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Abstract

Objectives: Concussions cause diverse symptoms that are often measured through a single symptom severity score.
Researchers have postulated distinct dimensions of concussion symptoms, raising the possibility that total scores may
not accurately represent their multidimensional nature. This study examined to what degree concussion symptoms,
assessed by the Sport Concussion Assessment Tool 3 (SCAT3), reflect a unidimensional versus multidimensional
construct to inform how the SCAT3 should be scored and advance efforts to identify distinct phenotypes of concussion.
Methods: Data were aggregated across two prospective studies of sport-related concussion, yielding 219 high school and
college athletes in the acute (<48 hr) post-injury period. Item-level ratings on the SCAT3 checklist were analyzed through
exploratory and confirmatory factor analyses. We specified higher-order and bifactor models and compared their fit, inter-
pretability, and external correlates. Results: The best-fitting model was a five-factor bifactor model that included a general
factor on which all items loaded and four specific factors reflecting emotional symptoms, torpor, sensory sensitivities, and
headache symptoms. The bifactor model demonstrated better discriminant validity than the counterpart higher-order
model, in which the factors were highly correlated (r= .55–.91). Conclusions: The SCAT3 contains items that appear
unidimensional, suggesting that it is appropriate to quantify concussion symptoms with total scores. However, evidence of
multidimensionality was revealed using bifactor modeling. Additional work is needed to clarify the nature of factors iden-
tified by this model, explicate their clinical and research utility, and determine to what degree the model applies to other
stages of injury recovery and patient subgroups. (JINS, 2018, 24, 793–804)
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INTRODUCTION

Concussion gives rise to a wide array of somatic, cognitive,
emotional, and other symptoms that persist for weeks or longer in
a small subset of athletes and a sizable percentage of non-athlete
patients (McCrea et al., 2003; McMahon et al., 2014). Symptom
checklists, such as the Sport Concussion Assessment Tool 3
(SCAT3; McCrory et al., 2013) and the more recent SCAT5
(McCrory et al., 2017), are widely used in clinical settings to
identify injury sequelae and have been proposed to be useful for
detecting differences between patients in injury characteristics.1

In particular, several studies conducted in athlete and non-athlete
settings have suggested that there are separable dimensions of
concussion symptoms (e.g., cognitive, somatic, emotional; Ayr,
Yeates, Taylor, & Browne, 2009; Joyce, Labella, Carl, Lai, &
Zelko, 2015; Kontos et al., 2012; Merritt & Arnett, 2014;
Meterko et al., 2012; Piland, Motl, Ferrara, & Peterson, 2003;
Potter, Leigh, Wade, & Fleminger, 2006; Sady, Vaughan, &
Gioia, 2014; Vanderploeg et al., 2015; Waljas et al., 2012) and
that attending to these distinct facets of clinical presentation
may reveal ways to tailor clinical management approaches
to individual athletes (Collins, Kontos, Reynolds, Murawski, &
Fu, 2014). Identifying distinct clinical phenotypes of concus-
sion could lead to more precision medicine approaches to
managing concussed patients. However, finding that multiple
distinct constructs underlie concussion symptoms would call
into question the validity of the widespread practice of
summing symptom ratings into a single total score. Thus,
evaluating the degree to which concussion symptoms are
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1 The name of the edition of the SCAT that was in use when most of the
data were collected (i.e., SCAT3) is used throughout the study, but because
the items, rating scale, and examinee instructions were unchanged from its
predecessor, SCAT2, and equivalent to its successor, SCAT5, the findings
are applicable to these other versions.
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unidimensional or multidimensional is important both to
validate how concussion symptom checklists are currently
used and to inform the question of whether clinical manage-
ment practices should shift toward more individualized
approaches.
Although numerous studies have suggested the presence of

distinct dimensions underlying concussion symptom report-
ing, there is reason to believe that the degree to which the
dimensions identified are truly distinct has been overstated.
For example, studies using latent trait models (typically
lower- or higher-order factor models) and simpler data
reduction strategies (principal component analysis [PCA])
with concussion symptom checklists have yielded models
with marginal fit (Ayr et al., 2009; Joyce et al., 2015; Meterko
et al., 2012), significant cross-loadings of items on different
factors (Merritt & Arnett, 2014), a dominant first factor
(Joyce et al., 2015; Kontos et al., 2012; Waljas et al., 2012),
and highly correlated factors (Joyce et al., 2015; Piland et al.,
2003; Potter et al., 2006; Sady et al., 2014; Vanderploeg
et al., 2015). Furthermore, few studies have presented data to
validate the factor structures identified, although the high
inter-factor correlations suggest limited potential for pur-
portedly distinct factors to demonstrate discriminant validity
(e.g., Franke, Czarnota, Ketchum, & Walker, 2015). Taken
together, these findings could indicate that concussion
symptoms are essentially unidimensional, with some multi-
dimensional features, and that alternative modeling approa-
ches might better represent their underlying structure.
One alternative conceptualization of the structure of con-

cussion symptoms that may better account for the evidence of
both a dominant over-arching factor and multi-faceted sub-
dimensions is a bifactor modeling approach. Figure 1 depicts
a more traditional higher-order model in comparison to a
bifactor model. These models account for covariance among
item responses in different ways. In a higher-order model,
item covariance is represented by an over-arching second-
order factor (or factors) accounting for covariance between
lower-order factors, with lower-order factors further parsed
into responses to the items that load on these factors. In a
bifactor model, each item is saturated by a general factor,
meaning that a broad general factor directly influences scores
on each item, and the residual variance unaccounted for by
the general factor evinces structure such that certain items

