
J. Fluid Mech. (2020), vol. 887, A13. c© The Author(s), 2020.
Published by Cambridge University Press
doi:10.1017/jfm.2019.1083

887 A13-1

Unsteady solute dispersion by electrokinetic flow
in a polyelectrolyte layer-grafted rectangular

microchannel with wall absorption

Morteza Sadeghi1,†, Mohammad Hassan Saidi1,†, Ali Moosavi1

and Arman Sadeghi2

1Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering,
Sharif University of Technology, Tehran 11155-9567, Iran

2Department of Mechanical Engineering, University of Kurdistan, Sanandaj 66177-15175, Iran

(Received 13 May 2019; revised 12 October 2019; accepted 23 December 2019)

The dispersion of a neutral solute band by electrokinetic flow in polyelectrolyte
layer (PEL)-grafted rectangular/slit microchannels is theoretically studied. The flow
is assumed to be both steady and fully developed and a first-order irreversible
reaction is considered at the wall to account for probable surface adsorption of
solutes. Considering low electric potentials, analytical solutions are obtained for
electric potential, fluid velocity and solute concentration. Special solutions are also
obtained for the case without wall adsorption. To track the dispersion properties
of the solute band, the generalized dispersion model is adopted by considering the
exchange, the convection and the dispersion coefficients. The solutions developed
are validated by comparing the results with the predictions of finite-element-based
numerical simulations. Even though the solutions can take any form of initial
solute concentration into account, the results are presented by considering a solute
band of rectangular shape. The results reveal that, while the short-term transport
coefficients are strongly affected by the initial concentration profile, the long-term
values are not dependent upon the initial conditions. In addition, it is shown that the
mass transport coefficients are strong functions of the channel aspect ratio; hence,
approximating a rectangular geometry by the space between two parallel plates may
lead to considerable errors in the estimation of mass transport characteristics. This
is particularly important for the dispersion coefficient for which the long-term values
for a slit microchannel are quite different from those for a rectangular channel
of very high aspect ratio. It is also illustrated that the exchange and convection
coefficients increase on increasing the Damköhler number, whereas the opposite is
true for the dispersion coefficient. The convection and dispersion coefficients are
generally increasing functions of the PEL fixed charge density and the PEL thickness
and decreasing functions of the PEL friction coefficient. Last but not least, a thicker
electric double layer is found to provide a larger degree of solute dispersion, which
is the opposite of that observed in a microchannel with bare walls.
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1. Introduction

The efficiency of solute transport inside microchannels is an important issue in
microfluidics (Datta & Ghosal 2009) because of its vast applications in different
areas such as microfluidic mixing (Wu & Nguyen 2005; Matsunaga, Lee & Nishino
2013; Sadeghi 2016), capillary electrophoresis (Wu, Qin & Lin 2008), capillary
electrochromatography and capillary liquid chromatography (Feltkamp 1966), DNA
amplification (Tripathi, Bozkurt & Chauhan 2005) and molecular separation (Garcia
et al. 2005). Solute transport occurs via advection, diffusion and hydrodynamic
dispersion mechanisms. The first mechanism takes place when solutes move with
the fluid flow and it is responsible for the transport of the centre of mass of an
injected solute band. The diffusive dispersion is due to random thermal motion of
solute molecules and a non-uniform velocity profile is the reason for hydrodynamic
dispersion. Because of hydrodynamic dispersion, a solute band is stretched in the
flow direction under a combined action of advection and diffusion (Masliyah &
Bhattacharjee 2006). Depending on the flow profile, hydrodynamic dispersion may be
more influential than molecular diffusion. For some applications, such as mixing, it
is desirable to increase the degree of dispersion to shorten the mixing time. However,
in applications like separation, it is preferable to decrease hydrodynamic dispersion
to achieve a better resolution. Therefore, investigating the parameters controlling the
hydrodynamic dispersion, such as the transport coefficients, is an important matter in
the design of microfluidic devices involving solute transport.

The first study on hydrodynamic dispersion was conducted by Taylor (1953) who
introduced an effective dispersion coefficient for a steady laminar flow in a straight
circular tube, which was then generalized by Aris (1956) by incorporating the effect
of axial molecular diffusion utilizing the method of moments. After these pioneering
studies, more research works were conducted to consider the effect of various
parameters on the solute dispersion coefficient. Analysing band broadening from initial
times after injection, Gill & Sankarasubramanian (1970) proposed a general model
expressing the transport coefficients as a function of time in a steady-state flow. More
progress was made by considering time variable flow (Gill & Sankarasubramanian
1972; Sankarasubramanian & Gill 1972; Vedel & Bruus 2011), oscillating flow (Ng
2006), non-uniformity of the injected solute band (Gill & Sankarasubramanian 1971,
1972) and interfacial as well boundary mass transfer (Sankarasubramanian & Gill
1973; Phillips & Kaye 1998; Ng 2006).

One important issue in microfluidics is robust flow generation as the high working
pressures required may lead to the failure of conventional pumping devices. To meet
the pumping requirements at the microscale, various pumping mechanisms have been
proposed among which electrokinetic phenomena such as electroosmosis have found
widespread applications (Sadeghi, Sadeghi & Saidi 2016). Electroosmosis refers to
flow mobilization of an electrolyte solution relative to a charged surface by utilizing
an external electric filed. The movement of fluid in electroosmotic flow (EOF) is due
to a redistribution of free ions in the solution because of surface charges, causing
the formation of an electric double layer (EDL) adjacent to the surface (Masliyah &
Bhattacharjee 2006; Keramati et al. 2016; Sadeghi et al. 2017). The non-uniformities
of the velocity profile are restricted to this layer and, hence, EOF usually has a flatter
velocity profile as compared to the Poiseuille flow. Accordingly, it can provide a better
resolution in processes in which minimum dispersion is favoured (Ng & Zhou 2012).
Besides low solute dispersion, EOF possesses other advantages, such as requiring no
moving components, which is crucial for the manufacturing of EOF-based instruments
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at the microscale. Thanks to its advantages, EOF is now a widely used actuation
method for flow generation in lab-on-a-chip devices (Vennela et al. 2012).

There are several research studies in the literature investigating the dispersion
of electrokinetically actuated flow in microchannels, most of which are related to
parallel-plate and circular geometries (Datta & Kotamarthi 1990; Andreev & Lisin
1993; Griffiths & Nilson 1999, 2000; Ng & Zhou 2012). Despite the importance
of the rectangular geometry, much less attention has been given to hydrodynamic
dispersion in rectangular microchannels (Dutta 2007; Paul & Ng 2012). A very
important aspect of solute dispersion in rectangular microchannels, that raises the
need for separate analyses for this geometry, is that the dispersion coefficient for
a rectangular microchannel of high aspect ratio does not reduce to the value for a
parallel-plate microchannel (Paul & Ng 2012).

The maximum achievable electroosmotic velocity for a given working fluid is
dependent upon both the applied electric field and surface zeta potential. As utilizing
large electric fields is accompanied by a high amount of Joule heating, which has
several unfavourable effects such as increasing band broadening, the only healthy
way for increasing the electroosmotic flow rate is to use surfaces having large zeta
potentials. However, in many situations, the design objectives are not met by natural
properties of the channel surface. In these cases, the surface may be altered to
achieve the desired characteristics. One of the main approaches of surface treatment
is to coat it with a polyelectrolyte layer (PEL), which may be formed by grafting
polymer brushes having electrically charged groups, termed polyelectrolyte brushes,
to the surface (Yeh et al. 2012). The presence of brushes alters the fluid flow by
affecting it in a twofold manner. First, the brushes directly exert a resistive force
on the fluid particles. Second, the fixed charged groups of the brushes indirectly
amplify fluid flow via accumulating free electrolyte ions of opposite charge within
the PEL. By appropriately adjusting the above-mentioned two effects, any desired
flow conditions may be obtained. It has been shown that by grafting polyelectrolyte
brushes to the inner surface of a microchannel, it is possible to increase the flow
rate by more than one order of magnitude (Paumier et al. 2008). On the other hand,
in some applications, such as capillary electrophoresis, polymer coating is used to
enhance the efficiency of separation by suppressing the generated electroosmotic flow
(Chiari et al. 2000; Hickey, Harden & Slater 2009). Because of the unique features
of polyelectrolyte coating, it is used in different applications such as colloidal
stabilization (Dautzenberg 1985), enhancement of biomaterial capability (Ratner et al.
2004) and control of membrane permeability among others.

Despite the importance of PEL-grafted microchannels, little attention has been
paid to the dispersion properties of electrokinetic flow in this type of microchannel.
The only available research study, which is the work due to Hoshyargar et al.
(2018), is based on the original study of Taylor and, hence, only the long-term
dispersion coefficient is given. More importantly, in spite of the fact that most
microfabrication techniques produce channels of rectangular cross-sectional area
(Stone, Stroock & Ajdari 2004; Sadeghi, Saidi & Sadeghi 2017), this study deals
with a parallel-plate geometry. Considering the importance of lateral walls on
the dispersion properties, the findings of this study may not be appropriate to
rectangular microchannels of even large aspect ratio. Last but not least, even though
the presence of polyelectrolyte brushes provides appropriate circumstances for the
adsorption of solutes at the channel walls, Hoshyargar et al. (2018) considered
no-flux boundary conditions. All of these gaps are bridged in the present study by
considering hydrodynamic dispersion by steady fully developed electroosmotic flow
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in a PEL-grafted slit/rectangular microchannel utilizing the generalized dispersion
model proposed by Gill & Sankarasubramanian (1970). This model enables us
to track an injected solute band from the time of injection by taking advantage
of three time-dependent transport factors including the exchange, the convection
and the dispersion coefficients. A first-order reaction is considered at the channel
walls to account for probable surface adsorption of solute molecules. The solutions
obtained are able to take any initial distribution of the solute band into account.
Although the validity of the analytical solutions presented are restricted to low
electric potentials, full numerical simulations are also performed to go beyond the
Debye–Hückel limit. By comparing the analytical and numerical results, it is shown
that the model developed is able to capture the dispersion properties of the problem
under consideration.

2. Problem formulation
2.1. Problem definition

Consideration is given to the unsteady dispersion of a solute band by electroosmotic
flow of a Newtonian liquid with constant physical properties in a straight rectangular
microchannel with PEL-grafted walls. The channel dimensions, the coordinate system,
located at the centre of the X–Y plane at the channel entrance and other details are
given in figure 1. It is assumed that the flow is both steady and fully developed. The
probable adsorption/reaction of the solutes at the channel walls is accounted for via
applying an irreversible first-order boundary reaction formula. The PEL is considered
to have a constant and uniform charge density and a uniform thickness all around the
channel with a sufficiently low grafting density to allow the use of the same values
of permittivity and viscosity inside and outside the PEL. Since a low grafting density
is considered, the volumetric density of the PEL fixed charges may be assumed to
be low enough to permit application of the Debye–Hückel linearization when treating
the problem analytically. It is further assumed that the Debye length is larger than the
hydraulic diameter of the channel so that the concentration polarization effect arising
due to the selective transport of ionic species can be ignored. Finally, the liquid is
considered to contain an electrolyte of a completely dissociated symmetric salt. Owing
to the symmetry, the analysis is limited to the first quarter of the channel.

2.2. Electric potential field
The overall electric potential field Φ(X, Y, Z) within the microchannel is the
superposition of the externally applied electric potential ϕ(Z) and the EDL electric
potential Ψ (X, Y), that is

Φ(X, Y, Z)=Ψ (X, Y)+ ϕ(Z). (2.1)

The electric potential is governed by the Poisson equation, written as

∇
2Φ =−

ρe

ε
, (2.2)

where ε represents the permittivity and ρe stands for the net electric charge density.
As noted before, the same permittivities are assumed within and outside of the
PEL. However, attention should be given to the fact that, since the permittivity of
polyelectrolyte brushes is lower than that of water, the PEL permittivity is generally
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Initial distribution

2H

x

Ly z

z = 0

2W

2aH

FIGURE 1. Schematic representation of the rectangular microchannel under consideration.
The internal surface of the microchannel is coated with a polyelectrolyte layer of thickness
L. The square of side length 2aH shows the shape of the initial solute distribution that is
considered in the presentation of results.

lower than solution permittivity. In fact, the range 52.8–78 is reported for the relative
permittivity of the PEL (Sadeghi, Azari & Hardt 2019). Whereas the lower limit
differs significantly from water permittivity, the upper limit is quite close to it.
This corresponds to the cases for which the grafting density is low, similar to the
circumstances considered in the present study.

