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Model for thermal convection with uniform
volumetric energy sources
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A theoretical model is derived to predict the heat fluxes at the upper and lower horizontal
surfaces of an internally heated (IH) convection cell by extending the well-known
Grossmann & Lohse (Phys. Rev. Lett., vol. 86, 2001, pp. 3316–3319) theory. The approach
of Creyssels (J. Fluid Mech., vol. 900, 2020, p. A39) is generalized for a fluid heated
internally and uniformly, confined between top and bottom plates of equal temperature.
For each plate, a Nusselt number is defined and an analytical formula is given to predict
its variations with the Rayleigh and Prandtl numbers. The turbulent flow produced in
the upper half of the IH convection cell is very similar to that observed in standard
Rayleigh–Bénard convection. On the contrary, the lower plate is swept by the large scale
flow that circulates through the entire cell. The corresponding boundary layer is therefore
modelled by a laminar boundary layer of the Blasius type. These predictions are consistent
with the independent theoretical scalings proposed by Wang et al. (Geophys. Res. Lett.,
vol. 48, issue 4, 2021, p. e2020GL091198) and they are confirmed by the numerical results
obtained by Goluskin & van der Poel (J. Fluid Mech., vol. 791, 2016, p. R6) and Wang
et al. (Geophys. Res. Lett., vol. 48, issue 4, 2021, p. e2020GL091198).
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1. Introduction

Natural convection induced by internal heat production is a phenomenon that occurs very
often in geophysical, astrophysical and engineering systems (Goluskin 2015). By following
the analysis recently given by Creyssels (2020), the purpose of this paper is to extend the
many theoretical, numerical and experimental results of Rayleigh–Bénard (RB) convection
to two internally heated (IH) convection systems shown in figures 1(a) and 1(b). In RB
convection, convective flow is produced by thermal boundary conditions that cause heat
to enter through the lower hot plate and exit through the upper cold plate. In this case,
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Figure 1. Two convective systems are theoretically studied here. Configuration (a) is closer to standard RB
experiments since the two hot and cold plates play the same role and the same heat flux (Φ0) crosses them. But
the heat flux at the centre of the cell is lower or greater than Φ0, depending on the sign of q: Φ̄a(z=h/2) =
Φ0 − qh/2. Configuration (b) is more complex because the upper half-cell is very similar to the upper half-cell
of RB experiments whereas the flow is stratified in the lower part of the bottom half-cell. The heat flux at the
bottom plate is negative (−qboth) and is not equal in absolute value to the heat flux at the top plate (qtoph).
Besides, qtop > qbot. For configuration (b), the mean temperature profile T̄(z) was measured by Goluskin &
van der Poel (2016). The upper and lower thermal boundary layers of thickness δtop and δbot are also displayed
for each configuration.

convection is controlled by the temperature difference between the plates (ΔT) and the
height of the cell (h), or by the Rayleigh number defined as

Ra = gβΔTh3

νκ
, (1.1)

where g is the uniform gravitational acceleration, β, ν and κ are, respectively, the
coefficient of thermal expansion, the kinematic viscosity and the thermal diffusivity of
the fluid. On the contrary, for IH convection, the flow is produced by a volumetric source
of internal heating (q in W m−3), itself produced by chemical or nuclear reactions, or by
radiation. Instead of using Ra, the Rayleigh–Roberts number (Roberts 1967) is adopted as
follows

Rr = gβqh5

λνκ
, (1.2)

where λ is the thermal conductivity of the fluid. A first approach of IH convection is to take
q constant and uniform throughout the volume. Using h2/κ as the unit of time, h as the unit
of length and qh2/λ as the unit of temperature, the dimensionless Boussinesq equations
governing the velocity (ũ), pressure (p̃) and temperature (T̃) are the incompressibility
condition (∇ · u) and

∂̃tũ + ũ · ∇̃ũ = −∇̃p̃ + Pr∇̃2ũ + Pr Rr T̃ êz, (1.3)

∂̃tT̃ + ũ · ∇̃T̃ = ∇̃2T̃ + 1, (1.4)

where dimensionless variables and operators are designated by tildes, êz is the vertical
unit vector and Pr is the Prandtl number. With regard to thermal boundary conditions, we
consider hereafter those used by most of previous studies i.e. fixed and equal temperature
conditions (T0) at the top and bottom plates. By adopting this condition, modelling an

919 A13-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

39
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.392


Model for thermal convection with uniform volumetric sources

IH convection experiment becomes a great challenge because in a single cell, there are
both positive and negative vertical mean temperature gradients (see figure 1b). This leads
to both turbulent convection and a stably stratified lower boundary layer. Therefore, the
experiments on RB and IH convection have some similarities but also some differences.
For both cases, the mean temperature is almost constant in the middle of the cell and
we call it the temperature of the ‘bulk flow’ (T̄b). At high Ra numbers and assuming
negligible non-Boussinesq effects, T̄b is equal to the average of the top and bottom plate
temperatures for a RB experiment, while T̄b is the maximum of the mean temperature in an
IH convection cell (see figure 1b). Besides, the two thermal boundary layers located near
the top and bottom plates have the same thickness for a RB experiment. On the contrary,
heating in volume leads to an asymmetry between the two thermal boundary layers. The
mean temperature profile was measured by Goluskin & van der Poel (2016) and is shown
in figure 1(b). Therefore, the upper boundary layer is similar to that observed in a RB
experiment, whereas in the lower boundary layer, the mean temperature gradient tends to
stop convective flows produced in the upper region of the cell. Consequently, in an IH
convection cell, the thickness of the lower boundary layer is greater than that of the upper
boundary layer (δbot > δtop). In addition, the difference in thickness must increase as the
Rayleigh number increases. Likewise, at a fixed Ra number, the mean vertical heat flux is
constant for a RB experiment and is given by the Nusselt number as ΦRB = NuRB(λΔT/h).
In contrast, in an IH convection cell, the heat produced inside the fluid is evacuated through
both lower and upper boundaries, leading to a mean vertical heat flux that changes sign
from the bottom plate to the top plate (see figure 1b). As the mechanisms that drive the two
thermal boundary layers are different, the heat fluxes through the upper and lower plates
are not equal in absolute value. A coefficient α can be defined to quantify this down–up
asymmetry. Indeed, the fraction of heat produced inside the fluid flowing outwards from
the bottom plate can be written as