make up specific factors representing correlated residuals
among these items. The general factor and specific factors of
the bifactor model are parameterized to be independent from
one another, whereas correlations between lower-order fac-
tors of the higher-order model are accounted for by higher- or
second-order factors.
Distinctions in interpretation of these models have impli-

cations for understanding the structure of concussion symp-
toms and for their clinical assessment. For example, the
covariance accounted for by factors in a higher-order model
between lower-order factors and their constituent items
indicates that an individual scoring highly on the higher-
order factor (or factors) would likely score highly on the
lower-order factors loading on that dimension as well, which
would also have bearing on other factors of the model
(because they are allowed to correlate). In contrast, the
independence of the general and specific factors of the
bifactor model indicates that an individual’s standing on the
latent general factor has no bearing on their endorsement of
symptoms marking subfactors of the model. In other words, a
person with a low total score may actually score highly on
one or another subfactor, and this endorsement pattern would
be masked by relying solely on the general factor or total
score. In the context of self-report symptom scales, the spe-
cific factors are often referred to as “method” factors, and
these factors may represent constructs of limited substantive
value (e.g., as tends to be the case for items that are similarly
worded) or in some cases represent clinically relevant con-
structs in their own right (such as acquiescence or other forms
of response bias; Campbell & Fiske, 1959).
Bifactor models have become popular in psychiatric and

medical research (Chen, Hayes, Carver, Laurenceau, &
Zhang, 2012; Ebesutani et al., 2011; Gignac & Watkins,
2013; Patrick, Hicks, Nichol, & Krueger, 2007; Thomas,
2012) due to the practical and theoretical advantages of
modeling broad traits of interest in these research domains
(Reise, 2012; Reise, Morizot, & Hays, 2007; Thomas, 2012).
For example, the Brief Symptom Inventory (BSI; Derogatis,
1993), a self-report measure of internalizing symptoms
most commonly conceptualized as measuring correlated
lower-order factors of depression, anxiety, and somatization,
has been modeled in a bifactor framework. In particular,
Thomas (2012) argued that the lack of consistent fit of the

GEN

Item 1

Item 6

Item 5

Item 4

Item 3

Item 2 S1

S2

Item 1

Item 6

Item 5

Item 4

Item 3

Item 2F1

F2

A B

GEN

Fig. 1. (A) Higher-order factor model represented by lower-order factors (F1, F2) on which each item loads and a higher-order factor
(GEN) representing a broader construct encompassed by the two correlated lower-order factors. (B) Bifactor model in which all items load
on a single general factor (GEN), with two additional specific factors (S1, S2) that account for the residual covariance among items after
extraction of the general factor.

794 L.D. Nelson et al.

https://doi.org/10.1017/S1355617718000462 Published online by Cambridge University Press

https://doi.org/10.1017/S1355617718000462


higher-order model across studies and high between-factor
correlations suggests that the BSI predominantly captures a
single underlying dimension of internalizing symptoms/emo-
tional distress. Modeling the BSI with a bifactor model for-
mally acknowledges that a large general factor influences item
responding and also yields domain-specific factors. That
bifactor model factors better predict many DSM-IV-TR
diagnoses as compared to those of the corresponding higher-
order model suggests that the bifactor model may have value
as an alternative way to conceptualize and measure aspects of
BSI symptomatology (Thomas, 2012).
An example of another clinical construct for which bifactor

modeling has proven valuable is psychopathy. Originally
conceptualized as a unitary condition reflecting the presence
of affective-interpersonal features (e.g., grandiosity, deceit-
fulness, shallow affect, superficial charm) coupled with
impulsive-antisocial proclivities, this unitary concept has been
difficult to reconcile with findings of highly distinct patterns of
association for these two symptom components of psycho-
pathy with other personality and behavioral measures. Bifactor
modeling proved valuable in this case for separating out dis-
tinct trait-like subdimensions from general antisocial behavior
(Patrick et al., 2007). This modeling work paved the way for a
new model of psychopathy (Patrick, Fowles, & Krueger,
2009) that conceptualizes this condition in terms of core dis-
positions termed boldness (reflecting fearlessness), meanness
(reflecting callous-unemotionality), and disinhibition (reflect-
ing proneness to impulse control problems), with the former
two constructs representing psychopathy-specific dimensions,
and the latter a more general externalizing psychopathology
dimension (Nelson & Foell, 2018).
Our objective was to investigate the factor structure of the

SCAT3 symptom checklist to inform its clinical use and
advance efforts to empirically derive distinct clinical pheno-
types of concussion. We aggregated data from two recent
prospective longitudinal studies of sport-related concussion
in high school and collegiate athletes who were assessed in
the acute (<48 hr) post-injury period, from which we derived
and compared a range of plausible structural models (lower-
order, higher-order, bifactor) to determine the best model and
establish to what extent the SCAT3 captures a unidimen-
sional versus multidimensional construct. This acute post-
injury timepoint was the focus of this study given the rapid
typical course of recovery from sport-related concussion and
our goal to characterize the structure of concussion
symptoms.
With the luxury of concussed patients who completed exten-

sive clinical assessments before and after injury, we also eval-
uated relations between SCAT3 factors identified and various
clinical assessment measures to provide preliminary validation
of the models derived. We hypothesized that, in comparison to a
higher-order factor model, a bifactor model would provide the
best fit to the SCAT3 item set while also yielding factors with
more distinctive relationships with other patient and injury vari-
ables. We predicted that the bifactor model would fit best based
on (a) the evidence, reviewed above, that concussion symptoms
appear to predominantly reflect a strong general factor and (b)

the fact that, for measurement reasons, bifactor models tend to be
favored over higher-order models (Cucina & Byle, 2017; Man-
solf & Reise, 2017). For this latter reason, we present results for
both the bifactor model and a counterpart higher-order model, to
be able to evaluate the two models in other ways apart from
comparative fit.