There are two types of electric charge in the microchannel, namely solution ions,
which move freely throughout the whole domain under consideration, and PEL charges
that are fixed within this layer. The net electric charges of solution and PEL ions are
respectively given as

ρE = ezE(C+ −C−)= ezEC∞
[

exp
(
−

ezEΨ

kBT

)
− exp

(
ezEΨ

kBT

)]
= −2ezEC∞ sinh

(
ezEΨ

kBT

)
, (2.3)

ρPEL = eNPELzPEL, (2.4)

where e is the proton charge, KB shows the Boltzmann constant, T indicates the
absolute temperature, zE denote the valence of electrolyte ions and NPEL and zPEL are
the number density and valence of the PEL fixed charges, respectively. In addition,
C+ and C− stand for the number concentrations of cations and anions, respectively,
which both equal C∞ at neutral conditions. Note that a Boltzmann distribution is
assumed for the solution ions since the fluid velocity does not influence the ionic
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distribution in the normal direction to a rectilinear flow. Substituting (2.3) and (2.4)
into (2.2) and recalling that ∇2ϕ = 0 for a constant applied electric field, one obtains

∂2Ψ

∂X2
+
∂2Ψ

∂Y2
−

2ezEC∞

ε
sinh

(
ezEΨ

kBT

)
+

eNzPEL

ε
= 0. (2.5)

The parameter N appearing in (2.5), which is equal to NPEL and 0 inside and outside
of the grafted layer, respectively, reminds us of the fact that the existence of the fixed
charges is limited to the PEL. It should be pointed out that the spatial distribution
of the PEL fixed charges is generally non-uniform, with a decreasing dependence
on the normal distance from the hard wall; however, depending on the properties
of the electrolyte and brushes, situations may be found in which a uniform charge
distribution, considered in this study, is reasonable (Sadeghi et al. 2019). For low
grafting densities, the electric potential is so low that the term sinh(ezEΨ/kBT)
can be approximated by ezEΨ/kBT . This approximation, known as Debye–Hückel
linearization, modifies equation (2.5) as

∂2Ψ

∂X2
+
∂2Ψ

∂Y2
− 2

(
e2z2

EC∞

kBTε
Ψ

)
+

eNzPEL

ε
= 0. (2.6)

By introducing the dimensionless parameters as below,

x=
X
H
, y=

Y
H
, ψ =

ezEΨ

kBT
, N∗=

N
NPEL

, K=H/λE, ηλ= λPEL/λE, (2.7a−f )

with λE = (kBTε/2C∞e2z2
E)

1/2 and λPEL= (kBTε/zEzPELNPELe2)1/2 being the characteri-
stic and PEL Debye lengths, respectively, equation (2.6) is scaled as

∂2ψ

∂x2
+
∂2ψ

∂y2
−K2ψ +K2η−2

λ N∗ = 0. (2.8)

The boundary conditions associated with (2.8) include

∂ψ

∂x

∣∣∣∣
x=0

=
∂ψ

∂x

∣∣∣∣
x=w

=
∂ψ

∂y

∣∣∣∣
y=0

=
∂ψ

∂y

∣∣∣∣
y=1

= 0, (2.9)

where w = W/H. The boundary conditions (2.9) reflect symmetry at the centrelines
and the neutrality of the rigid walls of the microchannel. Since the electrical potential
and its gradient are continuous at the electrolyte–PEL interface, we consider for both
domains a single solution of the form

ψ =

∞∑
j=1

bj cos(ξljy) cos(ξmjx/w), (2.10)

where ξlj = ljπ and ξmj =mjπ with lj= 0, 1, 2, . . . and mj= 0, 1, 2, . . . . The form (2.10)
satisfies the pertinent boundary conditions. Substituting this functional form into (2.8)
results in

∞∑
j=1

bj(ξ
2
lj + ξ

2
mj
/w2
+K2) cos(ξljy) cos(ξmjx/w)=K2η−2

λ N∗. (2.11)
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Multiplying both sides of (2.11) by cos(ξliy) cos(ξmix/w), integrating over the
dimensionless cross-sectional area and making use of the orthogonality conditions,
we obtain

bi(ξ
2
li + ξ

2
mi
/w2
+K2)

∫ w

0

∫ 1

0
cos2(ξliy) cos2(ξmix/w) dy dx

=K2η−2
λ

∫ w

0

∫ 1

0
N∗ cos(ξliy) cos(ξmix/w) dy dx. (2.12)

Performing the integrations, bi is obtained as bi = ci/ai where

ci = K2η−2
λ w

s
δ0,li+mi −

{
δ0,li(1− l)+ (1− δ0,li)

sin[ξli(1− l)]
ξli

}{
δ0,mi(1− l/w)

+ (1− δ0,mi)
sin[ξmi(1− l/w)]

ξmi

}{
, (2.13a)

ai =
1

4w
[w2ξ 2

li (1+ δ0,mi)+ ξ
2
mi
(1+ δ0,li)+K2w2(1+ δ0,mi)(1+ δ0,li)], (2.13b)

where δ denotes the Kronecker delta and l = L/H is the dimensionless thickness of
the grafted layer.

2.2.1. Special solution for w→∞
When the channel aspect ratio is very large, that is for 1� w, the dependence of

the physical parameters on the x-coordinate vanishes. The solutions obtained under
these circumstances are computationally less expensive and are more appropriate
to experimentalists. The electric potential distribution for this case is found by
solving the following ordinary differential equations for outside and inside the PEL,
respectively,

d2ψE

dy2
−K2ψE = 0, (2.14)

d2ψPEL

dy2
−K2ψPEL +K2η−2

λ = 0, (2.15)

which are subject to the following boundary and interfacial conditions:

dψE

dy

∣∣∣∣
y=0

=
dψPEL

dy

∣∣∣∣
y=1

= 0, (2.16a)

ψE|y=1−l = ψPEL|y=1−l , (2.16b)
dψE

dy

∣∣∣∣
y=1−l

=
dψPEL

dy

∣∣∣∣
y=1−l

. (2.16c)

It can be shown that the solutions of (2.14) and (2.15) subject to the pertinent
boundary conditions are given as

ψE = bE1 cosh(Ky), (2.17)
ψPEL = bPEL1[cosh(Ky)− tanh K sinh(Ky)] + η−2

λ γ
−1, (2.18)
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where

bE1 = η−2
λ {sinh[K(1− l)]}−1

{tanh[K(1− l)]

− tanh K} J{tanh[K(1− l)]}−1
{tanh[K(1− l)] − tanh K} − 1

+ tanh K tanh[K(1− l)]K−1
, (2.19a)

bPEL1 = η−2
λ {cosh[K(1− l)]}−1 J{tanh[K(1− l)]}−1

{tanh[K(1− l)] − tanh K} − 1

+ tanh K tanh[K(1− l)]K−1
. (2.19b)

2.3. Velocity distribution
For evaluation of the velocity field, the mathematical representation of the momentum
conservation law must be solved. For an incompressible flow of Newtonian fluids with
constant physical properties, the general form of the momentum equation reads

ρ
DU
Dt
=−∇P+µ∇2U+F, (2.20)

where parameters ρ, t, U, P, µ and F denote the density, time, velocity vector,
pressure, dynamic viscosity and body force vector, respectively. Since the flow is
assumed to be both steady and fully developed, the inertia term is dropped from the
momentum equation and the axial velocity Uz becomes a function of the transverse
coordinates only. The body force vector F is the superposition of the force exerted
on the ions by the electric field E, given as ρeE, and the drag force created by the
polyelectrolyte brushes. The widely accepted approach to accounting for the drag
force is to consider a volumetric resistive force proportional to the velocity, which is
equivalent to modelling the PEL as a porous medium utilizing the Brinkman equation.
For a fully developed flow, such a resistive force is given as fPELUz where fPEL is
the friction coefficient of the PEL per unit volume. Adding the above-mentioned
terms to the Navier–Stokes equation and substituting for ρe from (2.3) and (2.4), the
momentum equation in the axial direction becomes

µ

(
∂2Uz

∂X2
+
∂2Uz

∂Y2

)
− fUz − 2ezEEzC∞ sinh

(
ezEψ

kBT

)
= 0, (2.21)

where Ez is the applied electric field and the friction coefficient f is equal to fPEL

inside the grafted layer and 0 within the electrolyte. By introducing the following new
dimensionless parameters

U0 =−
εkBTEz

ezEµ
, u=

Uz

U0
, f∗ =

f

fPEL
, α =H

(
fPEL

µ

)1/2

, (2.22a−d)

with U0 = −εkBTEz/eµzE being the reference velocity, and performing the Debye–
Hückel linearization, the momentum equation (2.21) can be scaled as

∂2u
∂x2
+
∂2u
∂y2
− α2f∗u+K2ψ = 0. (2.23)
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The momentum equation is subject to symmetry and no-slip boundary conditions,
which are written in dimensionless form as

∂u
∂x

∣∣∣∣
x=0

= u|x=w =
∂u
∂y

∣∣∣∣
y=0

= u|y=1 = 0. (2.24)

The solution of (2.23) satisfying the pertinent boundary conditions may be expressed
as

u=
∞∑

j=1

dj cos(ξrjy) cos(ξqjx/w), (2.25)

where ξrj = (2rj+1)π/2 and ξqj = (2qj+1)π/2 with rj=0,1,2, . . . and qj=0,1,2, . . . .
Substituting the forms (2.10) and (2.25) into (2.23), multiplying both sides by
cos(ξriy) cos(ξqix/w) and integrating over the dimensionless cross-sectional area, one
gets

∞∑
j=1

dj

∫ w

0

∫ 1

0
(ξ 2

rj
+ ξ 2

qj
/w2
+ α2f∗) cos(ξriy) cos(ξqix/w) cos(ξrjy) cos(ξqjx/w) dy dx

=K2
∞∑

j=1

bj

∫ w

0

∫ 1

0
cos(ξriy) cos(ξqix/w) cos(ξljy) cos(ξmjx/w) dy dx. (2.26)

It should be pointed out that, because of the position-dependent nature of f∗, the
orthogonality condition does not hold for this case. Truncating the series on the left
side from the Nth term and that on the right side from the Mth term and performing
the integrations, a system of N equations of N unknowns including d1, d2, . . . , dN are
obtained that may be written in matrix form as

Ed=H, (2.27)

where the matrix E and vector H have the following elements:

eij =
δri,rjδqi,qj

4w
(w2ξriξrj + ξqiξqj)+

α2

4
wδri,rjδqi,qj

−
α2w

4

s
δri,rj

{
1− l+

sin[2ξri(1− l)]
2ξri

}
+ (1− δri,rj)

{
sin[(ξri − ξrj)(1− l)]

ξri − ξrj

−
sin[(ξri + ξrj)(1− l)]

ξri + ξrj

}{ s
δqi,qj

{
1− l/w

+
sin[2ξqi(1− l/w)]

2ξqi

}
+ (1− δqi,qj)

{
sin[(ξqi − ξqj)(1− l/w)]

ξqi − ξqj

+
sin[(ξqi + ξqj)(1− l/w)]

ξqi + ξqj

}{
, (2.28)

hi =K2
M∑

j=1

wbj

4

[
(−1)ri−lj

ξri − ξlj
+
(−1)ri+lj

ξri + ξlj

] [
(−1)qi−mj

ξqi − ξmj

+
(−1)qi+mj

ξqi + ξmj

]
.