qbot =
(

1
2 − α

)
q, (1.5)

leading to a heat flux at the bottom plate equal to −qbothez. In steady state, energy
conservation yields to a heat flux that leaves through the top plate as qtophez, with

qtop =
(

1
2 + α

)
q. (1.6)

Then, for each plate, we can define one Nusselt number as

Nubot = qboth2

λΔT
, (1.7)

Nutop = qtoph2

λΔT
. (1.8)

To be consistent with the definition of the Nusselt number adopted for RB convection
experiments, the characteristic temperature difference ΔT used in (1.7) and (1.8) is
ΔT = 2(T̄b − T0). There is therefore a factor 2 by comparing the definitions of Nubot
and Nutop given in previous studies on IH convection (Goluskin 2015). Note also that
other definitions of Nusselt numbers are given in the literature. Instead of using T̄b,
the mean fluid temperature (〈T̄〉, where angle brackets denote an average over the
entire volume) can be chosen as temperature reference in (1.7) and (1.8). Figure 6(a)
shows that the difference of temperature T̄b − 〈T̄〉 becomes negligible only for very high
Rayleigh–Roberts numbers.
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Reference Pr Rr range Nutop fit Nubot fit

Laboratory experiments
Kulacki & Goldstein (1972) ≈6 5 × 104–2 × 107 0.18Rr0.23 0.66Rr0.10

Jahn & Reineke (1974) ≈7 105–109 0.39Rr0.20 1.07Rr0.10

Mayinger et al. (1975) ≈7 105–1011 0.22Rr0.23 0.68Rr0.10

Ralph, McGreevy & Peckover (1977) ≈7 4 × 108–1012 0.10Rr0.24 0.14Rr0.17

Lee, Lee & Suh (2007) ≈0.7 1010–4 × 1011 0.09Rr0.24 0.71Rr0.11

Simulations (3D DNS)
Wörner, Schmidt & Grötzbach (1997) 7 105–108 0.19Rr0.23 0.65Rr0.10

Goluskin & van der Poel (2016) 1 5 × 107–2 × 1010 0.18Rr0.23 0.38Rr0.14

Table 1. Previous results giving Nusselt numbers as a function of Rr for experiments and numerical
simulations of three-dimensional IH convection (Goluskin 2015).

Kulacki & Goldstein (1972), Jahn & Reineke (1974), Mayinger et al. (1975), Ralph
et al. (1977), Lee et al. (2007), Wörner et al. (1997) and Goluskin & van der Poel (2016)
have measured experimentally and numerically the Nusselt numbers Nutop and Nubot as
a function of the control parameter Rr. As is usual for RB experiments, they presented
their results as power-law fits. The value of Nutop has been found to increase with Rr at
rates between Rr0.20 and Rr0.24 (see table 1). The value of Nubot increases more slowly
with Rr, at rates between Rr0.10 and Rr0.17. Up to now, no theory has been able to predict
these exponents whereas, for RB convection, the theory developed by Grossmann & Lohse
(2000, 2001) (henceforth the GL theory, (2.18) and (2.19)) describes well the behaviour
of NuRB(Ra, Pr) and ReRB(Ra, Pr). Creyssels (2020) has recently developed a simple
theoretical model to predict the Ra and Pr-dependent Nusselt number for a modified RB
experiment in which heat is injected by volume but only in the lower thermal boundary
layer. At the same time, the upper boundary layer is cooled with the same rate in order to
have a constant energy in the convection cell, as in a standard RB cell. Note that Lepot,
Aumaître & Gallet (2018) and Bouillaut et al. (2019) presented an experimental method
to bypass the cooling boundary layer in order to perform this modified RB experiment.
For configuration shown in figure 1(b), the problem is much more complex since the
symmetry between the two plates is broken. Because of this, GL theory is first extended to
the modified RB configuration (a) (see figure 1a) for which the fluid is confined between
two horizontal plates of different temperature (ΔT > 0 is fixed). To preserve the symmetry
between the two plates, the lower part of the cell for configuration (a) is cooled with the
same volumetric power as the upper part is heated

qv(z) =
{−q, for 0 ≤ z ≤ h/2,

+q, for h/2 ≤ z ≤ h.
(1.9)

In steady state, energy conservation yields the following variation of the heat flux averaged
over a horizontal cross-section:

Φ̄a(z) =
{

Φ0 − qz, for 0 ≤ z ≤ h/2,

Φ0 − q(h − z), for h/2 ≤ z ≤ h,
, (1.10)

where Φ0 is the heat flux that crosses each horizontal plate. For configuration (a), the
Nusselt number can then be defined as for standard RB experiment using

Nua = Φ0h
λΔT

. (1.11)
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Model for thermal convection with uniform volumetric sources

The Nusselt (Nua) and Reynolds (Rea) numbers depend on three non-dimensional
parameters: Ra, Pr and Q, where Q represents the non-dimensional form of the volumetric
heating or cooling sources

Q = qh2

λΔT
. (1.12)

Note that: (i) Nua = NuRB(Ra, Pr) when Q = 0; (ii) Q can be either positive or negative;
(iii) a priori, Nua < NuRB and Rea < ReRB when Q > 0 whereas Nua > NuRB and Rea >

