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We numerically investigate the direct initiation of detonations driven by the
propagation of a blast wave into a unconfined gaseous combustible mixture to study
the role played by multidimensional instabilities in direct initiation of stable and
unstable detonations. To this end, we first model the dynamics of unsteady propagation
of detonation using the one-dimensional compressible Euler equations with a one-step
chemical reaction model and cylindrical geometrical source terms. Subsequently, we
use two-dimensional compressible Euler equations with just the chemical reaction
source term to directly model cylindrical detonations. The one-dimensional results
suggest that there are three regimes in the direct initiation for stable detonations,
that the critical energy for mildly unstable detonations is not unique, and that
highly unstable detonations are not self-sustainable. These phenomena agree well
with one-dimensional theories and computations available in the literature. However,
our two-dimensional results indicate that one-dimensional approaches are valid only
for stable detonations. In mildly and highly unstable detonations, one-dimensional
approaches break down because they cannot take the effects and interactions
of multidimensional instabilities into account. In fact, instabilities generated in
multidimensional settings yield the formation of strong transverse waves that, on one
hand, increase the risk of failure of the detonation and, on the other hand, lead to the
initiation of local over-driven detonations that enhance the overall self-sustainability
of the global process. The competition between these two possible outcomes plays
an important role in the direct initiation of detonations.
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1. Introduction

The instantaneous formation of a detonation after the decay of a blast wave
generated by a high energy source release is called direct initiation of detonations.
Experimental studies (see, for instance, Radulescu et al. 2003) have identified three
typical regimes in a direct initiation of detonation: subcritical, critical and supercritical.
The subcritical regime occurs when the source energy, Es, is relatively low. In this
case, the shock speed constantly decreases, the reaction front decouples from the
shock, which slowly becomes an acoustic wave, and the initiation of the detonation
fails. When Es reaches a critical range (i.e. the critical regime), the blast wave first
decays to a sub-Chapman–Jouget (CJ) state and the shock front then decouples from
the flame front. However, at the end of a quasi-steady period, a gradually growing
and accelerated compression wave generated by the chemical reactions catches up
with the shock front and eventually leads to a successful self-sustained detonation.
When Es is sufficiently high (i.e. the supercritical regime), a self-sustained detonation
forms immediately after the blast wave decays to approximately the CJ state.

To understand the complex underlying mechanism of direct initiation of detonations,
Zel’dovich, Kogarko & Simonov (1956) proposed a theoretical model to estimate the
critical energy. In their original theory, the critical energy of spherical detonations
was deemed proportional to the cube of the reaction zone thickness. Their theoretical
results, however, did not match experimental observations. Since that pioneering work,
numerous semi-empirical models have been proposed to estimate the critical initiation
energy. Some early correlations can be found in Lee’s (1977; 1984) reviews. He &
Clavin (1994) developed a quasi-steady-state model to take nonlinear curvature effects
into account and defined another criterion to estimate the critical energy. Eckett, Quirk
& Shepherd (2000) reviewed some of the quasi-steady-state models. They performed
one-dimensional (1D) numerical simulations and found that the unsteadiness of the
decelerating leading shock wave rather than the geometric curvature is the dominant
mechanism causing direct initiation of detonation to fail. Meanwhile, they proposed
a critical decay rate (CDR) model that takes the unsteadiness effects into account.
Nevertheless, their model cannot interpret the second critical energy identified in
Mazaheri’s (1997) and their numerical simulations of unstable detonations. Ng & Lee
(2003) investigated direct initiation of detonation by using a multistep reaction scheme
in 1D computations. They argued that ‘these theories are satisfactory only for stable
detonation waves and start to break down for highly unstable detonations because they
are based on simple blast wave theory and do not include a parameter to model the
detonation instability’ (Ng & Lee 2003, p. 179). They suggested that chemistry that
describes the detonation dynamics should be more complex and realistic. Recently, Qi
& Chen (2016) performed 1D simulations based on a detailed chemistry to explore
the effects of temperature perturbation on the direct initiation of stable detonations.
They found that a cold spot with a small temperature perturbation amplitude can
promote direct initiation of a detonation. Finally, although not directly related to the
initiation of detonation in open space, He & Lee (1995) reported that piston-supported
detonations with small over-driven factors and high activation energy (and thus highly
unstable) cannot propagate through an auto-ignition mechanism in one dimension.