So the vector d, which stands for the coefficients dj, can be readily obtained as
d= E−1H.
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As soon as the dimensionless velocity u is obtained, the dimensionless mean
velocity can be evaluated as

um =

∫ w

0

∫ 1

0
u dy dx∫ w

0

∫ 1

0
dy dx

=

N∑
j=1

dj(−1)rj+qj

ξrjξqj

. (2.29)

2.3.1. Special solution for w→∞
The momentum equation for this case reduces to the following equations for the

electrolyte and the PEL:

d2 uE

dy2
+K2uE = 0, (2.30)

d2 uPEL

dy2
− α2uPEL +K2ψPEL = 0. (2.31)

In addition, the boundary and interfacial conditions read

duE

dy

∣∣∣∣
y=0

= uPEL|y=1 = 0, (2.32a)

uE|y=1−l = uPEL|y=1−l, (2.32b)
duE

dy

∣∣∣∣
y=1−l

=
duPEL

dy

∣∣∣∣
y=1−l

. (2.32c)

It can be demonstrated that the solutions of (2.30) and (2.31) subject to the
conditions (2.32) are given as

uE =−bE1 cosh(Ky)+ bE2, (2.33)

uPEL = bPEL2[cosh(αy)− coth α sinh(αy)]

+

[
(cosh K)−1

(
K2bPEL1

K2 − α2

)
−

K2

α2η2
λ

]
sinh(αy)
sinh α

−

(
K2bPEL1

K2 − α2

)
cosh(Ky)+ tanh K

(
K2bPEL1

K2 − α2

)
sinh(Ky)+

K2

α2η2
λ

, (2.34)

where

bE2 = bPEL2{cosh[α(1− l)] − coth α sinh[α(1− l)]}

+

[
(cosh K)−1

(
K2bPEL1

K2 − α2

)
−

K2

α2η2
λ

]
sinh[α(1− l)]

sinh α
−

(
K2bPEL1

K2 − α2

)
cosh[K(1− l)]

+ tanh K
(

K2bPEL1

K2 − α2

)
sinh[K(1− l)] +

K2

α2η2
λ

+ bE1 cosh[K(1− l)], (2.35a)

bPEL2 = α−1
{sinh[α(1− l)] − coth α cosh[α(1− l)]}−1

{
− bE1K sinh[K(1− l)]
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−α

[
(cosh K)−1

(
K2bPEL1

K2 − α2

)
−

K2

α2η2
λ

]
×

cosh[α(1− l)]
sinh α

+

(
K3bPEL1

K2 − α2

)
sinh[K(1− l)]

−

(
K3bPEL1

K2 − α2

)
tanh K cosh[K(1− l)]

}
. (2.35b)

And the mean velocity becomes

um =

∫ 1−l

0
uE dy+

∫ 1

1−l
uPEL dy

= −
bE1

K
sinh[K(1− l)] + bE2(1− l)

−α−1bPEL2{sinh[α(1− l)] − coth α cosh[α(1− l)] + (sinh α)−1
}

+K2α−1

[
(cosh K)−1

(
bPEL1

K2 − α2

)
− α−2η−2

λ

] {
coth α −

cosh[α(1− l)]
sinh α

}
−

(
KbPEL1

K2 − α2

)
{sinh K − sinh[K(1− l)]} + tanh K

(
KbPEL1

K2 − α2

)
×{cosh K − cosh[K(1− l)]} +

K2l
α2η2

λ

. (2.36)

2.4. Concentration field
The solute concentration distribution due to an injection source at z = 0 can be
described by the following transient advective–diffusive equation:

∂C
∂τ
+∇ · (UC)=∇ · (D∇C), (2.37)

where τ denotes the time, D stands for the molecular diffusivity and C is the number
concentration of solutes. Note that, due to the presence of polyelectrolyte brushes,
the molecular diffusivity in the PEL is smaller than that in the bulk. Nevertheless,
considering the fact that the effective diffusion coefficient in a porous medium of high
porosity is approximately the same as that in void spaces (Vafai 2005), the diffusion
coefficient in the soft layer may be considered the same as that in the bulk due to
the small grafting densities assumed in the analysis. As we would like to perform
separate analyses for slit and rectangular microchannels, the subscripts 1 and 2 are
hereafter used for these geometries, respectively, to distinguish between the associated
concentrations. Since we consider a fully developed flow of a liquid with constant
thermophysical properties, equation (2.37) can be simplified to yield the following
equations for slit and rectangular geometries, respectively,

∂C1

∂τ
+Uz

∂C1

∂Z
=D

[
∂2C1

∂Y2
+
∂2C1

∂Z2

]
, (2.38)

∂C2

∂τ
+Uz

∂C2

∂Z
=D

[
∂2C2

∂X2
+
∂2C2

∂Y2
+
∂2C2

∂Z2

]
, (2.39)
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which are subject to the following initial and boundary conditions:

C1(0, Y, Z)=C0Hδ(Z)θ1(Y), (2.40a)
∂C1

∂Y

∣∣∣∣
Y=0

=
∂C1

∂X

∣∣∣∣
X=0

= 0, (2.40b)

−D
∂C1

∂Y

∣∣∣∣
Y=H

= kRC1|Y=H, −D
∂C1

∂X

∣∣∣∣
X=W

= kRC1|X=W, (2.40c)

lim
Z→∞

C1 = lim
Z→∞

∂C1

∂Z
= 0, (2.40d)

C2(0, X, Y, Z)=C0Hδ(Z)θ2(X, Y), (2.41a)
∂C2

∂Y

∣∣∣∣
Y=0

=
∂C2

∂X

∣∣∣∣
X=0

= 0, (2.41b)

−D
∂C2

∂Y

∣∣∣∣
Y=H

= kRC2|Y=H, −D
∂C2

∂X

∣∣∣∣
X=W

= kRC2|X=W, (2.41c)

lim
Z→∞

C2 = lim
Z→∞

∂C2

∂Z
= 0, (2.41d)

where δ is the Dirac delta function. Equations (2.40c) and (2.41c) show that an
irreversible first-order reaction with the rate kR occurs at the walls. It is here
emphasized that, although irreversible reactions are possible in microfluidic devices,
surface adsorption is mainly a reversible phenomenon, which is usually modelled by
a first-order Langmuir adsorption model (Sadeghi et al. 2014). Approximating the
Langmuir model by the form given in (2.40c) and (2.41c) is inevitable for analytical
tractability of the problem. This way, we neglect some characteristics of reversible
surface reactions, while retaining its most important physical features that are the
same as those for reversible reactions.

Equations (2.38) and (2.39) are made dimensionless by using the following
dimensionless parameters:

ci =
Ci

C0
, t=

τD
H2
, z=

Z
HPe

, Pe=
HU0

D
, Da=

HkR

D
. (2.42a−e)

The dimensionless solute transport equations and the pertinent initial and boundary
conditions then become

∂c1

∂t
+ u1(y)

∂c1

∂z
=
∂2c1

∂y2
+

1
Pe2

∂2c1

∂z2
, (2.43)

c1(0, y, z)= Pe−1δ(z)θ1(y), (2.44a)
∂c1

∂y

∣∣∣∣
y=0

= 0, (2.44b)

∂c1

∂y

∣∣∣∣
y=1

=−Dac1|y=1, (2.44c)

lim
z→∞

c1 = lim
z→∞

∂c1

∂z
= 0, (2.44d)
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∂c2

∂t
+ u2(x, y)

∂c2

∂z
=
∂2c2

∂x2
+
∂2c2

∂y2
+

1
Pe2

∂2c2

∂z2
, (2.45)

c2(0, x, y, z)= Pe−1δ(z)θ2(x, y), (2.46a)
∂c2

∂y

∣∣∣∣
y=0

=
∂c2

∂x

∣∣∣∣
x=0

= 0, (2.46b)

∂c2

∂y

∣∣∣∣
y=1

=−Dac2|y=1,
∂c2

∂x

∣∣∣∣
x=w

=−Dac2|x=w, (2.46c)

lim
z→∞

c2 = lim
z→∞

∂c2

∂z
= 0. (2.46d)

The unsteady transport equation with the associated initial and boundary conditions
can be solved using the method proposed by Gill & Sankarasubramanian (1970). In
this method, the solute concentration c is expanded in an infinite series as follows:

c1(t, y, z)=
∞∑

n=0

fn,1(t, y)
∂ncm,1(t, z)

∂zn
, (2.47)

c2(t, x, y, z)=
∞∑

n=0

fn,2(t, x, y)
∂ncm,2(t, z)

∂zn
, (2.48)

where the dimensionless mean concentration cm(t, z) is defined as

cm,1(t, z)=
∫ 1

0
c1 dy, (2.49)

cm,2(t, z)=

∫ w

0

∫ 1

0
c2 dy dx

w
. (2.50)

By integrating the dimensionless concentration equations (2.43) and (2.45) over the
microchannel cross-sectional area and using the mean concentration definition in (2.49)
and (2.50) we will have

∂cm,1

∂t
=

1
Pe2

∂2cm,1

∂z2
+
∂c1

∂y

∣∣∣∣
y=1

−
∂

∂z

∫ 1

0
u1c1 dy, (2.51)

∂cm,2

∂t
=

1
Pe2

∂2cm,2

∂z2
+

1
w

(∫ 1

0

∂c2

∂x

∣∣∣∣
x=w

dy+
∫ w

0

∂c2

∂y

∣∣∣∣
y=1

dx

)

−
1
w
∂

∂z

∫ 1

0

∫ w

0
u2c2 dx dy. (2.52)

Then, substituting the local concentration formulas from (2.47) and (2.48) into
(2.51) and (2.52) and rearranging gives the following dispersion model for cm:

∂cm,i

∂t
=

∞∑
n=0

Kn,i(t)
∂ncm,i(t, z)

∂zn
, i= 1, 2, (2.53)
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where the coefficients Kn,i(t) are

Kn,1(t)=
δn,2

Pe2
+
∂fn,1

∂y

∣∣∣∣
y=1

−

∫ 1

0
u1(y)fn−1,1 dy, n= 0, 1, 2, . . . , (2.54)

Kn,2(t) =
δn,2

Pe2
+

1
w

(∫ 1

0

∂fn,2

∂x

∣∣∣∣
x=w

dy+
∫ w

0

∂fn,2

∂y

∣∣∣∣
y=1

dx

)

−
1
w

∫ 1

0

∫ w

0
u2(x, y)fn−1,2 dx dy, n= 0, 1, 2 . . . . (2.55)

Neglecting the terms with 36n due to their negligible contribution to the dispersion
of the mean concentration, equation (2.53) is reduced to

∂cm,i

∂t
=K0,i(t)cm,i +K1,i(t)

∂cm,i

∂z
+K2,i(t)

∂2cm,i

∂z2
, (2.56)

where K0,i(t) is the exchange coefficient due to non-zero solute flux at the tube wall,
K1,i(t) is the convection coefficient due to convective transport of the solutes and
K2,i(t) is the dispersion coefficient due to molecular diffusion and non-uniformity of
the velocity profile. So the behaviour of solute dispersion can be described well by
evaluating these three transport coefficients.

Besides appropriate initial and boundary conditions, the determination of K0,i(t),
K1,i(t) and K2,i(t) is needed to solve (2.56). Considering (2.54) and (2.55), we must
first evaluate functions fn. The equations governing fn can be achieved by substituting
the local concentration distributions from (2.47) and (2.48) and also the time derivative
of cm from (2.53) into (2.43) and (2.45) and then equating the coefficients of ∂ncm/∂zn.
The desired equations then read

∂fn,1

∂t
=
∂2fn,1

∂y2
+

fn−2,1

Pe2
− u1fn−1,1 −

∞∑
i=0

fn−i,1Ki,1(t), (2.57)

∂fn,2

∂t
=
∂2fn,2

∂x2
+
∂2fn,2

∂y2
+

fn−2,2

Pe2
− u2fn−1,2 −

∞∑
i=0

fn−i,2Ki,2(t), (2.58)

where f−1 = f−2 = · · · = 0. Substituting (2.47) and (2.48) into (2.44) and (2.46) and
recalling that cm,i(0, z)=Pe−1δ(z)θm,i where θm,1=

∫ 1
0 θ1 dy and θm,2=

∫ 1
0

∫ w
0 θ2 dx dy/w,

the associated initial and boundary conditions are obtained as

f0,1(0, y)=
θ1(y)
θm,1

, fn>1,1(0, y)= 0, (2.59a)

∂fn,1

∂y

∣∣∣∣
y=0

= 0, (2.59b)

∂fn,1

∂y

∣∣∣∣
y=1

=−Dafn,1|y=1, (2.59c)

f0,2(0, x, y)=
θ2(x, y)
θm,2

, fn>1,2(0, x, y)= 0, (2.60a)
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∂fn,2

∂x

∣∣∣∣
x=0

=
∂fn,2

∂y

∣∣∣∣
y=0

= 0, (2.60b)

∂fn,2

∂x

∣∣∣∣
x=w

=−Dafn,2|x=w,
∂fn,2

∂y

∣∣∣∣
y=1

=−Dafn,2|y=1. (2.60c)

Now, integrating (2.59a) and (2.60a) over the dimensionless cross-sectional area
provides ∫ 1

0
fn,1 dy= δn,0, (2.61)

1
w

∫ w

0

∫ 1

0
fn,2 dy dx= δn,0. (2.62)

In order to obtain the unsteady solution transport in the microchannel, the unknown
parameters K0,i(t), K1,i(t), K2,i(t) and f0,i(t, x, y), f1,i(t, x, y) and f2,i(t, x, y) must
be evaluated via solving the coupled systems of (2.57) and (2.58) subject to the
associated boundary conditions given in (2.59) and (2.60). An appropriate method is
to utilize the eigenfunction expansion, a method that is adopted here.

