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An eigenvalue problem for k Sturm–Liouville equations coupled by k parameters
λ1, . . . , λk is considered. In contrast to the standard case, for each r, the second-order
derivative in the rth equation is multiplied by λr. This problem presents various
interesting features. For example, the existence of eigenvalues with oscillation counts
beyond a certain (computable) value is obtained without any of the restrictive
definiteness conditions known from the standard case. Uniqueness is also analysed,
and the results are given greater precision via eigencurve methods in the case of two
equations coupled by two parameters.

1. Introduction

Multiparameter spectral theory is generally regarded as having started with Klein’s
famous oscillation theorem [13]. Separating variables in Laplace’s equation via ellip-
tic coordinates, Klein was led by geometric reasoning to a result where Lamé’s
equation had solutions with prescribed oscillation counts on each of two separate
intervals. Klein’s health deteriorated soon afterwards, but he made at least two
further significant (indirect) contributions to multiparameter spectral theory. One
was to interest his student Bôcher in the topic, and, on several occasions (see,
for example, [6]), Bôcher expounded (and extended, for example, to more general
equations and to k parameters) the results of (Sturm and) Klein, via analytical
methods. Another major contribution of Klein was to interest Hilbert (whom he
had appointed to Göttingen from his position in Königsberg) in the topic. Hilbert
generalized Klein’s problem to the form

Ay1 + (λ1B + λ2C)y1 = 0 �= y1 on (a1, b1), (1.1)
Dy2 + (λ1E + λ2F )y2 = 0 �= y1 on (a2, b2), (1.2)

where A and D are second differentiation operators; B, C, E and F are multipli-
cation operators; and Dirichlet boundary conditions are imposed. He then derived
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a partial differential equation of the form

Ly = λ1Ry, (1.3)

which was used to study, for example, completeness and expansion results.
Subsequent authors have generalized (1.1) and (1.2) to multiparameter eigenvalue

problems of a ‘standard’ form consisting of k Sturm–Liouville (or more general
abstract) equations

Lryr +
k∑

s=1

λsPrsyr = 0 �= yr, r = 1, 2, . . . , k; (1.4)

here we take Lryr = −y′′
r +qr(xr)yr, subject to separated boundary conditions, and

Prs denotes multiplication by prs(xr), xr ∈ (ar, br). If (1.4) admits a non-trivial
solution yr with nr zeros in (ar, br) for each r, then the eigenvalue λ = (λ1, . . . , λk)
has oscillation count n = (n1, . . . , nk). Hilbert did not prove oscillation theorems,
but he gave this problem to Yoshikawa, who established an analogue [20] of Klein’s
theorem for the case where

B, C, E > 0 > F, (1.5)

which forces

R =
∣∣∣∣B C

E F

∣∣∣∣
to be of one sign in (1.3). This latter condition is nowadays known as ‘right defi-
niteness’ (RD) and, for (1.4), it corresponds to the requirement that

det P (x) should be of one sign for (almost all) xr, (1.6)

where P (x)rs = prs(xr). Richardson [15] was clearly aware of the existence and
uniqueness of λ for any given n under RD for general k, although a complete
proof does not seem to have been given until much later (see Volkmer [19] for a
treatment involving more general conditions, and including a review of the more
modern literature).

Hilbert used the assumptions C > 0 > F in (1.1), (1.2), and, with definiteness
of A, D (because qr = 0 in Lr), these are sufficient for definiteness of the formal
determinant

L = −
∣∣∣∣A C

D F

∣∣∣∣ .

This is ‘left definiteness’ (LD) of (1.3), and one can make this more precise by
interpreting the determinant in the sense of tensor products (cf. Atkinson [1] in the
context of matrices). Later authors (cf. [16] and references) have defined multipa-
rameter LD by requiring that each Lr in (1.4) be (positive) definite and (after a
rotation of λ axes) that the cofactors in the first column of P (x) (see (1.6)) be of
the same sign. These are Hilbert’s conditions for the case of (1.1) and (1.2). For
oscillation results under LD, see [19] and the references therein. If LD holds for
(1.4) with continuous coefficients, then one can further transform the λ axes so
that the cofactors in each column of P (x) are of the same sign, and this will be
referred to as full left definiteness (FLD). This condition was studied by Binding
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(see, for example, [3]) and leads to the existence and uniqueness, for each n, of
an eigenvalue λ in one of R

k
± if RD also holds. (Throughout, R

k
± will denote open

orthants.) If, instead, detP (x) can take both signs, then, for each n, there are two
eigenvalues λ, one in each R

k
±, so in a sense the problem behaves as two cases that

satisfy FLD and RD.
A different kind of oscillation theorem was studied by Richardson [14, 15] (for

k = 2, 3) and Turyn [18] (for general k via geometrical methods). The result sought
for (1.4) now concerns all ‘large’ oscillation counts (existence of N so that nr � N
for all r guarantees the existence of corresponding λ). We note that, even for k = 2,
a non-trivial condition on the prs is necessary for this result [14, 18]. Faierman [8]
and Sleeman [17] have used the cofactor part of LD to obtain such results. Slee-
man has called this condition ‘ellipticity’, and Binding [3] has studied the version
corresponding to FLD. This will be referred to as full ellipticity (FE) and, again,
it guarantees that eigenvalues λ exist in the (open) orthants R

k
±, but now for all

oscillations counts which are ‘large’ in the above sense.
Our object here is to obtain analogues of some of the results in the previous two

paragraphs for a ‘non-standard’ problem. A special case of this was introduced by
Atkinson [2] in the form