This mounting evidence indicates that 1D theories and computations suffer, by
nature, from severe limitations when they are used to describe detonations with
inherent multidimensional structures observed in experiments (see, for instance,
Radulescu et al. 2003). In real physical settings, intrinsic multidimensional instabilities
can induce complex wave interactions that are not yet clearly understood. It is
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therefore extremely difficult, if not impossible, to build an analytical model that takes
multidimensional effects into account. An alternative approach is to perform highly
resolved and accurate numerical simulations to gain some insights into the physical
process and to provide detailed results to improve existing models and construct new
ones. However, accurate numerical simulations of direct initiation of detonation are
extremely expensive and require the calculation of the solution on billions of mesh
points at hundreds of thousands of time steps. The effective use of high-performance
computing facilities and scalable algorithms is thus essential, allowing accurate
multiparameter flow studies to be carried out that help to disentangle the effects of
numerics from flow physics.

In this work, we extend a well tested characteristic conservation element solution
element (CE/SE) code (Shen, Wen & Zhang 2015; Shen & Wen 2016; Shen et al.
2017) to simulate the direct initiation of cylindrical detonations in one and two
dimensions. Our main objective is to investigate the role of multidimensional
instabilities in direct initiation of detonations. We used Shaheen XC-40, the
supercomputer installed at King Abdullah University of Science and Technology
(KAUST) for the two-dimensional (2D) computations. Shaheen XC-40 is a 36-cabinet
Cray computer composing of 6174 dual socket compute nodes based on 16-core Intel
Haswell processors.

2. Mathematical model

The inviscid, unsteady 1D reactive compressible Euler equations with a geometrical
source term can be written as follows:

∂U
∂t
+ ∂F
∂x
=− j

x
S+ R, (2.1)

where the conserved variable vector, U, the flux vector, F, the geometric source
term vector, S, and the chemical reaction source term vector, R, are defined as
U=[ρ,ρu, ρe, ρY]T, F=[ρu, ρu2+p, (ρe+p)u, ρYu]T, S=[ρu, ρu2, (ρe+p)u, ρYu]T
and R= [0, 0, 0, ρω]T. In these definitions, the symbols ρ, u, p, e and Y denote the
density, velocity, pressure, specific total energy and reactant mass fraction, respectively.
The parameter j represents a geometric factor with j= 0, 1, 2 for the planar, cylindrical
and spherical geometries, respectively.

Similarly, the 2D reactive compressible Euler equations read

∂U
∂t
+ ∂F
∂x
+ ∂G
∂y
= R, (2.2)

where U = [ρ, ρu, ρv, ρe, ρY]T, F = [ρu, ρu2 + p, ρuv, (ρe + p)u, ρYu]T, G =
[ρv, ρuv, ρv2 + p, (ρe + p)v, ρYv]T, and R = [0, 0, 0, 0, ρω]T. The symbols u and
v respectively denote the x and y components of the velocity vector v= [u, v]T. Here,
we use the perfect gas assumption. Thus, the specific total energy and equation of
state are given by

e= p
(γ − 1)ρ

+ 1
2
v · v + YQ, (2.3)

and
p= ρT, (2.4)
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respectively, where γ and Q represent the specific heat ratio and the heat released
by the chemical reaction. The chemical reaction rate is calculated by the well-known
Arrhenius equation:

