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Sine, cosine and exponential integrals

G. J. O. JAMESON

The complete sine integral:  first method
In this article, we explore the integrals, over appropriate intervals, of

,  and .  We will present and compare various methods for dealing
with them; some are quite well known, others rather less so.  We start with
the ‘complete sine integral’: 

sin t
t

cos t
t

et

t

Theorem 1:  

∫
 ∞

0

sin t
t

 dt =
π
2

. (1)

Note first that there is no problem of convergence at 0, because  as
. 

sin t
t → 1

t → 0

A very quick and neat proof of (1) (to be seen, for example, in [1]) lies
to hand if we assume the following well-known series identity: for ,x ≠ kπ

1
sin x

= ∑
∞

n = −∞

(−1)n

x + nπ
. (2)

One proof of (2) [2, pp. 17-18] is by taking  in the Fourier series for
 on .

x = 0
cos ax [−π, π]

To derive (1), note first that, since  is an even function, sin t
t

∫
 ∞

−∞

sin t
t

 dt = 2 ∫
 ∞

0

sin t
t

 dt.

Denote this by .  The substitution  givesI t = x + nπ

∫
 (n + 1)π

nπ

sin t
t

 dt = (−1)n ∫
 π

0

sin x
x + nπ

 dx.

Assuming that termwise integration of the series is valid, we add these
identities for all integers  to obtain at oncen

I = ∫
 π

0
sin x 

1
sin x

 dx = π.

The termwise integration (for any readers who care) is easily justified by
uniform convergence, as follows.  By combining the terms for  and  and
multiplying by , we can rewrite the series (2) as

n −n
sin x

sin x
x

+ 2x sin x ∑
∞

n = 1

(−1)n

x2 − n2π2
= 1.

For  and ,0 < x < π n ≥ 2

| 2x sin x
x2 − n2π2 | ≤

2π
(n2 − 1) π2

.
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Since  is convergent, it follows, by Weierstrass's ‘M-test’, that

the series converges uniformly on the open interval : this is all we
need.

∑
∞

n = 2

1
n2 − 1

(0, π)

We note some immediate variants and consequences of (1).  First, for
any , the substitution  givesa > 0 at = u

∫
 ∞

0

sin at
t

 dt = ∫
 ∞

0

sin u
u

 du =
π
2

.

In particular,

∫
 ∞

0

sin t cos t
t

 dt =
1
2 ∫

 ∞

0

sin 2t
t

 dt =
π
4

. (3)

We will use this several times later.  

Next, we can derive the following integral:

∫
 ∞

0

sin2 t
t2

 dt =
π
2

. (4)

To do this, take  and integrate by parts on :0 < δ < R [δ, R]

∫
 R

δ

sin2 t
t2

 dt = ⎡⎢⎣−
sin2 t

t
⎤⎥⎦

R

δ
= ∫

 R

δ

2 sin t cos t
t

 dt.

Now  as  and  as .  Taking limits

and applying (3), we obtain (4).  This argument is reversible, so (4) equally
implies (1).  This is a viable alternative, because one can prove (4) in a
similar way to (1), using the series

sin2 R
R

→ 0 R → ∞
sin2 δ

δ
→ 0 δ → 0+

1
sin2 x

= ∑
∞

n = −∞

1
(x − nπ)2

;

this method is followed in [2, pp. 186-187].

One can develop this process further to evaluate the integrals of
 for various  and :  see [3].sinn x / xm m n

The incomplete sine integral
The ‘incomplete’ sine integral is the function

Si (x) = ∫
 x

0

sin t
t

 dt.

First, some simple facts about it.  Since  for , we have
 for all .  Also, by the fundamental theorem of calculus, the

derivative  is .  Hence  is increasing on intervals
 and decreasing on intervals , so it has

sin t
t ≤ 1 t > 0

Si (x) ≤ x x > 0
Si ′ (x) sin x

x Si (x)
[2nπ,  (2n + 1) π] [(2n − 1) π,  2nπ]
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maxima at the points  and minima at the points .  Now write,

temporarily, .  By substituting  on

, we see that

(2n + 1) π 2nπ
An = ∫

 (n + 2)π

nπ

sin t
t

 dt t + π = u

[nπ, (n + 1) π]
An = ∫

 (n + 1)π

nπ (1
t

−
1

t + π) sin t dt

in which .  If  is even, then  on , so
and .  Hence  for
all , so in fact  for all .  Meanwhile, if  is odd, then

, so that ; hence the greatest value of  is
.  Of course, (1) says that  as .