ReRB if Q < 0; (iv) Φ̄a(z) must be positive to avoid the weakening of the turbulent flow
in the centre of the cell and the appearance of a stratified flow. The condition Φ̄a(h/2) =
Φ0 − q(h/2) > 0 implies that Q < 2Nua. Finally, for Q > 0, the upper boundary layer and
the turbulent flow observed in the upper half of the cell of configuration (a) are similar to
those observed in the upper half of a cell of configuration (b). However, Q is a control
parameter in configuration (a) while Q must be measured or predicted in configuration
(b) because ΔT = 2(T̄b − T0) is a function of Rr and Pr. For configuration (b), using the
Grossmann & Lohse (2000) ansatz based on the decomposition of the kinetic and thermal
dissipation rates, Wang, Shishkina & Lohse (2021) have theoretically modelled the inverse
of Q (Δ̃ ≈ 1/Q) by power laws of Rr and Pr (see table 1 in Wang et al. (2021). In § 2,
the GL theory is adapted to configuration (a) and the two (2.20) and (2.21) predict the
evolution of Nua and Rea as a function of Ra, Pr and Q. Under the same conditions (same
Ra, Pr and Q), we assume in § 3.1 that both Nutop and Reb measured in configuration (b) are
given by Nua(Ra, Pr, Q) and Rea(Ra, Pr, Q) (3.1) and (3.2). In § 3.2, a theoretical model
based on Prandtl–Blasius–Pohlhausen theory is derived to predict Nubot as a function of
the Reynolds number (3.10). Finally, these predictions for the Ra and Pr dependence of
Nutop and Nubot are compared with three-dimensional experimental and numerical results
in § 4. A detailed comparison with the two-dimensional results of Goluskin & Spiegel
(2012) and Wang et al. (2021) is given in Appendix A.

2. Grossmann & Lohse (2001) theory for RB experiment with volumetric energy
sources (configuration a)

To predict the variations of Nusselt numbers with Ra and Pr for internal heating and
cooling convection experiments, Creyssels (2020) proposed the assumption that, for high
Ra numbers, the dynamical structure of the convective flow be considered to be the same as
that in standard RB experiments. Notably, he assumed that the 5 dimensionless parameters
(a, c1–c4) defined within the framework of the GL theory do not depend on the way the
heat is injected and extracted in the experiment. Besides, the thickness of each thermal
boundary layer is assumed to be only controlled by the difference of temperature between
the bulk flow and the corresponding plate using the following equation ((2.1) in Creyssels
2020):

δT

h
= 1

2NuRB(Ra, Pr)
. (2.1)

Then, the central idea of the GL theory is to split both mean kinetic energy and thermal
dissipation rates into two contributions each, one from the bulk (Bu) and one from the
boundary layers (BLs) as

〈εu〉 = 〈εu〉Bu + 〈εu〉BL, (2.2)

〈εT〉 = 〈εT〉Bu + 〈εT〉BL, (2.3)
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and each contribution is modelled as follows:

〈εu〉Bu∼ U2
a

h/U0

(
1 − δu

h

)
≈ ν3

h4 Re3
0, (2.4)

〈εT〉Bu∼ (ΔT)2

h/Uedge
a

(
1 − δT

h

)
≈ κ

(
ΔT
h

)2

ReaPrf
(

δu

δT

)
, (2.5)

〈εu〉BL∼ν

(
Ua

δu

)2
δu

h
= ν3

h4 Re2
a

h
δu

, (2.6)

〈εT〉BL∼κ

(
ΔT
δT

)2
δT

h
= κ

(
ΔT
h

)2 h
δT

. (2.7)

In (2.4)–(2.6), Ua represents the characteristic velocity of the bulk flow. Grossmann &
Lohse (2001) introduced the function 0 ≤ f ≤ 1 because the relevant velocity at the edge
between the thermal BL and the thermal bulk can be less than Ua, depending on the ratio
δu/δT . They gave f (x) = (1 + xn)−1/n, with n = 4 as an example of function f . Besides,
they assumed that the velocity BLs are Blasius like, with a thickness of

δu

h
= a√

Rea
. (2.8)

For the mean kinetic energy and thermal dissipation rates, the balances of the turbulent
kinetic energy and of the thermal variance give the following two exact relations (Creyssels
2020):

〈εu〉 = gβ

h

[∫ h

0

Φ̄a(z)
ρcp

dz − λΔT
ρcp

]
, (2.9)

〈εT〉 = 1
h

∫ h

0
T̄(z)

qv(z)
ρcp

dz + ΔTΦ0

ρcph
. (2.10)

Using (1.10), (1.1), (1.12) and (1.11), (2.9) becomes

〈εu〉 = ν3

h4

(
Nua − 1 − Q

4

)
Ra

Pr2 . (2.11)

As the GL theory is based on Prandtl–Blasius–Pohlhausen laminar boundary layers
(Grossmann & Lohse 2000), the mean temperature can be written as (Creyssels 2020)

2
T̄(z) − Tb

ΔT
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − ΘP

(
z
δT

)
, for z ≤ h/2, (2.12a)

ΘP

(
h − z
δT

)
− 1, for h/2 ≤ z ≤ h, (2.12b)

with ΘP the Pohlhausen temperature profile, which is assumed to be independent of the
Prandtl number. In particular, ΘP(0) = 0 and ΘP(η) → 1 when η 
 1. Using (1.9), (2.12),
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Model for thermal convection with uniform volumetric sources

(1.12) and (1.11), (2.10) then becomes

〈εT〉 = κ

(
ΔT
h

)2 [
Nua − λd

δT

h
Q
]

