
homogeneous of degree d − 1 in the X i , with

Res(P, Q)X2d−1
i = A i(X1 , X0)P(X1 , X0) + B i(X1 , X0)Q(X1 , X0),(4)

for i = 0, 1. Furthermore, Res(P, Q) is the determinant of some 2d × 2d matrix with
entries, which are coefficients of P and Q, and every coefficient of A i and B i is
the determinant of some (2d − 1) × (2d − 1) matrix, with entries again coefficients of
P and Q.

Proof This is a standard result, which we sketch here for completeness (see [9,
Lemma 1] for more details). Writing Hd for the C[z]-module of homogeneous forms
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of degree d in X1 and X0, note that

(A, B) ↦ AP + BQ(5)

is a linear map from Hd−1 × Hd−1 to H2d−1. We define Res(P, Q) to be the determinant
of the Sylvester matrix of P and Q, which is the coordinate matrix of (5) (relative to
the natural bases). If Res(P, Q) ≠ 0, then it follows from Cramer’s Rule that we can
solve (4), and that the coefficients of the solutions will be determinants of the Sylvester
matrix with certain columns replaced by the standard basis vector representing X2d−1

i .
In the case that Res(P, Q) = 0, the kernel of (5) will contain a nontrivial element,
which corresponds to a pair (A, B) such that A/B is a rational function of degree
at most d − 1, and is equal to −P/Q. This means that P and Q have a common
factor. ∎

We now give a lower bound on the degree of a certain composition of rational
functions. For the rest of the paper, we represent R as

R(z, X/Y) = P(X , Y)
Q(X , Y)

for homogeneous forms P, Q of degree d with no common factor, and coefficients in
C[z].

We begin with an explicit estimate on the degree of a rational function of a rational
function with polynomial coefficients.

Lemma 5 With d ≥ 2, we have

d deg( f ) ≤ deg(R(z, f (z))) + (2d − 1)degz(R).

Note that an estimate of this form already follows from a result of Monhon’ko
[12], without an explicit error term. Writing Tr( f ) for the Nevanlinna characteristic
function of f, then Tr( f ) = deg( f ) log r + O(1) as r →∞. The main result of [12] is
that

dTr( f ) = Tr(R(z, f (z))) + O (∑Tr(c i)) ,

where the c i are the coefficients of R, from which we deduce that d deg( f ) =
deg(R(z, f (z))) + O(degz(R)), where the implied constant depends on d.

Proof of Lemma 5 Set f = f1/ f0, where f1 and f0 are polynomials with no common
factor, and write

Res(P, Q) f 2d−1
i = A i( f1 , f0)P( f1 , f0) + B i( f1 , f0)Q( f1 , f0)(6)

as in Lemma 4. Now, each A i(X , Y) has degree d − 1 and coefficients, which are
determinants of (2d − 1) × (2d − 1) matrices, whose entries are coefficients of P and
Q. It follows that

deg(A i( f1 , f0)) ≤ (d − 1)max{deg( f1), deg( f0)} + (2d − 1)degz(R)
= (d − 1)deg( f ) + (2d − 1)degz(R),
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and similarly for B i . So we have from (6) that

deg(Res(P, Q)) + (2d − 1)deg( f ) = max
i=0,1

deg(Res(P, Q) f 2d−1
i )

≤ max
i=0,1

deg (A i( f1 , f0)P( f1 , f0)

+ B i( f1 , f0)Q( f1 , f0))
≤ max{deg(P( f1 , f0)), deg(Q( f1 , f0))}
+ (d − 1)deg( f ) + (2d − 1)degz(R).

On the other hand, any common factor in C[z] of P( f1 , f0) and Q( f1 , f0) must
divide Res(P, Q), and so rearranging the above gives

d deg( f ) ≤ max{deg(P( f1 , f0)), deg(Q( f1 , f0))} − deg(Res(P, Q))
+ (2d − 1)degz(R)

≤ deg( P( f1 , f0)
Q( f1 , f0)

) + (2d − 1)degz(R)

= deg (R(z, f (z))) + (2d − 1)degz(R). ∎

Note that it is not hard to construct examples in which we see that some error
term in Lemma 5 is necessary, although it is not clear how sharp the estimate is. For
instance, if R(z, w) = wd − zdm , then R(z, zm) = 0, showing that we cannot replace
the factor of 2d − 1 in the error term by anything less than 1.