1
t − 1

t +π > 0 n sin t ≥ 0 [nπ, (n + 1)π] An ≥ 0
Si [(n + 2)π] ≥ Si (nπ) Si (2nπ) ≥  …  ≥ Si (2π) ≥ Si (0) = 0

n Si (x) ≥ 0 x ≥ 0 n
An ≤ 0 Si (π) ≥ Si (3π) ≥  … Si (x)
Si (π) Si (x) → π

2 x → ∞

By integrating the series

sin t
t

= ∑
∞

n = 0

(−1)n t2n

(2n + 1)!
,

we obtain the explicit series expression

Si (x) = ∑
∞

n = 0

(−1)n x2n + 1

(2n + 1)! (2n + 1)
= x −

x3

3! 3
+

x5

5! 5
−  … ,

from which, in principle,  can be calculated, though in practice the
calculation is only pleasant for fairly small .  One finds, for example,

 (recall that this is the greatest value) and
.

Si (x)
x

Si (π) ≈ 1.85194
Si (2π) ≈ 1.41816

The complementary sine and cosine integrals, and analogues of (1) for cos t
We cannot simply replace  by  in (1), or in the definition of
, because the resulting integral would be divergent at 0.  To formulate

results that make sense for both  and , we consider instead the
complementary integrals

sin t cos t
Si (x)

sin t cos t

S (x) = ∫
 ∞

x

sin t
t

 dt,  C (x) = ∫
 ∞

x

cos t
t

 dt.

(Here I am departing from the established notation, which is  and
where we have  and ).

si (x) ci (x)
−S (x) −C (x)

By (1), we have  and .  By the remarks
above,  has maxima at  and minima at , with greatest
value  and least value .  Also,  and

.

S (0) = π
2 S (x) = π

2 − Si (x)
S (x) 2nπ (2n − 1) π
π
2 S (π) S (π) ≈ −0.28114

S (2π) ≈ 0.15264
Meanwhile,  is defined for , but not at .  It has

maxima at  and minima at , with overall least value at .
C (x) x > 0 x = 0

(2n − 1
2)π (2n + 1

2)π π
2

The next result gives pleasantly simple approximations to  and
for large  (it also incorporates the proof that the integrals defining them
converge in the first place).

S (x) C (x)
x
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Proposition 1:  We have

S (x) =
cos x

x
+ q1 (x) ,  C (x) = −

sin x
x

+ r1 (x) , (5)

where  and  are not greater than .  Hence  and
 tend to 0 as .

|q1 (x)| |r1 (x)| 2
x2 xS (x) − cos x

xC (x) + sin x x → ∞

Proof:  Integrating by parts twice, we obtain

S (x) = ⎡⎢⎣−
cos t

t
⎤⎥⎦

 ∞

 x
− ∫

 ∞

x

cos t
t2

 dt

=
cos x

x
− ⎡⎢⎣

sin t
t2

⎤⎥⎦

 ∞

 x
+ q2 (x)

=
cos x

x
+

sin x
x2

+ q2 (x) ,

where 

q2 (x) = ∫
 ∞

 x

2 sin t
t3

 dt.

Now .  The stated expression for  follows.  The

proof for  is similar: we leave the details to the reader.

|q2 (x)| ≤ ∫
 ∞

x

2
t3

 dt =
1
x2

S (x)

C (x)
 
Of course, this also shows that  and  tend to 0 as .  The

process can be repeated to deliver increasingly accurate asymptotic
expressions, and inequalities, for  and .  By developing this
approach, the following inequality for  was established in [4]:

S (x) C (x) x → ∞

S (x) C (x)
S (x)

|S (x)| ≤
π
2

− tan−1 x.

Can we find a formula that enables us to calculate , and that opens
the way to some kind of analogue of (1)?  The key is to introduce the
function 

C (x)

C∗ (x) = ∫
 x

0

1 − cos t
t

 dt.

