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Streamwise variation in vessel geometry is a feature of many multiphase flows of
practical interest, ranging from natural porous media flows to man-made lab-on-
the-chip applications. The variable streamwise geometry typically exerts a dominant
influence on bubble motion, and can lead to undesirable phenomena such as clogging
of the vessel. Here, we study clogging in a fundamental configuration, where a tube of
square cross-section is suddenly expanded over a short streamwise distance. The extent
to which a bubble driven by constant flux flow broadens to partially fill the expansion
depends on the balance between viscous and surface tension stresses, measured by the
capillary number Ca. This broadening is accompanied by the slowing and momentary
arrest of the bubble as Ca is reduced towards its critical value for trapping. For
Ca < Cac the pressure drag forces on the quasi-arrested bubble are insufficient to
force the bubble out of the expanded region so it remains trapped. We examine
the conditions for trapping by varying bubble volume, flow rate of the carrier fluid,
relative influence of gravity and length of expanded region. We find specifically that
Cac depends non-monotonically on the size of the bubble. We verify, with experiments
and a capillary static model, that a bubble is released if the work of the pressure forces
over the length of the trap exceeds the surface energy required for the trapped bubble
to reenter the constricted square tube.

Key words: capillary flows, drops and bubbles, microfluidics

1. Introduction
Multiphase flows of practical interest are characterized by complex vessel

geometries, with examples ranging from natural porous media to man-made lab-on-
a-chip devices. Models based on the over-simplification of the pore geometry have
been shown to suppress fundamental physical behaviour. For example, a tube whose
local flow resistance varies across its cross-section can support multiple types of
propagating bubbles associated with widely different liquid recovery rates (de Lózar
et al. 2009), as well as periodically deforming bubbles (Pailha et al. 2012), by contrast
to the unique family of bubbles associated with circular or square tube cross-sections
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FIGURE 1. A three-dimensional view of a square channel of depth b and width w, with a pair
of forward and backward facing steps forming an expansion of length, l and width d. An air
bubble (in top view) is trapped in the expansion under imposed constant volume-flux flow of
oil, Q. We define a Cartesian coordinate system (xyz), with y parallel to the flow direction and
z antiparallel to the acceleration of gravity.

(Hazel & Heil 2002). Streamwise variations of the tube geometry in the form of
smooth or sudden constrictions, or alternatively enlargements of the tube cross-section,
can equally exert a dominant influence on the motion of bubbles or droplets by
generating displacement and reconfiguration of drops or bubbles (Renvoisé et al.
2009), controlling droplet formation (Amyot & Plouraboué 2007), facilitating bubble
sorting (Tan et al. 2004), synchronizing droplet motion (Ahn et al. 2011), but also
disturbing the functionality of microfluidic devices through clogging (Jensen, Goranovi
& Bruus 2004) and reducing the quality of fibre-based composites through bubble
trapping (Lundström 1996).

We study the effect on bubble motion of a sudden streamwise expansion of a tube of
square cross-section, which is formed by a pair of backward-facing and forward-facing
steps as shown in figure 1. This simple geometry models a pore with a connectivity of
two and we focus on the conditions necessary for clogging. The trapping of bubbles
in a tube relies on the fact that a static bubble large enough to span the entire tube
cross-section is geometrically constrained to adopt an elongated shape, which increases
its surface energy compared with its relaxed spherical configuration. Hence, it will
tend to reduce its confinement upon expansion of the tube cross-section to release
surface energy. Under constant-flux flow with negligible inertial forces, the bubble
configuration is primarily governed by the capillary number Ca = µQ/(Aσ), which is
a measure of the ratio of viscous to surface tension forces, where Q is the flow rate,
A = bw the cross-sectional area of the tube, and µ and σ are the dynamic viscosity
and the surface tension of the carrier fluid, respectively. The strength of the viscous
forces on the capillary scale determines the level of broadening of the bubble upon
dynamic encounter of a channel expansion, as well as the ability of the bubble to
squeeze into a contraction of the tube, with small values of Ca facilitating the trapping
of bubbles in expanded sections of the tube.

Studies of microchannel clogging by bubbles have focused on slowly varying
cross-sections and quasi-static bubbles, because of the complexity of modelling the
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dynamics of the liquid–gas, liquid–solid and solid–gas interfaces as well as the
dynamics in the bulk fluids. Jensen et al. (2004) predicted the clogging pressure
required to mobilize a wetting bubble depending on taper angle. Good agreement with
direct pressure measurements was found at low Ca, but deviations due to viscous flow
effects were measured for Ca > 10−1 (Chio et al. 2006). Moreover, they identified a
small range of taper angles that could lead to a reduction in bubble energy as it moved
into the constriction. The critical capillary number required to mobilize a non-wetting
bubble trapped in a long and smooth constriction of a two-dimensional tube under
constant-flux flow was shown to decrease monotonically with bubble length by Legait
(1983).

The generation of surface energy gradients due to expansions or contractions of the
channel is useful as a design tool in microreactors, where droplets/cells need to be
trapped and subsequently released after manipulation. Controlled merging of droplets
has been demonstrated by pairing a sudden contraction with a bypass (Köhler et al.
2004). A similar design was exploited to store droplets (Boukellal et al. 2009), while
Um & Park (2009) used a sinuous groove etched in the bottom boundary of the
channel to guide drops into a widely expanded microchannel that enabled flow-rate-
controlled merging of multiple droplets. The use of grooves etched in the top surface
of a wide microchannel was further exploited by Abbyad et al. (2011) to guide or
anchor drops against a mean flow for outer flow velocities below a critical value. The
anchor mechanism was investigated by Dangla, Lee & Baroud (2011) for droplets of
radius that were large compared with their anchor groove in a quasi-two-dimensional
microchannel (also known as a Hele-Shaw cell). This enabled an essentially two-
dimensional analysis of both the droplet shape and the constant flux outer flow, which
was only partially obstructed by the presence of the trapped droplet. They found that
droplets remain trapped if their gradient in surface energy exceeds the drag force from
the outer flow.

The linear pore model shown in figure 1 is three-dimensional. A non-wetting bubble,
which typically spans the entire tube cross-section, is transported by constant-flux
flow of a wetting fluid towards the sudden expansion. We examine the conditions
for trapping by varying bubble volume, flow rate of the carrier fluid and length of
expanded region. Once trapped, the bubble clogs the entire tube cross-section except
for small corner regions, and this ‘leaky piston’ configuration (Wong, Radke & Morris
1995a,b) leads to a significant pressure drag as the constant flux flow must squeeze
through a much reduced cross-section imposed by the configuration of the obstructing
bubble. Moreover, the bubble shape is strongly affected by buoyancy forces, which
tend to deform it by pushing it upwards, eventually lifting the bubble off the bottom
boundary, and hence reducing its cross-section for Bond numbers Bo = ρgb2/4σ ' 1,
where ρ is the density of the carrier fluid, g the acceleration of gravity and Bo
the ratio of buoyancy to surface tension forces (de Lózar, Juel & Hazel 2008).
We consider two values of the Bond number, Bo ' 1 and Bo ' 0 by performing
experiments in millimetric and micrometric tubes, respectively.