λ1Ay1 + λ2Cy1 + q1y1 = 0 on (a1, b1), (1.7)
λ2Dy2 + λ1Fy2 + q2y2 = 0 on (a2, b2), (1.8)

where, as in (1.1) and (1.2), A and D represent double differentiation subject to
Dirichlet boundary conditions, and again C > 0 > F . This problem does not fit
into the earlier framework. Comparing the λ1 and λ2 terms with Hilbert’s case, we
see that the determinant

R =
∣∣∣∣B C

E F

∣∣∣∣
has been replaced by the formal expression∣∣∣∣A C

F D

∣∣∣∣ .

As for Yoshikawa’s problem, this is of one sign, but the operator entries now have
different relative compactness and the problem turns out to have more in common
with FLD and FE than with RD. Actually, Atkinson indicated the possibility of up
to four eigenvalues per oscillation count n, with finite accumulation as n varied,
and he posed various completeness and expansion questions. In a memorial paper
to Atkinson, Faierman and Mennicken [9] studied the existence and uniqueness of
eigenvalues for (1.7) and (1.8) for each n, using eigencurve methods. A homogeneous
formulation is detailed in [9] as motivation for (1.7) and (1.8). Completeness and
expansion results were also investigated in [9, 10].

We prove oscillation theorems for eigenvalue problems of the form

λry
′′
r + qr(xr)yr +

k∑
s=1

λsprs(xr)yr = 0 for r = 1, . . . , k, (1.9)

subject to separated boundary conditions. This problem generalizes (1.7) and (1.8)
and is of similar form to (1.4), but with the second-order derivative in the rth
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equation multiplied by λr. In § 2 we use degree theory to obtain the existence of
eigenvalues with large oscillation counts. We impose no definiteness condition on
the prs, and this seems to be the first result of such a nature: as indicated earlier,
some condition on the prs is necessary in the case of (1.4). For example, if each qr

takes positive values on a set of positive measure, then (see theorem 2.3), for each
large n, there exists an eigenvalue λ ∈ R

k
+. There is a similar result for each (open)

orthant, so the only condition imposed is that qr should not vanish identically
almost everywhere (a.e.) for every r = 1, 2, . . . , k. We remark that this condition is
necessary for such a result for (1.9), even when k = 1 (note that qr then behaves as a
weight function after we divide by λ1). In § 3 we require each qr not to vanish (a.e.)
on any interval. This condition (on the weight function) has been used implicitly or
explicitly by various authors for the case k = 1 of (1.4) in the case of semidefinite
weight (cf. [4,7]), and elsewhere we shall show its relevance for cases with indefinite
weight. Here we use it to obtain uniqueness of the eigenvalues λ obtained in § 2. In
§ 4 we show that these eigenvalues can be obtained as fixed points of contractions,
thereby suggesting a method for their computation.

In § 5 we treat the case k = 2 via eigencurve methods. These allow us to sharpen
the meaning of ‘large’ and to provide conditions guaranteeing any number of eigen-
values between 0 and 4 for a given oscillation count. When the operators corre-
sponding to −y′′

r +prryr are positive definite, as in Atkinson’s problem (1.7), (1.8),
our conditions become necessary and sufficient and generalize those of [9].

2. Existence of eigenvalues

We consider k differential equations

λry
′′
r + qr(xr)yr +

k∑
s=1

λsprs(xr)yr = 0, xr ∈ [ar, br], r = 1, 2, . . . , k, (2.1)

coupled by k real parameters λ1, . . . , λk. The prime indicates differentiation with
respect to xr. The equations (2.1) contain coefficient functions prs and qr which we
assume to be real-valued and integrable on [ar, br] for every r, s = 1, 2, . . . , k. For
each equation we impose separated boundary conditions

cos αryr(ar) = sinαry
′
r(ar), cos βryr(br) = sinβry

′
r(br), (2.2)

where, as usual, αr ∈ [0, π) and βr ∈ (0, π]. We call a tuple λ = (λ1, . . . , λk) with
λr �= 0 for all r an eigenvalue of (2.1) and (2.2), if these equations admit a non-
trivial solution yr for each r. If yr has nr zeros in (ar, br), we say that the eigenvalue
has oscillation count n = (n1, . . . , nk).

Lemma 2.1. For every δ > 0, there exists N ∈ N0 such that each eigenvalue λ,
with oscillation counts nr � N for all r, lies in (−δ, δ)k.

Proof. For given δ > 0, set

vr(xr) := δ−1|qr(xr)| +
k∑

r �=s=1

|prs(xr)|.
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Let µr,m be the eigenvalue of the right-definite Sturm–Liouville problem

−y′′
r − (prr(xr) + vr(xr))yr = µryr (2.3)

subject to the rth boundary condition in (2.2) with oscillation count m. The
sequence µr,m converges to infinity as m → ∞ for every r. We choose N so large
that µr,m > 0 for every m � N and every r.