Our next lemma restricts the degree of a solution to (2), making the form of a
hypothetical solution more concrete. In the difference-equation context, this lemma
can be obtained from Yanagihara’s argument, by making the error term in a result of
Valiron [15] more explicit, but the previous lemma is already enough. For the context
of (1), the argument is similar to that of Eremenko [3], with the previous lemma doing
most of the work.

Lemma 6 (A) If f satisfies (2) and d ≥ 2, then deg( f ) ≤ 3 degz(R).
(B) If f satisfies (1) and d ≥ 3, then deg( f ) ≤ 5 degz(R).

Proof For the first claim, note that it follows from Lemma 5 that for f satisfying
(2),

d deg( f ) ≤ deg (R(z, f (z))) + (2d − 1)degz(R)
= deg( f (z + 1)) + (2d − 1)degz(R)
= deg( f ) + (2d − 1)degz(R),

whence

deg( f ) ≤ 2d − 1
d − 1

degz(R) ≤ 3 degz(R).
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On the other hand, deg( f ′) ≤ 2 deg( f ) − 2, by the quotient rule, and so from
Lemma 5, solutions to (1) have

d deg( f ) ≤ 2 deg( f ) − 2 + (2d − 1)degz(R) ≤ 2 deg( f ) + (2d − 1)degz(R),

whence

deg( f ) ≤ 2d − 1
d − 2

degz(R) ≤ 5 degz(R),

for d ≥ 3. ∎

2 Solutions of a given degree

We now focus on solutions to (2) of fixed degree. A rational function of degree k

f (z) = c0 +⋯+ ck zk

ck+1 +⋯+ c2k+1zk(7)

can be identified with the point in projective space c = [c0 ∶ ⋯ ∶ c2k+1] ∈ P2k+1, but
not every point in P2k+1 gives a rational function of the right degree. In particular, the
resultant of the numerator and denominator in (7) is a homogeneous form Res(c)
in the coordinates of P2k+1 of degree 2k, and rational functions of degree exactly k
correspond to points on Homk ⊆ P2k+1, the complement of the hypersurface defined
by Res(c) = 0.

Our next lemma requires the machinery of heights. Let K be a number field, and
let ∣ ⋅ ∣v be an absolute value on K whose restriction to Q is either the usual absolute
value, or a p-adic absolute value. The set of such v will be denoted by MK . For a point
P = [P0 ∶ ⋯ ∶ PN] ∈ PN(K), we define the logarithmic Weil height h(P) by

h(P) = ∑
v∈MK

[Kv ∶ Qv]
[K ∶ Q] log max{∣P0∣v , . . . , ∣PN ∣v},(8)

where Kv is the completion of K with respect to ∣ ⋅ ∣v . It is a standard result (see, e.g.,
[8, p. 176]) that h(P) is independent both of the choice of homogeneous coordinates
representing P, and of the field K. That is, h is a non-negative, well-defined function on
PN(K). We will write h( f ) for the height of the tuple of coefficients of f (z) ∈ Q(z),
when f is written as in (7), as a quotient of polynomials with no common factor.

The main utility of heights, for our purposes, will be the following finiteness result
(see, e.g., [8, Theorem B.2.3, p. 177]).

Lemma 7 Northcott [14]. For any finite B and D, the set of points P ∈ PN(Q)
with h(P) ≤ B defined over number fields of degree at most D is finite and effectively
computable.

Northcott’s Theorem needs not to be particularly mysterious, at least in the case
D = 1. If P = [P0 ∶ ⋯ ∶ PN] ∈ PN(Q), then by scaling the coordinates, we may take the
Pi to be integers not sharing a common factor. In this case, one checks from (8) that

h(P) = log max{∣P0∣, . . . , ∣PN ∣},
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and of course, bounding this allows only finitely many choices for the Pi .
We will use heights to show finiteness in certain cases of the proof of the main

result, via the next lemma, which is an arithmetic analog of Lemma 5.

Lemma 8 Let R(z, w) ∈ Q(z, w) with d = degw(R) ≥ 2 and let f (z) ∈ Q(z). Then,

dh( f ) ≤ h(R(z, f (z))) + O(1),

where the implied constant depends only on R and deg( f ).