, (2.13)

where λd = ∫∞
0 [1 − ΘP(η)]dη denotes the displacement thickness of the mean

temperature profile (λd ≈ 0.57 for a Blasius profile).
From decomposition of the two global dissipation rates (2.2) and (2.3), four regimes

of convection (I, II, III and IV) can be defined depending on whether the bulk or the BL
contributions dominate the global dissipations. For regimes II and IV , the kinetic energy
dissipation rate is dominated by its bulk contribution whereas, for regimes I and III, 〈εu〉 ∼
〈εu〉BL. Combining (2.4) and (2.11), or (2.6) and (2.11), and using (2.8), we obtain(

Nua − 1 − Q
4

)
Ra

Pr2 ∼ (Rea)
θi, (2.14)

whereas, for standard RB convection, we have

(NuRB − 1)Ra
Pr2 ∼ (ReRB)θi, (2.15)

with θII = θIV = 3 and θI = θIII = 5/2.
Regimes III and IV are obtained for high Ra numbers for which thermal dissipation rate

is dominated by its bulk contribution whereas, for regimes I and II, 〈εT〉 ∼ 〈εT〉BL. For
standard RB convection, Grossmann & Lohse (2000) predicted

(NuRB)φi ∼ ReRBPrf
(

2aNuRB√
ReRB

)
, (2.16)

with φIII = φIV = 1 and φI = φII = 2. For internal heating and cooling convection,
combining (2.5) and (2.13), or (2.7) and (2.13), and using (2.1), yields

Nua − λd

2
Q

NuRB
∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ReaPrf

(
2aNuRB√

Rea

)
(regimes III and IV),

NuRB ∼
√

ReRBPrf
(

2aNuRB√
ReRB

)
(regimes I and II).

(2.17)

As the 4 previous regimes can only be observed experimentally and numerically for
extreme values of the Ra and Pr numbers, Grossmann & Lohse (2001) proposed describing
RB convection at any Ra and Pr numbers as a mixture of these 4 regimes. Equations (2.15)
and (2.16) are then generalized as

(NuRB − 1)RaPr−2 = c1

2a
Re5/2

RB + c2Re3
RB, (2.18)

NuRB = c3

√
ReRBPrf

(
2aNuRB√

ReRB

)
+ c4ReRBPrf

(
2aNuRB√

ReRB

)
. (2.19)
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Figure 2. Results of the extension of GL theory for turbulent convection with uniform volumetric sources.
Values of Nua/NuRB (a) and Rea/ReRB (b) as a function of Q normalized by NuRB(Ra, Pr) for Pr = 1 and for
3 different Ra numbers: Ra = 106 (solid line), Ra = 1010 (dashed line) and Ra = 1014 (dash-dotted line). The
black dotted line represents regime IVu (2.22) i.e. the limit of system of (2.20) and (2.21) when Ra → ∞ and
Pr ≥ 1. Values of Nua/NuRB (c) and Rea/ReRB (d) as a function of Pr for Ra = 109 and from top to bottom:
Q/NuRB = −1, −0.5, 0.5 and 1.

By applying this idea to internal heating convection, (2.14) and (2.17) are generalized using
the two following equations:(

Nua − 1 − Q
4

)
Ra
Pr2 = c1

2a
Re5/2

a + c2Re3
a, (2.20)

Nua − λd

2
Q

NuRB
= c3

√
ReRBPrf

(
2aNuRB√

ReRB

)
+ c4ReaPrf

(
2aNuRB√

Rea

)
. (2.21)

Equations (2.20) and (2.21) give the Nua and Rea numbers as functions of the 3
parameters Ra, Pr and Q. Figures 2(a) and 2(b) show the ratios Nua/NuRB and Rea/ReRB
as a function of Q compensated by NuRB(Ra, Pr) for Pr = 1 and for 3 different Ra
numbers: Ra = 106 (solid line), Ra = 1010 (dashed line) and Ra = 1014 (dash-dotted line).
As expected, heating the lower part of the cell (Q < 0) increases both Nua and Rea while
heating the upper part of the cell (Q > 0) decreases both Nua and Rea. At fixed ratio
Q/NuRB and when Ra increases, both ratios Nua/NuRB and Rea/ReRB increase for Q < 0
and they decrease for Q > 0. This can easily be explained by the fact that convection is
described by a mixture of regimes II and IV for Pr = 1 and the higher Ra, the lower the
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Model for thermal convection with uniform volumetric sources

portion corresponding to regime II. Besides, Nua ≈ NuRB for pure regime II whereas we
have

Nua

NuRB
=
(

Rea

ReRB

)3/2

= 1
2

+ 1
2

√
1 − Q

NuRB
(2.22)

for pure regime IV and δu > δT (or Pr ≥ 1). To obtain (2.22), the system of (2.20) and
(2.21) is solved with c1 = c3 = 0 (regime IV), assuming that Nua 
 1 > (λd/2)(Q/NuRB)

and for δu > δT [f (δu/δT) ≈ δT/δu]. Figures 2(a) and 2(b) show that ratios Nua/NuRB and
Rea/ReRB tend to the solution given by (2.22) when Ra → ∞ and Pr = 1.

Finally, when fixing Ra and Q, and for Pr ≥ 1, ratios Nua/NuRB and Rea/ReRB depend
very little on Pr (see figure 2c,d), in agreement with the solution of pure regime IVu
(2.22). On the contrary, when Pr decreases from 1 to 0 and even if Ra is held constant,
both ReRBPr and ReaPr decrease. As a result, the importance of regime II in the
mixture of regimes represented in (2.21) increases and thus ratio Nua/NuRB approaches 1
(figure 2c,d).