The experimental methods are described in § 2. In § 3, we investigate the efficiency
of trapping as a function of bubble size and find a non-monotonic dependence on
the bubble length of the critical capillary number below which a bubble is trapped.
The critical capillary number reaches a maximum value for the smallest bubble
volume that enables the broadened bubble to fill the entire length of the expansion.
Trapping occurs at very low values of the capillary number, which are associated
with extremely thin liquid films separating the bubble from the tube boundary, so that
accurate numerical simulation of the three-dimensional free boundary Stokes problem
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poses a considerable challenge (de Lózar et al. 2008). Instead, we calculate capillary
static bubbles under gravity and streamwise pressure forces with Surface Evolver
(Brakke 2008) in § 4 and find that this simplified model captures the experimental
trapped bubble shapes accurately. Although the initial conditions provided by the
steady bubble motion upstream of the expansion select a unique type of experimental
trapped bubble, we find evidence of other families of trapped bubble shapes by varying
initial conditions both experimentally and in the static model. We verify in § 5 with
a combination of experiments and capillary static simulations that the work of the
pressure forces on the bubble must exceed the change in surface energy of the bubble
upon trapping in order for the bubble to be released, a criterion similar to that
proposed by Dangla et al. (2011). Conclusions are presented in § 6.

2. Experimental methods
The experiments were performed in both millimetric and micrometric tubes of

square cross-section of width w and depth b with w ' b. Each tube included a sudden
expansion of length l into one of its sidewalls, so that the width of the tube was
increased to w+d with a backward-facing step and returned to w with a forward-facing
step as shown in figure 1. We chose d > w, in order for the bubble not to reach the
bottom of the expansion. The experiments were performed with expansions of length
equal to the width of the tube, i.e. l/w = 1.0 unless otherwise stated. The millimetric
tube had cross-sectional dimensions b×w= (3.04±0.01)× (3.00±0.07) mm. The top
and bottom boundaries of the channel were made of float glass plates of a thickness
of 2 cm, separated by steel gauge plates, which formed its sidewalls. The expansions
were created by accurately positioning and attaching two rectangular pieces of the
same gauge plate (60 mm × 12 mm) to one of the sidewalls separated by a distance
l, to create the forward and backward facing steps. The dimensions of the microtube
were b × w = (250 ± 4) × (250 ± 4) µm. It was manufactured by micro-milling of a
piece of Perspex (CAT3D-M6, CNC, milling machine, Datron Technologies Ltd), and
sealed with a clear adhesive film (Corning), which was supported by a precision-milled
flat Perspex lid. The millimetric and micrometric tubes had length/width ratios of 20
and 80, respectively.

Each tube was completely filled with a moderate viscosity liquid and connected
to liquid reservoirs at both ends: we used silicone oil (polydimethylsiloxane
from Basildon Chemicals Ltd, µ = 1.03 × 10−2 kg m−1 s−1, ρ = 940 kg m−3

and σ = 20.1 × 10−3 Nm−1, at the laboratory temperature of 21 ± 1 ◦C) in the
millimetric tube, and Galden

TM
HT135 (perfluoropolyether from Solvay Solexis,

µ = 1.75 × 10−3 kg m−1 s−1, ρ = 1752 kg m−3 and σ = 17 × 10−3 Nm−1, at the
laboratory temperature of 21 ± 1 ◦C) in the microtube. A constant volume flux flow
Q was imposed by withdrawing liquid at one end with a syringe pump (KDS210,
KD Scientific). In order to study the trapping of bubbles in the expansion, individual
bubbles of controlled volume had to be generated rather than bubble trains, where
successive bubbles would dislodge their preceding neighbour from the trap. Single
bubbles of known volume were formed near the inlet of the millimetric tube by
injecting air through a capillary tube (of internal diameter of 1 mm) into a constant
flux flow. Different bubble sizes were obtained by varying the background and
injection flow rates controlled by syringe pumps, and the volume of each bubble
was determined from the time taken by the growing bubble to pinch off from
the tip of the capillary tube. In the microtube, single bubbles were formed at
the junction of the main liquid-filled channel and a rectangular side channel of
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dimensions (250 × 250) µm by manually injecting air into the side channel and
controlling bubble pinch-off by tilting the apparatus. Although more advanced control
methods would be required to generate a single drop of prescribed volume (He, Kuo
& Chiu 2005; Xu & Attinger 2008; Gu et al. 2011), we were able to form single
bubbles of unknown volume, which we parametrized by measuring their static length
L. In order to ensure reproducibility, the bubble length was monitored following each
trapping measurement, and found to remain constant to within 0.07 mm and 4 µm
of its original value in the millimetric and micrometric tubes, respectively. This level
of bubble size control was achieved by taking care not to degas the silicone oil and
partially degassing the Galden

TM
HT135 fluid, to reduce dissolution of the air bubble

into the surrounding fluid.
The bubble volume was selected so that the bubble would fill the entire width of the

tube, and adopt an elongated static shape of length L > w in the square tube of cross-
sectional area bw. The motion of the bubble corresponds to a two-phase displacement
flow (Wong et al. 1995a; de Lózar et al. 2008), and the use of a non-wetting bubble
(air) in a wetting carrier fluid means that the contact angle is approximately zero.
Inertial forces are negligible relative to viscous forces, as the Reynolds number
Re = µUb/ρ < 0.02. Hence, the flow is governed primarily by viscous forces, surface
tension forces and buoyancy forces. We define a capillary number, Ca = µQ/(bwσ),
which corresponds to a non-dimensional measure of the flow rate imposed externally.
In the limit of low Ca where we performed experiments, the bubble deforms very
little from its static shape, so that the fraction of liquid around the bubble remains
approximately constant. However, as Ca increases, a bubble of fixed volume elongates
under the increased influence of viscous forces and the fraction of liquid around the
bubble increases (de Lózar et al. 2008). The Bond number, Bo = ρgb2/4σ is specific
to the fluids and channel used. In the millimetric channel, Bo = 1.06 ± 0.01 while
in the microtube Bo = (1.6 ± 0.1) × 10−2. A linear relationship was measured in the
millimetric square tube between volume and static length L of non-spherical bubbles
(L/w > 1), which confirms that static bubbles are all subject to similar confinement
imposed by the Bond number irrespective of their volume. Hence, we choose hereafter
to quantify the bubble size with its initial static length L rather than its volume.