ω=−kYe−Ea/T, (2.5)

where k is the constant pre-exponential factor and Ea is the activation energy. We
note that the value of k is chosen to derive a unit half reaction length (L1/2) using
the Zel’dovich–von Neumann–Döring (ZND) model (Fickett & Davis 1979). The other
variables are non-dimensionalized with respect to the state of the unburned reactants
as follows:

ρ = ρ
∗

ρ0
, p= p∗

p0
, T = T∗

T0
= ρ0RT∗

p0
, u= u∗√

RT0
, v = v∗√

RT0
,

Ea = E∗a
RT0

, Q= Q∗

RT0
, x= x∗

L1/2
, t= t∗

L1/2/
√

RT0
,

 (2.6)

where R is the gas constant. The superscript ‘∗’ and the subscript ‘0’ denote the
dimensional quantities and the quantities of the unburned reactants, respectively.

A second-order characteristic space-time CE/SE method (Chang 1995; Shen et al.
2015; Shen & Wen 2016) coupled with a local Lax–Friedrichs (LLxF) flux is used to
solve (2.1) and (2.2) numerically. The chemical reaction source term, R, is discretized
using the implicit trapezoidal method.

3. Numerical results

3.1. Code validation
In this section, we validate our code by solving the well-understood 1D piston-
supported detonation case with γ = 1.2, Ea = 50 and Q= 50 which has been studied
by Lee & Stewart (1990), He & Lee (1995) and Hwang et al. (2000). The length of
the domain of interest, Ω , is 1000 L1/2. The detonation is initiated by a steady ZND
solution for x 6 5 and an inflow boundary condition is applied at the left boundary
of Ω . The stability of the propagating detonation depends on the over-driven factor,
f = (D/DCJ)

2, where D is the velocity of the detonation wave and DCJ is the
corresponding CJ value. According to Lee & Stewart (1990), the detonation is stable
when f > 1.731. The smaller the value of f is, the more unstable the detonation
becomes. To validate our code, we choose a mildly stable case with f = 1.6. This
case is characterized by a single unstable frequency. Figure 1 shows the peak pressure,
Psh, at the shock front versus time, t. At very fine grid resolutions, the maximum peak
pressure converges to approximately 99, which agrees well with the results of other
numerical schemes (Hwang et al. 2000). According to the nonlinear stability analysis
(Erpenbeck 1967), the periods of pressure oscillations have the value of 7.41 or 7.49,
depending on the perturbation method used in the analysis. All numerical schemes
tested by Hwang et al. (2000) converge to a period in the range of 7.33–7.37 using
more than 50 points per half reaction length (50 p/L1/2). In this study, the computed
periods of oscillations using 10 p/L1/2, 20 p/L1/2, 40 p/L1/2 and 80 p/L1/2 are 7.57,
7.44, 7.38 and 7.37, respectively.

3.2. Set-up for the numerical simulation of the reactive compressible Euler equations
We focus on the direct initiation of cylindrical detonations with γ = 1.2 and Q= 50.
According to the normal mode stability analysis method of Lee & Stewart (1990), 1D
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FIGURE 1. Peak pressure at the shock front (Psh) of a piston-supported detonation as a
function of the time (t) and the mesh size for an over-driven factor of f = 1.6.

CJ detonations for this case are neutrally stable when Ea≈ 25. Based on the threshold
of instability, we study the following three cases: (i) stable case with Ea = 15, (ii)
mildly unstable case with Ea = 27 and (iii) highly unstable case with Ea = 50.