2.4.1. Exchange coefficient
The equation governing the parameter f0 can be written by substituting n= 0 into

(2.57) and (2.58) as follows:

∂f0,1

∂t
=
∂2f0,1

∂y2
− f0,1K0,1, (2.63)

∂f0,2

∂t
=
∂2f0,2

∂x2
+
∂2f0,2

∂y2
− f0,2K0,2, (2.64)

with the associated initial and boundary conditions, given in (2.59) and (2.60), for
n= 0. The solution of f0 can be determined as

f0,i(x, y, t)=
∞∑

n=0

An,iEXP(n, t, i) exp
[
−

∫ t

0
K0,i(s) ds

]
COS(n, x, y, i), (2.65)

where

EXP(n, t, i)= δ1,i exp(−λ2
nt)+ δ2,i exp(−λ2

rn − γ
2
sn)t, (2.66)

COS(n, x, y, i)= δ1,i cos(λny)+ δ2,i cos(λrny) cos(γsnx). (2.67)

The eigenvalues λrn and γsn or λn must satisfy the following equations:

λrn sin λrn =Da cos λrn, γsn sin(γsnw)=Da cos(γsnw), (2.68a,b)

λn sin λn =Da cos λn. (2.69)

Moreover, the constants An,i are determined, by the substitution of the form (2.65)
into (2.59a) and (2.60a) for n= 0, as

An,i =

∫ 1

0

[
θδ1,iCOS(n, x, y, 1)+ δ2,i

∫ w

0
θCOS(n, x, y, 2) dx

]
dy

θm,iINTCOS(n, i)
, (2.70)
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where

INTCOS(n, i)= δ1,iIntcos_1(n)+ δ2,iIntcos_2(n), (2.71)

Intcos_1(n)=
∫ 1

0
cos2(λny) dy=

1
2
+

1
4λn

sin(2λn), (2.72)

Intcos_2(n) =
∫ w

0

∫ 1

0
cos2(γsnx) cos2(λrny) dy dx

=

[
1
2
+

1
4λrn

sin(2λrn)

] [
w
2
+

1
4γsn

sin(2wγsn)

]
. (2.73)

Using the integral condition in (2.61) and (2.62), one obtains

exp
[
−

∫ t

0
K0,i(s) ds

]
=

δ1,i + δ2,iw
∞∑

n=1

An,iEXP(n, t, i)INTEIGEN(n, i)

, (2.74)

where

INTEIGEN(n, i)= δ1,i(sin λn/λn)+ δ2,i(sin λrn/λrn)[sin(γsnw)/γsn]. (2.75)

So the function f0,i is obtained as

f0,i(x, y, t)=

(δ1,i + δ2,iw)
∞∑

n=0

An,iEXP(n, t, i)COS(n, x, y, i)

∞∑
n=1

An,iEXP(n, t, i)INTEIGEN(n, i)

. (2.76)

The exchange coefficient can now be determined from (2.54) and (2.55) for n= 0 as

K0,i(t)=−

Da
∞∑

n=0

An,iEXP(n, t, i)F(n, i)

∞∑
n=0

An,iEXP(n, t, i)INTEIGEN(n, i)

, (2.77)

where

F(n, i)= δ1,i cos λn + δ2,i

[
sin λrn cos(γsnw)

λrn
+

sin(γsnw) cos λrn

γsn

]
. (2.78)

2.4.2. Convection coefficient
The equation governing the function f1 can be derived from (2.57) and (2.58) by

setting n= 1 as

∂f1,1

∂t
=
∂2f1,1

∂y2
− f0,1(u1 +K1,1)− f1,1K0,1, (2.79)
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∂f1,2

∂t
=
∂2f1,2

∂x2
+
∂2f1,2

∂y2
− f0,2(u2 +K1,2)− f1,2K0,2. (2.80)

The associated initial and boundary conditions are obtained by setting n=1 in (2.59)
and (2.60). The solution for f1 satisfying the initial and boundary conditions can be
determined as below

f1,i = − exp
[
−

∫ t

0
K0,i(s) ds

] ∞∑
p=0

{
∞∑

n=0

[
An,iINTU2(n, p)
INTCOS(p, i)

INTEXP(n, p, t)
]

+ Ap,iEXP(p, t, i)
∫ t

0
K1,i(s) ds

}
COS(p, x, y, i), (2.81)

where

INTU2(n, p)= δ1,iIntU2_1(n, p)+ δ2,iIntU2_2(n, p), (2.82)

IntU2_1(n, p)=
∫ 1

0
u1 cos(λny) cos(λpy) dy, (2.83)

IntU2_2(n, p) =
∫ w

0

∫ 1

0
u2 cos(γsnx) cos(γspx) cos(λrny) cos(λrpy) dy dx

=

N∑
j=1

dj
(−1)rj+qj

16

[
cos(λrn + λrp)

ξrj − λrn − λrp
+

cos(λrn − λrp)

ξrj − λrn + λrp
+

cos(λrn − λrp)

ξrj + λrn − λrp

+
cos(λrn + λrp)

ξrj + λrn + λrp

] {
cos[w(γsn + γsp)]

ξqj − γsn − γsp
+

cos[w(γsn − γsp)]

ξqj − γsn + γsp

+
cos[w(γsn − γsp)]

ξqj + γsn − γsp
+

cos[w(γsn + γsp)]

ξqj + γsn + γsp

}
, (2.84)

INTEXP(n, p, t)= δ1,iIntexp_1(n, p, t)+ δ2,iIntexp_2(n, p, t), (2.85)

Intexp_1(n, p, t)= (1− δn,p)
exp(−λ2

nt)− exp(−λ2
pt)

λ2
p − λ

2
n

+ δn,pt exp(−λ2
nt), (2.86)

Intexp_2(n, p, t) = (1− δn,p)
exp[−(λ2

rn + γ
2
sn)t] − exp[−(λ2

rp + γ
2
sp)t]

λ2
rp − λ

2
rn + γ

2
sp − γ

2
sn

+ δn,pt exp[−(λ2
rn + γ

2
sn)t]. (2.87)

The term
∫ t

0 K1(s) ds can be found, by applying the integral conditions in (2.61) and
(2.62), as

∫ t

0
K1,i(s) ds=−

∞∑
p=0

[
∞∑

n=0

An,iINTU2(n, p)
INTCOS(p)

INTEXP(n, p, t)

]
INTEIGEN(p, i)

∞∑
p=0

Ap,iEXP(p, t, i)INTEIGEN(p, i)

.

(2.88)
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It is now time to derive the expression of the convection coefficient that is obtained
from (2.54) and (2.55) as

K1,i(t)

=
Da

δ2,iw+ δ1,i
exp

[
−

∫ t

0
K0i(s) ds

] ∞∑
p=0

{
∞∑

n=0

[
AniINTU2(n, p)

INTCOS(p)
INTEXP(n, p, t)

]

+ Ap,iEXP(p, t, i)
∫ t

0
K1,i(s) ds

}
F(p, i)

−

exp
[
−

∫ t

0
K0,i(s) ds

]
δ2,iw+ δ1,i

∞∑
n=0

An,iEXP(n, t, i)INTU1(n, i), (2.89)

where
INTU1(n, i)= δ1,iIntU1_1(n)+ δ2,iIntU1_2(n), (2.90)

IntU1_2(n) =
∫ w

0

∫ 1

0
u2 cos(γsnx) cos(λrny) dy dx

=

N∑
j=1

dj
(−1)rj+qjξrjξqj cos λrn cos(γsnw)

(ξ 2
rj
− λ2

rn)(ξ
2
qj
− γ 2

snw2)
, (2.91)

IntU1_1(n)=
∫ 1

0
u1 cos(λny) dy=

∫ 1

1−l
uPEL cos(λny) dy+

∫ 1−l

0
uE cos(λny) dy

=
B2

α2 + λ2
n

{λn sin[λn(l− 1)] cosh[α(l− 1)] + α cos[λn(l− 1)] sinh[α(l− 1)]

+ λn sin λn cosh α + α cos λn sinh α}

+

(
B2 coth α −

1
sinh α

[
(cosh K)−1

(
K2B1

K2 − α2

)
−

K2

α2η2
λ

])
α2 + λ2

n

× {α cos[λn(l− 1)] cosh[α(l− 1)]
+ λn sin[λn(l− 1)] sinh[α(l− 1)] − α cos λn cosh α − λn sin λn sinh α}

−
K2B1

(K2 − α2)(K2 + λ2
n)
{λn sin[λn(l− 1)] cosh[K(l− 1)]

+K cos[λn(l− 1)] sinh[K(l− 1)] + λn sin λn cosh K +K cos λn sinh K}

−

(
tanh K
α2 + λ2

n

)(
K2B1

K2 − α2

)
{K cos[λn(l− 1)] cosh[K(l− 1)]

+ λn sin[λn(l− 1)] sinh[K(l− 1)] −K cos λn cosh K − λn sin λn sinh K}

+
K2

λnα2η2
λ

{sin[λn(l− 1)] + sin λn}

+
1

λn(K2 + λ2
n)
{λ2

nA1 sin[λn(l− 1)] cosh[K(l− 1)]

+A1Kλn cos[λn(l− 1)] sinh[K(l− 1)] − A2K2 sin[λn(l− 1)]
− λ2

nA2 sin[λn(l− 1)]} . (2.92)
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2.4.3. Dispersion coefficient
Setting n= 2 in (2.57) and (2.58), the equations governing f2 are derived as below

∂f2,2

∂t
=
∂2f2,2

∂x2
+
∂2f2,2

∂y2
− f2,2K0,2 − f1,2(u2 +K1,2)+

[
1

Pe2
−K2,2(t)

]
f0,2, (2.93)

∂f2,1

∂t
=
∂2f2,1

∂y2
− f2,1K0,1 − f1,1(u1 +K1,1)+

[
1

Pe2
−K2,1(t)

]
f0,1, (2.94)

which are to be solved subject to initial and boundary conditions given by (2.59) and
(2.60) for n = 2. Using the method of eigenfunction expansion, the solution for f2

satisfying the initial and boundary conditions can be obtained as

f2,i = − exp
[
−

∫ t

0
K0,i(s) ds

]{ ∞∑
q=0

EXP(q, t, i)

×

{∫ t

0

ds
EXP(q, s, i)

exp
[∫ s

0
K0,i(s′) ds′

]
[X1

q,i(s)+ X2
q,i(s)]

− Aq,i

∫ t

0

[
1

Pe2
−K2,i(s)

]
ds
}

COS(q, x, y, i)

}
, (2.95)

where

X1
q,i(t) = − exp

[
−

∫ t

0
K0,i(s) ds

]
[INTCOS(q)]−1

×

∞∑
p=0

{
∞∑

n=0

[
An,iINTU2(n, p)

INTCOS(p)
INTEXP(n, p, t)

]

+ Ap,iEXP(p, t, i)
∫ t

0
K1,i(s) ds

}
INTU2(p, q), (2.96)

X2
q,i(t) = −K1,i(t) exp

[
−

∫ t

0
K0,i(s) ds

]{ ∞∑
n=0

[
An,iINTU2(n, q)

INTCOS(q)
INTEXP(n, q, t)

]

+ Aq,iEXP(q, t, i)
∫ t

0
K1,i(s) ds

}
. (2.97)

And from the integral conditions, equations (2.61) and (2.62), we will have∫ t

0

[
1

Pe2
−K2i(s)

]
ds

=

[
∞∑

q=0

Aq,iEXP(q, t, i)INTEIGEN(q, i)

]−1
∞∑

q=0

EXP(q, t, i)

×

{∫ t

0

1
EXP(q, s, i)

exp
[∫ s

0
K0i(s′) ds′

]
(X1

q,i + X2
q,i)

}
INTEIGEN(q, i). (2.98)
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So the dispersion coefficient can be derived via equations (2.54) and (2.55) as

K2,i(t)=
1

Pe2
+

Da
δ2,iw+ δ1,i

exp
[
−

∫ t

0
K0i(s) ds

]
×

{
∞∑

q=0

EXP(q, t, i)
{∫ t

0

1
EXP(q, s, i)

exp
[∫ s

0
K0i(s′) ds′

]
(X1

q,i + X2
q,i)

− Aq,i

∫ t

0

[
1

Pe2
−K2,i(s)

]
ds
}
F(q, i)

}

+
1

δ2,iw+ δ1,i
exp

[
−

∫ t

0
K0,i(s) ds

] ∞∑
p=0

{
∞∑

n=0

[
AniINTU2(n, p)