The outer edge of the bubbles was visualized as a dark contour due to refraction
at the air–oil interface of light from an electroluminescent sheet placed directly
under each tube. Top-view images were taken with a CMOS digital camera (with
an image resolution of 1280 × 1024 pixels at a frame rate of up to 7 f.p.s.). The
camera was setup 400 mm above the millimetric channel to yield a resolution of
30 pixels mm−1 with a F2, 35 mm lens, while in the small channel, the same lens
with a 60 mm extension tube positioned 20 mm above the channel gave a resolution of
270 pixels mm−1. The outer edge of the bubble was detected by locating a change in
light intensity above a fixed threshold, using MATLAB’s ‘canny’ edge detector.

We also performed pressure measurements at equal distances upstream and
downstream of the expansion in the micrometric channel, as shown schematically
in figure 2. Two identical channels of cross-sectional dimensions depth × width =
250 µm×100 µm, perpendicular to the main channel, were each connected to the ‘wet’
outlet of a differential ultralow pressure sensor (pressure range ±625 Pa, Honeywell),
while the ‘dry’ outlets were both placed in a controlled atmosphere. The same length
of connecting tubing was used for both sensors to minimize systematic errors in the
pressure readings. Both pressure sensors were calibrated with a column of HT135 over
their entire range of operation, and the pressures measured with the sensor deviated
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FIGURE 2. Variation of the pressure difference 1P = P(A) − P(B) with flow rate Q (�),
when a bubble of length L/w = 2.23 is trapped in the expansion of the microtube. Here Qc
represents the threshold value beyond which the bubble is released from the expansion. The
pressure was measured at points (A) and (B), respectively, using two Honeywell ultralow
pressure sensors (pressure range of ±625 Pa), to give an accurate measure of the pressure
drop between the tail and the tip of a trapped bubble. A least-squares linear fit to the data of
the form 1Pw/σ = αPCa yields αP = 13 040± 270 (solid line), where Ca= µQ/(σbw).

from the linear calibration curve by a standard deviation of ±1.4 Pa. Both sensors
were used to measure pressures within the range (100–200 Pa), but the measured
differential pressures were in the range (10–30 Pa). When a bubble was trapped in
the expansion under constant flux flow, the difference in pressure between the two
measuring points remained constant to within ±1 Pa. The maximum pressure drop
over this distance due to single phase Poiseuille flow through the square microtube
was estimated to be 0.07 Pa, i.e. less than measurement noise. Thus, the recorded
pressure difference gave an accurate measure of the pressure drop between the tail and
the tip of the bubble. An example of the variation of this pressure drop with flow rate
Q is shown in figure 2, which indicates proportionality between bubble pressure drop
and flow rate and we refer to § 3 for further discussion of this result.

3. Trapping and release of bubbles
When a bubble travelling under constant volume flux forcing reaches the backward-

facing step that marks the start of the expansion, the extent to which it broadens to
partially fill the expansion depends on the balance between viscous stresses that drive
the bubble forward and surface tension stresses that promote broadening, of which a
measure is provided by the bubble capillary number Ca= µQ/(bwσ).

A bubble of finite volume, and of an initial length L greater than the width of
the tube (L/w > 1), can become trapped because it releases surface energy upon
broadening into the expansion, and the energy deficit has to be overcome in order for
the bubble to be forced back into the tube. As the value of Ca decreases, viscous
forces due to the constant flux flow become insufficient to force the bubble over

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

10
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.103


The trapping and release of bubbles from a linear pore 443

the forward-facing step that marks the end of the expansion. Hence, the bubble gets
trapped at a threshold value of the capillary number, Cac > 0 (see movies 1 and 2 in
the online supplementary material available at http://dx.doi.org/10.1017/jfm.2013.103,
showing the dynamics of the trapping process for values of Ca just above and below
this threshold, respectively). A bubble trapped in the expansion is akin to a ‘leaky
piston’ in that it typically occludes the majority of the square cross-section of the tube
leaving only thin liquid films on the surfaces, except in small corner regions (Wong
et al. 1995a) and in a thin region at the bottom of the tube when Bo = 1.06, because
the bubble lifts off the bottom of the tube due to buoyancy (de Lózar et al. 2008).

When a finite bubble is in motion in a tube of square cross-section, the flow
bypassing the bubble in the corner regions is small compared with the flow pushing
the bubble, which is 30–100 times greater than the corner flow when neglecting the
effects of gravity (Wong et al. 1995b). When the bubble is trapped, the totality of the
constant volume-flux flow has to bypass the bubble, hence generating significant drag
forces. In the case of a bubble, which has a stress-free interface, all the fluid bypassing
the bubble contributes to a pressure drag, which builds up a pressure difference
between the tail and the tip of the bubble. In the case of a large droplet confined
in a Hele-Shaw cell, Dangla et al. (2011) showed that the contribution from viscous
drag due to shear forces at the interface is negligible compared to the pressure drag.
Moreover, heat losses may arise from viscous friction in very thin films, but we show
in § 5 that this effect is negligible in our configuration.

A direct measurement of the pressure drag on trapped bubbles is shown in figure 3,
where the proportionality coefficient αP between dimensionless pressure, 1Pw/σ , and
dimensionless flow rate, Ca, is plotted as a function of L/w for initial bubble lengths
in the range 1.8 6 L/w 6 3.5, as the pressure difference was too small to resolve for
shorter bubbles. The squares correspond to values of αP obtained from a linear fit of
pressure data for Ca < Cac as described in figure 2. These measurements could not
be extended to L/w > 2.4 because the decreasing flow rates required to trap bubbles
limited the range of Ca over which pressure measurements could be made. However,
single pressure measurements were taken for L/w > 2.4 at Ca = 0.9Cac, and the
values of αP obtained from each of these measurements are shown with circles. The
coefficient αP can be locally approximated by the least-squares fit αP = α(L − L0)/w,
with α = (1.9 ± 0.2) × 104 and L0/w= 1.5 ± 0.2. The value of α is large because the
channel width rather than the length scale of the thin liquid region between bubble
and channel is used in the non-dimensionalization, although the latter sets the scale of
the pressure drop. The minimum bubble length L0/w is similar to the length of the
shortest bubble that fills the length of the expansion when trapped (see figure 6) and
thus it is approximately formed of two contiguous end caps. The linear variation of
1Pw/σ = αCa(L− L0)/w with L for L> L0 shown in figure 3 suggests that these end
caps do not contribute significantly to the pressure drop along the bubble, and that the
pressure drag increases linearly with the length of the thin film regions. The dashed
line illustrates an assumed variation of the pressure drop for the shortest bubbles that
do not fill the entire length of the expansion when trapped, which must be small and
tend to zero as L/w decreases towards 1.0. We refer to § 4 for a comparison with
the analytical prediction of α in the limit of very long bubbles, whose main body is
significantly longer than the end caps of approximate length L0.