Proof Let K be some number field containing the coefficients of R and f, and let ∣ ⋅ ∣v
be an absolute value on K. For a polynomial F(x1 , . . . , xn) ∈ K[x1 , . . . , xn] in however
many variables, we set

∥F∥v = ∥∑ a i1 , . . . , in x i1
1 ⋯x in

n ∥v = max ∣a i1 , . . . , in ∣v .

We will also set

∥F1 , . . . , Fm∥v = max{∥F1∥v , . . . , ∥Fm∥v}.

If ∣ ⋅ ∣v is a nonarchimedean absolute value, then

∥F1 +⋯+ Fm∥v ≤ ∥F1 , . . . , Fm∥v

by the strong triangle inequality, while

∥
m
∏
i=1

Fi∥
v
=

m
∏
i=1

∥Fi∥v

by the Gauß Lemma [2, Lemma 1.6.3, p. 22].
In the case of an archimedean absolute value, the triangle inequality gives

∥F1 +⋯+ Fm∥v ≤ m∥F1 , . . . , Fm∥v .

Somewhat less obviously, in this case, we have, for polynomials in n variables,
m
∏
i=1

∥Fi∥v 2−n deg(Fi) ≤ ∥
m
∏
i=1

Fi∥
v
≤

m
∏
i=1

∥Fi∥v 2n deg(Fi) .

This is due to Mahler [10], or by applying Gelfond’s Lemma [2, Lemma 1.6.11, p. 27]
and noting that the degrees of Fi in each of the n variables sum to at most n deg(Fi).

For a positive integer m, we have

log+ ∣m∣v ∶= log max{∣m∣v , 1} =
⎧⎪⎪⎨⎪⎪⎩

log m if v is archimedean,
0 otherwise,

and so we consolidate the above inequalities into

log ∥F1 +⋯+ Fm∥v ≤ log ∥F1 , . . . , Fm∥v + log+ ∣m∣v

and
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m
∑
i=1
(log ∥Fi∥v − n deg(Fi) log+ ∣2∣v) ≤ log∥

m
∏
i=1

Fi∥
v

≤
m
∑
i=1
(log ∥Fi∥v + n deg(Fi) log+ ∣2∣v),

where n is the number of variables.
Now, let f (z) = f1(z)/ f0(z), where f1(z), f0(z) ∈ K[z] have no common factor.

Let F(z, X , Y) ∈ K[z, X , Y] be a homogeneous form in X and Y of degree D, say
(suppressing the dependence on z for brevity)

F(X , Y) =
D
∑
i=0

a i XD−i Y i

with a i ∈ K[z]. Then, from the properties above, for any i,

log ∥a i f D−i
1 f i

0∥v ≤ log ∥a i∥v + (D − i) log ∥ f1∥v + i log ∥ f0∥v

+ (deg(a i) + (D − i)deg( f1) + i deg( f0)) log+ ∣2∣
≤ log ∥F∥v + D log ∥ f1 , f0∥v

+ (degz(F) + D deg( f )) log+ ∣2∣v ,

and hence

log ∥F( f1 , f0)∥v ≤ log ∥F∥v + D log ∥ f1 , f0∥v

+ (degz(F) + D deg( f )) log+ ∣2∣v + log+ ∣D + 1∣v .(9)

Now, if

R(z, w) = b0 +⋯+ bd wd

bd+1 +⋯+ b2d+1wd ,

with b i ∈ K(z) without common factors, A i(X , Y) from Lemma 4 is a homogeneous
form of degree d − 1 in X and Y, each coefficient of which is the determinant of a
(2d − 1) × (2d − 1) matrix, whose entries are among the b j . It follows that

log ∥A i∥v ≤ (2d − 1) log ∥R∥v + log+ ∣(2d − 1)!∣v + (2d − 1)degz(R) log+ ∣2∣v

while the degree of each coefficient of A i in z is at most (2d − 1)degz(R). It follows
from (9) that

log ∥A i( f1 , f0)∥v ≤ (d − 1) log ∥ f1 , f0∥v + (2d − 1) log ∥R∥v + log+ ∣(2d − 1)!∣v
+ (2d − 1)degz(R) log+ ∣2∣v + (d − 1)deg( f ) log+ ∣2∣v

and similarly for B i .
Because A i( f1 , f0), B i( f1 , f0) are polynomials in z of degree at most (d − 1)

deg( f ), and P( f1 , f0) and Q( f1 , f0) of degree at most d deg( f ), we deduce, for i = 1, 0,
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log ∥Res(P, Q) f 2d−1
i ∥v = log ∥A i( f1 , f0)P( f1 , f0) + B i( f1 , f0)Q( f1 , f0)∥v

