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SUMMARY
Singularities of a manipulator have been addressed repe-
atedly. However, the singularities and the degree(s) of
freedom, as a matter of fact, are two different aspects of
the mobility of a manipulator. Consequently, this paper
dedicates to discussing the mobility properties through
mobility space, which synchronously define the type, number
and direction characteristics of the independent motions that
the manipulator should execute. The mobility space of
a manipulator can be obtained with reciprocal screws of
the manipulator via singular value decomposition, which
instantaneously depicts the singularity and mobility prob-
lems of the manipulators. Application example demonstrates
that this methodology can investigate the all-sided mobility
properties of parallel manipulators.

KEYWORDS: Parallel manipulator; Mobility; Kinematic chain;
Reciprocal screw theory; Singular value decomposition.

I. INTRODUCTION
Singularity of a mechanism has been addressed repeatedly by
many scholars and thought to be the position or pose where
the mechanism gains or loses one or more degrees of freedom
(DoF).1–11 The DoF of a mechanism has been discussed by
Grübler and Kutzbach.12–14 Hunt,13 Phillips,14,15 and many
other scholars and in our former articles.16–17

Gosselin and Wang1 split the singularities of mechanisms
into three types. The first type occurs in a situation when
the mechanism loses one or more DoFs. The second type
occurs in a situation when the mechanism gains one or more
DoFs. The last one occurs when the positioning equations
degenerate, which is also referred to as architecture singul-
arity. Ficher2 investigated the singular configurations of the
manipulator and pointed out that the singular configurations
are positions where the end-effector gains one or more DoFs.
Gosselin and Angeles3 presented an analysis of the different
kinds of singularities encountered in closed-loop kinematic
chains. They classified these singularities into three main
groups, which are based on the properties of the Jacobian
matrices of a chain. Merlet4 proposed a method based on
Grassman line geometry to determine the singular configur-
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ations. Agrawal and Roth5 addressed a method to choose
the active and passive joints to avoid many singularities. The
approach to study this problem is based on instantaneous
properties of series chains as derived from the theory of
screw systems.12–15,18 Daniali et al.6 divided the singularities
of planar parallel manipulators into three groups. The
classification scheme relies on the properties of the Jacobian
matrices of the manipulator. Park and Kim8 proposed a
geometric classification method and classified the closed
chain singularities into three basic types: configuration
space singularities, actuator singularities and end-effector
singularities. Simaan and Shoham11 proposed linear
complex singularities, linear congruence singularities, plane
singularities, flat pencil singularities and point singularities.

The former researchers’ efforts mainly focused on
searching the singular solutions and grouping the singular-
ities. Yang et al.19 proposed three types of singularities,
the forward singularity, the inverse singularity and the
combined singularity. The forward singularity is also called
architecture singularity and can be avoided in the process of
concept design; the inverse singularity occurs when the active
velocities and passive velocities will not be determined from
the mobile end-effector velocity; the combined singularity
occurs when both forward and inverse singularities are
simultaneously occur, which is also called multi-singularity.
Fang and Tsai.9 Sen and Mruthyunjaya,20 Wang and Liu,21

Zlatanov et al.,22 investigated the classification problems of
singularities. Burdick,23 Legnani et al.,24 Ranganath et al.,25

Bandyopadhyay and Ghosal,26 Wolf et al.,27 Bhattacharya
et al.28 researched on the singular solutions and the
classification problems.

The criterion mathematic expressions of singularities are
derived either from velocity equations or from constraint
and geometric conditions. Gosselin and Angeles,3 Daniali
et al.,6 Zlatanov et al.,22 Zlatanov et al.,25 Hernández et al.,29

Nokleby and Podhorodeski30 obtained velocity-degenerate
(singular) configurations of joint-redundant manipulators.
Gosselin and Wang,1 Ficher,2 Merlet,4 Ranganath et al.,25

Wolf et al.,27 Bhattacharya et al.,28 Basu and Ghosal31

presented a geometric condition for singularities.
However, the singularities and the DoFs, as a matter of fact,

are two different aspects of the mobility of a manipulator.
Consequently, this paper dedicates discussing the mobility
of a manipulator based on the singular value decomposition
(SVD) of reciprocal screws. According to the reciprocal
screws, we investigate the constraint spaces spanned by the
reciprocal screws with algebra methods,32–34 then the free
mobility space(s) of the end-effector and its DoF with SVD.
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II. BASIC CONCEPTS AND PRIMARY
FORMULATIONS TO INVESTIGATE THE
MOBILITY OF A MANIPULATOR
Singularity of a manipulator is often defined as1,3,10,26,31:

The position or pose where the DoF of the mechanism
with an end-effector will change.