(This function is sometimes denoted by .)  It is elementary that

, so that , for .  Hence

there is no problem of convergence of the integral at 0, and we have
 for all .  Inserting the series for  and

integrating, we obtain the power series expression

Cin (x)
0 ≤ 1 − cos t ≤ 1

2t2 0 ≤
1 − cos t

t
≤ 1

2t t > 0

0 ≤ C∗ (x) ≤ 1
4x2 x > 0 cos t

C∗ (x) = ∑
∞

n = 1

(−1)n − 1 x2n

(2n)! (2n)
=

x2

2! 2
−

x4

4! 4
+  … .
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We now relate  and .  We haveC∗ (x) C (x)

C∗(x) − C∗(1) = ∫
 x

1

1 − cost
t

 dt = lnx − ∫
 x

1

cost
t

 dt = lnx − C (1) + C (x),

so

C (x) = C∗ (x) − ln x + c, (6)
where  is constant, in fact .c c = C (1) − C∗ (1)

Even without knowing , we can draw some conclusions from (6).
One, which we will use later, is  as  (since

).  Another is the following integral, which can be

regarded as one kind of analogue of (1).  It is a special case of the ‘Frullani
integral’: see [5, pp. 133-135] or [3], where it is used in the evaluation of the
integral of .

c
xC (x) → 0 x → 0+

lim
x → 0+

(x ln x) = 0

sinn x / xm

Proposition 2:  For ,a, b > 0

∫
 ∞

0

cos at − cos bt
t

 dt = ln b − ln a.

Proof:  The substitution  givesat = u

∫
 x

0

1 − cos at
t

 dt = ∫
 ax

0

1 − cos u
u

 du = C∗ (ax) .

Hence

∫
 x

0

cos at − cos bt
t

 dt = C∗ (bx) − C∗ (ax)

= C (bx) − C (ax) + ln bx − ln ax

= C (bx) − C (ax) + ln b − ln a

→ ln b − ln a as  x → ∞.
However, for a fully satisfactory version of (6), and for the calculation

of , of course we need to know the value of .  The answer turns out to
be that , where  is Euler's constant (yet another appearance of this
famous constant!).  Let us state this fact as a theorem:

C (x) c
c = −γ γ

Theorem 2:

C (x) = C∗ (x) − ln x − γ. (7)
Surprisingly, this result is not mentioned in the comprehensive article

[6] on Euler's constant.  It can be seen stated without proof in compilations
of formulae, such as [7].  However, it is not easy to find accessible
references with a proof; part of the rationale for the present article is to
supply one.  At the same time, the method will also give a second proof of
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Theorem 1.  Later, we describe an alternative route to both theorems using
contour integration.

The starting point for the proof will be the following expression for
derived from (6):  since , we have 

c
lim

x → ∞
C (x) = 0

−c = lim
x → ∞

[C∗ (x) − ln x] . (8)

Similarly, since  as , it will follow from (7), once
proved, that  as .  This describes the nature of

 near 0, so can be regarded as the true analogue of (1). 

C∗ (x) → 0 x → 0+

C (x) + ln x → −γ x → 0+

C (x)
Also, (7), together with the series for , enables us to calculate
.   We find, for example,  (recall that this is the least

value) and .

C∗ (x)
C (x) C (π

2) ≈ −0.47200
C (π) ≈ −0.07367

Second proof of Theorem 1 and proof of Theorem 2
We will use the following elementary version of the Riemann-Lebesgue

Lemma, which is easily proved by integration by parts:
If  is continuous on  and has a continuous derivative on ,

then
f [a, b] (a, b)

∫
 b

a
f (t) sin nt dt → 0 as  n → ∞,

and similarly with  replaced by .  We also use:sin nt cos nt

Lemma 1:  Let

h (t) =
1
t

−
1

sin t
.

Then  as .h (t) → 0 t → 0

Proof:  By the series for , and the continuity of power series functions,
we have

sin t

h (t) =
t − sin t

t sin t
=

t3 / 3! − t5 / 5! +  …
t2 − t4 / 3! +  …

=
t / 3! − t3 / 5! +  …

1 − t2 / 3! +  …

→ 0 as  t → 0.