These results are used in the following section to study the configuration shown in
figure 1(b) for which both non-dimensional numbers Ra and Q are not control parameters.
Indeed, they both depend on the temperature of the bulk flow (T̄b) and thus T̄b need to
be either measured or predicted. However, for configuration (b), using definitions (1.1)
and (1.12), we have: Rr = Ra Q, with Rr the Rayleigh number adopted for IH convection
experiment (1.2).

3. Theory for IH convection experiment (configuration b)

3.1. Model for the top Nusselt number
The main assumption of this model is to assume that the flow in the upper half of the
configuration shown in figure 1(b) is similar to the flow seen in the upper half of the
cell of configuration (a). By analogy with RB convection for which NuRB ∼ Ra1/3 means
that the two boundary layers behave independently of each other, we assume here that the
upper boundary layer is not sensitive to the flow structure that controls the lower boundary
layer. Therefore, the thickness of the top BL (δtop), the heat flux at the top plate (qtoph) and
the characteristic velocity (Ub) are only controlled by the following parameters: ΔT =
2(T̄b − T0), q, h and Pr. In non-dimensional form, it is assumed that Nutop and Reb are
given by the Nusselt and Reynolds numbers calculated for configuration (a) under the
same conditions

Nutop(Rr, Pr) = Nua(Ra, Pr, Q), (3.1)

Reb(Rr, Pr) = Rea(Ra, Pr, Q). (3.2)

Besides, modelling both Nubot and Nutop is sufficient to give Ra and Q as a function of the
two control parameters Rr and Pr. Indeed, using (1.2)–(1.8), (1.1) and (1.12) become

Q(Rr, Pr) = Nubot + Nutop, (3.3)

Ra(Rr, Pr) = Rr
Nubot + Nutop

. (3.4)

3.2. Model for the bottom Nusselt number
Since the mean temperature gradient is positive throughout the lower boundary layer
(see figure 1b), forced convection is the main mechanism that drives the heat flux at the

919 A13-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

39
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.392


M. Creyssels

lower plate. Assuming static large scale flow, also called ‘wind flow’, a laminar velocity
boundary layer develops against the bottom plate in the same way as a Blasius boundary
layer. Using the theory of Prandtl–Blasius–Pohlhausen (Schlichting 1979), the thickness
of the thermal boundary layer is given by

δT,x

x
= 1

AF(Pr) Re1/2
x

, (3.5)

with x the horizontal coordinate, A ≈ 0.33 and F(1) = 1. Here, δT is defined as
(δT)−1 = (dΘP/dz)z=0, with ΘP = (T − T0)/(T̄b − T0) the non-dimensional difference
of temperature. The Prandtl-dependent function F varies as Pr1/3 when Pr ≥ 0.5,
whereas, when Pr decreases, the exponent of the power-law behaviour of F increases
up to 1/2. In the range 10−3 ≤ Pr ≤ 103, F can be approximated by F(Pr) =
d1Pr1/2f (d2Pr1/6) with a precision of ±1 %, using f (x) = (1 + xn)−1/n, n = 4, d1 = 1.68
and d2 = 1.63.

At the bottom plate (z = 0), the local heat flux is the sum of two contributions

Φx = Φx,P + Φx,q. (3.6)

Here, Φx,P and Φx,q represent, respectively, the heat flux given by the theory of
Prandtl–Blasius–Pohlhausen and the heat flux due to the presence of volumetric heat
sources inside the thermal boundary layer

Φx,P = AF(Pr) Re1/2
x
λ(T̄b − T0)

x
, (3.7)

Φx,q = B qδT,x. (3.8)

In (3.8), B is a numerical constant to be determined using experiments or numerical
simulations. In the case of Φx,P = 0 (pure conductive state), B = 0.5.

Assuming an aspect ratio of 1 for the cell and using (3.7), (3.8) and (3.5), the integration
of the local heat flux Φx (3.6) between x = 0 and x = h gives

Φ̄bot = 1
h

∫ h

0
Φx = 2AF(Pr)

h
λ(T̄b − T0)Re1/2

b + 2Bqh

3AF(Pr)Re1/2
b

. (3.9)

Using (3.9) and (1.12), the bottom Nusselt number can be calculated as

Nubot = Φ̄both
2λ(T̄b − T0)

= AF(Pr) Re1/2
b + 2B

3AF(Pr)
Q

Re1/2
b

. (3.10)

Likewise, from (3.5), the mean bottom boundary layer thickness can be written as

δ̄bot

h
= 1

h2

∫ h

0
δT,x dx = 2

3AF(Pr) Re1/2
b

. (3.11)

3.3. Mean fluid temperature 〈T̄〉
Both models presented in §§ 3.1 and 3.2 are based on Blasius profiles for the z-evolution
of T̄(z) in the two boundary layers. In addition, T̄(z) ≈ T̄b in the bulk flow i.e. for
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Model for thermal convection with uniform volumetric sources

δ̄bot  z  h − δtop. Thus, for configuration (b), using (2.12b), T̄(z) can be expressed as

T̄b − T̄(z)
T̄b − T0

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − ΘP

(
z

δ̄bot

)
, for z ≤ h/2, (3.12a)

1 − ΘP

(
h − z
δ̄top

)
, for h/2 ≤ z ≤ h. (3.12b)

The thicknesses of the bottom and top boundary layers (δ̄bot and δ̄top) are given by (2.1) and
(3.11), respectively. Using (3.12), the mean fluid temperature can be calculated yielding

T̄b − 〈T̄〉
T̄b − T0

= λd
δ̄bot + δ̄top

h
, (3.13)

= λd

(
2

3AF(Pr) Re1/2
b

+ 1
2NuRB

)
, (3.14)

with Reb(Rr, Pr) (3.2) and NuRB(Ra, Pr) with Ra(Rr, Pr) (3.4).