≤ log ∥A i( f1 , f0)P( f1 , f0), B i( f1 , f0)Q( f1 , f0)∥v

+ log+ ∣2∣v
≤ log ∥P( f1 , f0), Q( f1 , f0)∥v

+ log ∥A i( f1 , f0), B i( f1 , f0)∥v

+ (2d − 1)deg( f ) log+ ∣2∣ + log+ ∣2∣
≤ log ∥P( f1 , f0), Q( f1 , f0)∥v + (d − 1) log ∥ f1 , f0∥v

+ (2d − 1) log ∥R∥v + log+ ∣(2d − 1)!∣v
+ ((2d − 1)degz(R)v + (3d − 2)deg( f ) + 1) log+ ∣2∣.

On the other hand, Res(P, Q) ∈ K[z] has degree at most 2d degz(R), so

log ∥Res(P, Q) f 2d−1
i ∥v ≥ log ∥Res(P, Q)∥v + (2d − 1) log ∥ f i∥v

− 2d degz(R) log+ ∣2∣v − (2d − 1)deg( f ) log+ ∣2∣v .

Combining these, we have

d log ∥ f1 , f0∥v ≤ log ∥P( f1 , f0), Q( f1 , f0)∥ − log ∥Res(P, Q)∥v

+ (2d − 1) log ∥R∥v + log+ ∣(2d − 1)!∣v + (4d − 1)degz(R) log+ ∣2∣v
+ (5d − 3)deg( f ) log+ ∣2∣v + log+ ∣2∣.(10)

At this point, we note that h( f ) can be computed as a weighted sum of the terms
log ∥ f0 , f1∥v , for v ∈ MK , as in (8). One would like to compute h(R(z, f (z))) by
summing the terms log ∥P( f1 , f0), Q( f1 , f0)∥v , but this works only if P( f1 , f0) and
Q( f1 , f0) have no common factor in K[z], and they very possibly do.

Write P( f1 , f0) = g1r and Q( f1 , f0) = g0r, where g1 , g0 ∈ K[z] have no common
factor. Because f1 and f0 have no common factor, we have from (6) that r divides
Res(P, Q). Note that, for i = 1, 0,

log ∥g i r∥v ≤ log ∥g i∥v + log ∥r∥v + deg(g i) log+ ∣2∣v + deg(r) log+ ∣2∣v
≤ log ∥g i∥v + log ∥r∥v + (d deg( f ) + degz(R)) log+ ∣2∣v .

Writing Res(P, Q) = rs, we have

log ∥r∥v − log ∥Res(P, Q)∥v ≤ log ∥r∥v − log ∥rs∥v

≤ − log ∥s∥v + deg(Res(P, Q)) log+ ∣2∣v ,

and so from (10) we have

d log ∥ f1 , f0∥v ≤ log ∥g0r, g1r∥v − log ∥Res(P, Q)∥v

+ (2d − 1) log ∥R∥v + log+ ∣(2d − 1)!∣v + (4d − 1)degz(R) log+ ∣2∣v
+ (5d − 3)deg( f ) log+ ∣2∣v + log+ ∣2∣

≤ log ∥g0 , g1∥v + log ∥r∥v − log ∥Res(P, Q)∥v

+ (2d − 1) log ∥R∥v + log+ ∣(2d − 1)!∣v + 4d degz(R) log+ ∣2∣v
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+ (6d − 3)deg( f ) log+ ∣2∣v + log+ ∣2∣
≤ log ∥g0 , g1∥v − log ∥s∥v + deg(Res(P, Q)) log+ ∣2∣v
+ (2d − 1) log ∥R∥v + log+ ∣(2d − 1)!∣v + 4d degz(R) log+ ∣2∣v(11)
+ (6d − 3)deg( f ) log+ ∣2∣v + log+ ∣2∣.