Second proof of Theorem 1:  It is sufficient to show that  as
, where

In → π
2

n → ∞

In = ∫
 (n + 1

2)π

0

sin t
t

 dt.
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Substituting  (and then writing  for ), we havet = (2n + 1) u t u

In = ∫
 π/2

0

sin (2n + 1) t
t

 dt.

Let  (applied to , this is the Dirichlet kernel).

Note that  for non-zero integers , so .

Dn(t) = 1 + 2 ∑
n

r = 1
cos2rt 1

2t

∫
π/2
0 cos2rt dt = 0 r ∫

π/2
0 Dn(t)dt = π

2

Since , we havesin (a + b) − sin (a − b) = 2 cos a sin b

sin (2r + 1) t − sin (2r − 1) t = 2 cos 2rt sin t.
Adding for , we obtain 1 ≤ r ≤ n

sin (2n + 1) t − sin t = 2 sin t ∑
n

r = 1

cos 2rt,

hence

Dn (t) =
sin (2n + 1) t

sin t
.

So we have 

In −
π
2

= In − ∫
 π/2

0
Dn (t) = ∫

 π/2

0
h (t) sin (2n + 1) t dt.

By Lemma 1,  becomes continuous on  if assigned the value 0 at
0.  So the Riemann-Lebesgue Lemma applies to show that  as

.

h (t) [0, π
2]

In − π
2 → 0

n → ∞
Though this proof of (1) is not quite as neat as our first one, it is more

self-contained because it does not depend on the series (2).  It appears in
numerous books, e.g. [8, pp. 42-43].  For readers familiar with it, we
mention that the Fejér kernel can be used in a similar way to prove (4)
instead of (1).

Proof of Theorem 2:  Recall from (8) that .  Let

.  We will show that  as , with
 restricted to even values.  Since  as ,

this will imply that .

−c = lim
x → ∞

[C∗ (x) − ln x]
Jn = C∗ [(n + 1

2) π] Jn − ln nπ → γ n → ∞
n ln (n + 1

2) π − ln nπ → 0 n → ∞
c = −γ

Substituting  (and then writing  for ), we have t = (2n + 1) u t u

Jn = ∫
 π/2

0

1 − cos (2n + 1) t
t

 dt.

Let  (applied to , this is the conjugate Dirichlet
kernel).  Since , we have

D̃n (t) = 2 ∑
n

r = 1
sin 2rt 1

2t
cos (a − b) − cos (a + b) = 2 sin a sin b

cos (2r − 1) t − cos (2r + 1) t = 2 sin 2rt sin t,
hence by addition

D̃n (t) =
cos t − cos (2n + 1) t

sin t
,
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so that

1 − cos (2n + 1) t
t

= D̃n (t) +
1
t

−
cos t
sin t

− h (t) cos (2n + 1) t. (9)

The integral of , unlike the integral of , needs a bit of work.
Observe that 

D̃n (t) Dn (t)

∫
 π/2

0
sin 2rt dt =

1
2r

(1 − cos rπ) =
⎧

⎩
⎨
⎪
⎪

0 for r even,
1
r for r odd.

For even , the odd numbers less than  can be listed as  for
, so

n n 2r − 1
1 ≤ r ≤ n

2

∫
 π/2

0
D̃n (t) dt = ∑

n/2

r = 1

2
2r − 1

.

Lemma 2:

∑
k

r = 1

2
2r − 1

= ln k + 2 ln 2 + γ + ρk.

where  as .ρk → 0 k → ∞

Proof:  Write .  Then Hk = ∑
k

r = 1
1
r

∑
k

r = 1

2
2r − 1

= 2H2k − ∑
k

r = 1

2
2r

= 2H2k − Hk.