In order to measure the threshold value of Ca below which bubbles remained
trapped, we captured the slowing of the bubble tip that accompanies broadening into
the expansion as Ca is reduced towards Cac, by measuring a residence time of the
bubble in the expanded section, τT , as shown in figure 4(a). Here τT was defined
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FIGURE 3. Variation of the proportionality coefficient αP between pressure difference
1Pw/σ and dimensionless flow rate Ca with initial bubble length L/w for bubbles trapped in
the microtube where w = 0.25 mm: (�) data obtained from linear fits to the bubble pressure
drop as a function of flow rate when Ca < Cac shown in figure 2; (©) data obtained from
single pressure drop measurements at Ca = 0.9Cac. The solid line is a linear least-squares
fit of the form αP = α(L − L0)/w where α = (1.9 ± 0.2) × 104 and L0/w = 1.5 ± 0.2,
which is extrapolated down to αP = 0 with a dashed line. The dashed-dotted line is a cubic
extrapolation of the pressure coefficient to illustrate the fact that the pressure effectively only
tends to zero as L/w→ 1.

as the time required for the bubble tip to advance from the backward-facing step
that forms the start of the expansion at y∗ = −1/2 to the bubble tail passing the
forward-facing step that marks its end at y∗ = 1/2, i.e. the time required for the tip to
travel within −1/2 6 y∗t 6 1/2 + L/l, where y∗t = yt/l is dimensionless axial position
of the tip. Periodic stick-slip motion of the syringe plungers caused a 1 and 2.5 %
variation in bubble speed over a period of 20 < Tosc < 60 s and 12 < Tosc < 40 s in
the millimetric and micrometric channels, respectively. This limited the accuracy on
the value of Ca, leading to deviations of τT near Cac found to occur when τT was
of the same order as the period of oscillation, Tosc. Hence, measurements of trap and
release times could only be resolved for τT < Tosc/2. The increase of the trapping time
for decreasing dimensionless flow rates is illustrated in the inset of figure 4(b) for a
bubble of length L/w = 3.07 in the millimetric tube. As Ca decreases, the tip position
versus time curves develop a quasi-constant region, indicating the temporary arrest of
the bubble in the expansion. The variation of the trapping time with Ca, shown in
figure 4(b), is accurately represented by a hyperbolic three-parameter fit of the form
τT = A/(Ca− Cac)+ B, where Cac = (1.8± 0.1)× 10−4 is the maximum value of the
capillary number at which the bubble will get trapped. The divergence of τT suggests
critical slowing down near the trapping threshold and hence a loss of stability of the
trapped bubble.

In support of this finding, we tested the stability of an initially trapped (and, hence,
static) bubble, by switching the dimensionless flow rate from Ca = 0 to a value
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FIGURE 4. (a) Schematic diagram illustrating the measurement of the trapping time τT . This
is the time taken by an initially moving bubble to travel through the expanded section of
tube, with −1/2 6 y∗t 6 1/2 + L/l, where y∗t = yt/l is the dimensionless position of the
bubble tip and y∗t = 1/2 + L/l is the tip position at which the tail of the bubble exits the
expansion. (b) Variation of τT (+) with dimensionless flow rate Ca in the millimetric tube
(l = w = 3.0 mm) for a bubble of dimensionless length L/w = 3.07. The solid line is a three-
parameter hyperbolic fit of the form τT = A/(Ca − Cac) + B, with Cac = (1.8 ± 0.1) × 10−4,
A= (3.0± 0.3)× 10−3 s and B= (1.1± 0.5) s. Inset: dimensionless position of the bubble tip
as a function of time.

above threshold, and measuring the time taken for the bubble to escape the trap. A
comparison between the variation of trapping and release times with Ca is shown in
figure 5 for bubbles of similar sizes in the microtube. Trapping times were measured
for bubbles advancing through the expanded section of tube at Ca> Cac, while release
times, τR, were measured from the instant the flow rate was switched to Ca > Cac

until the tail of the bubble passed the forward facing step, i.e. y∗t = 1/2 + L/l. When
starting the experiment with a trapped bubble, the initial tip position at t = 0 already
exceeded the length of the expansion (y∗t > 1/2), as shown in the inset of figure 5(b).
The dependence of the tip position on time is similar in the insets of figure 5(a,b),
with a region for 1.5 < y∗t < 2.5 where the tip temporarily arrests for increasing time
intervals as Ca is reduced towards its threshold value. This suggests that trapping and
release times are similar measures of the dynamics of trapping, as they both exhibit
similar critical slowing down of the bubble passing through the expanded section
of tube. The threshold values of the dimensionless flow rate obtained by hyperbolic
fits of the trapping and release times were Cac = (1.04 ± 0.40) × 10−5 for a bubble
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FIGURE 5. Dependence of trapping and release times (+) on dimensionless flow rate Ca in
the micrometric tube (l = w = 0.25 mm). The solid line is a three-parameter hyperbolic fit of
the form A/(Ca − Cac) + B. Inset: dimensionless position of the bubble tip as a function of
time. (a) Trapping time τT for a bubble of dimensionless length L/w = 2.93. Fit parameters:
Cac = (1.04 ± 0.40) × 10−5, A = (5.3 ± 0.7) × 10−5 s and B = (1.2 ± 0.4) s. (b) Release
time τR taken by an initially trapped bubble to move through the expansion, for a bubble of
dimensionless length L/w = 2.85. The measurement starts at the change in flow rate from an
initial tip position y∗t > 1/2, and ends when the tip reaches y∗t = 1/2 + L/l. Fit parameters:
Cac = (1.15± 0.10)× 10−5, A= (2.5± 0.3)× 10−5 s and B= (2.0± 0.2) s.

of length L/w = 2.93 in figure 5(a) and Cac = (1.15 ± 0.10) × 10−5 for a bubble
of length L/w = 2.85 in figure 5(b), respectively. The values obtained from the two
different measurements methods were in quantitative agreement, as far they were
indistinguishable to within experimental resolution.
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FIGURE 6. Variation of the dimensionless critical flow rate Cac with initial bubble length.
Here Cac was extrapolated from either the trapping time distribution (©) or the release
time distribution of an initially trapped bubble τR (�) (see figure 5). The error bars on
Cac correspond to fitting uncertainties. The length of the most stable bubble, (L/w)max, is
estimated by approximating the increase in Cac at small initial bubble lengths by a linear
dependence on length starting with Cac = 0 when L/w= 1.0, and the decrease at larger initial
bubble length with a two parameter power fit of the form L/w = ECaF

c , and calculating
the intersection point between these curves. (a) Millimetric tube: w = l = 3.0 mm and
(L/w)max = 1.71± 0.08; (b) microtube: w= l= 0.25 mm and (L/w)max = 1.52± 0.14.