Let λ be an eigenvalue of (2.1) and (2.2) with oscillation counts satisfying nr � N
for each r. We claim that λ ∈ (−δ, δ)k. If not, there exists t ∈ {1, 2, . . . , k} such that
|λs| � |λt| for all s and |λt| � δ. Let (y1, . . . , yk) be eigenfunctions corresponding
to λ. Then

y′′
t + ptt(xt)yt + g(xt)yt = 0, (2.4)

where

g(xt) = λ−1
t qt(xt) +

k∑
t�=s=1

λs

λt
pts(xt).

By assumption, g(xt) � vt(xt) for all xt ∈ [at, bt]. Therefore, comparison of (2.3)
with (2.4) yields µt,nt � 0, contrary to the choice of N .

We will use later the fact that if we replace prs by τprs for r �= s, then we can
choose the same N for all τ ∈ [0, 1] in the statement of lemma 2.1. This follows
with the same proof.

The following lemma concerning (indefinite) Sturm–Liouville problems will be
applied in the proof of theorem 2.3. Results of a similar nature were given in [11,14]
for continuous coefficients (see [5] for integrable coefficients).

Lemma 2.2. Consider the Sturm–Liouville problem

−z′′ + g(x)z = λh(x)z, x ∈ [a, b] (2.5)

subject to
cos αz(a) = sinαz′(a), cos βz(b) = sinβz′(b), (2.6)

where g and h are real-valued integrable functions on [a, b] such that h(x) > 0 on a
set of positive measure.

(i) Let N0 denote the (finite) number of non-positive eigenvalues ρ of the RD
problem

−z′′ + g(x)z = ρz

subject to (2.6). Then, for every m � N0, there exists a positive eigenvalue λ
of (2.5), (2.6) with oscillation count m.

(ii) There exists N1 ∈ N0 such that, for every m � N1 and every eigenfunction
z of (2.5), (2.6) with oscillation count m and belonging to a positive eigen-
value λ, ∫ b

a

(−z′′ + gz)z = λ

∫ b

a

hz2 > 0.

(iii) If N = max(N0, N1), then, for every m � N , there exists a unique positive
eigenvalue λ of (2.5), (2.6) with oscillation count m.
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Theorem 2.3. Suppose that, for each r, qr > 0 on a set of positive measure. Then
there exists N ∈ N0 such that, for every n = (n1, . . . , nk) ∈ N

k
0 with nr � N for

each r, there exists an eigenvalue λ ∈ R
k
+ of (2.1), (2.2) with oscillation count n.

Proof. For given n = (n1, . . . , nk) ∈ N
k
0 , λ = (λ1, . . . , λk) ∈ R

k
+ and r = 1, 2, . . . , k,

we define µr,nr (λ) as the eigenvalue of the RD problem

−λry
′′
r − qr(xr)yr −

k∑
s=1

λsprs(xr)yr = µryr

subject to (2.2) with oscillation count nr. Then we introduce the continuous (actu-
ally analytic) map Mn : R

k
+ → R

k whose rth component function is λ �→ µr,nr (λ).
The zeros of Mn are the eigenvalues we are looking for. We will apply Brouwer’s
degree of maps to prove the existence of such zeros for suitable n.

We begin by choosing δ > 0 so small that

δ
k∑

r �=s=1

∫ br

ar

|prs| <

∫ br

ar

q+
r , r = 1, 2, . . . , k, (2.7)

where q+
r denotes the positive part of qr, and setting

wr(xr) := qr(xr) − δ

k∑
r �=s=1

|prs(xr)|.

Then wr(xr) > 0 on a set of positive measure for every r.
We now use lemmas 2.1 and 2.2 to choose N so large that the following three

statements hold.

1. Every eigenvalue λ ∈ R
k
+ with oscillation counts nr � N lies in (0, δ)k.

2. For every r and nr � N there exists a unique eigenvalue ωr,nr > 0 of

−y′′
r − prr(xr)yr = ωrwr(xr)yr

subject to (2.2) with oscillation count nr.

3. For every r and nr � N there exists a unique eigenvalue ρr,nr
> 0 of

−y′′
r − prr(xr)yr = ρrqr(xr)yr

subject to (2.2) with oscillation count nr, and corresponding eigenfunctions
yr satisfy ∫ br

ar

qry
2
r > 0.

We now prove that N has the property as in the statement of theorem 2.3. Consider
a fixed n = (n1, . . . , nk) such that nr � N for each r. Choose ε ∈ (0, δ) so small
that ε < ω−1

r,nr
for each r. Suppose λ ∈ (0, δ)k satisfies Mn(λ) = 0. Since

qr(xr) +
k∑

r �=s=1

λsprs(xr) � wr(xr),
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straightforward comparison of Prüfer angles shows that λ−1
r � ωr,nr

. Therefore,

ε < ω−1
r,nr

� λr.

It follows that all zeros of Mn lie in the set

Q = (ε, δ)k.