Because R(z, f (z)) = g1(z)/g0(z) in lowest terms, we have from the definition (8)
that

h(R(z, f (z))) = ∑
v∈MK

[Kv ∶ Qv]
[K ∶ Q] log ∥g1 , g0∥v ,

just as

h( f ) = ∑
v∈MK

[Kv ∶ Qv]
[K ∶ Q] log ∥ f1 , f0∥v .

For the polynomial s ≠ 0, we set

hpoly(s) = ∑
v∈MK

[Kv ∶ Qv]
[K ∶ Q] log ∥s∥v ,

which is the projective height of the tuple of coefficients of s, not the height of s as a
rational function. Note that

0 ≤ hpoly(s) ≤ h(s),

where the second inequality follows from log ≤ log+, and the first from the product
formula and ∣s i ∣v ≤ ∥s∥v for any i.

Note also that, for any integer m,

∑
v∈MK

[Kv ∶ Qv]
[K ∶ Q] log+ ∣m∣v = log m,

and so summing (11) over all v ∈ MK , weighting by the local degree [Kv ∶Qv]
[K∶Q] , we obtain

dh( f ) ≤ dh( f ) + hpoly(s) ≤ h(R( f )) + (2d − 1)h(R) + (deg(Res(P, Q))

+ 4d degz(R) + (6d − 3)deg( f ) + 1) log 2 + log(2d − 1)!(12)

as hpoly(s) ≥ 0. ∎

Example 9 Our interest in Lemma 8 lies largely in the existence of an explicit bound,
but note that in special cases, one can often do far better than (12) by carrying out the
elimination of variables directly. For example, let

R(z, w) = wd + z
w

,
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so that P = wd + z, Q = w, and Res(P, Q) = (−1)d z, which has degree one and height
zero. By (12), we have

dh( f ) ≤ h ( f d + z
f

) + ((6d − 3)deg( f ) + 4d + 2) log 2 + log(2d − 1)!,(13)

and we remind the reader that log n! ≈ n log n. By a more direct calculation, though,
we have

zX2d−1 = zXd−1(Xd + zY d) − z2 Xd−2Y(XY d−1),

zY 2d−1 = Y d−1(Xd + zY d) − Xd−1(XY d−1).

If follows that for any absolute value v on K, we have (because ∥ ± zg(z)∥v = ∥g∥v )

(2d − 1) log ∥ f1 , f0∥v ≤ log ∥ f d
1 + z f d

0 , f1 f d−1
0 ∥v + log ∥z f d−1

1 , z2 f d−2
1 f0 , f d−1

0 , f d−1
1 ∥v

+ log+ ∣2∣v
≤ log ∥ f d

1 + z f d
0 , f1 f d−1

0 ∥v + (d − 1) log ∥ f1 , f0∥v

+ ((d − 1)deg( f ) + 1) log+ ∣2∣v ,

whence

d log ∥ f1 , f0∥v ≤ log ∥ f d
1 + z f d

0 , f1 f d−1
0 ∥v + ((d − 1)deg( f ) + 1) log+ ∣2∣v .(14)

By the observation Res(P, Q) = ±z, the greatest common factor of f d
1 + z f d

0 and
f1 f d−1

0 is either 1 or z, and again we have ∥ ± zg(z)∥v = ∥g∥v for any polynomial g,
and hence summing (14) over all places, we obtain

dh( f ) ≤ h ( f d + z
f

) + ((d − 1)deg( f ) + 1) log 2,

a clear improvement on (13) for computational purposes.

Our next lemma estimates the effect of substitutions, or taking derivatives, on the
height of a rational function.

Lemma 10 Let f (z) ∈ Q(z). Then,

h( f (z + 1)) ≤ h( f ) + deg( f ) log 2 + log(deg( f ) + 1)

and

h( f ′) ≤ 2h( f ) + 4 deg( f ) log 2.