INTCOS(p)
INTEXP(n, p, t)

]

+ Ap,iEXP(p, t, i)
∫ t

0
K1,i(s) ds

}
INTU1(p, i). (2.99)

2.4.4. Solute concentration expression
The solution of (2.56) satisfying the associated initial and boundary conditions,

derived via the cross-sectional averaging of (2.44a), (2.46a), (2.44d) and (2.46d), is
obtained by the Fourier transform method as

cm,i(t, z)=
θm,i

2Pe(πξ)1/2
exp

(
ς −

z2
1

4ξ

)
, (2.100)

where

ς(t)=
∫ t

0
K0,i(η) dη, i= 1, 2, (2.101)

z1(t, z)= z+
∫ t

0
K1,i(η) dη, i= 1, 2, (2.102)

ξ(t)=
∫ t

0
K2,i(η) dη, i= 1, 2. (2.103)

As soon as the mean concentration is obtained, the local distribution of solutes can
be found using (2.47) and (2.48). Performing the required manipulations, one obtains

ci =
θm,i

2Pe(πξ)1/2
exp

(
ς −

z2
1

4ξ

) [
f0,i −

z1

2ξ
f1,i + f2,i

(
−1
2ξ
+

z2
1

4ξ 2

)]
. (2.104)

2.4.5. Special solutions for Da= 0
In this section, special solutions are derived for the case where no reaction occurs

at the wall. In the absence of reaction, the wall boundary conditions modify as

∂c1

∂y

∣∣∣∣
y=1

= 0, (2.105)

∂c2

∂y

∣∣∣∣
y=1

=
∂c2

∂x

∣∣∣∣
x=w

= 0. (2.106)
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Furthermore, as the exchange coefficient is now zero, equations (2.54) to (2.58) are
simplified to yield

∂cm,i

∂t
=K1,i(t)

∂cm,i

∂z
+K2,i(t)

∂2cm,i

∂z2
, (2.107)

Kn,1(t)=
δn2

Pe2
−

∫ 1

0
u1(y)fn−1,1 dy, n= 1, 2, (2.108)

Kn,2(t)=
δn2

Pe2
−

1
w

∫ 1

0

∫ w

0
u2(x, y)fn−1,2 dx dy, n= 1, 2, (2.109)

∂fn,1

∂t
=
∂2fn,1

∂y2
+

fn−2,1

Pe2
− ufn−1,1 −

∞∑
i=1

fn−i,1Ki,1(t), (2.110)

∂fn,2

∂t
=
∂2fn,2

∂x2
+
∂2fn,2

∂y2
+

fn−2,2

Pe2
− ufn−1,2 −

∞∑
i=1

fn−i,2Ki,2(t). (2.111)

The wall boundary conditions associated with fn will also modify as

∂fn,1

∂y

∣∣∣∣
y=1

= 0, (2.112)

∂fn,2

∂x

∣∣∣∣
x=w

=
∂fn,2

∂y

∣∣∣∣
y=1

= 0. (2.113)

The solution for f0 can now be expressed as

f0,i(x, y, t)=
∞∑

n=0

An,iEXP(n, t, i)COS(n, x, y, i), (2.114)

where

EXP(n, t, i)= δ1,i exp(−n2π2t)+ δ2,i exp
[
−π2

(
r2

n +
s2

n

w2

)
t
]
, (2.115)

COS(n, x, y, i)= δ1,i cos(πny)+ δ2,i cos(πrny) cos
(πsn

w
x
)
, (2.116)

An,i =

∫ 1

0

[
θδ1,iCOS(n, x, y, 1)+ δ2,i

∫ w

0
θCOS(n, x, y, 2) dx

]
dy

θm,iINTCOS(n, i)
, (2.117)

with rn = 0, 1, 2, . . . , sn = 0, 1, 2, . . . , and

INTCOS(n, i)= δ1,iIntcos_1(n)+ δ2,iIntcos_2(n), (2.118)

Intcos_2(n) =
∫ w

0

∫ 1

0
cos2(πrny) cos2

(πsn

w
x
)

dy dx

= wδ0,rn+sn +
w(δ0,sn)(1− δ0,rn)

2
+

w(δ0,rn)(1− δ0,sn)

2
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+
w(1− δ0,rn+sn)(1− δ0,rn)(1− δ0,sn)

4
, (2.119)

Intcos_1(n)=
∫ 1

0
cos2(nπy) dy= δ0,n +

1− δ0,n

2
. (2.120)

For the special case where the source is uniformly distributed over the entire
channel cross-section, An,i = 0 for n 6= 0; accordingly, the function f0,i possesses the
following simple solution:

f0,i = 1. (2.121)

As soon as f0 is evaluated, the convection coefficient can be found as

K1,1(t)=−
∫ 1

0
u1(y)f0(y, t) dy=−

∞∑
n=0

AnIntU1_1(n) exp(−n2π2t), (2.122)

K1,2(t) = −
1
w

∫ 1

0

∫ w

0
u2(x, y)f0(x, y, t) dx dy

= −

∞∑
n=0

An

w
IntU1_2(n) exp

[
−π2

(
r2

n +
s2

n

w2

)
t
]
, (2.123)

where

IntU1_1(n)=
∫ 1

0
u1 cos(πny) dy

=−bE1G1(n,K)+ bE2(1− ζ )δn,0 − bE2
(−1)n sin(nπζ )

nπ
(1− δn,0)+ b′1G2(n, α)

+ b′2G3(n, α)+ b′3G2(n,K)+ b′4G3(n,K)+ b′5

×

[
ζ δn,0 +

(−1)n sin(nπζ )

nπ
(1− δn,0)

]
, (2.124)

IntU1_2(n)=
∫ w

0

∫ 1

0
u2 cos(πrny) cos

(πsn

w
x
)

dy dx

=
4w
π2

N∑
j=1

dj(−1)rj+qj+sn+rn(2rj + 1)(2qj + 1)
(2rj + 2rn + 1)(2rj − 2rn + 1)(2qj + 2sn + 1)(2qj − 2sn + 1)

, (2.125)

with

b′1 = bPE2, (2.126a)

b′2 =−bPE2 coth α +
(cosh K)−1

(
K2bPE1

K2 − α2

)
−

K2

α2η2
λ

sinh α
, (2.126b)

b′3 =−
K2bPE1

K2 − α2
, (2.126c)

b′4 = tanh K
(

K2bPE1

K2 − α2

)
, (2.126d)
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b′5 =
K2

α2η2
λ

, (2.126e)

G1(n,K)= (−1)n
K cos(nπl) sinh[K(1− l)] − nπ sin(nπl) cosh[K(1− l)]

K2 + (nπ)2
,

(2.126f )

G2(n, α)= (−1)n
α sinh α − α cos(nπl) sinh[α(1− l)] + nπ sin(nπl) cosh[α(1− l)]

α2 + (nπ)2
,

(2.126g)

G3(n, α)= (−1)n
α cosh α − α cos(nπl) cosh[α(1− l)] + nπ sin(nπl) sinh[α(1− l)]

α2 + (nπ)2
.

(2.126h)

For a uniform source, from (2.122) and (2.123), we may write

K1,1(t)=−um,1, (2.127)
K1,2(t)=−um,2, (2.128)

with um,1 and um,2 given by (2.36) and (2.29), respectively.
The function f1 can be derived, using (2.110) and (2.111) for n = 1 along with

relevant initial and boundary conditions, as

f1,i(x, y, t) = −
∞∑

p=1

{
∞∑

n=1

[
An,iINTU2(n, p, i)

INTCOS(p, i)
INTEXP(p, n, t, i)

]

+ Ap,iEXP(p, t, i)
∫ t

0
K1,i(s) ds

}
COS(p, x, y, i), (2.129)

in which

INTU2(n, p, i)= δ1,iIntU2_1(n, p)+ δ2,iIntU2_2(n, p), (2.130)

IntU2_1(n, p)=
∫ 1

0
u1 cos(nπy) cos(pπy) dy, (2.131)

IntU2_2(n, p) =
∫ w

0

∫ 1

0
u cos(πrny) cos(πrpy) cos

(πsn

w
x
)

cos
(πsp

w
x
)

dy dx

=
w
π2

N∑
j=1

dj(−1)rj+qj+rn+sn+rp+sp(2qj + 1)(2rj + 1)

×

{
1

[2(qj + sn + sp)+ 1][2(qj − sn − sp)+ 1]

+
1

[2(qj + sn − sp)+ 1][2(qj − sn + sp)+ 1]

}
×

{
1

[2(rj + rn + rp)+ 1][2(rj − rn − rp)+ 1]

+
1

[2(rj + rn − rp)+ 1][2(rj − rn + rp)+ 1]

}
, (2.132)
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INTEXP(p, n, t, i)= δ1,iIntexp_1(p, n, t)+ δ2,iIntexp_2(p, n, t), (2.133)

Intexp_1(p, n, t) = (1− δn,p)
exp(−n2π2t)− exp(−p2π2t)

(p2 − n2)π2

+ δn,pt exp(−n2π2t), (2.134)

Intexp_2(p, n, t) = (1− δn,p)

exp
[
−π2

(
r2

n +
s2

n

w2

)
t
]
− exp

[
−π2

(
r2

p +
s2

p

w2

)
t

]

π2(r2
p − r2

n)+
π2

w2
(s2

p − s2
n)

+ δn,pt exp
[
−π2

(
r2

n +
s2

n

w2

)
t
]
. (2.135)

The term
∫ t

0 K1(s) ds can be evaluated by applying the integral conditions as

∫ t

0
K1,i(s) ds=−

∞∑
n=1

An,iINTU1(n, i)INTEXP(0, n, t, i)

(A1,i)rp=sp=0 or p=0
, (2.136)

where
INTU1(n, i)= δ1,iIntU1_1(n)+ δ2,iIntU1_2(n). (2.137)

The dispersion coefficient is also obtained to be

K2,i(t) =
1

Pe2
+

1
δ2,iw+ δ1,i

∞∑
p=1

{
∞∑

n=1

[
An,iINTU2(n, p, i)

INTCOS(p, i)
INTEXP(p, n, t, i)

]

+ Ap,iEXP(p, t, i)
∫ t

0
K1,i(s) ds

}
INTU1(p, i). (2.138)

For a uniform source, the function f1 and the dispersion coefficients are given as

f1,2 =
4
w

∞∑
p=1(rp and sp 6=0)

IntU1_2(p)

exp

[
−π2

(
r2

p +
s2

p

w2

)
t

]
− 1

π2

(
r2

p +
s2

p

w2

)
× cos(πrpy) cos

(πsp

w
x
)
, (2.139)

f1,1 = 2
∞∑

p=1(p6=0)

IntU1_1(p)
exp(−π2p2t)− 1

π2p2
cos(πpy), (2.140)
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K2,2(t)=
1

Pe2
−

1
w

∞∑
p=1(rp and sp 6=0)

[IntU1_2(p)]2
exp

[
−π2

(
r2

p +
s2

p

w2

)
t

]
− 1

π2

(
r2

p +
s2

p

w2

)
Intcos_2(p)

,

(2.141)

K2,1(t)=
1

Pe2
− 2

∞∑
p=1(p 6=0)

[IntU1_1(p)]2
exp(−π2p2t)− 1

π2p2
. (2.142)

It is noted that the expression of solute concentration for Da= 0 is still given by
(2.104).

2.4.6. Numerical solutions
For validation of the results and to investigate the validity of the assumptions

made in the derivation of the analytical solutions, finite-element-based numerical
simulations were conducted utilizing COMSOL Multiphysics software. The electrical
potential field was obtained using the Boltzmann distribution of ions without applying
the Debye–Hückel linearization and the momentum equation was solved in steady
state. After obtaining the velocity field, the unsteady mass transport equation was
solved to analyse the transport of a solute band from the time of injection. A total
number of 1 512 622 tetrahedral meshes were used in the simulations, which were
found to provide grid-independent results, as no significant changes were observed in
the results by reducing the number of meshes by half.