METHODS

Participants

The sample consisted of participants from two prospective
longitudinal studies of sport-related concussion: Project
Head to Head 1 and 2. Project Head to Head 1 (2012–2014)
recruited 2148 high school and collegiate contact sports ath-
letes at preseason, of which 166 were followed serially after
concussions (Nelson, LaRoche, et al., 2016; Nelson, Tarima,
et al., 2016). Project Head to Head 2 (2015–present) is
recruiting high school and collegiate football players; current
analyses used data for 912 athletes (69 of whom had incurred
concussions) enrolled at the time this analytic work was
undertaken.
Datasets for these two samples were aggregated and trim-

med of repeat cases, yielding N= 219 concussed individuals
for current analyses. Both studies were approved by the
Medical College of Wisconsin’s institutional review board,
and participants in each provided informed consent (or assent
if under 18 years of age) before participation. Sample, injury,
and recovery characteristics are listed in Table 1.

Concussion Definition and Characteristics

Both studies from which data were aggregated for this project
used the same definition of concussion and common inclu-
sion/exclusion criteria. In particular, concussion was defined
based on that of the study sponsor (the U.S. Department of
Defense): “an injury to the brain resulting from an external
force and/or acceleration/deceleration mechanism from an
event such as a blast, fall, direct impact, or motor vehicle
accident which causes an alteration in mental status typically
resulting in the temporally related onset of symptoms such as
headache, nausea, vomiting, dizziness/balance problems,
fatigue, insomnia/sleep disturbances, drowsiness, sensitivity
to light/noise, blurred vision, difficulty remembering, and/or
difficulty concentrating” (Helmick et al., 2006).
Diagnoses were made by athletic trainers at participating

schools and confirmed by the research staff at the acute
(24–48hr post-injury) assessment. Only four participants
underwent clinical brain imaging following their injuries (all
head CTs), and none indicated the presence of any acute
intracranial abnormalities. The acute injury characteristics
were distributed as follows: 5.5% loss of consciousness,
11.5% posttraumatic amnesia, and 7.4% retrograde amnesia.
Duration of unconsciousness, when present, was M= 29 s
(SD= 36; range 2 s to 2min). Duration of posttraumatic
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amnesia, when present, was M= 46min (SD= 97min; range
1min to 7 hr).

Baseline and Post-Injury Test Battery

Athletes in both studies completed pre-season baseline
examinations and post-injury clinical assessments at
24–48 hr and 8, 15, and 45 days post-injury. The baseline
assessments for each included demographic and health history
questionnaires and the Wechsler Test of Adult Reading
(Wechsler, 2001). Pre- and post-injury assessments also
included a neuropsychological assessment battery including
the Sport Concussion Assessment Tool 3 (SCAT3) symptom
checklist (McCrory et al., 2013), the Standardized Assessment
of Concussion (McCrea et al., 1998), the Balance Error Scor-
ing System (Guskiewicz, Ross, & Marshall, 2001), and the
Brief Symptom Inventory – 18 (BSI-18; Derogatis, 2001).

Additional assessment measures were available for a
subset of the combined sample: 168 (78%) athletes com-
pleted a computerized neurocognitive test battery, the
Immediate Postconcussion and Cognitive Testing (ImPACT,
online version; ImPACT Applications Inc.), at each assess-
ment; 24 (11%) took the King-Devick Test (Galetta et al.,
2011); and 66 (30%) took additional self-report measures of
personality and emotional functioning (the latter two types of
measures were only in the second study protocol). Relevant
to the current study, measures of the latter type included a
brief (29-item) version of the Multidimensional Personality
Questionnaire (which provides estimates of trait negative
[NEM] and positive emotionality [PEM]; Patrick, Curtin, &
Tellegen, 2002) and the following somatic and cognitive
symptom subscales of the adult and adolescent Restructured
Forms of the Minnesota Multiphasic Personality Inventory
(i.e., MMPI-2-RF and MMPI-2-A): Somatic Complaints
(RC1), Malaise, Gastrointestinal Complaints, Head Pain
Complaints, Neurologic Complaints, and Cognitive Com-
plaints (Archer, Handel, Ben-Porath, & Tellegen, 2014; Ben-
Porath & Tellegen, 2008). Participants who were at least 18
years old at the preseason assessment (78% of the Project
Head to Head 2 sample) completed the MMPI-2-RF; those
below age 18 completed the MMPI-2-A. The numbers of
items shared between counterpart scales of the two test forms
are: 19/30 RC1, 8/8 Malaise, 4/5 Gastrointestinal Com-
plaints, 4/6 Head Pain Complaints, 7/10 Neurologic Com-
plaints, 4/11 Cognitive Complaints. Test manual norms were
used to convert raw scores to uniform T scores before
aggregating scores across the two test forms for analysis.

