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VELOCITY AND THE VARIABILITY
OF MONEY GROWTH: EVIDENCE
FROM A VARMA, GARCH-M MODEL
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This paper uses recent advances in financial econometrics to test the Friedman hypothesis
that money supply volatility Granger-causes velocity. Comparisons are made among
simple-sum and Divisia velocity series at the M1 and M2 levels of monetary aggregation,
using quarterly data from 1959:1 to 2004:3. The conclusion is that the Friedman
hypothesis cannot be rejected if money supply volatility is modeled explicitly, using
models that capture important volatility effects that previous work has ignored.
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1. INTRODUCTION

A substantial amount of attention has been focused on the behavior of the velocity
of money in the United States, primarily as the result of a relatively sudden and
unanticipated decline in the velocity series in 1981. The most powerful element
of this statistically unusual decline in velocity is the collapse of the longer-run
relationship connecting money to both income and prices. In fact, whether velocity
is stable or at least predictable is essential to any empirical interpretation of
the monetarist position and especially relevant for some problems of potential
importance in the practical conduct of monetary policy.

The debate that has arisen mostly concerns the rather abrupt decline in velocity,
and quite a few specific hypotheses regarding the determinants of velocity have
evolved from this discussion. Among the propositions advanced, those most often
cited involve the influence of structural changes in the financial sector, tax cuts,
inflation (or expected inflation), changes in government expenditures, changes in
energy prices, and money growth along with its variability—see especially Hall
and Noble (1987), Judd and Motley (1984), Tatom (1983), Santoni (1987), and
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Fisher and Serletis (1989), for more on these and other suggested (and sometimes
empirically supported) influences.

It is the variability of money growth that we wish to explore as an influence on
velocity in this paper. There are essentially two avenues of influence, proposed
by Friedman (1983, 1984). The first involves the behavior of real income and the
second concerns the behavior of the demand for money (accommodated by money
supply). Although for the real income effect Friedman’s position is not precisely
stated in this particular paper, for the money demand effect he argues that increased
uncertainty in financial markets, because of the increased volatility of money after
the 1979 change of policy-operating techniques in the United States, has produced
both an increased demand for money for (essentially) precautionary purposes and,
assuming that the money supply process accommodates the pressure, a rise in
money holdings relative to nominal income. Thus, the authorities willing, the
equilibrium stock of money would increase and velocity would decrease, with
increases in the volatility of money growth.

Papers by Hall and Noble (1987), Brocato and Smith (1989), Fisher and
Serletis (1989), and Thornton (1995) have offered mixed results regarding
Friedman’s money supply volatility hypothesis. They all used moving (sample)
standard deviations of money growth rates to measure the variability of money
growth and the Granger-causality method to test the general hypothesis that the
variability of money growth causes velocity to change. Some of these papers also
paid attention to misspecification issues as well as to issues of deterministic versus
stochastic trend, on which the appropriate distribution theory depends crucially.

In extending the works of these authors, we have two objectives in this paper.
Our first objective is to test the Friedman hypothesis using recent advances in the
financial econometrics literature. In doing so, we specify and estimate a multi-
variate GARCH-M model of money growth and velocity, allowing for the effects
of other determinants on velocity as well for the possibilities of spillovers and
asymmetries in the variance-covariance structure for money growth and velocity
growth. Our second objective is to investigate four measures of velocity to deal
with anomalies that arise because of different definitions of money. The money
measures employed are quarterly simple-sum and Divisia indices (from 1959:1 to
2004:3) for the United States.

The paper is organized as follows. Section 2 briefly describes the traditional
approach to testing the Friedman hypothesis and reviews the relevant literature.
Section 3 provides a description of the multivariate GARCH-M model of money
growth and velocity growth that we use to test for Granger causality from money
growth to velocity. Section 4 discusses the data and Section 5 presents and dis-
cusses the empirical results. The final section concludes the paper.

2. THE CONVENTIONAL APPROACH AND RESULTS

Hall and Noble (1987), Brocato and Smith (1989), Mehra (1989), Fisher and
Serletis (1989), and Thornton (1995) all use the Granger-causality method to test
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Friedman’s hypothesis that money growth volatility is causal factor in changes
in velocity. In doing so, they assume that the relevant information is contained
in the present and past values of these variables and use the following bivariate
autoregressive representation

vt = α0 +
r∑

j=1

αjvt−j +
s∑

j=1

βj VOLt−j + εt , (1)

where vt = � log Vt , Vt is the level of money velocity, VOLt is the level of money
growth voloatility (calculated as a moving standard deviation of money growth),
� is the difference operator, and εt is a white noise disturbance.