3. Results and discussion

Before proceeding with the discussion of the results, a convergence analysis is
presented in table 1 to determine the terms required to obtain accurate velocity
results. The parameter chosen for investigation is the dimensionless mean velocity
and eight different combinations of the parameters K, l and w are selected, which are
more likely to provide the maximum error situations. The data given in table 1 show
that utilizing 502 terms of the series solutions instead of 1002 terms results in relative
errors below 0.5 %. Hence, all the results are obtained considering N = 502

= 2500 in
the series solutions. In the selection of the dimensionless governing parameters, their
practical ranges, given in table 3, are considered as a guide. Note that these ranges
are obtained utilizing the typical values of the main physicochemical parameters
compiled in table 2. Although the solutions obtained in § 2 are general enough to be
applied to any form of initial concentration distribution, the results are given only for
an initial distribution of square shape with a side length of 2aH (see figure 1). This
way, not only do we approximate the initial solute concentration due to an injection
from a syringe of lower diameter than the channel, but also we are able to recover
the case that the sample plug occupies the entire cross-section as a special case of
the assumed initial conditions for a = w = 1. Unless otherwise is stated, the results
are obtained utilizing the analytical solutions.

Although the main purpose of this study is to focus on analyte dispersion, due to
the dependence of the convection and dispersion coefficients on the velocity profile,
the presentation of results starts with studying the influences of l, α and K on the
velocity profile at the vertical mid-plane in figure 2. A comparison is also made

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
83

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1083


887 A13-26 M. Sadeghi, M. H. Saidi, A. Moosavi and A. Sadeghi

N K = 10 K = 15

w= 1 w= 10 w= 1 w= 10

l= 0.025 l= 0.20 l= 0.025 l= 0.20 l= 0.025 l= 0.20 l= 0.025 l= 0.20

52 0.21681 2.17933 0.25210 2.56923 0.36691 4.31605 0.43754 5.07708
102 0.21118 2.19234 0.23679 2.51754 0.34208 4.36196 0.38944 4.96434
202 0.21041 2.19258 0.22918 2.47643 0.33809 4.36141 0.36776 4.85576
302 0.21037 2.19265 0.22709 2.46774 0.33784 4.36152 0.36139 4.82923
502 0.21038 2.19268 0.22596 2.46624 0.33784 4.36158 0.35739 4.82316
1002 0.21038 2.19269 0.22559 2.46613 0.33782 4.36156 0.35574 4.82615

TABLE 1. Convergence of the dimensionless mean velocity values for α = ηλ = 1.

Parameter Value Reference

Half-channel height H 0.5–100 µm (Holden et al. 2003)
Half-channel width W 0.5–50H (Nguyen & Wu 2004)
Density of PEL fixed charges divided
by Avogadro’s number NPEL/NA

0.4–200 mol m−3 (Louie et al. 2012)

Square root of ratio of viscosity and
friction coefficient (µ/fPEL)

1/2
0.059–55 nm (Louie et al. 2012)

PEL thickness L 0.7–198 nm (Monteferrante et al. 2015)
Relative permittivity ε/ε0

∼= 80 (Archer & Wang 1990)
Valence numbers zE, zPEL ±1,±2
Characteristic Debye length λE 1–100 nm (Karniadakis, Beskok & Aluru

2005)
Viscosity µ ∼= 10−3 Pa s (White 2011)
Electric field Ez 1–100 kV m−1 (Karniadakis et al. 2005)
Diffusivity D 10−11–10−9 m2 s−1 (Sadeghi et al. 2019)
Reaction rate kR 0–∞ s−1 (Nagarani, Sarojamma &

Jayaraman 2004)
Inlet concentration C0 0.1 µm (Sadeghi et al. 2014)

TABLE 2. Typical ranges of the main physicochemical parameters.

Parameter Value

Channel width to height ratio w=W/H 0.5–50
Debye length ratio ηλ = λPEL/λE 0.01–20
Debye–Hückel parameter K =H/λE 5–105

Dimensionless PEL thickness l= L/H 10−5–0.4
PEL friction factor α =H(fPEL/µ)

1/2 9–1.7× 106

Damköhler number Da=HkR/D 0–∞

TABLE 3. Typical ranges of the dimensionless governing parameters.

in this figure between the analytical results of fluid velocity and those predicted by
COMSOL Multiphysics, indicating a good agreement between the results. The small
discrepancy between the analytical and numerical results stems from the linearization
of the electric potential equation when developing analytical solutions, a simplification
that is not made when treating the problem numerically. As is obvious in figure 2(a),
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FIGURE 2. Comparison between the vertical mid-plane velocity profiles obtained by
means of the analytical solutions and those predicted by COMSOL Multiphysics. The
default parameters include w= 1, l= 0.1, K = 5, ηλ = 1 and α = 1.

the thicker is the PEL the larger is the fluid velocity, a trend that can be attributed to
the increase of the fixed charged groups inside the channel with thickening of the soft
layer, which leads to more accumulation of counterions in the channel. Figure 2(b)
demonstrates the effect of the PEL friction coefficient on the velocity distribution. As
expected, the fluid velocity decreases with increasing the PEL friction due to higher
resistive forces experienced by the fluid. It is worth mentioning that for large values
of α, such as 100 and 150, the velocity becomes almost zero inside the soft layer
and, therefore, the velocity profile shows a weaker dependence on α. The effect of K
on the velocity distribution is demonstrated in figure 2(c), showing that u increases
with increasing K. An increase in K while keeping l and ηλ constant may be achieved
by increasing both the ionic concentration and the density of PEL fixed charges. The
former tends to limit the region of net electric charge to the soft layer where the
resistive force of polyelectrolyte brushes hinders fluid motion, whereas the latter tends
to facilitate fluid motion by increasing the electroosmotic body force. Since the role
of the latter is determinative, larger fluid velocities are achieved by increasing K.

The effect of initial solute distribution on the exchange coefficient K0 is shown in
figure 3. Negative values of K0 reflect the fact that the amount of solute in the channel
is diminished due to wall adsorption. The first point drawing attention in figure 3(a) is
the drastic difference in the behaviour of K0 for different values of a. For small values
of a, K0 is a monotonically increasing function starting from zero; however, when
a approaches unity, a non-monotonic trend is observed. The latter is because, when
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FIGURE 3. Plots of the exchange coefficient versus the dimensionless time at various
initial distributions for (a) Da = 1, w = 2 and (b) Da = 10, w = 4. In (c), the values of
average concentration over the Y–Z plane cm(x, t), obtained by COMSOL Multiphysics,
are plotted versus x at different dimensionless times while keeping Da = 1, w = 2 and
a= 1. A channel length of 10H has been considered for averaging. The dashed lines in
(a) denote the results pertaining to a slit geometry. 1-D, one-dimensional.

the solute band has occupied an area that is initially in contact with the horizontal
walls, adsorption starts immediately after the injection of the solute band, leading to
higher values of K0 at time zero. As the solute is convected along the microchannel,
it diffuses through the entire cross-sectional area and approaches the vertical walls at
a threshold time tc. This, in turn, gives rise to higher adsorption rates at the walls,
which reverse the decreasing trend of K0 with time. For a better illustration, the x-
dependence of the average concentration over the Y–Z plane cm(x, t) for the case a= 1
in figure 3(a) is shown in figure 3(c) at different times. It is evident from this figure
that the time at which the solute concentration builds up at the transverse wall is very
consistent with the threshold value of t in figure 3(a).

For a small a, because of the absence of solutes adjacent to the walls, the exchange
coefficient is zero at the beginning and starts to increase monotonically when the
solutes reach the surface via molecular diffusion. Under these circumstances, the
smaller the value of a, the higher the value of t at which K0 becomes significant,
mainly because the distance travelled by the solutes to reach the surface is larger for
a smaller a.

Figure 3(a) also includes a comparison of the results with those pertaining to a
slit geometry. As is clear, there is a complete agreement between the results up to
tc, after which the values of K0 for a slit geometry lag behind those of a rectangular
geometry, due to the absence of the vertical walls for the former. This reveals that
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approximating a rectangular geometry with the space between two parallel plates may
lead to considerable errors in the estimation of the mass transport characteristics.

The effects of w and Da on the unsteady behaviour of K0 may be found by
comparing different parts of figure 3. By comparing figure 3(b) with figure 3(a), one
can deduce that the higher the value of w or Da, the smaller the difference between
the value of K0 at time tc, given by K0,c, and its asymptotic value, shown as K0,asy.
The reason is that increasing of w and Da leads to the depletion of the concentration
front heading the vertical walls, either because of higher adsorption rates at the
horizontal walls or larger diffusion lengths, thereby reducing the mass transport to
the vertical walls and, ultimately, lowering their importance. Moreover, on increasing
w, the asymptotic values of K0 are achieved at later times. This is because a larger
diffusion path postpones the equilibrium between the diffusional transport of solutes
across the channel and the solute adsorption at the surface, which is required for K0
to reach a steady state.

Figure 4 displays the time dependence of K0 at different a and Da while keeping
w = 1. When Da is small and the solute band initially occupies the entire cross-
sectional area, that is for Da = 0.01 and a = 1, K0 quickly reaches its final value.
As stated before, the equilibrium between diffusional transport of solutes and surface
adsorption determines the time at which K0 becomes steady. At smaller values of a,
regardless of Da, this time is controlled by the diffusion of solutes. For large values
of a, however, since the solutes quickly reach the walls, Da plays an important role
in the determination of the steady state. In the case of a large Da, since the wall
adsorption rate is much higher than the rate of the delivery of solutes to the wall, the
time required to establish a steady state is once again controlled by the diffusional
transport of solutes. For a small Da, however, the wall adsorption is insignificant;
accordingly, the rate of the cross-stream travelling of solutes may be well suited to
the consumption rate at the wall, leading to a fast balance of the mass transfer at the
wall and a quick establishment of the steady state.

Figure 4(b) reveals an increasing–decreasing variation of K0 with time for a= 0.99
and 0.95. The same is true for values of a between 0.9 and 0.99 in figure 4(c). This
may be attributed to the fact that, when a is close to unity and Da is moderately high,
solutes are rapidly transported to the near-wall region and quickly captured at the wall,
making K0 an increasing function of time. After a while, the solution experiences a
severe depletion adjacent to the wall; the decrease of solute concentration in these
conditions is so high that it cannot be compensated for by the molecular diffusion of
solutes, thereby reversing the trend of K0 with t.

Figure 4(c) reveals that, despite figure 3(a), there is a significant discrepancy
between the one- and two-dimensional results from the beginning of the process. This
may be attributed to the square geometry of the channel, which prepares the way for
the occurrence of adsorption from both horizontal and vertical walls from time zero.

By taking a glance at different parts of figure 4, it can be deduced that K0 shows
an increasing dependence on Da. More precisely, K0 seems to be of the order of Da.
This can be justified by a scale analysis utilizing (2.60c) and (2.64). From the former,
one can conclude that ∂f0,2/∂y and, consequently, ∂2f0,2/∂y2 are of the same order as
Daf0,2. Then, equating the orders of the terms ∂2f0,2/∂y2 and f0,2K0,2 in (2.64), reveals
that K0,2 is truly of the order of Da.

Figure 5(a) depicts the dependence of the asymptotic values of K0 on the
Damköhler number Da for six different geometrical configurations; K0,asy, which
is independent of the initial distribution, increases with increasing Da until it tends to
limiting values at sufficiently high values of Da. The main reason is the enhancement
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FIGURE 4. Plots of the exchange coefficient versus the dimensionless time at various
initial distributions for a square duct setting (a) Da= 0.01, (b) Da= 1 and (c) Da= 10.
The dashed lines in (c) denote the results pertaining to a slit geometry.

of surface adsorption with increasing Da until the shortage of the solutes near the
wall prevents further mass transfer to the wall. It is observed in figure 5(b) that
K0,asy decreases with increasing w until it tends to limiting values pertinent to the
special case of a slit geometry at high values of w. The decreasing dependence of
K0,asy on w can be attributed to the fact that, at sufficiently long times, it is the rate
of solute delivery from the core to the wall-adherent region, which determines the
amount of K0,asy; therefore, K0,asy is smaller at a higher w, for which there is a larger
diffusion path. All in all, figure 5 demonstrates that a channel of square cross-section
provides the largest mass exchange between the fluid and the channel wall. This
means that microreactors should be fabricated with the same width and height, in
order to achieve the maximum efficiency.

Shown in figure 6 is the time dependence of K1 at different a and Da. As observed,
K1 increases with increasing Da for a fixed a. This may be explained by the fact that,
when Da increases, the solute concentration reduces, especially near the wall, where
the fluid flows slowly. Consequently, the convective transport alters in favour of the
fast-moving core region having higher concentrations, giving rise to higher values of
K1. This effect will appear by the time at which the solutes have reached the wall; so
the graphs of the same a but different Da start to separate earlier for a larger a.