In reference [16], we have discussed the computation of
DoF of the platforms (end-effector); we will further exploit
the numeral, type and direction properties of DoF of the
end-effector via SVD in this paper.

The formula for calculating the DoF of the end-effector in
spatial parallel mechanism16 is given as follows:

M = 6 − d (1)

where M denotes the DoF of the end-effector, d denotes the
number of dimensions that all the reciprocal screws can be
spanned in the normal linear spaces.

According to reciprocal screw theory, we can get the
following equation:

$i ◦ $r
i = 0 (2)

where “◦” represents the reciprocal production of two screws.
The reciprocal screws $r

i can be solved with linear algebra
methods. As a result, we can search the constraint spaces that
the reciprocal screws of the system should be spanned in the
six-dimension mobility spaces. If all of the reciprocal screws
of each kinematic chain have been solved, the base and the
dimension of the constraint space can be gained.16

Following, we will firstly introduce the preliminary
reciprocal screw theory.12–15,18,32,33

A unit screw $ is defined by a straight line with an
associated pitch h and is conveniently denoted by six screw
coordinates:

$ = (s s0 + hs). (3)

where s = (L M N ) is a unit vector pointing in the direction
of the screw axis, s0 +hs = r × s + hs = (P Q R ) defines
the moment of the screw axis about the origin of the
coordinate system, r is the position vector of any point on
the screw axis with respect to the coordinate system.

If the pitch of a screw is equal to zero, the screw coordinates
reduce to:

$ = ( s s0 ). (4)

If a screw passes through the origin of the coordinate
system, the screw coordinates will be:

$ = ( s hs ). (5)

On the other hand, if the pitch of a screw is infinite, the
unit screw is defined as:

$ = ( 0 s ). (6)

According to the above definition, the unit screw
associated with a revolute joint is a screw of zero pith
pointing along the joint axis. The unit screw associated with
a prismatic joint is a screw of infinite pitch pointing in the
direction of the joint axis.

The kinematic screw is often defined as:

$ = (L M N P Q R ) (7)

where the first three components denote the angular velocity,
the last three components denote the linear velocity of a point
in the rigid body that is instantaneously coincident with the
origin of the coordinate system.

Similarly, $r is defined as:

$r = (Lr Mr Nr P r Qr Rr ) (8)

where the first three components denote the resultant force,
the last three components denote the resultant moment about
the origin of the coordinate system.

Two screws, $ and $r, are called to be reciprocal if they
satisfy the equation:

LP r + MQr + NRr + PLr + QMr + RNr = 0. (9)

Equation (9) is often rewritten in the form of equation (2).
Similarly, $r can also be denoted as

$r = ( s s0 + hs ) (10)

where s = (Lr Mr Nr ) is a unit vector pointing in the dir-
ection of the screw axis, s0 + hs = r × s +hs = (P r Qr Rr ).
The motion constrained by $r can be obtained:

$M =
(

s s0 + s
h

)
. (11)

According to the definition of the reciprocal screws, the
reciprocal screws of kinematic screws are a set of general
forces. The meaning of formula (9) is that the work done at
any instant by the alien forces to a stable rigid body should
always be zero.

Suppose a reciprocal screw acted on point A at a rigid
body, which is shown in figure 1, has the form below:

$r
A = ( s sA0 + hs ) (12)

where sA0 = rA × s.
We now investigate the equivalent expressions of a screw

at different points, points A and B for example. According to
the definition of a screw, if the point is changed from point A

r
B$

A

B

o

$r
A = (s s0 + hs)

rA = (xA   yA   zA)

x y

z

Fig. 1. Transformation of reciprocal screws.
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to point B, $r
A denoted by equation (12) will be equivalently

expressed at point B:

$r
A = ( s sB0 − rAB × s + hs ) (13)

where sB0 = rB × s, rAB = rB − rA.
If B is superimposed with the origin of the coordinate

system, equation (13) will be:

$r
A = ( s sO0 + rA × s + hs ) (14)

where sO0 = rO × s = 0.
Next, we will investigate the stability of a rigid body under

a set of reciprocal screws.
If the set of reciprocal screws do not meet at one point,

we should transform them to one point, say, the equivalent
expressions of the screws can be denoted at the origin of
the coordinate system by equation (13). Assume that a set of
reciprocal screws passing through one same point are denoted
by C, where

C =

⎡
⎢⎢⎣

$1

$2
...