In the 1D simulations, the system of (2.1) with j = 1 is solved in a domain, Ω ,
whose size is no less than 1000 L1/2. Symmetric and outflow boundary conditions
are used for the left and right boundaries, respectively. In the 2D simulations, the
computational domain is [2000, 2000] × L1/2 and all the boundary conditions are
outflow. All simulations are done using 20 p/L1/2, which implies that the number of
mesh points is 1.6 billion. With our CE/SE scheme for solving the 2D compressible
Euler equations, such a mesh density yields 24 billion unknowns. It is important to
note that a resolution exceeding 104 grid points per induction length is required to
resolve the physical diffusive layers with the reactive compressible Navier–Stokes
equations (Radulescu et al. 2007). Such a high resolution is not feasible for current
computational capabilities. At the current grid resolution, the numerical diffusion
dominates over physical diffusion and, hence, solutions of Euler and Navier–Stokes
equations are similar (Radulescu et al. 2007; Mazaheri, Mahmoudi & Radulescu
2012). Therefore, in this work, we only focus on exploring the role of larger scales
in highly unstable detonations using the reactive Euler equations. If a more detailed
resolution of highly unstable detonations is sought, the readers are encouraged to
refer to the results of Kessler, Gamezo & Oran (2010), Mazaheri et al. (2012) and
Mahmoudi & Mazaheri (2015).

Following Regele et al. (2016), we ignite the detonation using the concept of
thermodynamic analysis of direct initiation and deflagration-to-detonation transition
(DDT) by Kassoy (2016). A hot spot with ps= (γ −1)Es and Ts=20.0 for x61 in 1D
and

√
(x− 1000)2 + (y− 1000)2 6 1 in 2D is adopted. The high-pressure gas in the

hot spot acts like a piston, driving mechanical disturbances into the still reactants. The
amount of energy added to the hot spot is large enough to make the thermal power
deposition from a point source into the heated volume on a time scale that is smaller
than the characteristic acoustic time scale. Therefore, strong blast waves can be
initiated by the hot spot (Kassoy 2016; Regele et al. 2016). Compared with initiation
using a point blast wave with constant initial density, this alternative approach allows
us to use a larger time step and, hence, to reduce drastically the wall-clock time of
each simulation without affecting the flow features we are interested in. The 2D code
is parallelized using a domain-decomposition approach and a standard implementation
of the message passing interface. All the 2D simulations are performed using 40 000
cores.
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FIGURE 2. (a) Peak pressure at the shock front (Psh) as a function of position and source
energy (Es), for the stable case with Ea= 15. (b) Spatial pressure profiles with equal time
step intervals for Es = 2× 104. PZND is the peak pressure predicted by the ZND model.

3.3. Stable case with Ea = 15

First, we solve the problem with Es ranging from 1.8× 104 to 1.0× 105. Figure 2(a)
shows the peak pressure at the shock front, Psh, versus the position, x, using different
values for Es. A supercritical regime is observed for Es = 1.0 × 105. In fact, Psh

first decays to a slightly sub-ZND value due to the geometric curvature and then
quickly approaches the ZND value (i.e. PZND). A critical regime is observed for
Es = 1.9× 104, 2.0× 104 and 3.0× 104, in which case Psh first decays to a sub-ZND
value and then very quickly increases. The secondary ignition of the detonation is
attributed to the formation and amplification of a pressure pulse induced by the
chemical reaction behind the leading shock, as shown in figure 2(b). When Es

decreases to 1.8 × 104, the detonation does not occur within the computed domain.
This case refers to the subcritical regime. The failure of the detonation is mainly due
to excessive unsteadiness arising from deceleration of the leading shock (Eckett et al.
2000). We note that the run-up distance increases exponentially when Es decreases. If
the computational domain is long enough, the detonation can eventually be initiated
using one-step chemistry (Mazaheri 1997).

Next, we perform 2D simulations with Es = 2.0 × 104 and 2.5 × 104. Figure 3(a)
and (b) show a comparison of Psh along the radial coordinate at y = 1000 with Psh

computed by the 1D simulations. The 1D and 2D solutions overlap in the early
stage of the initiation. After some distance, the 2D solutions start to deviate from
1D solution. In particular, the 1D detonations remain stable throughout the whole
simulation whereas the 2D detonations exhibit regular cellular structures that appear
as a result of the interactions of multidimensional instabilities. These instabilities
are developed from the initial perturbations induced by using a rectangular mesh
to approach the circular geometry. As a consequence of the instabilities, the run-up
distances are different in different directions. However, as shown in figures 3(c)
and (d), when Es is large enough, the 2D run-up distances become more homogeneous
and get closer to the 1D values.