Now , where  as .  SoHk = ln k + γ + qk qk → 0 k → ∞

2H2k − Hk = 2 ln 2k + 2γ + 2q2k − ln k − γ − qk

= ln k + 2 ln 2 + γ + ρk,
where  as .ρk = 2q2k − qk → 0 k → ∞

Applying this with , we havek = n
2

∫
 π/2

0
D̃n (t) dt = ln n + ln 2 + γ + ρn/2. (10)

Completion of the proof of Theorem 2:  As before, by the Riemann-
Lebesgue lemma,  as : denote this
by .  Now

∫
π/2
0 h (t) cos (2n + 1) t dt → 0 n → ∞

σn

∫
π/2

0 (1
t

−
cost
sin t )dt = lim

δ → 0+
[ln t − ln sin t]π/2

δ = ln
π
2

+ lim
δ → 0+

ln
sinδ

δ
= ln

π
2

.
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Inserting this and (10) into (9), we obtain

Jn = ln n + ln 2 + γ + ρn/2 + ln
π
2

− σn = ln nπ + γ + rn,

where  as .rn → 0 n → ∞

A minor variation is to work with .  This avoids the

adjustment from  to , but requires the evaluation ,
which is slightly harder.

2 ∑
n

r = 1
sin (2r − 1) t

k n
2 ∫

π/2
0 (1

t − 1
sin t) dt = ln π

4

Some integrals involving  and S (x) C (x)
We apply our results to some integrals involving and  (most of

which can be seen stated without proof in [7]).  These applications will
actually use Theorem 1, Proposition 1 and (6), but not Theorem 2.

S (x) C (x)

By the fundamental theorem of calculus, we have
and .  Hence  and

, so antiderivatives of and  are as
follows:

S′ (x) = − sin x / x
C′ (x) = − cos x / x d

dx [xS (x)] = S (x) − sin x
d
dx [xC (x)] = C (x) − cos x S (x) C (x)

∫ S (x) dx = xS (x) − cos x,  ∫ C (x) dx = xC (x) + sin x.

By (5),  as , so we deduce at oncexS (x) − cos x → 0 x → ∞

∫
 ∞

0
S (x) dx = ⎡

⎢⎣
xS (x) − cos x⎤

⎥⎦

∞

0
= 1.

Recall from (6) that  as .  So we have similarlyxC (x) → 0 x → 0+

∫
 ∞

0
C (x) dx = ⎡⎢⎣xC (x) + sin x⎤⎥⎦

∞

0
= 0.

Next, we consider the integrals of  and .  Integrating
by parts and using (3), together with , we find  

S (x) sin x C (x) cos x
lim

x → ∞
S (x) = 0

∫
 ∞

0
S(x) sinx dx = ⎡

⎢⎣
−S(x)cosx⎤

⎥⎦

 ∞

 0
− ∫

 ∞

0

sinx
x

cosx dx =
π
2

−
π
4

=
π
4

. (11)

Now  as , since , so we have similarlyC (x) sin x → 0 x → 0+ sin x
x → 1

∫
 ∞

0
C (x) cosx dx = ⎡

⎢⎣
C (x)sinx⎤

⎥⎦

 ∞

 0
+ ∫

 ∞

0

cosx
x

sinx dx = 0 +
π
4

=
π
4

. (12)

However, similar reasoning shows that  is divergent, since

 is divergent.

∫
 ∞
0 S (x) cos x dx

∫
 ∞

0

sin2 x
x

dx

Of course, the integrals in (11) and (12) are really double integrals.
Formal reversal of the double integrals duly delivers the stated values.
However, the conditions for reversal of improper integrals are not satisfied,
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and one should really consider the integral on  of

.  This simply leads, rather less directly, to the same

limiting process that we considered above.

[0, R]
∫

 R

x

sin t
t

dt = S(x) − S(R)

Since , we can express  as an
integral:

d
dtS (t)2 = 2S (t) S′ (t) = −2S (t) sin t

t S (x)2

S (x)2 = 2 ∫
 ∞

x

S (t) sin t
t

 dt,

so in particular we have

∫
 ∞

0

S (t) sin t
t

 dt = 1
2S (0)2 =

π2

8
.

Finally, without using this, we establish

∫
 ∞

0
 S (x)2 dx = ∫

 ∞

0
C (x)2 dx =

π
2

.