Statistical Analysis

Our primary goal was to investigate the factor structure
of the 22-item SCAT3 symptom checklist, focusing on
the acute (24–48 hr post-injury) time point given that this
is when symptom severity (and thus variance in reported
symptomatology, and potential covariance among differ-
ing symptoms) is generally the highest. First, we
reviewed item-level descriptive statistics (Table 2) and
inter-item correlations (see online Supplementary Table).
The Kaiser-Meyer-Olkin coefficient and Bartlett’s test,
computed in IBM SPSS Statistics for Windows (Version
24), were used to test for sampling adequacy and
sphericity, respectively.
All factor analyses were conducted in Mplus (7th edition;

Muthén & Muthén, 1998–2015) using WLSMV estimation
(given the ordinal nature of the items). Geomin rotation, an
oblique rotation method, was used in factor analyses that
allowed factors to be correlated. First, we conducted
exploratory factor analyses (EFA) and exploratory bifactor
analyses (bi-EFA) to inform the specification of confirmatory
factor analytic (CFA) models. Inspection of the eigenvalues
and the scree plot from an initial EFA indicated the presence
of a dominant first factor (eigenvalues one–five were 11.79,
1.62, 1.14, .92, and .79, respectively), with a subtle break

Table 1. Sample demographics and injury characteristics (N= 219)

N (%) or M (SD)

Male (vs. female) 194 (88.6%)
College (vs. high school) 141 (64.4%)
Age 17.6 (1.9)
Race
White 175 (79.9%)
Black 38 (17.4%)
Asian 2 (0.9%)
Not reported 5 (1.8%)

Sport
Football 164 (74.9%)
Soccer 36 (16.4%)
Lacrosse 7 (3.2%)
Wrestling 4 (1.8%)
Ice hockey 4 (1.8%)
Rugby 3 (1.4%)
Field hockey 1 (0.5%)

Years of participation in study sport 8.01 (3.94)
Prior concussion(s) 124 (57.1%)
ADHD 22 (10.1%)
Learning disability 6 (2.8%)
Psychiatric disorder 2 (0.9%)
Acute injury characteristics
Loss of consciousness 12 (5.5%)
Posttraumatic amnesia 25 (11.5%)
Retrograde amnesia 16 (7.4%)

SCAT3 Symptom Severity
Baseline (pre-season) 5.9 (9.7)
24–48 hours 24.5 (19.2)
Day 8 6.8 (13.7)
Day 15 3.0 (7.9)
Day 45 1.7 (3.9)

Symptom duration (days) 6.0 (median)

Note. Within the football cohort, participants were distributed by position as
follows: 25% offensive line, 23% defensive line, 13% linebacker, 13% wide
receiver, 12% defensive back, 8% running back, 6% quarterback, and
1% kicker. The 36 soccer players were distributed by position as follows:
31% midfield, 28% defense, 25% forward, and 17% goalkeeper.
ADHD= attention deficit hyperactivity disorder.
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evident in the scree plot between the second and third
eigenvalues.
Given prior work suggesting the presence of more than two

factors (often three–four) underlying responses on similar
symptom checklists, we explored a range of factor solutions
(one–five lower-order factors for higher-order models; one–
five specific factors for bifactor EFA models) and used a
combination of model fit, factor interpretability, and factor
external correlates to select the optimal model(s).
Next, CFAs were run for higher-order and bifactor models

configured according to results from the exploratory ana-
lyses. A four-factor higher-order model was not included at
this stage, as the four-factor EFA included a factor on which
all items loaded more strongly on other factors. For the
higher-order models (involving one, two, three, or five fac-
tors), each item was specified as loading on the factor on
which it loaded most highly in the corresponding EFA. In all
five higher-order EFA models, all items but four loaded at
least .4 on a factor, with loadings above .29 for the remaining
four. For bifactor models, all items were parameterized to
load on the general factor, with items parameterized to load as
well on a specific factor if they loaded at least .30 on that
factor in the bi-EFA. A small number of items that met this
criterion were ultimately dropped from the final CFAmodels,
given that they were not conceptually related to other items
associated with the specific factor, and did not improve
model fit or load significantly on the specific factor at the
CFA stage.
Model-based reliability measures of omega, omega hier-

archical (omegaH), and relative omega (omega/omegaH)

were computed for the best-fitting (five-factor bifactor)
model, with a particular focus on omegaH (and relative
omega) as an estimate of the proportion of observed variance
(or proportion of reliable variance, in the case of relative
omega) in total and subscale scores that could be attributed to
the underlying general and specific factors (Rodriguez, Reise,
& Haviland, 2016). Finally, regression-based factor scores
for models of major interest (i.e., five-factor higher-order
factor model and five-factor bifactor model) were computed
for use in analyses examining associations of model factors
with a range of clinical criterion measures available from the
pre- and post-injury assessments.

RESULTS

Item-Level Descriptive Analyses

Item-level descriptive statistics are presented in Table 2,
while inter-item correlations are in the Supplementary
Table. Across all items, endorsement frequencies (i.e.,
instances of a non-zero rating) ranged from 21.8% (sadness)
to 83.6% (headache), with item medians ranging from
zero to two. Correlations between items (rho coefficients)
ranged from .08 to .78, and all items correlated at least .29
with one or more items. Values of the Kaiser-Meyer-Olkin
coefficient (.92) and Bartlett’s test of sphericity
(χ2[231]= 2995.09; p< .001) were clearly acceptable and
suggestive of sufficient shared variance among items to
conduct factor analyses.