The measurements of trapping and release times shown in figures 4 and 5 were
repeated for a wide range of initial bubble lengths and the resulting values of Cac are
shown as a function of the initial bubble length in figure 6. The circles correspond to
values of Cac obtained from trapping times, while the squares represent data obtained
from release times. In both millimetric and micrometric tubes, the smallest bubble we
were able to trap had a length of L/w = 1.35, because of the very small flow rates
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Tube B0 Camax (L/w)max

Millimetric 1.06 (1.3± 0.1)× 10−3 1.71±0.08
Micrometric 1.6× 10−2 (1.0± 0.1)× 10−4 1.52±0.14

TABLE 1. Summary of trapping results for different Bond numbers. Camax is the critical
capillary number of the most stable bubble and (L/w)max is the static length of this bubble
in the unexpanded tube.

required for trapping and the difficulties in generating bubbles of prescribed volume
in the microtube (see § 2). As L/w became large, the flow rates required for trapping
decreased to a level where the effect of stick-slip in the syringes became significant
and where background vibration affected the stability of trapped bubbles, particularly
in the microtube.

The variation of Cac is non-monotonic, as shown in figure 6(a), where Cac increases
with L/w when the bubble is short, i.e. it does not fill the length of the expansion
when trapped, and decreases with L/w when the bubble is long, i.e. it exceeds the
length of the expansion when trapped. The observed trend is consistent with the
limit of Cac = 0 for L/w = 1.0, which indicates that a bubble with a volume smaller
than that required for L/w = 1.0 cannot get trapped. In figure 6(b), there is only
one short bubble, but this argument enables us to infer a similar trend. The increase
in Cac for short bubbles is driven by the increasing release of surface energy as
the bubble lengthens until the broadened bubble fills the length of the expansion,
whereas the resistance of the bubble to flow remains very low as discussed above
(see figure 3). Hence, a larger dimensionless flow rate is required to untrap short
bubbles as their length increases. Once the trapped bubble exceeds the length of the
expansion, the resistance to flow increases with initial bubble length more strongly
than the surface energy decreases, as the deformation into the expansion remains
broadly similar. Hence, the most stable bubble is always the smallest bubble to fill the
length of the expansion when trapped.

The values of Cac are approximately of an order of magnitude larger for Bo = 1.06
than for Bo = 0.016. This is because the presence of buoyancy alters the bubble
configuration and enables it to lift off from the bottom boundary of the tube for
Bo ' 1. Hence, the trapped bubble obstructs a smaller fraction of the cross-section
of the tube, creating less resistance to the outer constant-flux flow. At Bo = 1.06, a
larger value of L is required compared with Bo= 0.016. This is because the expansion
of a bubble into a wider channel is also accompanied a small vertical expansion of
the bubble in the presence of buoyancy forces (de Lózar et al. 2008). The results are
summarized in table 1.

The extent to which the bubble enters the expansion, and thus the reduction in
surface energy upon trapping, is strongly dependent on the length of the expansion
relative to the width of the tube, l/w. We were able to trap bubbles for l/w = 0.5 and
l/w = 2, as shown in figure 7. The most stable bubble remained the shortest bubble
to fill the expansion, implying an approximately linear variation of (L/w)max with l/w.
The trapped bubble configuration is one of minimal surface area, or equivalently, of
minimum constant curvature, where the bubble is unconfined in the limit of small Ca.
A bubble whose main body is much longer than its end caps, enters the expansion
approximately with the curvature, (1/l + 1/b), while its end caps inside the channel
have the curvature of (1/w + 1/b). As evident in figure 7, when the expansion length
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(a)

(c)
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( f )

FIGURE 7. Snapshots of bubbles trapped in expansions of different lengths in the millimetric
channel, where w = 3.0 mm. Top: l/w = 2.0, (a) L/w = 1.68, Cac = 1.1 × 10−3 and (b)
L/w= 4.06, Cac = 1.1× 10−3. Middle: l/w= 1.0, (c) L/w= 1.25, Cac = 0.46× 10−3 and (d)
L/w = 2.56, Cac = 0.34 × 10−3. Bottom: l/w = 0.5, (e) L/w = 1.18, Cac = 0.19 × 10−3 and
(f ) L/w= 2.31, Cac = 0.09× 10−3.

matched the channel width (l/w = 1), the bubble curvature inside the expansion was
roughly the same as that of the bubble end caps. At l/w= 0.5, the bubble was not able
to enter fully into the expansion while maintaining the lower curvature of (1/w+ 1/b);
thus, broadening into the expansion was not energetically favourable. Consequently,
bubbles tended to get trapped at lower values of Cac and (L/w)max was reduced
compared with l/w = 1. However, for l/w = 2, the bubble broadened significantly, as
the bubble curvature inside the expansion was lower. Therefore, the measured values
of Cac were larger than for l/w= 1 and (L/w)max increased. The bubble could even be
driven entirely into the expansion as Ca was reduced, provided that the expansion was
sufficiently deep to accommodate the volume of the bubble. This enabled the trapping
of long bubbles at the maximum value of Cac irrespective of their length.

4. Static model of a trapped bubble
As discussed in § 3, the trapping and release of a bubble is governed by two

physical ingredients: gradient in bubble surface energy and pressure force imposed by
the external fluid flow. This idea is summarized into a simple criterion for a bubble
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release whereby the work of the pressure forces over the length of the expansion
must exceed the surface energy required for the trapped bubble to reenter the tube of
square cross-section. If 1S denotes the increase in surface area from the trapped to the
released bubble, Fp the net pressure force on the bubble due to the external flow, and y
the axial flow direction, this criterion can be expressed as

σ1S.
∫

l/2
Fp(y) dy, (4.1)

where l/2 is the distance over which the pressure forces must work to push the
broadest part of the bubble back into the square tube. If we non-dimensionalize 1S
with lb, Fp with µQ/w and y with l, equation (4.1) can be rearranged to yield
Cac ∼ 1S∗/