4. Comparison between theories and numerical results

Theoretical predictions for Nutop, Nubot and mean fluid temperature are tested below
using experimental and numerical results on three-dimensional IH convection (see table 1
and Goluskin (2015) for a literature survey). A comparison between the theories and
two-dimensional simulations of IH convection (Goluskin & Spiegel 2012; Goluskin &
van der Poel 2016; Wang et al. 2021) is given in Appendix A.

4.1. Top Nusselt number
Figures 3(a) and 3(b) show the variations of Nutop (filled squares) defined by (1.8) and
given by Goluskin & van der Poel (2016) for IH convection simulations. The variations
of the Nusselt number obtained for standard RB simulations are also shown (data from
Pandey & Verma (2016) and Shishkina et al. (2017), open symbols). Clearly, at constant Ra
and Pr, Nutop is slightly lower than NuRB. Dashed and solid lines represent, respectively,
GL theory for RB convection (2.18) and (2.19) and for RB convection with volumetric
energy sources (2.20) and (2.21). For the latter case, Q and Ra are calculated using (3.3),
(3.4) and the data of Goluskin & van der Poel (2016). A good agreement between the
numerical simulations and the extension of GL theory is observed both by plotting Nutop
as a function of Ra for Pr = 1 (figure 3a) and by considering the variations of Nutop with
Pr for Ra ≈ 1.7 × 106 (figure 3b).

4.2. Bottom Nusselt number
The theory developed in § 3.2 to predict the variations of Nubot is based on forced
convection in the lower half of the cell and the theory of Blasius. Therefore, to get Nubot
with good precision, a very good estimate of the Reynolds number is necessary (see
(3.10)). However, to date there are no experimental or numerical measurements for either
Reb(Rr, Pr) or Rea(Ra, Pr, Q) in three dimensions. Even for RB convection, experimental
and numerical measurements of the Reynolds number have larger uncertainties than
those of the Nusselt number because they require measurement of velocity fluctuations
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105 106 107 108
0.05

0.10

10−1 100 101
0.05

0.10

NuRB/Ra1/3

NuRB/Ra1/3

Nutop/Ra1/3
Nutop/Ra1/3

Goluskin et al. (2016)

Pandey & Verma (2016)
Shishkina et al. (2017)

Ra Pr

(b)(a)

Figure 3. The compensated Nusselt number for standard RB convection (open symbols) and for IH convection
(filled squares) as a function of Ra for Pr = 1 (a) and against Pr for Ra ≈ 1.7 × 106 (b). For IH convection,
Ra values are calculated using (3.4). Dashed lines: Grossmann & Lohse (2001) theory with prefactors given by
Stevens et al. (2013) (2.18) and (2.19). Solid blue lines: extension of GL theory for convection with volumetric
energy sources (2.20) and (2.21).

105 106 107 108 10−1 100 101

Ra Pr

0.05

0.15

0.20

0.05

0.15

0.20
ReRBPr0.86/Ra1/2

RebPr0.86/Ra1/2

ReRBPr0.86/Ra1/2

RebPr0.86/Ra1/2

(b)(a)

Figure 4. The compensated Reynolds number for standard RB convection as a function of Ra for Pr = 1 (a)
and against Pr for Ra ≈ 1.7 × 106 (b) (symbols as figure 3). Also shown: the predictions of the GL theory
(dashed lines, (2.18) and (2.19)) and those of its extension to convection with volumetric heat source (solid
lines, (2.20) and (2.21)). For the second case, Ra and Q are calculated using (3.4) and (3.3) and the data of
Goluskin & van der Poel (2016). The horizontal lines represent power-law behaviours (upper line: (4.1), lower
line: (4.2)).

throughout the cell. In addition, several definitions of Re are given in the literature (root
mean square of the velocity, root mean square of the vertical velocity, maximum of the
velocity fluctuations, maximum mean velocity along the heated plate). Likewise, the GL
theory is less effective in predicting ReRB than NuRB. Figures 4(a) and 4(b) show the
variations of ReRB as a function of Ra and Pr given by Pandey & Verma (2016) and
Shishkina et al. (2017). For both cases i.e. Pr = 1, 105 ≤ Ra ≤ 5 × 108 (figure 4a) and
Ra = 1.7 × 106, 0.1 ≤ Pr ≤ 10, ReRB can be fitted by a power law of Ra and Pr as

ReRB ≈ 0.15 Ra1/2Pr−γ , (4.1)

with γ ≈ 0.86. As no data on Rea are available, the same power-law behaviour will be used
for Rea. In addition, the extension of the GL theory (see § 2) predicts that Rea/ReRB ≈
0.8 in the range of Ra, Pr and Q investigated by Goluskin & van der Poel (2016)
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Model for thermal convection with uniform volumetric sources

105 106 107 108

2
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10−1 100 101

1

2

3

4

5

Nubot

Ra Pr

(b)(a)

Figure 5. Value of Nubot vs Ra (a) and Pr (b). Symbols: data from Goluskin & van der Poel (2016). Solid lines:
(3.10) with A = 0.21 and B = 0.4. Dashed lines: first term of (3.10) (∝√

Re ∝ Ra1/4). Dotted lines: second term
of (3.10) (∝ Q/

√
Re).

105 106 107 108
0.01

0.10

T̄ b 
– 

〈T̄
〉/T̄

b 
–  

T 0

0.50

0.01

0.10

0.50

10−1 100 101

λd

δ̄top

h λd

δ̄top

h

λd

δ̄bot

h

λd

δ̄bot

h

Ra Pr

(b)(a)

Figure 6. Difference between the temperature of the bulk flow (T̄b) and the mean fluid temperature (〈T̄〉) as
a function of Ra (a) and Pr (b). Symbols: data from Goluskin & van der Poel (2016). Solid lines: (3.14) with
A = 0.21 and λd = 0.57. Dashed lines: first term of (3.14) i.e. λd(δ̄bot/h) ∝ Reb

−1/2 ∝ Ra−1/4. Dotted blue
lines: second term of (3.14) i.e. λd(δ̄top/h) ∝ 1/NuRB ∝ Ra−θRB with θRB ≈ 0.3 (see § 4.4).