Table 2. SCAT3 item-level descriptive statistics (24–48 hours post-injury)

M SD Median % Endorsed Skewness Kurtosis

Headache 2.46 1.66 2 83.6% .02 −1.11
Pressure in head 1.82 1.51 2 75.8% .51 − .67
Neck pain 1.17 1.41 1 52.8% .98 − .16
Nausea or vomiting .54 .98 0 30.9% 1.97 3.17
Dizziness .92 1.21 0 47.3% 1.27 1.05
Blurred vision .52 .97 0 30.0% 2.27 5.41
Balance problems .65 1.00 0 38.6% 1.60 1.79
Sensitivity to light 1.23 1.40 1 56.8% 1.01 .21
Sensitivity to noise 1.00 1.32 0 47.5% 1.29 1.01
Feeling slowed down 1.74 1.64 1 69.5% .62 − .75
Feeling like in a fog 1.42 1.47 1 62.7% .87 .00
Don’t feel right 1.83 1.55 2 73.2% .48 − .64
Difficulty concentrating 1.70 1.57 1 69.5% .63 − .48
Difficulty remembering 1.01 1.25 1 52.7% 1.37 1.89
Fatigue 1.81 1.65 2 68.2% .47 − .91
Confusion .59 .98 0 33.2% 1.69 2.33
Drowsiness 1.45 1.52 1 60.9% .80 − .21
Trouble falling asleep .67 1.33 0 25.9% 2.07 3.45
More emotional .47 1.02 0 22.7% 2.31 4.71
Irritability .60 1.09 0 32.3% 2.14 4.68
Sadness .34 .73 0 21.8% 2.29 4.64
Nervous/anxious .51 .98 0 28.2% 2.30 6.15

Note. “Endorsement” was operationalized as any non-zero rating (i.e., rating of 1–6).
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Confirmatory Factor Analyses

Higher-order models

All CFA model fit statistics are presented in Table 3. The
two-factor model separated items with emotional content
(emotional, irritability, sadness, nervousness/anxiousness)
from all other items, with a correlation between factors of
r= .67. This emotional factor remained robust in solutions
with more factors, whereas other concussion symptoms were
split up to varying degrees across factors in other models.
Beyond the clear emotional factor, other factors were
often difficult to interpret and were very highly correlated
(r = .76–.91).
Model fit improved with extraction of more factors (e.g.,

comparative fit index [CFI] values for the one-, two-, three-,
and five-factor higher-order solutions were .939, .967, .975,
and .981, respectively). The high factor inter-correlations
suggested that a higher-order factor explaining the covar-
iance among items might fit well, or that the measure might
be better represented by a bifactor model. For the five-factor
model, we explicitly modeled a higher-order factor as
accounting for the covariance among the five lower-order
factors, which improved model fit by a nominal amount (CFI
went from .981–.982).

Bifactor models

Fit statistics for the bifactor CFA model are shown in Table 3.
Loadings for the two- and five-factor models appear in Table 4.
All solutions contained a specific factor (S1) reflecting covar-
iance among the residuals for the four emotional-content items.
Additional specific factors (S2, S3, S4) reflected torpor (feeling
slowed down, feeling as if in a “fog,” don’t feel right, fatigue;
four items), sensory sensitivity (i.e., to light and noise; two
items), and headache/pressure in head (two items). The five-
factor bifactor model (depicted in Figure 2) fit best among the
bifactor solutions and exhibited modest improvement over the
best-fitting higher-order model (CFI= .989 vs. .982 for the five-
factor higher-order model). The six-factor bifactor model split

the four-item torpor specific factor into two factors, which
slightly attenuated model fit (CFI= .987). In each of these
bifactor models, all 22 SCAT3 items loaded substantially on the
general factor (GEN; ~ .5 or higher; see Table 4), providing
evidence for considerable unidimensionality to the scale.
Values of omega for GEN, S1 (emotional), S2 (torpor), S3

(sensory sensitivities), and S4 (headache) were .97, .89, .94,
.87, and .83, respectively. OmegaH for the factors was .94,
.45, .12, .33, .28, respectively, and values of relative omega
were .96, .51, .13, .38, .33. The very high relative omega
value for the general factor suggests that most (96%) of the
reliable variance in the SCAT3 can be attributed to this factor
and that the correlation between the general factor and
observed SCAT3 symptom severity scores is nearly perfect
(sqrt[omegaH]= .97) (Rodriguez et al., 2016).

External Correlates of Factors

To examine the potential clinical value of the CFA models
specified by our analyses, we computed correlations between
factor scores for the best-fitting (five-factor) higher-order and
bifactor models and available clinical criterion measures; these
correlations are shown in Table 5. Of note, although the five-
factor higher-order and bifactor models evidenced the best fit, a
concern with each of these models is the possibility of over-
extraction of factors. To address this issue, we specified alter-
native two-factor versions of the higher-order and bifactor
models. The factors that were shared across two- and five-factor
higher-order models were very highly correlated across model
types (rs> .99 in each case), and, therefore, we present data on
the external correlates for only the five-factor models.
As could be expected from the high correlations among

factors in the higher-order model, there was substantial
overlap in the clinical correlates of the five factors from this
model. In contrast, the bifactor model provided higher spe-
cificity, with scores on the general factor correlating robustly
with self-report (somatic symptoms, distress) and
performance-based (cognitive, balance) clinical criterion

Table 3. CFA model fit statistics

χ2 k RMSEA (90% CI) CFI TLI

One-factor/higher-order models
1-factor 693.03 141 .103 (.094, .011) .939 .933
2-factor 473.99 142 .076 (.067, .086) .967 .963
3-factor 403.72 144 .066 (.057, .076) .975 .972
5-factor 353.92 151 .060 (.049, .070) .981 .977
5-factor + G 350.35 146 .057 (.047, .067) .982 .979