∫
1/2 F∗p,c dy∗, where F∗p,c is now the critical dimensionless pressure force

needed to release the bubble.
In order to verify the validity of (4.1), we need accurate estimates of both

pressure forces Fp and change in bubble surface area 1S. The pressure forces can
be estimated from the experimental measurements of the pressure drop between the
tip and tail of the trapped bubble, but the accurate determination of 1S requires
numerical calculation. For this, we model a capillary static bubble in the expansion
subject to body forces of gravity and pressure drag. This formulation requires a
simplified pressure distribution in order to implement the effects of the pressure drag
on the bubble, whereby the pressure decreases linearly in the streamwise direction
as explained in further detail below. As discussed in § 3, for initial bubble lengths
L/w > 1.8, the pressure difference actually increases linearly with the length of the
main body of the bubble, while the end caps hardly contribute to the pressure drag
as shown in figure 3. Hence, the assumption of a linear pressure distribution becomes
valid only in the limit of very long bubbles where the main body is much longer
than the end caps. However, a more accurate pressure distribution would require the
solution of the complete three-dimensional free-boundary Stokes flow problem, whose
numerical simulation is hampered by very low values of Ca, associated with thinning
liquid films. The three-dimensional finite-element simulations of de Lózar et al. (2008)
describe bubble motion in square tubes for capillary numbers based on bubble speed
down to 10−3, while the typical dimensionless flow rates thresholds in the trapping
geometry are in the range 10−5 < Cac < 10−3 (see figure 6). Appropriate numerical
approaches to this problem include quasi-static simulations (Jensen, Stone & Bruus
2006) and boundary integral methods (Janssen & Anderson 2008).

In order to calculate static bubble shapes, we used the readily available numerical
tool, Surface Evolver (Brakke 2008), which is an optimization software that minimizes
the total energy of a user-defined surface under given constraints. Designed for a static
system, it can incorporate any type of energy (e.g. surface tension, gravity) that can be
expressed in terms of a surface integral. Thus, we were able to implement the effect
of a constant pressure gradient on the bubble as a bubble energy, analogously to the
effect of gravity.

For simplicity, we hereby define the channel geometry with a single dimensional
length scale, W, to represent the channel depth b, width w, and the length of the
expansion l. The width d of the expansion (see figure 1) does not come into play, as
we consider the limit in which the bubble never touches the bottom of the expansion.
In addition to the axial direction, y, the dimensional lateral and vertical directions are
denoted as x and z, respectively. Dimensional energies in the system are denoted as
E with appropriate subscripts. Dimensionless variables are starred and based on the
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following scales:

E∗ = E/(σW2), (x∗, y∗, z∗)= (x, y, z)/W, (4.2)

where σW2 is the characteristic surface energy in the system. Furthermore, the
dimensionless channel length scale W∗ is set to be one in all of the simulations.

Apart from the surface energy of the bubble, another relevant energy in our problem
is the gravitational potential. Although the gravitational term is not explicitly shown in
(4.1), both 1S∗ and F∗p are strongly dependent on the relative strength of gravity. In
particular, at a fixed flow rate, the resultant magnitude of F∗p depends strongly on the
Bond number Bo, as the higher value of Bo leads to the bubble lifting off the bottom
wall of the channel, hence, allowing more fluid to pass underneath; this subsequently
reduces the pressure buildup, compared with the smaller Bo case. The gravitational
energy E∗g can be expressed as

E∗g = G
∫∫∫

V∗bubble

z∗ dV∗, (4.3)

or, equivalently, by the divergence theorem,

E∗g = G
∫∫

S∗bubble

z∗2

2
n · dA∗, (4.4)

where G = 4Bo = ρgW2/σ , and Bo is now defined with W instead of b. We set
G = 4.24 and 0.06 to match the experimental parameters in the millimetric and
micrometric tubes, respectively.

In order to implement the effects of the pressure drag on the bubble, pressure was
assumed to decrease linearly in the y∗-direction, which can be expressed as an energy
in the following surface integral form,

E∗p =−φ
∫∫

S∗bubble

y∗2

2
n · dA∗, (4.5)

where the dimensionless constant φ ≡ |∇P|W2/σ is the ratio of pressure build-up to
surface tension effects. In the capillary static model, the pressure gradient was uniform
so that |∇P| ∝ Q and hence φ ∝ Ca. This is a good approximation of the experimental
pressure distribution 1P/(L− L0)∝ Ca shown in figure 3 on the limit of long bubbles.

We chose the initial configuration to be a hexagonal bubble of volume V∗bubble
positioned at a distance d∗i from the backward-facing step, as shown in figure 8(a).
The bubble surface was constrained by the channel walls on all sides, except
for the case of G = 4.24 in which the bubble never touched the channel bottom
at z∗ = −W∗/2 due to buoyancy. In addition, at the expansion located between
y∗ = [−W∗/2,W∗/2] at x∗ = W∗/2, the bubble was unconstrained in the x∗-direction
and was allowed to relax its shape into the expansion. Surface Evolver uses a finite-
element method, in which the surface is represented as a set of triangles that are
defined in terms of vertices, edges and facets. While obeying the constraints, the
Surface Evolver iteratively calculates the gradient of total energy at each location and
moves the vertex in the direction that reduces the energy by a gradient descent method.
In our simulation, during the iterative step, the surface was also routinely refined by
subdividing the triangles, while facets whose area was less than a tolerance value
were deleted for best results. In addition to the gradient descent method, we also
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Expansion

Flow
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Direction
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FIGURE 8. Initial bubble configuration used in the Surface Evolver calculations: the origin of
the x∗y∗z∗ axes is set at the centre of the channel, with respect to the expansion location. The
channel is a square capillary with scaled width W∗ = 1, and the expansion length is also taken
to be W∗ = 1. (a) On the x∗–y∗ plane, the initial rectangular bubble is stationed at a distance
d∗i from the backward-facing step. (b) On the y∗–z∗ plane, for the case of G= 4.24, the bubble
is set to not touch the channel bottom at z=−W∗/2.

employed the Hessian minimization step when the surface was assumed to be close
to convergence. This method computes the second derivative of energy (i.e. Hessian)
at each vertex and moves the vertices in a way that allows the Hessian to go to zero.
Thus, at given values of G and φ, we evolved the bubble surface via the gradient
descent method, surface refinement and Hessian minimization, until an equilibrium
solution was reached when the change in computed surface area became less than
10−6. Surface Evolver calculations of static bubbles in the expansion were run for
increasing values of the flow pressure gradient φ (increment of 0.01), at constant G,
until a critical value φc was reached, beyond which a static solution could not be
found, i.e. the convergence criterion was not reached.

Because we omitted to calculate the flow conditions that lead to trapping by not
solving the Stokes flow variational problem, our formulation does not incorporate a
selection criterion. Hence, we obtained multiple static bubble solutions for set values
of G and φ, depending on the initial bubble configuration. This is illustrated in
figure 9, where the variation of φc with initial bubble length is shown for different
values of d∗i in the range 0 6 d∗i 6 0.5. The curves obtained for increasing values
of d∗i are shifted vertically towards higher values of φc, but the variation of φc with
L/w is similar in each case, suggesting the existence of a continuous family of static
solutions.