$m

⎤
⎥⎥⎦ .

Now, we can analyze the constraint spaces that can be
spanned by these reciprocal screws.

According to algebra [34], the singular value
decomposition (SVD) of an m × n matrix C has the following
form:

C = U�V T (15)

where U denotes an m × m orthogonal matrix, V denotes an
n × n orthogonal matrix, � denotes an m × n diagonal
matrix, with

σij =
{

0 i �= j

σi ≥ 0 i = j .
(16)

The diagonal entries σ i are called the singular values of C
and are usually ordered so that σ i ≥ σ i+1, i = 1, 2, . . . , n − 1.
The columns ui of U and vi of V are the corresponding left
and right singular vectors.

If C = U�VT, then the columns of U corresponding
to nonzero singular values form an orthonomal basis
of span{C}, and the remaining columns of U form an
orthonomal basis of its orthogonal complement, denoted by
span{C}⊥. Similarly, the columns of V corresponding to zero
singular values form an orthonomal basis for the null space
of C, {x ∈ �n: Cx = 0}, and the remaining columns of V
form an orthonomal basis for the orthogonal complement of
the null space.

The set of reciprocal screws applied to the manipulator
have the following form:

$r
M =

⎡
⎢⎢⎣

L1 M1 N1 P1 Q1 R1

L2 M2 N2 P2 Q2 R2
...

Lm Mm Nm Pm Qm Rm

⎤
⎥⎥⎦

m×6

, (m = 1, 2, · · ·).

(17)

Therefore, $r
M is an m × 6 matrix and V should be a

6 × 6 orthonomal matrix. For $r
M is a set of reciprocal

screws (constraints) applied to the manipulator, therefore,
the rows of VT corresponding to zero singular values form an
orthonomal basis of the null space of $r

M , and the remaining
rows of VT form an orthonomal basis of the orthogonal
complement of the null space, which is a basis of the
constraint space, $r

M .
Therefore, the free mobility space of the manipulator can

be directly obtained from the rows of VT corresponding to
zero singular values with equation (11).

III. EXAMPLE AND DISCUSSION
We now analyze the DoF and singularity of the parallel
manipulator shown in figure 2, which is made up of 3-
PUU (1 Prismatic Joint and 2 Universal Joints) kinematic
chains.

Firstly, we will create an absolute coordinates oxyz as
figure 2 shows. The plane xoy is perpendicular to the three
vertical guides and x-axis is parallel to the midline of triangle
B1B2B3. Assuming that the radius of the circumcircle of
triangle B1B2B3 is R, the coordinates of the three sliders
are as follows:

P1(R 0 z1), P2

(
−1

2
R −

√
3

2
R z2

)
,

P3

(
−1

2
R

√
3

2
R z3

)
.

Assume that the geometric center of manipulator M1M2M3

is C, the local coordinate system ocxcyczc is shown in
figure 2, whose origin is superimposed with point C. The
three vertexes of the manipulator are denoted by Mi, (i = 1,
2, 3), and the sliders are denoted by Pi (i = 1, 2, 3).

Because all the limbs connecting the manipulator with the
base are identical, we only need to select one of them to
study the reciprocal screws of the limbs, for example, we
select limb P2M2 as the analyzing object shown in figure 3.

The Plücker coordinates of slider P2 are:

$1 = (0 0 0 0 0 1).

The universal joint P2 can be decomposed as two
orthogonal revolute pairs.

The individual Plücker coordinates are:

$2 = (0 −cos α2 sin α2 0 0 0),

$3 = (1 0 0 0 0 0).
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P1P2

P3

M1B2

B
3

B1

M2

M3

xc

zcyc

oc

z

y

o

Universal Joint (6)

Slider (3)

Limb (3)

Manipulator

Vertical Guide (3)

Fixed Base

Fig. 2. A spatial parallel mechanism with 3-PUU.