In particular, Brouwer’s degree deg(Mn, Q,0) is well defined. In order to compute
this degree, for each τ ∈ [0, 1], we define the map Mτ,n in the same manner as Mn

but with prs replaced by τprs for r �= s (the functions qr and prr remain unchanged).
By repeating the above arguments with the same δ, N and ε, we find that all zeros of
Mτ,n lie in Q for every τ ∈ [0, 1]. It is easily seen that deg(M0,n, Q,0) = 1 since the
only zero of M0,n is (ρ−1

1,n1
, . . . , ρ−1

k,nk
) ∈ Q and the derivative of M0,n at this point

is a diagonal matrix with positive entries. Therefore, by the homotopy invariance
of the degree, we obtain deg(Mn, Q,0) = 1, which implies that Mn has a zero in
Q. The proof is complete.

Theorem 2.3 can be extended as follows.

Theorem 2.4. Let σ1, . . . , σk ∈ {0, 1}. Suppose that (−1)σrqr(xr) > 0 on sets of
positive measure for each r = 1, 2, . . . , k. Then there exists N such that, for every
n = (n1, . . . , nk) with nr � N for each r, there exists an eigenvalue (λ1, . . . , λk)
with (−1)σrλr > 0 of (2.1) and (2.2) with oscillation count n.

In particular, if qr(xr) > 0 as well as qr(xr) < 0 on sets of positive measure for
each r, there exists N such that, for every n = (n1, . . . , nk) with nr � N for each
r, there exist at least 2k eigenvalues λ of (2.1), (2.2) with oscillation count n.

Proof. We multiply the rth equation in (2.1) by (−1)σr and set λ̃r = (−1)σrλr. The
desired statement then follows from theorem 2.3.

3. Uniqueness of eigenvalues

In order to establish uniqueness of eigenvalues we start by treating just one equation
in (2.1), say, the first. We consider the differential equation

λ1y
′′ + q(x)y +

k∑
s=1

λsps(x)y = 0, x ∈ [a, b], (3.1)

subject to boundary conditions

cos αy(a) = sinαy′(a), cos βy(b) = sinβy′(b). (3.2)

We assume that q, p1, . . . , pk are real-valued integrable functions on [a, b] and α ∈
[0, π), β ∈ (0, π].

To motivate the assumptions of the following lemma, recall from lemma 2.1 that
λ tends to 0 as the oscillation counts tend to infinity.

Lemma 3.1. Suppose that q(x) does not vanish a.e. on any subinterval of [a, b] of
positive length. For m ∈ N, let y = ym be a non-trivial solution of (3.1) correspond-
ing to λ1 = λ1m, . . . , λk = λkm satisfying the boundary conditions (3.2). Assume
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that λ1m �= 0 for all m and (λ1m, . . . , λkm) → 0 as m → ∞. Then, for sufficiently
large m, we have ∫ b

a

(−y′′
m − p1ym)ym > 2

k∑
s=2

∫ b

a

|ps|y2
m. (3.3)

Proof. Following the method of proof of [5, lemma 4.3], we see that there exists a
constant K such that, for every m,

∫ b

a

(−y′′
m − p1ym)ym − 2

k∑
s=2

∫ b

a

|ps|y2
m � 1

2

∫ b

a

y′2
m − K

∫ b

a

y2
m. (3.4)

Suppose (3.3) is false. By taking subsequences if necessary and normalizing ym,
(3.4) shows that we may assume that, for all m,

∫ b

a

y2
m = 1,

∫ b

a

y′2
m � 2K. (3.5)

By applying the Arzela–Ascoli theorem and again taking subsequences if necessary,
we assume additionally that ym converges uniformly to some continuous function y
as m → ∞. By (3.5), there is a sequence xm ∈ [a, b] such that y′

m(xm) is a bounded
sequence and we may assume that xm converges to some u ∈ [a, b]. Set

hm(x) := q(x) +
k∑

s=1

λsmps(x).

By integrating (3.1), we find that

λ1m(y′
m(xm) − y′

m(x)) =
∫ x

xm

hm(t)ym(t) dt

and so ∫ b

a

(y′
m(xm) − y′

m(x))2 dx = λ−2
1m

∫ b

a

( ∫ x

xm

hm(t)ym(t) dt

)2

dx.

The left-hand side is a bounded sequence and λ1m → 0, so

lim
m→∞

∫ b

a

( ∫ x

xm

hm(t)ym(t) dt

)2

dx = 0. (3.6)

Since λ → 0 and xm → u, we obtain

lim
m→∞

∫ x

xm

hm(t)ym(t) dt =
∫ x

u

q(t)y(t) dt for all x ∈ [a, b]. (3.7)

By Fatou’s lemma, (3.6) and (3.7) yield∫ x

u

q(t)y(t) dt = 0 for all x ∈ [a, b].

https://doi.org/10.1017/S030821051000154X Published online by Cambridge University Press

https://doi.org/10.1017/S030821051000154X


Multiparameter eigenvalue problems 681

It follows that q(x)y(x) = 0 a.e. on [a, b]. By assumption, q(x) does not vanish a.e.
on any subinterval of [a, b] of positive length, so y(x) = 0 for all x ∈ [a, b]. This
contradicts ∫ b

a

y2 = 1

and so completes the proof.

The following example shows that lemma 3.1 may not hold if we omit the assump-
tion that q does not vanish a.e. on any interval of positive length.

For fixed c > 0, consider [a, b] = [−cπ, π], k = 2, p1(x) = 0, α = 0, β = π and

p2(x) =

{
1 if x < 0,

0 if x � 0,
q(x) = 1 − p2(x).