In order to differentiate between different bubble shapes, we parametrized the top-
view bubble projection in terms of three dimensionless quantities: the distances d∗c and
d∗e defined in figure 10 corresponding to the maximum intrusion of the bubble into
the channel upstream of the backward-facing step and into the expansion, respectively,
and the length of the trapped bubble Lt/w. The variation of the experimental values of
d∗c and d∗e with initial bubble length L/w is shown in figure 10. These parameters
vary for short bubbles, but reach constant values for long bubbles (i.e. bubbles
that fill the entire length of the expansion), indicating that the experimental flow
systematically selects same type of bubble, for both Bo = 1.06 and Bo = 0.016. By
injecting the air bubble into the system through the expansion rather than it being
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FIGURE 9. Dependence of φc on initial bubble length L/w for different values of d∗i (see
figure 8 for a definition of d∗i ): d∗i = 0 (I), d∗i = 0.1(•), d∗i = 0.2 (N), d∗i = 0.3 (�) and
d∗i = 0.5 (�). The solid lines are plotted to guide the eye.

transported by the flow down the main tube, we were also able to select different types
of trapped bubbles and, hence, support the numerical findings of multiple trapped
bubble solutions. In order to select static bubbles whose top-view projection matches
the critical shapes of trapped bubbles observed experimentally, we chose an initial
condition d∗i ' d∗c , i.e. d∗i = 0.10 for Bo = 1.06 and d∗i = 0.16 for Bo = 0.016. We
were able to accurately match short bubbles with this initial condition, but for long
bubbles, it led to the stochastic selection of two types of bubbles: one that matched
the experimental bubbles closely and another shorter trapped bubble that intruded
significantly further into the expansion. The closely matched bubbles also had similar
trapped lengths, which were approximately proportional to the initial bubble length
L/w as shown in figure 11. However, both types of bubbles detached from the
backward-facing step of the expansion at a similar value of φc to within 0.01. We
selected the closely matched bubbles for further analysis.

In figure 12, we show a qualitative comparison between the values of φc, our
numerical measure of dimensionless flow rate, and the experimentally obtained
values of Cac, as a function of initial bubble length, L/w. A constant factor Γ is
applied to rescale φc onto Cac based on the longest bubble investigated. Typical
matched bubble shapes obtained with Surface Evolver are shown similarly to the
experimental bubble shapes in figure 6. Despite the significant approximations made
to the pressure distribution around the bubble in the model, the numerical results
exhibit a trapping threshold that depends on the initial bubble length qualitatively
similarly to the experimental results. In both cases, the variation of the surface energy
release dominates over the change in pressure drag for short bubbles, hence resulting
in a steep increase of the critical value φc for trapping. However, for long bubbles,
the change in surface energy release with initial bubble length is small while the
pressure drag increases significantly, leading to a decrease in φc. As in figure 6, the
length of the most stable bubble was estimated by finding the intersection of a linear
interpolation for small bubbles, with a power fit of the form L/w = ACaB

c for larger
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(a)
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FIGURE 10. Comparison between experimental (empty symbols) and numerical (solid
symbols) bubble shapes at threshold. The bubble shapes are parametrized by d∗c (squares)
and d∗e (circles), the intrusion distance into the channel upstream of the expansion and into
the expansion, respectively (see the inset). (a) Millimetric tube with d∗i = 0.10 and G = 4.24.
(b) Micrometric tube with d∗i = 0.16 and G = 0.06. Black symbols correspond to matching
bubbles obtained by solely imposing the value of d∗i , symbols with a white cross denote
non-matching bubbles obtained with this initial condition and grey symbols correspond to
matching bubbles selected by additionally imposing a maximum intrusion distance into the
expansion.

bubbles (solid line). We obtained (L/w)max = 1.61 ± 0.04 and (L/w)max = 1.48 ± 0.08
for the Surface Evolver calculations at Bo = 1.06 and Bo = 0.016, respectively,
compared with the experimentally obtained values (L/w)max = 1.71 ± 0.08 and
(L/w)max = 1.52± 0.14.

The scaling factor Γ depends on the initial bubble length, but it can be estimated
analytically in the limit of very long bubbles, whose main body is much longer its end
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FIGURE 11. Variation of the length of the trapped bubble Lt/w with initial bubble length L/w
in the micrometric tube (G= 0.06). See figure 10 for legend.

caps in the absence of gravity forces. At Bo = 0.016, a very long bubble is expected
to occupy most of the square channel, except for four corners of the channel. The total
cross-sectional area occupied by the bubble can be expressed as mW2, where m is the
wet fraction and W2 the channel cross-sectional area. In the case of a steadily moving
bubble inside a square tube at Bo = 0, de Lózar et al. (2008) found numerically
that m ' 0.07 for Ca ' 10−3, with only a very weak dependence of m on Ca for
Ca < 10−3. If the geometry of the very long bubble is known by assuming a value of
m, one can estimate the pressure gradient due to the flow around the bubble, based on
the calculations by Ransohoff & Radke (1988). They calculated the flow of a wetting
fluid inside non-circular capillaries, when the channel is occluded by an inviscid
bubble and all of the fluid is assumed to go through the corners formed around it.
In particular, the solution was found valid in the limit of small Bond, Reynolds and
capillary numbers, when the axial variation of the bubble curvature can be neglected.
Thus, this coincides with the flow around a trapped bubble inside the microchannel,
when the main body of the bubble is much longer than the end caps. They showed that
the dimensional pressure gradient is given by |∇P| = (β(4 − π)/m2)(µQ/W4), where
β is the flow resistance factor calculated numerically for different channel shapes; for
a square channel, they found β to be 93.93. Using this expression, the parameter φ
becomes φ = (β(4− π)/m2)Ca or, equivalently,

Cac = m2

β(4− π)φc. (4.6)

valid only in the low Bo case. Specifically, in order for the prefactor to match
the value Γ = 6.3 × 10−5 obtained from the data shown in figure 12(b), we find
m = 0.071, which is in close agreement with the wet fraction predicted by de
Lózar et al. (2008). Moreover, the proportionality coefficient between dimensionless
pressure gradient and Ca, β(4 − π)/m2 ' 1.6 × 104, is consistent with the value of
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FIGURE 12. Comparison of φc (�) (scaled by a constant factor Γ to match Cac for the
longest calculated bubbles) with the experimentally obtained values of Cac (©) as a function
of initial bubble length, L/w. Typical bubble shapes obtained with Surface Evolver are shown
similarly to the experimental bubble shapes in figure 6. As in figure 6, the length of the
most stable bubble was estimated by finding the intersection of a linear interpolation for
small bubbles, with a power fit of the form L/w = ECaF

c for larger bubbles (solid line).
(a) Millimetric tube: G = 4.24, w = 3.0 mm, L = 3.0 mm and Γ = 3.8 × 10−3 where
(L/w)max = 1.61± 0.04 for the surface evolver calculations compared with the experimentally
obtained (L/w)max = 1.71±0.08. (b) Micrometric tube: G= 0.06,w= 0.25 mm, l= 0.25 mm
and Γ = 6.3 × 10−5 where (L/w)max = 1.48 ± 0.08 for the surface evolver calculations
compared with the experimentally obtained (L/w)max = 1.52± 0.14.