X

Y

α2

Z

O(P2)

M2

Fig. 3. The coordinate system for limb P2M2.

The same is true for universal joint M2. The coordinates of
M2 are:

M2(0 l sin α2 l cos α2).

The Plücker coordinates can be denoted as:

$4 = (
$1

4 $0
4

)
, $5 = (

$1
5 $0

5

)
.

where

$1
4 = (0 −cos α2 sin α2), $1

5 = (1 0 0),

$0
4 = rM2 × $1

4 = (l 0 0),

$0
5 = rM2 × $1

5 = (0 l cos α2 −l sin α2).

∴ $4 = (0 −cos α2 sin α2 l 0 0),

$5 = (1 0 0 0 l cos α2 −l sin α2).

∴ Therefore, the kinematic screws of the limb P2M2 can be
expressed as:

$P1B1 =

⎡
⎢⎢⎢⎣

$1

$2

$3

$4

$5

⎤
⎥⎥⎥⎦ . (18)

The reciprocal screws of branch P2B2 can be gained:

$r
P2B2

= (0 0 0 0 sin α2 cos α2). (19)

According to the physical meaning of the reciprocal screws
of kinematic screws, $r

P2B2
denotes a pure moment that is

perpendicular to the universal joint plane.
The same are true for the rest two limbs of the manipulator.

So, the reciprocal screws exerted to the manipulator are 3 pure
moments of couples shown in figure 4.

According to equation (13), we can transform the 3 pure
moments of couples to the origin of the absolute coordinate
system shown in figure 4. If we presume the angle from the
normal vector of the universal joint plane of the ith, (i = 1,
2, 3) limb to xoy plane is denoted by β i and the angle from
the projection line of the normal vector to x-axis is denoted
by θ i, the reciprocal screws can be rewritten as follows:

$rn

PiBi
= (0 0 0 cos βi cos θi cos βi sin θi sin βi),

(i = 1, 2, 3). (20)

Considering the geometric characteristics of the
mechanism shown in figure 2, we know 0 ≤ βi ≤ π

2 and
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x

z

y

o

r
MP 11

$

r
MP 33

$
r

MP 22
$

δ2

Fig. 4. Reciprocal screws of the manipulator.

can obtain:

θi = 2(i − 1)π

3
, (i = 1, 2, 3) (21)

Therefore, (20) can be simplified:

$r =

⎡
⎢⎣

$rn

P1B1

$rn

P2B2

$rn

P3B3

⎤
⎥⎦ (22)

where

$rn

P1B1
= (0 0 0 cos β1 0 sin β1),

$rn

P2B2
=

(
0 0 0 −1

2
cos β2

√
3

2
cos β2 sin β2

)
,

$rn

P3B3
=

(
0 0 0 −1

2
cos β3 −

√
3

2
cos β3 sin β3

)
.

Assume

K =

⎡
⎢⎢⎣

cos β1 0 sin β1

− 1
2 cos β2

√
3

2 cos β2 sin β2

− 1
2 cos β3 −

√
3

2 cos β3 sin β3

⎤
⎥⎥⎦ (23)

and let

|K| = 0 (24)

which yields

√
3

2
(sin β1 cos β2 cos β3 + sin β2 cos β1 cos β3

+ sin β3 cos β1 cos β2) = 0 (25)

The solutions of equation (25) are the singularities of the
mechanism. We will discuss the solutions in the following
two cases:

1 When βi �= π
2 , (i = 1, 2, 3), equation (25) can be simpli-

fied as:

tan β1 + tan β2 + tan β3 = 0. (26)

Because 0 ≤ βi ≤ π
2 , (i = 1, 2, 3), the solutions of (26)

are:

βi = 0, (i = 1, 2, 3). (27)

2 When one of β1, β2 and β3 equals π
2 , equation (25) can

be simplified. To simplify the discussion, we might as
well assume β1 = π

2 . As a result, equation (25) will be
degenerated to:

cos β2 cos β3 = 0. (28)

The solutions of (28) are:

β2 = π

2
or β3 = π

2
.

Considering the circulate symmetry of β i, i = 1, 2, 3, we
can obtain the solutions for this case are that any two of the
following three equations hold:

β1 = π

2
, β2 = π

2
and β3 = π

2
.