In this framework, the Granger procedure requires that we first estimate equation
(1) by ordinary least squares to obtain the unrestricted sum of squared residuals,
SSRu. Then, by running another regression under the restriction that all βj ’s are
zero, the restricted sum of squared residuals, SSRr , is obtained. If εt is white noise,
then the statistic,

(SSRr − SSRu)/s

SSRu/(T − r − s − 1)
,

has an asymptotic F -distribution with the numerator having degress of freedom
of s and the denominator of T − r − s − 1, where T is the number of observations
and 1 is subtracted out to account for the constant term in equation (1). If the null
hypothesis of βj = 0 for j = 1, . . . , s cannot be rejected, then the conclusion
is that the data do not show causality. If the null hypothesis is rejected, then the
conclusion is that the data do show causality.

For monetary variability, the literature has produced mixed results. In particu-
lar, Hall and Noble (1987) using quarterly data (from 1963:1 to 1984:2), define
monetary variability as an eight-quarter standard deviation of M1 growth, and find
a causal relation from money growth variability to velocity. Fisher and Serletis
(1989) test the same hypothesis that Hall and Noble (1987) did, using monthly U.S.
data (covering the period 1970 through mid-1985), and search for the relationship
over nine simple-sum and Divisia measures of the money stock, in an attempt to
deal with anomalies that arise because of different definitions of money. Although
they find some slight differences across the different monetary aggregates of equal
breadth, they claim that the influence of money growth variability shows up on
velocity in a (Granger) causal sense.

However, Brocato and Smith (1989), using monthly U.S. data from 1962:2
through 1985:9, reestimate the Hall and Noble (1987) equation over the full period,
as well as over pre– and post–October 1979 periods. They find evidence to sup-
port the Friedman hypothesis in the pre-October 1979 period but find no evidence
that the variability of money growth influenced velocity thereafter. They conclude
that the change in Federal Reserve operating procedures in October 1979 con-
tributed to a breakdown in the money growth/velocity growth relationship and
that this finding runs counter to the Friedman hypothesis, which would suggest

https://doi.org/10.1017/S1365100506050309 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100506050309


VARIABILITY OF MONEY GROWTH 655

stronger causality results after 1979, given the increase in money growth variability
that took place.

The Brocato and Smith (1989) finding has also been confirmed by Mehra
(1989), who shows that the Granger-causality result reported by Hall and Noble
(1987) is not robust to some changes of specification and the sample period.
Moreover, Thornton (1995) extends this work by testing Friedman’s hypothesis
using quarterly data (over the period from 1961 to 1990) for nine countries—
Australia, Austria, Canada, France, Germany, Italy, Japan, Switzerland, and the
United Kingdom. He finds no evidence of the hypothesis that money supply
volatility causes income velocity to change and concludes that “the Friedman
hypothesis would appear to have little general applicability.”

3. AN ALTERNATIVE APPROACH

The conventional approach to testing the Friedman hypothesis that money sup-
ply volatility Granger-causes velocity uses moving standard deviations of money
growth rates as measures of monetary variability. Such measures, however, are
inappropriate because they are ad hoc, nonparametric estimates. In this paper, we
use an extremely general asymmetric GARCH in Mean model of velocity and
money growth to test the Friedman hypothesis. The model allows for the effects of
other determinants on velocity, for the possibilities of spillovers and asymmetries
in the variance-covariance structure, and also for the separate examination of
the effects of the volatility of anticipated and unanticipated changes in money
growth.

We use an extended version of a VARMA (vector autoregressive moving aver-
age) GARCH in mean model, in velocity growth (vt ) and money growth (µt ), as
follows

yt = a +
p∑

i=1

Γiyt−i +
q∑

j=1

Ψj ht−j +
r∑

k=1

Φkzt−k +
s∑

l=1

Θlet−l

+
t∑

m=0

Λmxt−m + et (2)

et | �t−1 ∼ (0, Ht ), Ht =
[

hvt
hvµt

hvµt
hµt

]
,

where �t−1 denotes the available information set in period t − 1 and

yt =
[

vt

µt

]
; et =

[
evt

eµt

]
; ht =

[
hvt

hµt

]
; a =

[
av

aµ

]
;

xt =
[

gt

�Rt

]
; Γi =

[
γ

(i)
11 γ

(i)
12

γ
(i)
21 γ

(i)
22

]
; Ψj =

[
ψ

(j)

11 ψ
(j)

12

ψ
(j)

21 ψ
(j)

22

]
;
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Φk =
[

φ
(k)
11 φ

(k)
12

φ
(k)
21 φ

(k)
22

]
; Θl =

[
θ

(l)
11 θ

(l)
12

θ
(l)
21 θ

(l)
22

]
; Λm =

[
λ

(m)
11 λ

(m)
12

λ
(m)
21 λ

(m)
22

]
;

zt−k =
[

zvt−k

zµt−k

]
; zit−k

= eit−k√
hijt−k

, for i, j = v, µ .