Proof We have, for any g(z) = ∑ b i z i ∈ K[z],

log ∥g(z + 1)∥v = log
"""""""""""

deg(g)

∑
i=0

b i(z + 1)i
"""""""""""v

= log
"""""""""""

deg(g)

∑
i=0

b i
i
∑
j=0

(i
j
)z j

"""""""""""v
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= log
"""""""""""

deg(g)

∑
j=0

deg(g)

∑
i= j

b j(
i
j
)z j

"""""""""""v

= log max
0≤ j≤deg(g)

%%%%%%%%%%%

deg(g)

∑
i= j

b j(
i
j
)
%%%%%%%%%%%

v

≤ log max ∣b j ∣v + deg(g) log+ ∣2∣v + log+ ∣deg(g) + 1∣v
= log ∥g(z)∥v + deg(g) log+ ∣2∣v + log+ ∣deg(g) + 1∣v ,

because s (i
j) ≤ 2i ≤ 2deg(g), and so

log ∥ f1(z + 1), f0(z + 1)∥v

≤ log ∥ f1(z), f0(z)∥v + deg( f ) log+ ∣2∣v + log+ ∣deg( f ) + 1∣v .

Again, proceeding with the weighted sum (8), we have

h( f (z + 1)) ≤ h( f ) + deg( f ) log 2 + log(deg( f ) + 1),

where we note that f1(z + 1) and f0(z + 1) cannot have a common factor unless f1(z)
and f0(z) did.

Similarly, to estimate h( f ), we will provide an upper bound on the quantity
log ∥ f ′1 f0 − f ′0 f1 , f 2

0 ∥v in each absolute value. First, note from . . . above that

log ∥ f 2
0 ∥v ≤ 2 log ∥ f0∥v + 2 deg( f ) log+ ∣2∣v ≤ 2 log ∥ f1 , f0∥v + 2 deg( f ) log+ ∣2∣v .

On the other hand, for any polynomial g(z) = ∑ b i z i ∈ K[z],

log ∥g′(z)∥v = log
"""""""""""

deg(g)

∑
i=1

ib i z i−1
"""""""""""v

≤ log max
1≤i≤deg(g)

∣b i ∣v + log+ ∣deg(g)∣v

≤ log ∥g∥v + log+ ∣deg(g)∣v .

log ∥ f ′1 f0 − f ′0 f1∥v ≤ log max
i=0,1

∥ f ′i f1−i∥v + log+ ∣2∣v

≤ max
i=0,1

( log ∥ f ′i ∥v + log ∥ f1−i∥v + deg( f ′i ) log+ ∣2∣v

+ deg( f1−i) log+ ∣2∣v) + log+ ∣2∣v
≤ 2 log ∥ f1 , f0∥v + 2 deg( f ) log+ ∣2∣v .

In any case, we have

log ∥ f ′1 f0 − f ′0 f1 , f 2
0 ∥v ≤ 2 log ∥ f1 , f0∥v + 2 deg( f ) log+ ∣2∣v .(15)

Now, it is of course possible that f ′1 f0 − f ′0 f1 and f 2
0 will have a common factor. Write

f ′1 f0 − f ′0 f1 = g1r and f 2
0 = g0r, so that

log ∥g i∥v ≤ log ∥g i r∥v − log ∥r∥v + deg(g i) log+ ∣2∣v + deg(r) log+ ∣2∣v
≤ log ∥g i r∥v − log ∥r∥v + 2 deg( f ) log+ ∣2∣v .
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Combining this with (15), we have by summing over all places that

h( f ′(z)) ≤ 2h( f ) − hpoly(r) + 4 deg( f ) log 2,

proving the claim, because hpoly(r) ≥ 0. ∎

Before continuing, we note that the solutions to (1) and (2) are now rather
constrained if all have rational coefficients. If R(z, w) ∈ Q(w , z) has d = degw(R) ≥ 2,
and f (z) ∈ Q(z) is a solution to (2), then it follows from Lemmas 5, 8, and 10 (and
the fact that deg(Res(P, Q)) ≤ 2d degz(R)) that

dh( f ) ≤ h(R( f )) + (2d − 1)h(R) + ((24d − 9)degz(R) + 1) log 2
+ log(2d − 1)!

= h( f (z + 1)) + (2d − 1)h(R) + ((24d − 9)degz(R) + 1) log 2
+ log(2d − 1)!

≤ h( f ) + (2d − 1)h(R) + ((24d − 6)degz(R) + 1) log 2
+ log(2d − 1)! + log(3 degz(R) + 1),

whence

h( f ) ≤ 1
d − 1

((2d − 1)h(R) + ((24d − 6)degz(R) + 1) log 2

+ log(2d − 1)! + log(3 degz(R) + 1)).