We take (λ1m, λ2m) = (m−2, c−2m−2) and

ym(x) =

⎧⎪⎨
⎪⎩

sin
x

c
if x < 0,

sin(mx)
cm

if x � 0.

Then all the assumptions of lemma 3.1 are satisfied except the mentioned condition
on q, while ∫ b

a

y′2
m =

(c + 1)π
2c2 ,

∫ b

a

|p2|y2
m = 1

2cπ.

We return to the eigenvalue problem (2.1), (2.2).

Theorem 3.2. Suppose that, for each r = 1, 2, . . . , k, qr(xr) > 0 on a set of positive
measure and that qr does not vanish a.e. on any subinterval of [ar, br] of positive
length. Then there exists N ∈ N0 such that, for every n = (n1, . . . , nk) with nr � N
for all r, there exists a unique eigenvalue λ ∈ R

k
+ of (2.1), (2.2) with oscillation

count n.

Proof. We choose δ and N as in the proof of theorem 2.3. It follows from lemmas 2.1
and 3.1 that there exists N1 � N such that∫ br

ar

(−y′′
r − prryr)yr > 2

k∑
r �=s=1

∫ br

ar

|prs|y2
r (3.8)

for all eigenfunctions (y1, . . . , yk) corresponding to eigenvalues λ ∈ (0,∞)k with
oscillation counts nr � N1.

We claim that this N1 has the property as stated in the theorem. To prove this,
let n = (n1, . . . , nk) with nr � N1 for each r. We define the map Mn and ε as in
the proof of theorem 2.3. Then all eigenvalues λ ∈ (0,∞)k with oscillation count
n lie in Q = (ε, δ)k, and they are exactly the zeros of Mn. Let Mn(λ) = 0, and let
(y1, . . . , yk) be corresponding L2-normalized eigenfunctions. The derivative M ′

n(λ)
is a k × k matrix with diagonal entries∫ br

ar

(−y′′
r − prryr)yr
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and off-diagonal entries

−
∫ br

ar

prsy
2
r .

By (3.8), this matrix is diagonally dominant and so detM ′
n(λ) > 0. It follows that

the zeros of Mn are isolated and their number is finite. The local degree of the
zeros is 1 and so deg(Mn, Q,0) equals the number of eigenvalues λ ∈ R

k
+ with

oscillation count n. We saw in the proof of theorem 2.3 that deg(Mn, Q,0) = 1.
This completes the proof.

Theorem 3.2 may be extended to give uniqueness of eigenvalues (λ1, . . . , λk) of
prescribed signs.

4. Eigenvalues as fixed points

We consider the differential equation (3.1) subject to boundary conditions (3.2).
Let us assume that q(x) > 0 on a set of positive measure. We choose δ0 > 0 so
small that

δ0

k∑
s=2

∫ b

a

|ps| <

∫ b

a

q+. (4.1)

By lemma 2.2, there exists N0 such that, for λ2, . . . , λk ∈ [0, δ0] and n � N0, there
exists λ1 > 0 and a non-trivial solution y of (3.1), (3.2) with oscillation count n.
We note that

0 < λ1 � ω−1
n , (4.2)

where ωn is the eigenvalue with oscillation count n of the RD problem

−y′′ − p1(x)y = ωw(x)y (4.3)

subject to (3.2), where

w(x) := 1 + |q(x)| + δ0

k∑
s=2

|ps(x)|.

The following lemma allows us to consider λ1 as a function of λ2, . . . , λk.

Lemma 4.1. Assume that q(x) > 0 on a set of positive measure, and q(x) does not
vanish on any subinterval of [a, b] of positive length. Then there exists δ ∈ (0, δ0]
and N � N0 such that, for all n � N and all λ2, . . . , λk ∈ [0, δ], there exists a
unique positive λ1 =: Λn(λ2, . . . , λk) such that (3.1) and (3.2) admit a non-trivial
solution y with oscillation count n. In addition, the function Λn : [0, δ]k−1 → (0,∞)
is continuously differentiable and

k∑
s=2

∣∣∣∣∂Λn

∂λs

∣∣∣∣ � 1
2

on [0, δ]k−1. (4.4)

Proof. Suppose there exist δ ∈ (0, δ0] and N � N0 such that, for all λ2, . . . , λk ∈
[0, δ], all λ1 > 0 and all non-trivial solutions y of (3.1), (3.2) with oscillation count

https://doi.org/10.1017/S030821051000154X Published online by Cambridge University Press

https://doi.org/10.1017/S030821051000154X


Multiparameter eigenvalue problems 683

n � N , we have ∫ b

a

(−y′′ − p1y)y > 2
k∑

s=2

∫ b

a

|ps|y2. (4.5)

If this claim were false, then, for every m, there would be λsm ∈ [0, 1/mδ0] for
s = 2, . . . , k, λ1m > 0 and a non-trivial solution ym of (3.1) with λs = λsm satisfying
(3.2) with oscillation count nm � m such that

∫ b

a

(−y′′
m − p1ym)ym � 2

k∑
s=2

∫ b

a

|ps|y2
m. (4.6)

Since ωnm → ∞, it follows from (4.2) that λ1m → 0, so we contradict lemma 3.1.
This establishes the claim.