Notice that ht−j and zt−k have been introduced to take anticipated and unan-
ticipated volatilities into account. Moving average terms are added to get rid
of potential serial correlation; we will return to this issue in Section 5. Finally,
regarding underlying cointegration concerns and the possible existence of error-
correction terms that should be added to the model, we note that most of the
previous literature cannot reject the null of no cointegration between velocity and
money supply.

It is to be noted that previous research, in the framework of equation (1), ignores
influences of other determinants of velocity such as income and interest rates.
Friedman’s hypothesis, however, is about the effects of changes in the volatility
of the supply of money. Hence, in the context of our model, we control for the
effects that are a result of movements in money demand. In particular, because
demand functions for M1 and M2 have been affected by the continuing wave of
financial innovations and the interest rate deregulation, we capture their influences
on velocity by including the change in the interest rate (�Rt) and the growth rate
of real GDP (gt ) in equation (2). Hence, we investigate whether money growth
volatility affects velocity, given its other determinants.

Multivariate GARCH models require that we specify volatilities of υ and µ,
measured by conditional variances. Several different specifications have been
proposed in the literature, including the VECH model of Bollerslev, Engle, and
Wooldridge (1988), the CCORR model of Bollerslev (1990), the FARCH specifi-
cation of Engle, Ng, and Rothschild (1990), the BEKK model proposed by Engle
and Kroner (1995), and the DCC model of Engle (2002). However, none of these
specifications is basically capable of capturing the asymmetric volatility effects
of υ and µ in order to deal with good and bad news about money growth—in the
sense that a negative money supply shock may generate a different response than
a positive shock of the same magnitude.

In this regard, we use an asymmetric version of the BEKK model, introduced
by Grier et al. (2004), as follows

Ht = C′C +
f∑

j=1

B′
j Ht−j Bj +

g∑
k=1

A′
ket−k e′

t−k Ak + D′ut−1u′
t−1D (3)

where C, Bj , Ak , and D are n × n matrices (for all values of j and k), with
C being a triangular matrix to ensure positive definiteness of H. This specifi-
cation allows past volatilities, Ht−j , as well as lagged values of ee′ and uu′, to
show up in estimating current volatilities of velocity and money supply, where
ut = (uvt

, uµt
)′ captures potential asymmetric responses. In particular, if money
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growth is higher than expected, we take that to be bad news. We therefore capture
bad news about money growth by a positive money growth residual, by defin-
ing uµt

= max{eµt
, 0}. We also capture news about velocity growth by defining

uvt
= max{evt

, 0} and uvt
= min{evt

, 0}. In what follows we report the results for
the case when uvt

= max{evt
, 0}. The results for the case when uvt

= min{evt
, 0}

are available on request and are qualitatively similar to the ones reported in the
paper.

There are n+n2 (p + q + r + s + t)+n(n+1)/2+n2(f +g +1) parameters
in (2)–(3) and in order to deal with estimation problems in the large parameter
space we assume that f = g = 1 in equation (3), consistent with recent empirical
evidence regarding the superiority of GARCH(1,1) models—see, for example,
Hansen and Lunde (2005).

It is also to be noted that we have not included an inflation measure in the
model (in either yt or zt−k), although it would seem to be important to distin-
guish between the effect of money supply volatility and inflation volatility. We
have kept the dimension of the model low because of computational and degree
of freedom problems in the large parameter space. For example, with n= 2,

p = q = r = s = t = 2 in equation (2) and f = g = 1 in equation (3), the model has
61 parameters to be estimated. If we introduce one more variable in the system
(like the inflation rate), then we would have to estimate 135 parameters. Moreover,
the tests that we conduct in Section 5 indicate that the exclusion of such a measure
is not expected to result in significant misspecification error.

4. THE DATA

As it was mentioned in the introduction, the money measures employed are official
simple-sum aggregates and Barnett’s (1980)—see also Barnett, Fisher, and Serletis
(1992)—monetary services indices (also known as Divisia aggregates) at the M1
and M2 levels of monetary aggregation. The broad measures of money (M3 and
MZM) are not used in this paper because stable demand functions for these
measures are unlikely to exist. The data were obtained from the St. Louis MSI
database, maintained by the Federal Reserve Bank of St. Louis as a part of the
Bank’s Federal Reserve Economic Database (FRED)—see Anderson, Jones, and
Nesmith (1997a,b) for details regarding the construction of the Divisia aggregates
and related data. We use quarterly data from 1959:1 to 2004:3.