Bifactor models
2-factor (1 G, 1 S) 435.14 145 .072 (.062, .081) .971 .967
3-factor (1 G, 2 S) 417.10 143 .068 (.059, .078) .974 .970
4-factor (1 G, 3 S) 374.59 144 .061 (.051, .071) .979 .976
5-factor (1 G, 4 S) 287.44 151 .045 (.033, .056) .989 .987
6-factor (1 G, 5 S) 301.94 149 .048 (.036, .059) .987 .985

Note. CFI= comparative fit index; G= general factor; S= specific factor; RMSEA= root mean square error of approximation; TLI=Tucker-Lewis index. All χ2
p-values were< .001. k= number of free parameters.
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measures assessed at the same acute post-injury time point.
The implication is that the general factor best captured the
acute clinical effects of concussion, consistent with the
intended purpose of this inventory as a whole. However, this
factor also correlated positively with pre-injury ratings of
somatic symptoms and general distress (as assessed by the
BSI-18), as well as with time to complete the King-Devick
Test of oculomotor functioning at baseline.
In contrast, the headache specific factor (S4) correlated in a

selective manner with acute post-injury neurocognitive
impairment as indexed by ImPACT, and showed a single
significant correlation with one self-report measure (baseline
MMPI-2-RF Malaise). The emotional specific factor (S1)
correlated most strongly with ratings of pre-injury emotional
distress (BSI-18 anxiety/depression), and the torpor specific
factor (S2) correlated to a modest degree with pre-injury
ratings of agentic PEM. The sensory sensitivity specific
factor (S3) was relatively uncorrelated with these clinical
criterion measures.

DISCUSSION

The current work provides a novel approach to representing
the structure of concussion symptoms. In contrast to prior
investigations using only conventional EFA, CFA, or PCA

approaches in conceptualizing the structure of concussion,
we present evidence that a bifactor modeling approach could
accommodate findings of both a dominant general factor and
multidimensionality underlying this measure. In particular,
we demonstrated that the vast majority of variance in con-
cussion symptom reporting is accounted for by a single
general factor that appears to influence ratings on all 22 items
of the SCAT3 checklist. This finding, alongside the strong fit
of a bifactor model, suggests that the SCAT3 is essentially
unidimensional and, accordingly, that it is appropriate for
clinician users of the scale to continue to use total scores
when a single index of overall concussion symptom severity
is desired.
On the other hand, we also found that representing the

underlying structure of SCAT3 symptoms through a single
factor is insufficient, as there is substantial covariation in
symptom reporting not accounted for by a single factor alone.
The bifactor model presented suggests that there are addi-
tional constructs beyond the general factor that influence
concussion symptom reporting. Additional investigation is
needed to clarify the clinical and research utility of these
specific factors. Given consistency across the iterations, these
findings also apply to the newer SCAT5.
Additional research is needed to understand the constructs

represented by the specific factors identified in our best-
fitting bifactor model. Given the similarities in the content of

Table 4. Loadings for selected higher-order and bifactor CFA models

Higher-order models Bifactor models

2-Factor 5-Factor 2-Factor 5-Factor

F1 F2 F1 F2 F3 F4 F5 GEN S1 GEN S1 S2 S3 S4

Headache .72 .86 .72 .70 .48
Pressure in head .72 .84 .71 .69 .48
Neck pain .48 .51 .49 .50
Nausea or vomiting .65 .75 .65 .67
Dizziness .78 .83 .78 .79
Blurred vision .62 .66 .62 .63
Balance problems .76 .77 .76 .77
Sensitivity to light .73 .83 .73 .69 .54
Sensitivity to noise .74 .84 .74 .70 .54
Feeling slowed down .89 .90 .89 .82 .49
Feeling like in a fog .87 .88 .87 .83 .27
Don’t feel right .86 .87 .86 .82 .27
Difficulty concentrating .88 .89 .88 .91
Difficulty remembering .71 .75 .71 .73
Fatigue .85 .86 .85 .78 .21
Confusion .81 .86 .81 .83
Drowsiness .82 .83 .82 .78
Trouble falling asleep .59 .67 .59 .60
More emotional .87 .87 .54 .67 .56 .68
Irritability .83 .83 .60 .41 .61 .40
Sadness .85 .85 .50 .85 .51 .85
Nervous/anxious .67 .77 .57 .37 .58 .36

Note. F= factor within a higher-order model; S= specific factor within a bifactor model. In the two-factor higher-order model, r= .67 between factors. In the
five-factor higher-order model, r= .55–.67 between F1 and the other factors, while correlations between F2–F5 ranged from r= .78–.91. The loadings of F1–F5
on a higher-order general factor were .83, .95, .85, .95, and .69, respectively. Factors in the bifactor model are uncorrelated by design.
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items comprising the sensory sensitivity and headache (S3
and S4) factors, one might wonder if these two factors in
particular simply reflect non-substantive “method” factors.
If this proves to be the case, redundant items could be merged
or eliminated to achieve a more abbreviated and empirically
informed self-report measure of the general factor that
underlies concussion symptoms. Work to investigate this
question should be informed by modern test theory (item
response theory) to ensure the retention of items that pre-
cisely measure concussion symptom severity across the
continuum.
In addition, reliability estimates for the specific factors

(especially S2–S4) were rather low, which might call into
question their utility. Nonetheless, specific factors did man-
ifest significant relationships with various criterion measures,
such as injury-related neurocognitive impairment (S4) and
pre-injury emotional distress (S1), suggesting that they could
represent meaningful and distinct constructs. The finding that
the emotional specific factor loaded preferentially on
pre-injury distress suggests that the bifactor model may pro-
vide a useful way to explicitly measure dispositional factors
that affect concussion symptom reporting from post-injury
data (a challenge in the civilian TBI literature where
pre-injury baseline assessments are not readily obtained).