3.4. Mildly unstable case with Ea = 27
In this section, we investigate direct initiation of mildly unstable detonation when Es

ranges from 2.2× 105 to 5.1× 105 in 1× 104 increments. Figure 4(a) shows Psh as
a function of the position for selected values of Es in the aforementioned range. In
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FIGURE 3. (a,b) Comparison of the peak pressure at the shock front along y= 1000 of
the 2D simulations with the 1D simulations and (c,d) 2D contours of the peak pressure
of the stable case with Ea = 15. (a) Es = 2 × 104, (b) Es = 2.5 × 104, (c) Es = 2 × 104,
(d) Es = 2.5× 104.
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FIGURE 4. Peak pressure at the shock front (Psh) as a function of position (x) and source
energy (Es) for the mildly unstable 1D case with Ea = 27.

the 1D numerical studies of Mazaheri (1997) and Eckett et al. (2000), second critical
energies were found in mildly unstable detonations. In our 1D simulations, detonations
are successfully initiated for cases with Es= 2.4× 105, 3.8× 105–4.1× 105, and 5.1×
105. In contrast, detonations fail in the other cases. This behaviour suggests that the
current 1D model admits at least three critical energies, i.e. 2.4× 105, 3.8× 105 and
5.1× 105. We extend our search for other potential critical energies by increasing Es

from 2.2×105 to 2.5×105 in 1×103 increments. Surprisingly, a fourth critical energy
at 2.33× 105 is detected, as shown by the red curve in figure 4(b).
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FIGURE 5. Peak pressure at the shock front in two dimensions for the mildly unstable
case with Ea = 27 and variable source energies. (a) Es = 2.4 × 105, (b) Es = 3.5 × 105,
(c) Es = 4.0× 105, (d) Es = 4.5× 105.

Guided by the 1D results, we initiate 2D detonations with Es = 2.4× 105 (the first
1D critical energy), 3.5× 105 (between the first and the second 1D critical energies),
4 × 105 (slightly above the second 1D critical energy) and 4.5 × 105 (between the
second and the third 1D critical energies). Figure 5 shows the corresponding 2D
contour plots of Psh. After an early decaying stage of the blast wave, irregular
cellular structures appear in all simulations. The detonation fails at Es= 2.4× 105 and
Es = 3.5 × 105. However, in the latter case, the failure is non-homogeneous. In fact,
as shown in figure 5(b), the detonation fails rapidly in three of the four quadrants but
takes a while before decaying in the top left portion of the domain. Our numerical
experiments show that the detonation succeeds when Es > 4 × 105. This suggests
that there may exist a unique critical energy (approximately 4× 105) for this mildly
unstable case in 2D.

3.5. Highly unstable case with Ea = 50
Little research has been done on the direct initiation of highly unstable detonations.
To investigate this problem, we increase the source energies from 5 × 105 to 3 ×
107 in 5 × 105 increments. Figure 6(a) shows Psh versus positions computed using
the 1D model with different Es. With the 1D model, the failure of the detonation
seems to be independent of the magnitude of Es. Although the propagating distance
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FIGURE 6. Peak pressure at the shock front in (a) one dimension and (b–d) two
dimensions for the highly unstable case with Ea= 50 and variable source energies. (a) 1D
simulations, (b) Es = 1× 106, (c) Es = 1.5× 106, (d) Es = 2.0× 106.

increases by increasing Es, the detonation eventually fails in all cases after a highly
oscillatory phase during which instabilities play a major role. This result is consistent
with the 1D results published by He & Lee (1995) about piston-supported detonations.
They reported that piston-supported detonation with a small over-driven factor and
high activation energy (thus highly unstable) cannot propagate through an auto-ignition
mechanism in one dimension.