In particular, the degree of f is bounded, and the coefficients of f are drawn from a
finite set (depending on R). It is not yet clear, though, that there are finitely many
solutions to (2), given just that R has rational coefficients, because,a priori, the
solutions might not.

Remark 11 We also note that there is nothing particularly special in Lemma 10 about
the substitution z ↦ z + 1. In general, if σ ∈ Aut(Q(z)/Q), then σ(z) is a fractional
linear transform with algebraic coefficients, and the triangle inequality (as in the proof
of Lemma 10) gives

h( f ○ σ) ≤ h( f ) + dh(σ) + 2 deg( f ) log 2 + log(deg( f ) + 1).

It follows that the machinery in this paper could easily be used to study generalized
difference equations of the form

f ○ σ(z) = R(z, f (z)),(16)

with σ ∈ Aut(P1) fixed. Indeed, the argument in the previous paragraph shows that
the set of f (z) ∈ Q(z) solving any generalized difference equation of the form (16)
with σ and R drawn from sets of bounded height and degree (in the case of R) is itself
a set of bounded height. It is not clear to the author, however, whether one should
expect to be able to extend Yanagihara’s result to this setting.

Lemma 12 Let R(z, w) ∈ C(z, w) with d = degw(R) ≥ 2, and fix k. Then, the set X of
f ∈ Homk(C) solving either (1) or (2) is Zariski closed. Furthermore, the degrees of the
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irreducible components of X sum to at most (d + 1)(d+1)k+degz(R), in the case of solutions
to (2), or (d + 2)(d+2)k+degz(R) in the case of solutions to (1).

Proof Write a generic f of degree k as in (7). Then,

f1(z + 1)Q( f1(z), f0(z)) − f0(z + 1)P( f1(z), f0(z)) =
(d+1)k+degz(R)

∑
i=0

Φ i(c)z i

for some homogeneous forms Φ i of degree d + 1 in c, which depend on P and Q. A
solution to (2) is given exactly by the simultaneous vanishing of these homogeneous
forms (some of which might already be the zero form). It follows from [7, Theorem 7.7,
p. 53] that if Z ⊆ P2k+1 is Zariski closed and irreducible, and H ⊆ P2k+1 is a hypersur-
face, then either Z ⊆ H or the irreducible components of H ∩ Z have degree summing
to at most deg(H)deg(Z). By induction, the intersection of (d + 1)k + degz(R)
homogeneous forms of degree d + 1 has irreducible components of degree summing
to at most (d + 1)(d+1)k+degz(R). This proves the statement for the intersection of the
hypersurfaces Φ i = 0 in P2k+1, and the irreducible components of the intersection in
Homk are just the intersections with Homk of those components on which Res(c)
does not vanish identically.

In the case of solutions to (1), we have

( f ′1 (z) f0(z) − f ′0(z) f1(z))Q( f1(z), f0(z)) − f 2
0 (z)P( f1(z), f0(z))

=
(d+2)k+degz(R)

∑
i=0

Φ i(c)z i ,

where the Φ i are homogeneous forms of degree d + 2. The same argument as
above now gives that the vanishing of these forms (which corresponds exactly
with solutions to (1)) defines a Zariski-closed subset of Homk of degree at most
(d + 2)(d+2)k+degz(R). ∎

3 The proof of the main result

Proof of Theorem 1 Let R(z, w) ∈ C(z, w), and let f1(z), . . . , f�(z) ∈ C(z) be
some distinct solutions to (2), all of degree exactly k. Let F ⊆ C be the subfield
generated over Q by the coefficients of R and the f i , a finite set of complex numbers.
We will prove by induction on the transcendence degree of F over Q that

� ≤ (d + 1)(d+1)k+degz(R).

Because k ≤ 3 degz(R), by Lemma 5, the total number of solutions to (2) in C(z) will
be at most the estimate in (3).

Consider first the base case, where R and the f i are defined over the algebraic
numbers. Then, the f i correspond to points in X ⊆ Homk , the irreducible components
of which have degree summing to at most (d + 1)(d+1)k+degz(R). It suffices to show
that these irreducible components are points, so suppose to the contrary that X has
a component of positive dimension. Then, X contains a curve Y, which admits a
nonconstant map toP1, all defined over some number field, and so there is some D ≥ 0
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such that Y(Q) contains infinitely many points of algebraic degree at most D. But by
Lemma 8, Y(Q) is a set of bounded height, contradicting Lemma 7. This completes
the proof for the case in which F ⊆ Q.