Integrate by parts:

∫
 ∞

0
1. S(x)2dx = ⎡

⎢⎣xS(x)2⎤⎥⎦

 ∞

 0
+ 2 ∫

 ∞

0
xS(x)

sinx
x

 dx = 2 ∫
 ∞

0
S(x) sinx dx =

π
2

,

in which we used (11) and .  The integral of  is

similar, with the additional remark that . 

lim
x → ∞

[xS (x)2] = 0 C (x)2

lim
x → 0

[xC (x)2] = 0

Exponential integrals
Define

E (x) = ∫
 ∞

x

e−t

t
 dt,  E∗ (x) = ∫

 x

0

1 − e−t

t
 dt.

, as well as its various mutations, is known as the ‘exponential integral’;
the notation sometimes used is  for our  and  for .  We
copy our treatment of  and , rather more briefly.  Clearly,  is
positive and satisfies the simple inequality

E (x)
E1 (x) E (x) Ein (x) E∗ (x)

C (x) C∗ (x) E (x)

E (x) ≤
1
x ∫

 ∞

x
e−tdt =

e−x

x
,

which can be refined by integrating by parts as in Proposition 1.  Since
 for , we have  for all .

Using the series for , we can derive the power series expression 
0 < 1 − e−t ≤ t t > 0 0 < E∗ (x) ≤ x x > 0

e−t

E∗ (x) = x −
x2

2! 2
+

x3

3! 3
+  … ,

from which we find, for example, .E∗ (1) ≈ 0.79660
Exactly as for , we haveC (x)

E (x) = E∗ (x) − ln x + c′, (13)
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where .  As before,  and

.  However, unlike , we can equate  to an

interesting single integral.   Integration by parts gives

c′ = E (1) − E∗ (1) −c′ = lim
x → ∞

[E (x) + ln x]
c′ = lim

x → 0+
[E (x) + ln x] c c′

E (1) = ⎡
⎣e−t ln t⎤⎦

 ∞

 1
+ ∫

 ∞

1
e−t ln t dt = ∫

 ∞

1
e−t ln t dt,

and in the same way, since  as , we find
.  Together, these identities give

(1 − e−t) ln t → 0 t → 0+

E∗ (1) = − ∫
 1
0 e−t ln t

c′ = ∫
 ∞

0
e−t ln t dt. (14)

The integral in (14) is also often called the ‘exponential integral’.  Readers
familiar with the gamma function will recognise that it equates to .  Γ′ (1)

It is a well-known fact that , like , equals .  (Is this a coincidence?
Read on!)  Versions of the proof can be seen in numerous books and
articles, e.g. [9, pp. 176-177] and [1].  Here we sketch a version adapted to
the way we have arrived at the problem.

c′ c −γ

Theorem 3:  We have , hencec′ = −γ

E (x) = E∗ (x) − ln x − γ, (15)

∫
 ∞

0
e−t ln t dt = −γ. (16)

Proof:  We show that  as .  Since
, it seems at least plausible that  is approximated

by , where

E∗ (n) − ln n → γ n → ∞
e−t = lim

n → ∞
(1 − 1

n)n E∗ (n)
Kn

Kn = ∫
 n

0

1
t

⎡
⎢⎣1 − (1 −

t
n)n⎤

⎥⎦ dt

= ∫
 1

0

1
u

[1 − (1 − u)n] du

= ∫
 1

0

1 − vn

1 − v
 dv

= ∫
 1

0
(1 + v +  …  + vn − 1) dv

= 1 +
1
2

+  …  +
1
n

,

so that  as .Kn − ln x → γ n → ∞
The approximation step really does need to be justified, but fortunately

this is not hard.  It is elementary that  for ,1 + x ≤ ex ≤ 1
1 + x 0 < x < 1
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and hence that .  After substituting  and
using , we deduce that

(1 − x2) e−x ≤ 1 − x ≤ e−x x = t
n

(1 − a)n ≥ 1 − na

(1 −
t2

n ) e−t ≤ (1 −
t
n)n

≤ e−t

for .  It follows that , where0 ≤ t ≤ n E∗ (n) ≤ Kn ≤ E∗ (n) + !n

!n =
1
n ∫

 n

0
te−tdt <

1
n

.