(see figure 4a,b). Thus, the following equation will be use to give Rea or Reb as a function
of Ra and Pr:

Reb(R, Pr) = Rea(Ra, Pr, Q) = 0.12 Ra1/2Pr−γ . (4.2)

Using (4.2), (3.10) gives Nubot as a function of Ra, Pr and Q. Note that Ra and Q are
calculated from the data of Goluskin & van der Poel (2016) and using (3.3) and (3.4).
Figure 5(a,b) shows that the (3.10) describes well both the evolution of Nubot with Ra and
with Pr, using A = 0.21 (not far away from 0.33) and B = 0.4 (close to the value 0.5 which
characterizes a purely conductive boundary layer).

4.3. Mean fluid temperature 〈T̄〉
The model presented in § 3 also predicts the evolution with Ra and Pr of the difference
between the mean fluid temperature (〈T̄〉) and the temperature of the bulk flow (T̄b).
Figure 6(a,b) shows a good agreement between (3.14) and the numerical results of
Goluskin (2015) using no new adjustable parameters. Indeed, as for figure 5(a,b),
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A is taken equal to 0.21 whereas the displacement thickness of the mean temperature
profile is given by the Blasius theory (λd = 0.57). As shown by (3.13), the dimensionless
temperature difference (T̄b − 〈T̄〉)/(T̄b − T0) is equal to the sum of the thicknesses of the
two boundary layers. For Ra > 105, as δ̄bot 
 δ̄top and Reb ∝ Ra1/2 (see (4.2)), (3.14) can
be approximated by

T̄b − 〈T̄〉
T̄b − T0

≈λd
δ̄bot

h
∝ Ra−1/4 (4.3)

where δ̄bot/h ∝ Reb
−1/2 (see (3.11)) and Reb ∝ Ra1/2 (4.2). As the Rayleigh number

increases, the thicknesses of the upper and lower boundary layers decrease, which also
results in a decrease of T̄b − 〈T̄〉.

4.4. Approximation of Nutop and Nubot by power laws of Rr

For 105 ≤ Ra ≤ 109 and Pr ≥ 1, numerical simulations (Goluskin & van der Poel 2016;
Pandey & Verma 2016; Shishkina et al. 2017) and GL theory show that both NuRB and
Nutop can be approximated by a power law of Ra with an exponent θRB ≈ 0.3 (see also
figure 3a). Neglecting Nubot in front of Nutop, (3.4) yields Ra ∼ Rr1/(1+θRB). Consequently,
we get

Nutop ≈ 0.18 RrθRB/(1+θRB) ≈ 0.18 Rr0.23. (4.4)

This scaling for Nutop is consistent with the independent theoretical findings of Wang et al.
(2021). Indeed, for regimes I<∞ and IVu, Wang et al. (2021) have shown that Q ≈ Δ̃−1 ∼
Rr1/4 whereas for regimes Iu and Il, Q ≈ Δ̃−1 ∼ Rr1/5.

Using (4.2) and assuming again Q ≈ Nutop, (3.10) becomes

Nubot ≈ 0.11 Pr−Γ Rr1/4(1+θRB) + 0.42 PrΓ Rr(θRB−1/4)/(1+θRB), (4.5)

≈ 0.11 Pr−0.10 Rr0.19 + 0.42 Pr0.10 Rr0.04. (4.6)

Indeed, for Pr ≥ 1, F(Pr) ≈ Pr1/3 and Γ = γ /2 − 1
3 ≈ 0.10. Equation (4.6) shows that

Nubot can be expressed by the sum of two power laws of Rr with exponents 0.04 and 0.19
(see also figure 7). This explains the high variability of the measured exponents when the
experimental or numerical results are fitted by a single power law (see table 1). Since the
experiments of Ralph et al. (1977) were performed for higher Rr numbers (4 · 108–1012)
than the other works, the corresponding exponent (0.17) is larger than the exponents
calculated using the other results (∼0.10). Of course, the observed differences are also
due to experimental uncertainties, boundary conditions and the way the thermal power qv

is imposed in volume in the fluid.

5. Conclusions

The Grossmann & Lohse (2001) theory has been extended here to RB convection with
volumetric energy sources in the fluid (configuration a). The two equations of the GL
theory (2.18) and (2.19) have been modified to take account of the effect of the new
non-dimensional parameter Q = qh2/(λΔT). Equations (2.20) and (2.21) predict the
evolution of Nua and Rea as a function of Ra, Pr and Q. Besides, these two equations can
also describe the top Nusselt number Nutop and the Reynolds number of an IH convection
experiment (configuration b). In this case, the non-dimensional parameter Rr = Ra Q is
the control parameter of the IH convection system whereas Ra and Q are theoretically
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106 107 108 109 1010
1

10

50

Nutop

Nubot

Rr

Figure 7. Values of Nutop (squares) and Nubot (circles) vs Rr for Pr = 1 (data from Goluskin & van der Poel
2016). Solid upper line: Nutop ∝ Rr0.23 (4.4). Solid lower line: (3.10) with A = 0.21 and B = 0.4. Dashed line:
Nubot = 0.11 Rr0.19 + 0.42 Rr0.04 (4.6). Dotted line: Nubot = 0.11 Rr0.19.

modelled using Q = Nutop + Nubot, with Nutop = Nua(Ra, Pr, Q) and Nubot(Rea, Pr, Q).
The bottom Nusselt number is the sum of two terms (3.10). The first term can be modelled
using the Prandtl–Blasius–Pohlhausen theory and is proportional to square root of the
Reynolds number. The second term comes from the presence of volumetric energy sources
and is proportional to Q/

√
Re. In agreement with the independent theoretical findings

of Wang et al. (2021), for high Rr numbers, Nutop scales as RrθRB/(1+θRB), with θRB the
exponent of the power-law behaviour of NuRB with Ra. These predictions are confirmed
by experimental and numerical results and show that natural and forced convections are
the two mechanisms that control the heat fluxes in an IH convection experiment.