Now, suppose that F contains transcendental elements, and that the inequality � ≤
(d + 1)(d+1)k+degz(R) is known for all fields of lower transcendence degree. Let K ⊆ F
be a maximal subfield of transcendence degree one less than that of F. Then, F is
isomorphic over K to the function field K(C) of some algebraic curve C/K. We will
fix coefficients of R and f i in F, and identify them with their images in K(C), which are
rational functions on C defined over k. Because there are only finitely many of these
functions, there is an affine open U ⊆ C on which all are regular. For P ∈ C(K), we
may evaluate these coefficients at P to obtain rational functions RP(z, w) ∈ K(z, w)
and f i ,P(z) ∈ K(z). Note that the degrees of the specializations may be less than the
original degrees.

Now, once we have written each f i as in (7), we may compute the resultant of
the numerator and denominator of f i with the chosen coefficients, and obtain a not
identically zero regular function Res( f i) ∈ K[U], with the property that Res( f i)(P) =
0 if and only if deg( f i ,P) < k. We also have Res(P, Q) ∈ K[U , z], and we will choose
a not identically zero coefficient r of this polynomial, and a coefficient s of the
largest power of z appearing in R. Zariski is a modifier of open V ⊆ U on which
r, s, and the Res( f i) as nowhere vanishing, and for P ∈ V(K), the specializations
f1,P , . . . , f�,P ∈ K(z) are solutions of degree exactly k to g(z + 1) = RP(z, g(z)), and
degw(RP) = degw(R) and degz(RP) = degz(R).

Finally, because the f i are distinct, there is, for every i ≠ j, some cross ratio of
coefficients c i ,s c j,t − c i ,t c j,s ∈ k[V], which is not identically zero. For each pair i ≠ j,
we choose such a cross ratio, and an affine W ⊆ V on which none of these functions
vanish. So, for any P ∈ W(k), the specializations f1,P , . . . , f�,P are distinct solutions
of degree k to the specialized difference equation, all defined over the field K of
transcendence degree one less than that of F. The induction hypothesis applies to this
example, completing the proof that � ≤ (d + 1)(d+1)k+degz(R) in general, and hence of
Theorem 1(A). The proof of Theorem 1(B) is analogous. ∎

Finally, we justify our assertion in the introduction that solutions to (1) and (2)
must have algebraic coefficients when R does (subject to the usual hypotheses on
degw(R)).

Corollary 13 Let R(z, w) ∈ K(z, w) for some subfield K ⊆ C. Then, every solution
to (1) and (2) (with degw(R) ≥ 3 or degw(R) ≥ 2, respectively ) in C(z) is already
contained in K(z). In particular, if R has algebraic coefficients, then so does any
solution f.

Proof Any solution f (z) ∈ C(z) is defined over some finitely generated extension
of K, which is isomorphic to K(Z) for some irreducible algebraic variety Z. If f
has degree k, then f induces a map Z → Homk defined over C, whose image is not
contained in the resultant locus. But because the solutions to (2) or (1) in Homk are a
finite union of zero-dimensional subvarieties, it follows that this map is constant, and
hence f was already defined over K. ∎
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Funkcional. Anal. i Priložen. 14(1971), 83–87.
[13] A. Moriwaki, Arithmetic height functions over finitely generated fields. Invent. Math. 140(2000),

no. 1, 101–142.
[14] D. G. Northcott, Periodic points on an algebraic variety. Ann. Math. 51(1950), no. 2, 167–177.
[15] G. Valiron, Sur la dérivée des fonctions algébroïdes. Bull. Soc. Math. France 59(1931), 17–39.
[16] N. Yanagihara, Meromorphic solutions of some difference equations. Funkcial. Ekvac. 23(1980),

no. 3, 309–326.

York University, Toronto, Canada
e-mail: pingram@yorku.ca

https://doi.org/10.4153/S0008439521000072 Published online by Cambridge University Press

https://arxiv.org/abs/2011.02975
mailto:pingram@yorku.ca
https://doi.org/10.4153/S0008439521000072

	1 Degrees of solutions
	2 Solutions of a given degree
	3 The proof of the main result