Hence, for example, .E (1) = E∗ (1) − γ ≈ 0.21938

Numerous other integrals can be derived from (16). We mention two.
The substitution  (where ) givesat = u a > 0

∫
 ∞

0
e−at ln t dt = ∫

 ∞

0
e−u (ln u − ln a) 1

adu = −1
a (γ + ln a) .

The substitution  gives e−t = u

∫
 1

0
ln ln

1
u

 du = −γ.

By (15), we have .  This has been used for the
calculation of  to great degrees of accuracy.  For a suitably chosen , one
can estimate  by the method of Proposition 1, and also calculate
and .  For a survey of this topic, see [10].

γ = E∗ (x) − E (x) − ln x
γ x

E (x) E∗ (x)
ln x

Exactly as in Proposition 2, we find 

∫
 ∞

0

e−at − e−bt

t
 dt = ln b − ln a. (17)

The reader might like to establish some of the following integrals, either
by copying our earlier methods or by reversing double integrals (and in one
case using (17)):

∫
 ∞

0
E (x) dx = 1,  ∫

 ∞

0
xnE (x) dx =

n!
n + 1

,

∫
 ∞

0
e−xE (x) dx = ln 2,  ∫

 ∞

0
E (x)2 dx = 2 ln 2.

A contour integral that unites the results
Finally, we describe a well-known contour integral method that

provides a third proof of Theorem 1, and at the same time relates  to
 in such a way that either of Theorem 2 and Theorem 3 can be deduced

from the other.

C∗ (x)
E∗ (x)

Let  be the circular arc of radius  in the positive quadrant,
represented by  for .  Denote by  the closed contour

CR R
z = Reiθ 0 ≤ θ ≤ π

2 Γ
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consisting of  together with the real interval , and the imaginary
axis from  to 0.  Let

CR [0, R]
iR

f (z) =
1 − eiz

z
.

Then  has no pole at 0, since  .  By Cauchy's integral
theorem, .  The contribution of the real axis is 

f f (z) = −i + 1
2z +  …

∫Γ f (z) dz = 0

∫
 R

0

1 − e−it

t
 dt = C∗ (R) − i Si (R) .

The contribution of the imaginary axis, taken towards the origin, is

− ∫
 R

0

1 − e−t

t
 dt = −E∗ (R) .

Now consider .  Here the contribution of the term  is, of course, .  The
contribution of the other term is 

CR
1
z

π
2 i

IR = − ∫CR

eiz

z
 dz = − ∫

 π/2

0
ieiReiθ

dθ.

Its magnitude is estimated by the following Lemma.

Lemma 3:  We have

0 ≤ ∫
π/2

0
e−R sin θdθ ≤

π
2R

.

Proof:  The function  is concave on , since its derivative  is
decreasing.  This means that its graph lies above the straight line connecting
its values at 0 and , so  on .  Hence

sin θ [0, π
2] cos θ

π
2 sin θ ≥ 2θ

π [0, π
2]

∫
 π/2

0
e−R sin θdθ ≤ ∫

 π/2

0
e−2Rθ/πdθ = ⎡⎢⎣−

π
2R

e−2Rθ/π⎤⎥⎦

 π/2

 0
=

π
2R

(1 − e−R) .

Since , it follows that .|eiReiθ| = e−R sin θ |IR| ≤ π
2R

Considering first the imaginary part, and writing  for  for consistency
with our earlier results, we obtain .  This is a third proof of
Theorem 1, enhanced by the stated estimate for .  The
method can be seen, for example, in [11, p. 123].  However, as already
mentioned, a stronger inequality for  was given in [4].

x R
|Si (x) − π

2 | ≤ π
2x

|Si (x) − π
2 | = |S (x)|

S (x)
Meanwhile, consideration of the real part shows that

|C∗ (x) − E∗ (x)| ≤
π
2x

,

so that  as .  This, of course, does not evaluate
either integral, but with (6) and (13) it implies that , thereby enabling
us to deduce Theorem 2 from Theorem 3 or conversely.  I hope that some

C∗ (x) − E∗ (x) → 0 x → ∞
c = c′
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readers will share my view that this is a rather neat conclusion to our
journey.

Acknowledgement:  I am indebted (once again) to Nick Lord for a number of
helpful comments and references, and to the referee for a very thorough
scrutiny resulting in several useful suggestions.
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