We now show that δ, N have the stated properties. Let λ2, . . . , λk ∈ [0, δ] and
n � N . For every λ1 > 0 and every solution y of (3.1), (3.2) with oscillation count
n it follows from (4.5) that ∫ b

a

(−y′′ − p1y)y > 0.

According to lemma 2.2, this implies that λ1 is uniquely determined by λ2, . . . , λk

and n. We denote the corresponding function by λ1 = Λn(λ2, . . . , λk). For λ1 > 0
and λ2, . . . , λk ∈ R, let µn(λ1, . . . , λk) denote the eigenvalue of the right-definite
Sturm–Liouville problem

−λ1y
′′ −

(
q(x) +

k∑
s=1

λsps(x)
)

y = µy

subject to (3.2) with oscillation count n. It is known that µn is a continuously
differentiable function. If y is a corresponding L2-normalized eigenfunction, then

∂µn

∂λ1
=

∫ b

a

(−y′′ − p1y)y > 0

and

∂µn

∂λs
= −

∫ b

a

psy
2 for s = 2, . . . , k.

Since
µn(Λn(λ2, . . . , λk), λ2, . . . , λk) = 0,

the implicit function theorem implies that Λn is continuously differentiable and

∂Λn

∂λs
=

( ∫ b

a

(−y′′ − p1y)y
)−1 ∫ b

a

psy
2 for s = 2, . . . , k.

Together with (4.5), this proves (4.4). The proof of the lemma is complete.

We return to our coupled multiparameter problem (2.1), (2.2). We assume that,
for each r,

∫
q+
r > 0 and qr(xr) does not vanish a.e. on any subinterval of [ar, br] of
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positive length. For every r = 1, . . . , k, we apply lemma 4.1 to the rth equation in
(2.1) (with λr playing the role of λ1). We find δ > 0 and N ∈ N0 such that, for all
r, all λ1, . . . , λk ∈ [0, δ] and all nr � N , there is a unique Λrnr

> 0 such that the
equation

Λrnr (y
′′
r + pr(xr)yr) +

(
qr(xr) +

k∑
r �=s=1

λsprs(xr)
)

yr = 0

has a non-trivial solution satisfying (2.2) and having oscillation count nr. Note that
Λrnr does not depend on λr. By increasing N if necessary, we may assume that
Λrnr � δ, and, by lemma 2.1, we may also assume that all eigenvalues λ ∈ R

k
+

with oscillation counts nr � N lie in [0, δ]k. For n = (n1, . . . , nk) with nr � N , we
obtain a map

Λn : [0, δ]k → [0, δ]k (4.7)

whose components functions are Λrnr . Note that the fixed points of Λn are exactly
the eigenvalues of (2.1), (2.2) in (0,∞)k with oscillation count n. By lemma 4.1, Λ
is continuously differentiable. Its derivative Λ′

n(λ) is a k × k matrix with zeros on
the main diagonal, and the sum of the absolute values of its entries in every row is
at most 1

2 . Therefore, the matrix norm of Λ′
n(λ) with respect to the max-norm is at

most 1
2 . It follows that

‖Λn(λ) − Λn(µ)‖∞ � 1
2‖λ − µ‖∞ for all λ,µ ∈ [0, δ]k.

Banach’s fixed-point theorem shows that Λn has exactly one fixed point.
We have proved the following.

Theorem 4.2. Suppose that, for each r = 1, 2, . . . , k, qr(xr) > 0 on a set of positive
measure and that qr does not vanish a.e. on any subinterval of [ar, br] of positive
length. Then there exist δ > 0 and N ∈ N0 such that, for every n = (n1, . . . , nk)
with nr � N for all r, the map Λn : [0, δ]k → [0, δ]k of (4.7) is a contraction.
The unique fixed point of Λn is the unique eigenvalue λ ∈ R

k
+ of (2.1), (2.2) with

oscillation count n.

5. The two-parameter case

In this section we consider the problem (2.1), (2.2) of § 2 for the case where k = 2,
under the additional assumption

p12(x1) > 0 a.e. on [a1, b1], p21(x2) < 0 a.e. on [a2, b2]. (5.1)

For any integer m � 0, we denote by ϕm the eigenvalue with oscillation count m
for the RD problem

−y′′
1 − p11y1 = ϕp12y1, (5.2)

subject to (2.2) for r = 1. Also, for λ1 > 0, we let λ2 = fm(λ1) denote the eigenvalue
with oscillation count m for the RD problem (2.1), (2.2) with eigenparameter λ2
for r = 1.
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Lemma 5.1. The function fm is continuous and satisfies

lim
λ1→0+

fm(λ1) = f0 := − ess sup
{

q1(x1)
p12(x1)

: x1 ∈ [a1, b1]
}

(5.3)

and

lim
λ1→∞

fm(λ1)
λ1

= ϕm. (5.4)

Proof. For λ1 > 0, we can rewrite (2.1) in the form

−y′′
1 − p11y1 = (ρq1 + σp12)y1, (5.5)

where ρ = 1/λ1 and σ = λ2/λ1. Considered with the boundary condition (2.2) for
r = 1, (5.5) defines the mth eigenvalue σ = σm as a continuous (even analytic)
function of ρ (cf. [4]), so fm is continuous, and

lim
λ1→∞

fm(λ1)
λ1

= lim
ρ→0

σm(ρ) = σm(0), (5.6)

which equals ϕm by definition. Finally,

lim
λ1→0+

fm(λ1) = lim
ρ→∞

σm(ρ)
ρ

, (5.7)

which equals f0 by [4, theorem 3.1].