It is to be mentioned that, for a given Da, all the results obtained for K1 at different
initial distributions reach the same asymptotic value; nevertheless, different variations
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FIGURE 5. Plots of asymptotic values of K0 versus (a) Da at different values of w
and (b) w at various Da. The symbols in (a) and dashed lines in (b) denote the results
pertaining to a slit geometry.
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FIGURE 6. Plots of the convection coefficient versus dimensionless time for different a
and Da while keeping w= 1, l= 0.1, K = 5, ηλ = 1.0 and α = 1.

with time can be observed before a steady state is achieved. This is grounded in the
fact that K1 is determined by the interplay between the convective mass transport and
the wall adsorption. At small values of Da, due to insignificant wall adsorption, solute
convection plays the only important role in the variations of K1. For non-unity values
of a, there is a gradual movement of solutes from the core to the near-wall region,
thereby diminishing the convective transport and, ultimately, rendering K1 a decreasing
function of time. For larger values of Da, however, the competition between the two
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FIGURE 7. Plots of (a) the convection coefficient versus the dimensionless time for
different values of a and l considering w = 1, (b) the convection coefficient versus the
dimensionless time for different values of a and w considering l = 0.1 and (c) the
dimensionless partial average velocity upar

m versus a for different values of w and l and
the dimensionless average velocity um versus w. The symbols in (b) denote the results
pertaining to a slit geometry. All the results are obtained considering K= 5, ηλ= 1, α= 1
and Da= 1.

aforementioned factors determines the variation of K1 with time. For Da = 1, wall
adsorption is more determinant than solute convection for a = 0.9 (at longer times)
and a= 1 (from the beginning), forcing K1 to increase with t. By increasing the value
of Da to 10, because of the pronounced effect of wall adsorption, the amplification
of K1 is observed not only for a = 0.9 and 1 but also for smaller values of a such
as a = 0.7. The last point worth noting regarding figure 6 is that, regardless of Da,
the transient convection coefficient increases with decreasing a. This occurs because
more solutes are located in the core for a smaller a so that the convective transport
is pronounced.

Figure 7 shows the effects of the channel geometrical configuration and the soft
layer thickness on the time dependence of K1. As is clear in figure 7(a), a larger l
is accompanied by a larger K1. This is mainly because a thicker PEL contains more
electric charges, creating a larger electroosmotic flow and, consequently, an enhanced
convective transport. Furthermore, the impact of a on the transient convection
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FIGURE 8. Variations of the asymptotic value of the convection coefficient with respect
to (a) the Damköhler number at several aspect ratios for both l = 0.05 and l = 0.1 and
(b) the aspect ratio for different Da. All the results are obtained considering K= 5, ηλ= 1
and α = 1. The long dashed lines denote the results pertaining to a slit geometry.

coefficient is found to be higher for a larger l. The physical mechanism behind
this behaviour can be deduced from figure 7(c) that plots the dimensionless partial
average velocity, given by upar

m =
∫ a

0

∫ a
0 u dx dy/a2, versus a. As shown, the changes

of upar
m with a are more intense for a larger l, justifying the sharper dependence of

K1 on a for a thicker PEL. Figure 7(c) also illustrates that, as expected, the average
velocity of the solute band decreases when it spreads out across the channel.

The effect of the channel aspect ratio on the time dependence of K1 for three
different initial distributions is shown in figure 7(b). The physical interpretation of
the results can be easily performed utilizing figure 7(c). For the steady state for
which the solutes have spread out over the entire channel cross-sectional area, it is
the average velocity um that determines the convection coefficient; hence, K1 increases
as w increases because um is higher for a larger aspect ratio. However, at earlier times,
the influential parameter is upar

m , which represents the average velocity in the area
initially occupied by the solutes. Accordingly, K1 shows the same trend as that of
upar

m .
The graphs of the asymptotic values of K1 versus the Damköhler number at

different values of the geometrical aspect ratio and PEL thickness are plotted in
figure 8(a). As noted previously, K1,asy is an increasing function of Da until it tends
to a limiting value at sufficiently high values of Da. In the small Damköhler regime,
K1,asy is linearly proportional to Da. The graphs of K1,asy versus aspect ratio, plotted
in figure 8(b), show an increasing dependence of K1,asy on w for smaller values of
Da; however, a non-monotonic trend is seen for higher Damköhler numbers. With
amplification of w, due to the increase of um (as shown in figure 7c), the convection
of solutes is amplified; however, the wall adsorption reduces at the same time,
as evidenced by figure 5. Therefore, at smaller values of Da for which the wall
adsorption is insignificant, the second effect is not important and K1,asy increases
with increasing w. For higher values of Da, however, the second effect may become
important and the interplay between the wall adsorption and the convection of solutes
determines the changes of K1,asy with w. It is observed that the results are approaching
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FIGURE 9. Plots of (a) the asymptotic values of K1 versus the PEL friction factor at
different Da and l, (b) the convection coefficient versus the dimensionless time at different
l and α while keeping Da=0.01 and a=0.1, (c) the dimensionless partial average velocity
versus the initial distribution parameter at different l while keeping α= 50. All the results
are obtained considering w= 1, K = 5 and ηλ = 1.

those of the slit geometry for very large aspect ratios. This is owing to the fact that
by increasing w not only does the solute convection approach that of the slit geometry
but also the high solute adsorption at the longitudinal walls renders their effects less
significant.

Figure 9 is included to show the effect of the PEL friction factor α on the
steady-state and transient values of K1. As seen in figure 9(a), K1,asy is a decreasing
function of α, mainly because of lower fluid velocities for a higher α as a
result of higher resistive forces. The dependence of K1,asy on l, however, is not
monotonic. Beside the changes in the importance of the wall adsorption effects, this
non-monotonic behaviour may be attributed to the fact that thickening of the PEL
has two opposite effects: increasing the friction force tending to retard the fluid flow
and increasing the electroosmotic body force as a result of a higher number of fixed
electric charges.

The time development of K1 is shown in figure 9(b) at different values of l and α
while keeping Da= 0.01 and a= 0.1. It can be seen that when α= 50 the convection
coefficient for l = 0.2 is higher than that of l = 0.15 at earlier times, whereas the
opposite is true at the steady state. This is because, at initial times, when the solute
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FIGURE 10. Dependence of K1,asy on ηλ for different values of l considering K = 5 and
w= α =Da= 1.

band is concentrated in the core region, it moves with a larger average velocity when
l= 0.2. This can be observed in figure 9(c) depicting upar

m versus a: the dimensionless
partial average velocity is larger for l=0.2 when a=0.1. At the steady state, when um

matters, the convection coefficient is higher for l= 0.15, which provides a larger mean
velocity as compared to l= 0.2 (values of upar

m for a= 1 are the same as um) because
of the smaller PEL resistive force. Note that, such a reverse trend is not observed for
α= 5 since the PEL friction force is not significant for this case. Another point worth
mentioning regarding figure 9(b) is that K1 is a decreasing function of time mostly
because of the cross-stream migration of solutes from the core to the wall-adherent
area where the fluid velocity is low.

We study the impact of ηλ on K1,asy at different values of the soft layer thickness
in figure 10. As expected for a low α, K1,asy increases with l because of the increase
in the fluid velocity as a result of a larger number of fixed charge groups. In addition,
it is observed that a higher ηλ leads to a smaller K1,asy. A larger ηλ at a fixed K can
be achieved by decreasing the density of the fixed PEL charges that is accompanied
by a reduction in the number of counterions accumulated within the soft layer and,
ultimately, a smaller electroosmotic velocity. Hence, it is not surprising to see a
diminished convective transport for a larger ηλ.

The impacts of the surface reaction rate and the initial distribution of solutes
on the time dependence of the dispersion coefficient are investigated in figure 11.
As observed, K2(t) generally increases with time until reaching a limiting value
at the steady state. As time passes, the solutes move from the core, where the
fluid velocity is largely uniform, to the wall-adherent area, where the flow field is
strongly non-uniform, thereby amplifying the dispersion of mass. A main exception
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FIGURE 11. Effects of the surface reaction rate and the initial distribution of solutes on
the time dependence of the dispersion coefficient for l= 0.1, K = 5 and ηλ = α =w= 1.

is the cases with large values of both a and Da like the case for which a = 1
and Da = 10. For these cases, K2(t) increases first until a maximum after which it
gradually reduces to the steady-state value. The reduction of K2(t) at later times may
be attributed to the intense consumption of solutes at the wall at a high Da, leading
to the depletion of solution near the wall. Despite earlier times, since a sufficient
amount of solute does not exist in the core at later times, the shortage of solute near
the wall cannot be compensated for by diffusion of mass from the internal locations,
leading to a reduction in the overall solute dispersion. Another remarkable point in
figure 11 is that the dispersion coefficient decreases with increasing Da. This occurs
because an enhanced reaction rate leads to more depletion of the solution near the
wall. Accordingly, the solute concentration is weighted in favour of the central region,
where the velocity is more uniform, thereby reducing the overall dispersion of solutes.

The time dependence of the dispersion coefficient at different values of a, w and
Da is illustrated in figure 12. As seen, for any aspect ratio, K2 is the same as that of
a slit microchannel up to a threshold time. Before this threshold, the solutes have still
not reached the vertical walls and, hence, the concentration field is very similar to
that established in the flow between two parallel plates. When the solute band feels
the presence of the vertical walls, the channel aspect ratio comes into play. Now, a
rectangular geometry provides a larger solute dispersion mainly because of the large
velocity gradients created near the vertical walls, especially at the corners. These
gradients render the dispersion coefficient an increasing function of w in the absence
of wall adsorption, that is, for Da = 0. Accordingly, the results for a rectangular
geometry of large aspect ratio differ significantly from those of a slit geometry. The
situation is different when there is adsorption of solutes at the walls. When Da 6= 0,
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FIGURE 12. Time dependence of the dispersion coefficient at different values of a and w
for (a) Da= 0, (b) Da= 1 and (c) Da= 10 considering l= 0.1, K = 5 and ηλ = α = 1.

the velocity gradient is not the only factor determining the behaviour of K2 because
the wall adsorption has an important role as well. Now, the wall adsorption leads to
the depletion of solution near the walls, thereby reducing the hydrodynamic dispersion.
The shortage of solutes near the vertical walls is more easily compensated for when
w is small, because of the smallness of the diffusion path, rendering the dispersion
coefficient a decreasing function of w for Da 6= 0.

The influence of the Debye length on the time dependence of the dispersion
coefficient at different values of a is studied in figure 13. A thinner Debye length,
corresponding to a larger value of the Debye–Hückel parameter K, gives rise
to a lower dispersion of solutes. The main reason is that by increasing K the
electroosmotic body force is more and more limited to the PEL where the retarding
effect of the PEL prevents a significant fluid flow. Accordingly, smaller fluid velocities
are obtained for a thinner EDL, leading to a lower dispersion of solutes. Note that
the abrupt decrease in the rate of increase of K2 is the result of the arrival of solutes
at the vertical walls.

The variation of the dispersion coefficient with ηλ in the asymptotic limit is shown
in figure 14 at different l. A decrease in the long-term dispersion coefficient is
observed by increasing ηλ. The physical reason behind these variations is that by
increasing ηλ a reduction occurs in the density of the PEL fixed charges, leading to
a reduction in the electroosmotic body force. Accordingly, the velocity gradients are
reduced as a result of smaller fluid velocities, resulting in a smaller dispersion of
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FIGURE 13. Time development of the dispersion coefficient at different Debye lengths and
initial conditions considering w= 3, l= 0.1 and α=Da= 1. Both K and ηλ are changed
simultaneously to keep everything but the Debye length constant.

solutes. It can be seen in figure 14 that the dispersion coefficient is an increasing
function of the PEL thickness. The main reason is that the thickening of the soft
layer leads to larger fluid velocities that tend to amplify the dispersion. The increasing
dependence of the dispersion coefficient on the soft layer thickness gives us a clue
for improving the design of DNA microarrays. One important issue scientists are
trying to resolve regarding these devices is their long hybridization time. If the
inner layer of DNA microarrays is coated with long polyelectrolyte brushes, the
consequent increase in dispersivity can lead to a faster movement of targets toward
the downstream, where binding sites are located, thereby accelerating the hybridization
process (Abdollahzadeh, Saidi & Sadeghi 2017).