Future research should explicate the constructs underlying
these specific factors and determine if they can be more
reliably measured with adjustments to the model or inclusion
of additional items or variables within the model.
We also demonstrated that SCAT3 symptom ratings can

alternatively be represented through a (more traditional)
multidimensional higher-order model, which some readers
may have theoretical reasons for favoring over a bifactor
model. Our findings illustrate, however, that when distinct
dimensions of the SCAT3 are represented by a higher-order
model, their correlations are so high that the practical value of
parsing them apart is questionable. In particular, we demon-
strated that factors within the higher-order model have lim-
ited discriminant validity. The high correlation of factors in
this model, consistent with other work (Joyce et al., 2015;
Potter et al., 2006; Sady et al., 2014; Vanderploeg et al.,
2015), suggests that researchers should avoid statistically
forcing lower-order factors to be uncorrelated (i.e., through
orthogonal rotation), as it parses symptoms that are highly
coherent and thus properly represented by correlated dimen-
sions (as in the higher-order model of our study) or a broad
common factor (as in the bifactor model we presented). In
contrast to a bifactor model, these types of models may mask
the importance/dominance of a single, broad dimension

GEN

Headache

“Don’t feel right”

Feeling like “in a fog”

Feeling slowed down

Sensitivity to noise

Balance problems

Blurred vision

Dizziness

Nausea or vomiting

Neck pain

“Pressure in head”

Fatigue or low energy

Confusion

Drowsiness

Trouble falling asleep

More emotional

Irritability

Sadness

Nervous or anxious

Difficulty concentrating

Difficulty remembering

Sensitivity to light

S4

S3

S1

S2

Fig. 2. Structure of the best-fitting bifactor model of acute concussion symptoms, derived from Sport Concussion Assessment Tool 3
(SCAT3) symptom ratings at 24-48 hr postconcussion.
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accounting for large proportions of variance in the domain.
Irrespective of identification of a best-fitting model, ulti-
mately, the true test of a model’s utility lies in demonstrating
that it advances scientific understanding or informs clinical
practice.
Given that SCAT3 symptoms were assessed in the acute

postconcussive period in our study sample and correlated

robustly with other subjective and objective markers of
injury, one might draw the obvious conclusion that the gen-
eral factor specified in the bifactor model represents concus-
sion symptoms. With this in mind, it is interesting that the
general factor also correlated robustly with several pre-injury
clinical variables, including pre-injury baseline somatic and
distress symptoms. This finding is consistent with a wealth of

Table 5. External correlates of factors from the best-fitting higher-order and bifactor models

Higher-order model Bifactor model

GEN F1 F2 F3 F4 F5 GEN S1 S2 S3 S4

Pre-season baseline
BSI-18 Somatization .39 .38 .40 .38 .36 .38 .39 .12 −.10 .08 .12
BSI-18 Depression .20 .29 .21 .16 .18 .20 .20 .22 −.08 −.04 .07
BSI-18 Anxiety .24 .28 .24 .18 .23 .26 .24 .18 −.02 −.07 .12
BSI-18 Global severity .33 .38 .34 .28 .30 .34 .33 .21 −.08 −.02 .13
MPQ NEM .16 .16 .17 .15 .15 .12 .16 .03 .00 .03 −.07
MPQ PEM −.05 −.05 −.06 −.04 −.04 −.12 −.06 .01 .22 .07 −.13
MPQ Agentic PEM −.05 −.04 −.06 −.06 −.02 −.12 −.06 .03 .28 .00 −.14
MPQ Communal PEM −.13 −.11 −.13 −.11 −.13 −.13 −.15 .02 .10 .09 .00
MMPI-2-RF RC1 .08 .05 .08 .07 .07 .17 .08 −.03 −.11 −.09 .21
MMPI-2-RF Malaise .13 .15 .10 .13 .12 .26 .11 .08 .05 .02 .31
MMPI-2-RF GIC .10 .04 .08 .13 .12 .09 .10 .04 .15 .04 −.02
MMPI-2-RF HPC .10 .10 .10 .06 .09 .16 .10 .07 −.02 −.17 .15
MMPI-2-RF NUC .14 .06 .11 .17 .14 .19 .14 −.11 −.02 .07 .14
MMPI-2-RF COG −.07 −.09 −.06 −.09 −.08 .03 −.06 −.04 −.16 −.15 .19
SAC .03 .04 .01 .00 .05 .06 .02 .05 .15 −.07 .09
BESS −.03 .01 −.03 −.01 −.04 .01 −.04 .07 −.03 .05 .09
ImPACT VERM −.14 −.04 −.17 −.17 −.13 −.09 −.15 .16 .11 −.11 .09
ImPACT VISM −.11 .01 −.13 −.16 −.07 −.10 −.11 .18 .17 −.14 −.02
Im VMS .19 .19 .19 .15 .19 .18 .18 .11 .06 −.02 .05
Im RT −.08 −.03 −.09 −.04 −.09 −.08 −.09 .01 .02 .13 −.02
King-Devick Test .41 .45 .43 .25 .40 .34 .41 .19 .10 −.23 −.08