Next, for any integer n � 0, we denote by γn the eigenvalue with oscillation count
n for the RD problem

−y′′
2 − p22y2 = γp21y2, (5.8)

subject to (2.2) for r = 2, and for λ2 > 0 we let λ1 = gn(λ2) denote the unique
positive eigenvalue of the RD problem (2.1), (2.2) with eigenparameter λ1 for r = 2.

For lemma 5.1, we obtain the following.

Lemma 5.2. The function gn is continuous and satisfies

lim
λ2→0+

gn(λ2) = g0 := ess sup
{

q2(x2)
−p21(x2)

: x2 ∈ [a2, b2]
}

(5.9)

and

lim
λ2→∞

gn(λ2)
λ2

= γn. (5.10)

It may be helpful to interpret these lemmas geometrically. The graph of fm is the
mth eigencurve of (2.1), (2.2) for r = 1, and emanates from the point (0, f0) into
the half-plane λ1 > 0, with polar angle approaching tan−1 ϕm far from the origin.
The fm increase (pointwise) to ∞ with m and their polar angles approach 1

2π from
below. Similarly, the graphs of the gn (which are functions of λ2) emanate from
(g0, 0) into the half-plane λ2 > 0, and their polar angles approach π from below as
n → ∞ (note that γn → −∞).

To formulate the existence theorem, we need more notation. We write σmn < 0
if 1 < ϕmγn, and σmn > 0 if 1 > ϕmγn or ϕm � 0 or γn � 0. Also,

f0
m := fm(g0)
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is defined via (5.9) if g0 > 0 (which will be implicitly assumed when conditions on
f0

m appear, as in (i) and (ii) below). Similarly, we define gn0 := gn(f0) via (5.3) on
the assumption that f0 > 0. We note that it is possible for g0 to be infinite, and
then we interpret the conditions on f0

m via appropriate limits.

Theorem 5.3. Consider the eigenvalue problem (2.1), (2.2) of § 2 for the case
k = 2 under assumption (5.1). Then an eigenvalue (λ1, λ2) with oscillation count
(m, n) exists in the open quadrant R

2
+ under any of the following three conditions:

(i) σmnf0
m > 0, and f0 � 0 if σmn > 0;

(ii) f0
mgn0 > 0, and σmn > 0 if f0

m > 0;

(iii) σmngn0 > 0, and g0 � 0 if σmn > 0.

Proof. Geometrically, each of (i)–(iii) forces the graphs of fm and gn to intersect
in R

2
+, and any such intersection point (λ1, λ2) is an eigenvalue with oscillation

count (m, n). We shall give an analytic argument in the case that will be the most
important in what follows; the other cases involve similar reasoning.

Suppose that (i) holds with σmn > 0, so f0
m, g0 > 0 � f0, and write

h(t) = gn(fm(t)) − t.

Consider first the case when fm(t) vanishes for some t > g0 (for example, when
ϕm < 0, which forces g0 < ∞), and let I = (u, v) be the maximal interval containing
g0 where fm is positive. Then h is a continuous function on I

lim
t→u+

h(t) = g0 − u > 0 (5.11)

and

lim
t→v−

h(t) = g0 − v < 0. (5.12)

We turn next to the case when ϕm = 0. By the above, we can assume that
fm(t) > 0, and hence h(t) is defined and continuous for all t > u. Moreover,
σm(0) = 0 in (5.6), so since σm is an analytic function, we see that

c := lim
λ1→∞

fm(λ1) = lim
ρ→0

σm(ρ)
ρ

= σ′
m(0)

exists c � 0 since fm(t) > 0 for all t > u. Thus fm(t) is bounded above for t > u.
Extending gn(λ2) by continuity to λ2 = 0 if c = 0, g0 < ∞, and noting that
b = f0

m > 0 if g0 = ∞, we easily see that

h(w) < 0 (5.13)

for sufficiently large w.
Finally, if ϕm > 0, then fm(t) → ∞ as t → ∞ so we can use (5.4), (5.10) and

σmn > 0, which gives γn − 1/ϕm < 0, to conclude that

h(t)
fm(t)

=
gn(fm(t))

fm(t)
− t

fm(t)
< 0,
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and hence
h(t) < 0 (5.14)

for sufficiently large t. In each case, then, (5.11)–(5.14) and the intermediate value
theorem give existence of λ1 so that h(λ1) = 0, and this implies that λ2 := fm(λ1)
gives λ1 = gn(λ2), as required.

We remark that conditions (i)–(iii) are not exhaustive, but they allow more possi-
bilities than in theorem 2.3. Of course, the latter result is aimed at large oscillation
counts, and we now show that theorem 5.3 is more precise in this respect. Let
m = M1, m = M2 and n = N1 be the minimal oscillation counts such that ϕm > 0,
f0

m > 0 and γn < 0, respectively. From theorem 5.3(i), we obtain the following.