α = (1.9 ± 0.2) × 104 obtained experimentally in figure 3, especially considering the
limited set of pressure data available for bubbles longer than L/w> 2.4.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

10
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.103


The trapping and release of bubbles from a linear pore 457
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FIGURE 13. Comparison between critical pressure differences of release (non-
dimensionalized on the capillary scale σ/w) measured experimentally (open symbols) and
determined using the release criterion given in (4.1) from the change in surface energy of
experimentally matched bubble shapes calculated with Surface Evolver (�). The experimental
pressure measurements were made in the microtube where w = 0.25 mm: (�) critical
pressure difference determined from using the value of Cac and the measured proportionality
coefficient with Ca; (©) direct measurements performed for values of the dimensionless flow
rate 10 % below Cac, and extrapolated to a threshold value using the measured relationship
1Pw/σ = αCa(L− L0)/w.

5. Bubble release criterion
The pressure forces are approximated to Fp ' 1Pwb, where 1P is the pressure

difference between the tail and the tip of the bubble. Hence, the release criterion given
in (4.1) yields a pressure difference at the trapping threshold that is proportional to the
increase in surface area of the bubble required to untrap the bubble:

1Pc ' 2σ1S

l w b
, (5.1)

if the variation in pressure force during the release process is neglected.
In order to evaluate this bubble release criterion, we compared the critical pressure

difference of release measured experimentally in the microtube to that evaluated using
the change in surface energy of experimentally matched bubble shapes calculated with
Surface Evolver. We measured the critical pressure of release (figure 13) using two
techniques. The first was to determine the critical pressure difference from the value of
Cac and the measured proportionality coefficient with Ca; the second involved direct
measurements performed for values of the dimensionless flow rate 10 % below Cac,
which were then extrapolated to a threshold value using the measured relationship
1Pw/σ = αCa(L − L0)/w (see figure 2). This latter method enabled the evaluation of
the critical pressure difference in longer bubbles up to L/w= 3.5.

The good agreement between the direct experimental measurements and the Surface
Evolver results suggests that the release criterion proposed in (4.1) provides a good
measure of the trapping threshold in this system, as long as the flow selects a unique
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family of trapped bubbles. It also suggests that heat losses from viscous frictional
energy are minimal in our setup, despite the thin liquid films associated with the
trapped bubble configuration. Independent estimation of the rate of change of frictional
energy yields values of less than 1 % of the rate of change of surface energy. All
the measurements are for long trapped bubbles, i.e. bubbles that fill the entire length
of the expansion. For L/w . 2.4, the pressure force required to release the bubble
increases with L/w, indicating an increase in the surface energy deficit, and thus,
the development of the expanded region as the bubble lengthens. For L/w & 2.4, the
pressure difference reaches a constant critical value, which means that the expanded
region of the trapped bubble does not further change with initial bubble length, so that
the trapped bubble grows solely by lengthening its main body. As flow rates depend on
the gradient of pressure ∇P, instead of the pressure difference 1P, this suggests that
the dimensionless critical flow rate, Cac, must scale as (L/w)−1, in this long bubble
limit. This result is analogous to the findings of Dangla et al. (2011) in the case of
a large ‘pancake’ droplet of radius R inside a Hele-Shaw cell. They show that the
gradient in surface energy is independent of the drop radius, while the drag force is
proportional to R2, the surface area of the two-dimensional drop, so that the critical Ca
of untrapping scales as 1/R2.

6. Conclusion
We have studied bubble trapping phenomena under constant-flux flow in tubes of

square cross-section that include a sudden streamwise expansion, which is formed by
a pair of backward and forward-facing steps. A bubble of finite volume, and of an
initial length L greater than the width of the tube (L/w > 1), can become trapped
because it releases surface energy upon broadening into the expansion, which has to
be replaced by the work of the pressure forces in order for the bubble to be forced
back into the tube. The broadening of the bubble into the expansion is accompanied
by critical slowing down of its tip as the trapping threshold is approached, suggesting
that the trapped bubble is released through loss of stability. The gradients in surface
energy generated by the broadening of the bubble into the expansion depend strongly
on its length, with minimal entry when l/w = 0.5 while long bubbles can enter the
expansion fully for l/w= 2.0 because of the favourable reduction in mean curvature of
the bubble.

The most stable bubbles are relatively short and their length is approximately
linearly dependent on that the expansion. For short pores with l/w6 1, the lengthening
of a trapped bubble through coalescence will dislodge it, while for l/w = 2, any
additional volume will be absorbed into the pore provided if it is deep enough, so
the bubble may remain trapped. The maximum value of Cac is an order of magnitude
larger for Bo = 1.06 than for Bo = 0.016 because of the influence of buoyancy on the
cross-sectional configuration of the trapped bubble, which controls the magnitude of
the pressure drag on the bubble.

Despite the simplicity of our geometry, the presence of thin liquid films render
numerical models of trapping both challenging and computationally intensive. Instead,
we have verified that a bubble is released if the work of the pressure forces over the
length of the expansion exceeds the surface energy required for the trapped bubble
to reenter the tube of square cross-section. We obtain good agreement between direct
measurements of the pressure drop between tail and tip of the trapped bubble and the
pressure drop estimated from the change in bubble surface energy calculated with a
capillary static model, where the capillary static bubble is subject to body forces of
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gravity and pressure drag. This simple model yields static bubble solutions that can
be matched closely to the experimental bubbles at the trapping threshold for carefully
selected initial conditions. Whereas the dynamics of the trapping process select a
unique type of trapped bubble, there is evidence of a broad range of static bubble
solutions, some of which have also been observed experimentally when altering the
initial conditions for trapping. A variety of trapped bubble configurations may occur in
practice, depending on geometry and flow conditions.

Where trapped bubbles are to be avoided, streamwise expansions ought to have
lengths or depths smaller than the width of the channel, while bubbles/droplets smaller
than the tube width or relatively long will preferentially escape. Hence, minimal
trapping may be expected in porous networks where the pore/pore throat ratio is
small, such as sandstone, while large bubbles will escape most effectively from fibre
reinforcements during the manufacturing of composites. In lab-on-a-chip applications
where trapping of droplets for manipulation is desirable, our study provides general
guidelines for the stability of droplets subject to viscous and surface tension forces,
although the effect of surfactants routinely added to reduce the interaction of droplets
with the channel may need to be accounted for.
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