24-48 hours post-injury
BSI-18 Somatization .38 .28 .38 .31 .39 .32 .38 −.03 .10 −.18 −.02
BSI-18 Depression .23 .28 .22 .22 .24 .18 .23 .18 .14 .02 −.02
BSI-18 Anxiety .14 .19 .14 .15 .14 .06 .15 .09 .04 .01 −.14
BSI-18 Global severity .32 .32 .32 .29 .33 .24 .32 .10 .12 −.06 −.08
MMPI-2-RF RC1 .39 .35 .39 .33 .38 .32 .40 .06 .03 −.01 −.07
MMPI-2-RF Malaise .27 .14 .29 .20 .29 .16 .29 −.13 .02 −.11 −.21
MMPI-2-RF GIC .15 .16 .16 .11 .15 .12 .17 .00 −.02 −.21 −.07
MMPI-2-RF HPC .32 .17 .31 .33 .32 .33 .33 −.15 −.08 .17 .07
MMPI-2-RF NUC .20 .20 .24 .12 .20 .13 .20 .10 .07 −.16 −.14
MMPI-2-RF COG .42 .39 .43 .37 .41 .35 .42 .12 −.02 .05 −.08
SAC −.28 −.24 −.29 −.25 −.28 −.29 −.27 −.05 −.05 −.02 −.13
BESS .17 .13 .17 .11 .17 .18 .18 −.07 −.05 −.11 .08
ImPACT VERM −.27 −.23 −.24 −.26 −.26 −.37 −.26 −.06 .00 −.07 −.31
ImPACT VISM −.23 −.16 −.20 −.20 −.24 −.29 −.23 .04 −.03 .06 −.21
Im VMS −.41 −.30 −.39 −.36 −.40 −.46 −.40 −.03 .00 −.03 −.26
Im RT .24 .16 .23 .15 .25 −.29 .23 .02 .09 −.13 .19
King-Devick Test .43 .48 .43 .35 .42 .49 .45 −.01 .01 −.13 .12

Note. Bold where p< .05. The sample size with available King-Devick Test data was small (n= 16 for pre-injury and n= 14 for post-injury measures).
24–48-hour assessment variables= baseline difference scores. BESS=Balance Error Scoring System; BSI-18=Brief Symptom Inventory 18-item; COG=
Cognitive Complaints scale; GIC=Gastrointestinal Complaints scale; GSI=Global Severity Index; HPC=Head Pain Complaints scale; ImPACT= Immediate
Postconcussion and Cognitive Testing; MMPI-2-RF=Minnesota Multiphasic Personality Inventory-2-Restructured Form; MPQ=Multidimensional Person-
ality Questionnaire; NEM= negative emotionality; NUC=Neurologic Complaints scale; PEM= positive emotionality; RC1=RC1 Somatic Complaints scale;
RT=Reaction Time composite; SAC=Standardized Assessment of Concussion; VERM=Verbal Memory composite; VISM=Visual Memory composite;
VMS=Visual Motor Speed composite
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evidence indicating a direct link between pre-injury
emotional functioning and response to concussion which in
turn points to the need for more investigation into the
mechanisms by which pre-injury risk and resilience factors
influence patients’ responses to injury and courses of recov-
ery (Broshek, De Marco, & Freeman, 2015; Nelson, Tarima,
et al., 2016; Root et al., 2016).
Some limitations of the current study are important to

acknowledge. One is that the sample size, although large for a
prospective study of acute concussion, was modest for a
factor analytic study. A second limitation is that, given the
sample size, we did not evaluate the applicability of models
specified in the current work to other post-injury time points
or test for their emergence in subgroups posited to vary in
symptom reporting and recovery (e.g., differing age or
gender groups; Dick, 2009; Field, Collins, Lovell, &Maroon,
2003). Ongoing multicenter studies of sport-related concus-
sion (Broglio et al., 2017) will provide opportunities to cross-
validate findings from the current study in larger samples and
to extend them to different stages of recovery and patient
groups. Consideration of alternative quantitative modeling
approaches would also be worthwhile, such as those designed
to identify subgroups of patients with qualitatively distinct
patterns of symptom presentation (Muthen & Asparouhov,
2006). Additionally, consideration of a larger item pool
beyond those of the SCAT3 would be useful to enable iden-
tification of factors for which there were too few items in this
scale alone. Finally, some questionnaire measures used as
criterion measures in this study (e.g., scales from the
MMPI-2-RF) were administered in isolation rather than as
part of the entire measure as they were originally validated.
This could diminish the validity of these scales and, by
extension, the interpretability of correlations between these
measures and the SCAT3 factors.

CONCLUSION

The current study provides evidence that the symptom
checklist on the SCAT3 (and its more recent iteration, the
SCAT5) captures an essentially unidimensional construct
related to concussion symptom reporting, suggesting that
current practices to sum SCAT3/5 items into a single severity
score are appropriate. We also presented preliminary evi-
dence that a bifactor model provides a useful way to identify
distinct dimensions that contribute to SCAT3/5 symptoms,
although additional research is needed to establish the clinical
utility of the specific factors identified and to refine their
measurement.
Future work examining the stability of this model across

different post-injury time points and patient groups will be
useful for validating the structure and psychometric proper-
ties of the SCAT3/5 for a range of clinical applications.
Additional studies comparing a broader range of structural
models and incorporating clinical and neurobiological vari-
ables into these models may reveal distinct phenotypes of
concussion with relevance to clinical management decisions
and translational research.
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