Acknowledgements. B. Castaing is gratefully thanked for his suggestions and the review of the article.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
M. Creyssels https://orcid.org/0000-0001-5203-3275.

Appendix A. Comparison between theories and numerical results for two-
dimensional IH convection

For two-dimensional IH convection, the predictions of the theoretical work presented in
§ 3 can be tested thanks to the numerical investigations of Goluskin & Spiegel (2012) and
Wang et al. (2021). Figure 8(a,b) shows the variations of Nutop and Re as a function of
the Rayleigh number (Ra = Rr/(Nutop + Nubot)), for Pr = 1. For comparison purposes,
the measured Nusselt and Reynolds numbers for RB convection are also displayed. We
observe very little difference between Nutop and NuRB whereas the Reynolds number is
approximately 65 % lower for IH convection than for RB convection. With good precision,
Nutop and Reb can be approximated by power laws of Ra as

Nutop ≈ NuRB ≈ 0.25 Ra0.25, (A1)

Reb ≈ 0.65 ReRB ≈ 0.038 Pr0.86 Ra0.58. (A2)

The results for two-dimensional IH convection are therefore slightly different from those
obtained for three-dimensional IH convection. In three dimensions, numerical data of
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Figure 8. Results for two-dimensional IH and RB convection. (a) Values of Nutop and Nubot compensated
by Ra1/3 as a function of Ra. Data from Goluskin & Spiegel (2012) (diamonds) and Wang et al. (2021)
(squares), Pr = 1. The results for RB convection (NuRBRa−1/3) are also shown: Johnston & Doering (2009)
(asterisks), Zhu et al. (2018) (stars) and Zhang, Zhou & Sun (2017) (plusses: Pr = 0.7, crosses: Pr = 5.3). Blue
dashed line: (A1). Red solid line: (3.10) with A2D = 0.28 and B2D = 0.4. (b) Compensated Reynolds number
(RePr0.86/Ra1/2) vs Ra. Blue solid line: (A2).

Goluskin (2015) and the extension of the GL theory show that 0.83 ≤ Nutop/NuRB ≤ 0.91
and Reb ≈ 0.8 ReRB (using GL theory) whereas Nutop ≈ NuRB and Reb ≈ 0.65 ReRB in
two dimensions. However, beyond these small differences, the two- and three-dimensional
numerical results validate the theoretical approach chosen here to separate the IH
convection cell into two distinct parts. The upper half of the cell behaves like the upper
half of a RB convection cell (Nutop ∼ NuRB) and controls the Reynolds number. The heat
transfer at the bottom plate is controlled by the Reynolds number and, using the theory of
Blasius, Nubot is given by (3.10). Indeed, figure 8(a) shows a good agreement between the
results of Wang et al. (2021) (red squares) and (3.10) (red solid line) using A2D = 0.28 and
B2D = B3D = 0.4. In two dimensions, the parameter A is therefore slightly higher than
in three dimensions (A3D ≈ 0.22) and closer to the value for a Blasius boundary layer
(A ≈ 0.33). A greater difference is observed between the data from Goluskin & Spiegel
(2012) (red diamonds) and (3.10). This is probably due to the fact that the equation that
gives the Reynolds number (A2) is less well verified when the Rayleigh number is low.

The up–down asymmetry that turbulent convection induces is quantified measuring the
coefficient α. From definitions given by (1.5)–(1.7), α is directly linked to the ratio of Nutop
over Nubot

2α =
Nutop

Nubot
− 1

Nutop

Nubot
+ 1

. (A3)

Both for two- and three-dimensional IH convection, figure 9 shows that the theory
presented in § 3 describes well the evolution of the asymmetry coefficient with Ra.
However, the evolution of α with Ra is different in two dimensions than in three
dimensions. In particular, for two dimensions, α saturates and even decreases when
Ra increases. This behaviour is well described by (3.10). For high Ra numbers,
(3.10) can be approximated by Nubot ∼ Re1/2. Using (A2) (two dimensional) or (4.2)
(three dimensions), we obtain Nubot ∼ Ra0.29 for two dimensions while Nubot ∼ Ra0.25
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Model for thermal convection with uniform volumetric sources

105 106 107 108 109
0.1

0.2

0.3

Ra

α

3D

2D

Figure 9. Asymmetry coefficient α vs Ra for two-dimensional (red open symbols) and three-dimensional IH
convection (blue circles: data of Goluskin & van der Poel 2016). Red solid line: (A3) and using (A1), (A2)
and (3.10). Blue dashed line: (A3) and using (4.4), (4.2) and (3.10). Lower and upper dotted lines: (A3) with
Nutop/Nubot ∼ Ra−0.04 and Nutop/Nubot ∼ Ra0.05, respectively.

for three dimensions. As Nutop ∼ Ra0.25 for two dimensions (A1) and Nutop ∼ Ra0.3 for
three dimensions (see § 4.4), Nutop/Nubot varies as Ra−0.04 for two dimensions and as
Ra0.05 for three dimensions IH convection. That is why, for Ra � 107, α decreases with
Ra in two dimensions while α continues to increase with Ra in three dimensions (see
figure 9).
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