Figure 15 shows the effect of the PEL friction factor α on the dispersion coefficient.
As seen in figure 15(a), the asymptotic value of the dispersion coefficient decreases
with α until it tends to a limiting value in the presence of high friction factors. The
decreasing dependence of K2,asy on α is due to the negative influence of the PEL
friction force on the fluid velocity and the reason for K2,asy tending to limiting values
at high values of α is that, under these conditions, the fluid velocity within the PEL is
actually zero because of huge retarding forces therein and no significant change occurs
in the velocity field by increasing α. It is also visible in figure 15(b) that K2(t) for
a = 0.1 is lower than that of a = 1 at unsteady conditions whereas the asymptotic
values are not dependent on a. At initial times, the solute band for a= 0.1 is more
concentrated in the core where the velocity gradients are low. At later times, however,
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a and α while keeping l= 0.1. The results are obtained for K = 5, ηλ =w= 1 and Da=
0.01.

the solutes are dispersed over the entire cross-section for both cases and, hence, no
difference is observed between the results.

The plots of K2,asy versus Da and w are shown, respectively, in figure 16(a,b). It
is shown that K2,asy is smaller for a larger Da. As noted previously, unlike the case
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FIGURE 16. Plots of K2,asy versus (a) Da for different channel aspect ratios and (b) w
for various Damköhler numbers. The dashed lines in (b) denote the results pertaining to
a slit geometry. All the results are obtained by considering K= 5, ηλ= α= 1 and l= 0.1.

with Da= 0 for which the only factor determining the degree of solute dispersion is
the distribution of the velocity gradient, the wall adsorption takes part when Da 6= 0.
For low and moderate values of Da, there is the interplay between the velocity
gradient and the wall adsorption that determines the dependence of K2,asy on w.
Hence, this dependence is not monotonic and changes with Da at low and moderate
values of this parameter. At high values of Da, however, the dominance of the wall
adsorption effects renders K2,asy a monotonically decreasing function of w. Under
these circumstances, the exact shape of the channel has a limited influence on the
dispersion coefficient. Figure 16(b) illustrates that, as concluded previously, unlike
the cases with Da 6= 0 for which the dispersion coefficient tends to that of a slit
geometry at high aspect ratios, there is a significant difference between the dispersion
coefficients when Da= 0.

The axial distribution of the dimensionless mean concentration over the X–Y
plane is given at different times in figure 17. A comparison is also made in this
figure between the analytical results and the predictions of the numerical simulations,
revealing a relatively good agreement between the results. Since the accuracy is much
higher for larger times, the error should be mainly due to the truncation of the series
in (2.48) and can be reduced by increasing the number of terms considered. The
error for large times may be attributed to the Debye–Hückel linearization utilized
in the development of the analytical solutions. As is visible in figure 17, the solute
band is gradually broadened by the hydrodynamic dispersion and the concentration
profile gets wider. In addition, because of the band broadening as well as the wall
absorption, the maximum value of cm(z, t) decreases with time.

Shown in figure 18 is the axial distribution of the dimensionless mean concentration
over the X–Y plane at different Da, l, t and ηλ. In figure 18(a), cm(z, t) is plotted at
the time t = 1 for different values of Da. As seen, the maximum value of cm(z, t)
decreases with increasing Da while, at the same time, the solute band moves faster
along the channel. The former is due to the enhanced wall adsorption effects and the
latter is because of the fact that the convection coefficient is higher in the presence
of a higher reaction rate.
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FIGURE 17. Axial distribution of the dimensionless mean concentration over the X–Y
plane at different times considering K= 5, ηλ=w=α=Da= 1 and a= 0.5. The analytical
results, shown by solid lines, are compared with the predictions of numerical simulations,
represented by dashed lines.

In figure 18(b), the effect of the soft layer thickness on the distribution of the
dimensionless mean concentration is shown. It is observed that the solute band
transfers much faster along the channel for a thicker PEL. This is consistent with the
results of figure 6(a) in which the convection parameter K1 increases with increasing l.

The effect of the initial solute distribution on band broadening is studied in
figure 18(c). For a better illustration of the movement of the solute band, its centre
of mass is evaluated via the formula zg =

∫
∞

0 zcm(z, t) dz/
∫
∞

0 cm(z, t) dz. Since,
according to figure 5, the convection coefficient for a = 0.5 is higher than that of
a= 1 at initial times, zg is larger for the former, implying that the solute band moves
faster when the solute injection is more concentrated in the central area. However, as
K1 ultimately becomes independent of the initial distribution, the discrepancy between
the values of zg for different a gradually becomes constant and the bands move with
the same speed.

The effect of the parameter ηλ on the movement of the solute band is shown in
figure 18(d). As is clear from the graphs and the values of zg provided, magnifying
ηλ is accompanied by a reduction in the speed of the axial movement of the solute
band. This is consistent with our previous deductions that the convection coefficient
decreases with increasing ηλ.

For a better illustration of the band broadening, the values of cm(z, t) are this time
plotted versus z− zg in figure 19 for the conditions that no adsorption occurs at the
walls. It is clearly observed in panel (a) of figure 19 that the band broadening is
more intense for thicker PELs while the degree of symmetry of the concentration
profile reduces. A higher degree of band broadening is also observed for a thicker
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FIGURE 18. Axial distribution of the dimensionless mean concentration over the X–Y
plane considering K = 5, w = 1 and α = 1 for (a) l = 0.1 and t = 1 at different Da,
(b) Da= t= 1 at different l, (c) Da= 1 and l= 0.1 at different t and a and (d) Da= t= 1
at different ηλ. All the results correspond to a= 1, except the dashed lines in (c) that are
pertinent to a= 0.5.

EDL in figure 19(b), which is consistent with the results of figure 13 revealing a larger
dispersion coefficient for a smaller K.

Figure 19(c) shows the time development of band broadening inside the channel.
At initial times (but not too close to injection where there is significant axial
diffusion), due to the non-uniformity of the velocity profile and the dominance of
the hydrodynamic dispersion, the solute molecules almost undergo a purely advective
motion: the molecules that travel near the central area move faster than those travelling
adjacent to the walls, creating a non-uniform concentration field. As time passes,
due to the non-uniformity of the concentration distribution, diffusion in both the
longitudinal and transverse directions becomes important. The longitudinal diffusion
results in additional broadening of the solute band while the transverse diffusional
mass flux tends to level out the concentration profile within any cross-section. So, as
time passes, the solute band gets wider and more uniform.

The profiles of the integral of the dimensionless solute concentration over z are
shown in figure 20 at different times and adsorption rates. The non-zero gradient
of the concentration profile at the walls reflects the first-order reaction occurring on
the surface of the microchannel. As shown, the solute concentration near the vertical
wall is nearly zero in figures 20(a) and 20(c). This is because the solutes are not
totally spread out over the cross-sectional area at small times such as t= 0.5. As the
rate of wall absorption is higher for Da = 10, the solute concentration at the mid-
planes is lower in figure 20(c). In addition, at initial times, when the solute dispersion
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FIGURE 19. Dimensionless mean concentration over the X–Y plane versus z − zg
considering w = 1, α = a = 1 and Da = 0 for (a) K = 5, ηλ = 1 and t = 2 at different
l, (b) l = 0.1, ηλ = 1 and t = 2 at different Debye lengths and (c) l = 0.15, ηλ = 1 and
K = 5 at different times.

is convection dominated, the concentration distributions are highly non-uniform. As
observed in figures 20(b) and 20(d), the degree of non-uniformity reduces for t =
2 because of the diffusion effects and the magnitude of the solute concentration is
smaller with respect to time t= 0.5 due to the wall adsorption effects.

The integral of the dimensionless mean concentration over y with respect to z is
plotted versus x at different times in figure 21. The results of the numerical modelling
performed by means of COMSOL Multiphysics are also presented in figure 21. It
can be seen that there is a good agreement between the results, especially for times
larger than 0.5. As stated previously, for higher times, the solute concentration is more
uniform due to the diffusion effects.

4. Conclusions
The dispersion of a neutral solute band by electroosmotic flow in a PEL-covered

rectangular/slit microchannel was studied under the conditions that surface adsorption
occurs at the channel walls. The flow was considered to be steady and fully developed
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FIGURE 20. Profiles of the integral of the dimensionless solute concentration over z
considering w = 3, K = 5 and α = a = ηλ = 1 for (a) Da = 1 and t = 0.5, (b) Da = 1
and t= 2, (c) Da= 10 and t= 0.5 and (d) Da= 10 and t= 2.

and the grafting density was considered to be low so that the same values of
permittivity, viscosity and diffusivity can be considered for the inside and outside of
the PEL. Utilizing the Debye–Hückel linearization, analytical solutions were obtained
for electrical potential, fluid velocity and solute concentration. Special solutions
were also obtained for the conditions for which there is no wall adsorption. The
solute dispersion was analysed via the generalized dispersion model for arbitrary
initial distribution considering three transport factors comprising the exchange,
convection and dispersion coefficients. Relaxing the assumption of low electric
potentials, finite-element numerical simulations were also performed the results of
which were found to be in a good agreement with the predictions of the analytical
solutions. Considering an initial solute distribution of square shape, a comprehensive
parametric study was then conducted by paying special attention to the influences
of the PEL properties, surface adsorption rate and initial solute distribution. It was
observed that the exchange coefficient is a function of the time, the channel aspect
ratio, the Damköhler number and the solute initial distribution. The convection and
dispersion coefficients depend, besides those affecting the exchange coefficient, on the
dimensionless PEL thickness, the Debye–Hückel parameter, the PEL friction factor
and the ratio of PEL to characteristic Debye lengths. Even though the solute initial
distribution significantly affects the transport coefficients at earlier times, its influence
vanishes at later times when these coefficients take asymptotic values.
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FIGURE 21. Integral of the dimensionless mean concentration over y with respect to z
versus x considering w= 3, K= 5, α= a= ηλ= 1 and Da= 10. The dashed lines represent
the numerical results.

When the solute injection is limited to the core flow, the exchange coefficient
increases monotonically from zero to its asymptotic value but a decreasing time
dependence with a non-zero initial value was observed when the solute band
occupies the whole channel height. For intermediate extents of the solute band,
a non-monotonic time dependence was observed for the exchange coefficient. In
addition, the long-term exchange coefficient was shown to be an increasing function
of the Damköhler number and a decreasing function of the aspect ratio but it tends
to limiting values at sufficiently high values of these parameters.

Similar to the exchange coefficient, the time dependence of the convection
coefficient is a strong function of the initial solute distribution: it is a decreasing
(an increasing) function of time when the solute band is concentrated in the core
(occupies the whole channel height), while a non-monotonic trend was observed for
intermediate extents of the solute band. At earlier times, the convection coefficient is
larger when the solute injection is more restricted to central points. Moreover, higher
values of the Damköhler number and the channel aspect ratio are accompanied by
larger values of the long-term convection coefficient, whereas the opposite is true for
the PEL friction factor and the Debye length ratio. The influence of the dimensionless
PEL thickness on the convection coefficient is different for low and high values of
the PEL friction factor: an increase in the dimensionless PEL thickness gives rise to
a larger convection coefficient for small frictions, whereas a reverse or non-monotonic
trend may be observed when PEL friction is significant.
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Irrespective of the initial distribution, the dispersion coefficient starts from zero
and, in most cases, increases monotonically up to its asymptotic value. A main
exception is the cases for which the solute band initially occupies the majority of the
channel height for which the dispersion coefficient may take a maximum after which
it reduces to its asymptotic value. Furthermore, the long-term dispersion coefficient
is an increasing function of the Debye length and the dimensionless PEL thickness
and a decreasing function of the Debye length ratio, the PEL friction factor and
the Damköhler number. The dependence of the long-term dispersion coefficient on
the channel aspect ratio is, however, dependent on the Damköhler number: it is a
decreasing function of the aspect ratio when the Damköhler number is large, whereas
a non-monotonic variation is observed when the Damköhler number is moderate or
small. An interesting phenomenon observed in this respect is that the long-term results
for a slit geometry differ significantly from those for a rectangular microchannel of
large aspect ratio in the absence of wall adsorption.

Several simplifying assumptions were considered in this paper to allow us to treat
the problem analytically. One main assumption was considering the same physical
properties such as permittivity, viscosity and diffusivity within and outside of the soft
layer. Another important assumption was approximating the wall absorption of solute
molecules by a first-order reaction formula. Recent advances in analytical modelling
of electroosmotic flow in soft microchannels with high grafting densities (Sadeghi
et al. 2019) and mass transport in stratified multi-phase flows (Sadeghi 2019) have
paved the way to extend the present work to cases with high grafting densities
and the only remaining obstacle is the discontinuity of solute concentration at the
PEL/solution interface. Relaxing the second assumption, however, requires performing
of full numerical simulations because of the complicated coupling between solute
concentration in the fluid and the concentration of surface-bound solutes.
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