Next, we perform 2D simulations with Es = 1 × 106, 1.5 × 106 and 2 × 106.
Figure 6(b–d) shows the corresponding 2D contour plots of Psh. In all three cases,
cellular structures with highly irregular patterns emerge after a decay of the blast
wave. The detonation fails at Es = 1 × 106 (figure 6b) and succeeds in the other
two cases (figure 6c,d). The numerically observed critical energy is approximately
1.5× 106 in this highly unstable 2D case.

4. Discussion and conclusion

By comparing the 1D and 2D numerical results for stable, mildly unstable and
highly unstable cases, we conclude that multidimensional instabilities strongly
influence direct initiation of detonations. Under the 1D assumption, the direct
initiation of detonation is dominated by a competition between heat release and
unsteadiness. The primary physical mechanism for the failure of the initiation of 1D
detonation is excessive unsteadiness arising from the deceleration of the leading shock
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FIGURE 7. (a) 2D pressure contours when the detonation reaches the boundary;
(b) comparison of the peak pressure at the shock front along y = 1000 of the 2D
simulations with the 1D simulations, where Ea = 27 and Es = 4× 105.

(Eckett et al. 2000). In 2D, heat release and unsteadiness are still undoubtedly two
competing factors in the failure or success of the initiation of detonations, but they
are accompanied by a third key element, the inherent multidimensional instabilities.

In stable detonations, the initiation regimes in 1D and 2D are similar. After the
success of initiation, the heat release overwhelms the unsteadiness. This observation
is supported by the fact that 1D detonations are quasi-steady and 2D detonations never
fail even though Psh is highly oscillatory (see figure 3a,b).

In unstable detonations, the relationships between heat release, unsteadiness and
multidimensional instability are very complex. The critical energy in 1D is not
unique in mildly unstable detonations, and probably does not exist in the highly
unstable ones. Figures 4 and 6(a) show that the failure of the 1D mildly and highly
unstable detonations is quite similar, except for the cases with very low values of
Es. At the early stage, the detonations are successfully ignited but they eventually
decay to acoustic waves after some periods of oscillation. One-dimensional pressure
oscillations are governed by a competition between rapid expansion waves at the rear
of the reaction zone and the heat released due to chemical reactions (Mazaheri 1997).
The failure of the detonation is mainly caused by excessive unsteadiness due to this
expansion. In highly unstable cases, the unsteadiness dominates the initiation process
so that the 1D detonation cannot propagate through the auto-ignition mechanism. In
2D cases, the inevitable multidimensional instabilities are double-edged swords. First,
the interaction of these instabilities can generate transverse waves. As observed in
figure 7(a), the collision of transverse waves can generate hot spots which can induce
local over-driven detonations by the Zel’dovich gradient mechanism (Zel’dovich
et al. 1970; Oran & Gamezo 2007), thereby assisting the propagation of the overall
detonation. Second, as shown by figure 7(b), these local over-driven detonations can
induce stronger expansion waves than 1D detonations. This feature increases the risk
of failure of the detonation. The competition between these two effects therefore
provides an additional initiation mechanism in 2D detonations. When Es is small, the
unsteadiness induced by strong expansion waves is more important. This explains why
the initiation of the detonation succeeds in 1D but fails in 2D in the mildly unstable
case with Ea = 27 and Es = 2.4 × 105 (the first observed 1D critical energy). In
contrast, the first effect is dominant with large Es. Consequently, unstable detonations
can be directly initiated in two dimensions when Es exceeds the critical energy.
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Direct initiation of detonation

In conclusion, the 1D assumption only provides a valid approach to understanding
the direct initiation of stable detonations, and multidimensional effects must be
included in a predictive model of direct initiation of unstable detonations.
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