Therefore, at ordinary positions, the rank of $r is:

R($r ) = 3. (29)

When β i = 0, (i = 1, 2, 3), equation (22) has the form below:

$r =

⎡
⎢⎢⎣

0 0 0 1 0 0

0 0 0 − 1
2

√
3

2 0

0 0 0 − 1
2 −

√
3

2 0

⎤
⎥⎥⎦ . (30)

The singular value decomposition can be denoted as:

$r = U
∑

V T

where

U =

⎡
⎢⎢⎣

√
6

3 0
√

3
3

−
√

6
6

√
2

2

√
3

3

−
√

6
6 −

√
2

2

√
3

3

⎤
⎥⎥⎦ (31)

∑
=

⎡
⎢⎢⎣

√
6

2 0 0 0 0 0

0
√

6
2 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎦ (32)

V T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

$r
1

$r
2

$r
3

$r
4

$r
5

$r
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (33)

Therefore, the last four rows of VT corresponding to zero
singular values form an orthonomal basis for the null space
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of $r
M denoted by N($r

M ), and the remaining first two rows of
VT form the constraint space of $r

M , denoted by C($r
M ), that

is,

C
(
$r

M

) =
[

$r
1

$r
2

]
=

[
0 0 0 1 0 0

0 0 0 0 1 0

]
(34)

where $r
1 denotes a toque about x-axis in the absolute

coordinate system shown in figure 4, $r
2 denotes a toque about

y-axis in the absolute coordinate system shown in figure 4.

d = dim C
(
$r

M

) = 2 (35)

N
(
$r

M

) =

⎡
⎢⎢⎢⎣

$r
3

$r
4

$r
5

$r
6

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎦ . (36)

The free mobility space, denoted by SF, can be obtained
from N($r

M ) according to equation (11):

SF =

⎡
⎢⎢⎢⎢⎣

S1
F

S2
F

S3
F

S4
F

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0

⎤
⎥⎥⎥⎦ . (37)

According to equation (37), the instantaneous DoF of the
manipulator at this configuration is:

M = dim SF = 6 − d = 6 − 2 = 4 (One Rotational
DoF about z-axis denoted by S4

F + Three Translational DoFs
denoted by S1

F , S2
F and S3

F ).
Therefore, when β i = 0, (i = 1, 2, 3), the manipulator

and the three sliders keep coplanar, and the mechanism
instantaneously becomes a planar 3 − PzRR parallel
mechanism shown in figure 5, which is one singular case
of the manipulator and is impossible for the spatial parallel
manipulator in reality.

"

M1

M3

M2

B2

B3

B1

Fig. 5. One singular case for the manipulator when β i = 0, i = 1,
2, 3.

Similarly, when βi = π
2 , (i = 1, 2, 3), the three limbs

are parallel to each other and are perpendicular to the
manipulator synchronously, which is another singular case
and can be avoided by adjusting the structure parameters of
the mechanism.

When 0 < βi < π
2 , (i = 1, 2, 3), dim C($r

M ) = 3 and the
reciprocal screws of the three limbs can prevent the
manipulator from rolling about the x, y and z axes.
The mobility spaces of the manipulator can be similarly
obtained:

SF =

⎡
⎢⎣

S1
F

S2
F

S3
F

⎤
⎥⎦ =

⎡
⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎦ . (38)

Therefore, the DoF of the manipulator is:

M = dim SF = 3 (Three Translational DoFs).

where S1
F denotes one translational motion along x-axis, S2

F

denotes one translational motion along y-axis, S3
F denotes one

translational motion along z-axis, These three free motions
the end-effector can make are depicted fully by equation (38).

IV. CONCLUSION
Through singular value decomposition of reciprocal screws,
this paper addresses the mobility space, which defines the
type, number and direction characteristics of the independent
motions that the manipulator should execute. We firstly
investigate the reciprocal screws applied to the end-effector
and obtain the spaces spanned by the reciprocal screws of
the kinematic chains via SVD, and then the free mobility
spaces of the end-effector and its DoF. With this method,
we can both obtain the numeral properties of the DoF of the
end-effectors of spatial parallel manipulators and find their
type and direction properties, which will be widely used to
design and synthesize new parallel manipulators. Application
example demonstrates that this methodology can be utilized
to exploit the all-sided mobility characteristics of parallel
manipulators, including the singularity and DoF.
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