Corollary 5.4. If f0 � 0 < g0, m � max{M1, M2} and n � N1, then the problem
of theorem 5.3 has an eigenvalue (λ1, λ2) ∈ R

2
+ with oscillation count (m, n).

One may extend the definitions of fm and gn to negative arguments. The resulting
properties are similar to those in lemmas 5.1 and 5.2, and, in particular, we obtain
the following.

Lemma 5.5. We have

lim
λ1→0−

fm(λ1) = f0 := − ess inf
{

q1(x1)
p12(x1)

: x1 ∈ [a1, b1]
}

(5.15)

and

lim
λ2→0−

gn(λ2) = g0 := ess inf
{

q2(x2)
−p21(x2)

: x2 ∈ [a2, b2]
}

. (5.16)

The corresponding limits at −∞ remain unchanged. With these facts, one may
proceed to an analogue of theorem 2.4 for the problem of theorem 5.3. The details
will be left to the reader, but we remark that they give sufficient conditions for
eigenvalues with the same oscillation count in any of the four open quadrants.
Instead, we shall use the above ideas to explore a special case, which includes the
assumptions of [2, 9], and which yields sharper results. We shall assume from now
on that each of (5.2) and (5.8), with the relevant boundary conditions from (2.2),
is LD. For brevity we will refer to this as the LD case, although it differs from the
multiparameter LD condition in § 1.

One consequence of LD is that ϕm > 0 for each m, and fm(λ1) is strictly increas-
ing in λ1 (this can be seen, for example, from the variational characterization of
λ2 = fm(λ1), or from an expression which is positive for f ′

m(λ1)). Similarly, γn < 0
(so σmn > 0) and gn is strictly decreasing for each n. The conditions of theo-
rem 5.3(iii) cannot then be satisfied, while those of (i) and (ii) simplify considerably,
and also become necessary, as follows.

Corollary 5.6. Under LD, the problem of theorem 5.3 has an eigenvalue (λ1, λ2)
∈ R

2
+ with oscillation count (m, n) if and only if g0 > 0 and either

(i) f0 � 0 and f0
m > 0, or

(ii) f0 > 0 and gn0 > 0.

If such an eigenvalue exists, it must be unique.
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Figure 1. Eigencurves without intersection.

This follows from the above remarks and inspection of the eigencurves. Using
lemma 5.5 as well, we can give conditions for the number of eigenvalues (which
must be 0 or 1) in each (open) quadrant. The following result, which also uses
fm0 := fm(g0) (see (5.16)) gives most cases modulo rotation of the axes.

Corollary 5.7.

(i) If f0 � 0 � g0 (i.e. both qr � 0 a.e.) and f0 < 0 (i.e. also q1 �= 0), then the
number of eigenvalues with oscillation count (m, n) is 2 if f0

m and fm0 take
opposite signs, 1 if they have the same sign (or one vanishes), and 0 if both
vanish (so g0 = g0, i.e. q2/p21 is constant).

(ii) If f0 < 0 < f0 (i.e. q1 is indefinite) and g0 � 0 (i.e. q2 � 0 a.e.), then
the number of eigenvalues with oscillation count (m, n) is at most 3, and any
integer between 0 and 3 can be realized.

(iii) If f0, g0 < 0 < f0, g0 (i.e. both qr are indefinite), then the number of eigen-
values with oscillation count (m, n) is at most 4, and any integer between 0
and 4 can be realized.

This again follows from inspection of the eigencurves. The situation with no
eigenvalues was not considered in [9], and we shall give an example from part (iii)
above with no eigenvalues for m = n = 0.

Example 5.8. We take [a1, b1] = [a2, b2] = [−1, 1] with p1(x) = −p2(x) = 10 as
constant functions, and q1 = q2 as the step function with value −1 on [−1, 0) and
value 1 on (0, 1]. Let (n1, n2) = (0, 0).
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The pairs (λ1, λ2) for which (2.1) and (2.2) admit a non-trivial solution with
oscillation count 0 form curves labelled by F and G in figure 1, respectively. There
are no intersections, so no eigenvalue with oscillation count (0, 0) exists.

Turning again to large oscillation counts, we may use the fact that fm and gn tend
to +∞ and −∞, respectively, as m and n become large to conclude the following
modification of corollary 5.7. For simplicity we use strict inequalities on f0, etc.

Corollary 5.9. For any sufficiently large oscillation count (m, n),

(i) if f0 < 0 < g0, then there is exactly one eigenvalue, and it lies in R
2
+,

(ii) if f0 < 0 < f0 and g0 > 0, then there are exactly two eigenvalues, one in each
of the first two open quadrants,

(iii) if f0, g0 < 0 < f0, g0, then there are exactly four eigenvalues, one in each
open quadrant.

The above results have a certain similarity to those under the condition labelled
FE in § 1. Actually, we can mimic the FLD situation more closely (although for
different reasons) with some degenerate cases as follows.

Corollary 5.10. For any oscillation count (m, n),

(i) if f0 = f0 = 0 = g0 = g0, i.e. both qr vanish a.e., then there are no eigenval-
ues,

(ii) if f0 = f0 = 0 < g0, then there is one eigenvalue, and it lies in R
2
+,

(iii) if f0 = f0 = 0 and g0 < 0 < g0, then there are two eigenvalues, one in each
of R

2
±.
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