A battery of unit root and stationarity tests are conducted in Table 1 in the growth
rates of the velocity and money series. In particular, in the first three columns of
Table 1 we report p-values [based on the response surface estimates given by
MacKinnon (1994)] for the augmented Weighted Symmetric (WS) unit root test
(see Pantula et al. [1994]), the augmented Dickey-Fuller (ADF) test [see Dickey
and Fuller (1981)], and the nonparametric Z(t̂α) test of Phillips (1987) and Phillips
and Perron (1988). Moreover, given that unit root tests have low power against
relevant alternatives, in the last two columns of Table 1 we present Kwiatkowski
et al. (1992) tests, known as KPSS tests, for level and trend stationarity. As can be
seen, the null hypothesis of a unit root can be rejected at conventional significance
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TABLE 1. Unit root and stationarity tests

Unit root tests KPSS

Monetary aggregate Series WS ADF Z(tα̂) η̂µ η̂τ

Sum M1 v 0.006 0.019 0.000 0.162 0.077
µ 0.026 0.046 0.000 0.219 0.211

Sum M2 v 0.000 0.000 0.000 0.085 0.082
µ 0.128 0.138 0.000 0.465 0.174

Divisia M1 v 0.002 0.014 0.000 0.210 0.068
µ 0.026 0.043 0.000 0.218 0.217

Divisia M2 v 0.000 0.000 0.000 0.199 0.112
µ 0.019 0.030 0.000 0.188 0.127

Notes: Numbers in the WS, ADF, and Z(tα̂) columns are tail areas of unit root tests. The 5%
critical values for the KPSS n̂µ and η̂τ test statistics [given in Kwaitkowski et al. (1992)] are
0.463 and 0.146.

levels. Moreover, the t-statistics η̂µ and η̂τ that test the null hypotheses of level
and trend stationarity are small relative to their 5% critical values of 0.463 and
0.146 (respectively), given in Kwiatkowski et al. (1992).

In Table 2, we conduct a series of Ljung-Box (1979) tests for serial correlation—
the Q-statistics are asymptotically distributed as χ2(36) on the null of no auto-
correlation. Clearly, there is significant serial dependence in the data. Moreover, a
Ljung-Box test for serial correlation in the squared data provides strong evidence
of conditional heteroscedasticity, which is also confirmed by an ARCH test (in the
second last column of Table 2), distributed as a χ2(1) on the null of no ARCH.
Finally, a Jarque-Bera (1980) test for normality, distributed as a χ2(2) under the
null hypothesis of normality, suggests that Sum M1, Divisia M1, and Divisia M2
velocity growth, as well Sum M2 money growth, fail to satisfy the null hypothesis
of the test.

TABLE 2. Tests for serial correlation, arch, and normality

Monetary aggregate Series Q(4) Q(12) Q2(4) Q2(12) ARCH(4) J-B

Sum M1 v 0.000 0.112 0.000 0.148 0.041 0.003
µ 0.000 0.000 0.000 0.000 0.088 0.261

Sum M2 v 0.214 0.000 0.000 0.003 0.017 0.317
µ 0.000 0.000 0.000 0.000 0.376 0.001

Divisia M1 v 0.000 0.000 0.096 0.079 0.123 0.025
µ 0.000 0.000 0.000 0.000 0.028 0.384

Divisia M2 v 0.000 0.000 0.025 0.001 0.001 0.046
µ 0.000 0.000 0.000 0.000 0.371 0.848

Note: Numbers are marginal significance levels.
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5. EMPIRICAL EVIDENCE

Initially, we used the AIC and SIC criteria to select the optimal values of p, q, r , s,
and t in (2). However, because of computational difficulties in the large parameter
space and remaining serial correlation and ARCH effects in the standardized
residuals, we set p = q = r = s = t = 2 in equation (2). It is to be noted that
by setting s = 2 we use scarce degrees of freedom to estimate the parameters
of the MA part of the VARMA GARCH-M model, but we do so because the
null hypothesis of no autocorrelation is primarily rejected for s < 2. Hence, with
n = 2, p = q = r = s = t = 2 in equation (2), and f = g = 1 in equation (3),
we estimate a total of 61 parameters. Quasi-maximum likelihood (QML) estimates
of the parameters and diagnostic test statistics are presented in Tables 3–6, for the
Sum M1, Sum M2, Divisia M1, and Divisia M2 monetary aggregates, respectively.

We conduct a battery of misspecification tests, using robustified versions of the
standard test statistics based on the standardized residuals,

zjt
= ejt√

ĥjt

, for j = v, µ.

As shown in Tables 3–6, the Ljung-Box Q-statistic for testing serial correlation
cannot reject the null of no autocorrelation (at conventional significance levels)
for the values and the squared values of the standardized residuals, suggesting that
there is no evidence of conditional heteroscedasticity.

In addition, the failure of the data to reject the null hypotheses of E(z) = 0
and E(z2) = 1, implicitly indicates that the multivariate asymmetric GARCH-M
model does not bear significant misspecification error—see, for example, Kroner
and Ng (1998).

In Table 7, we also present diagnostic tests suggested by Engle and Ng (1993)
and Kroner and Ng (1998), based on the “generalized residuals,” defined as eit ejt

−
hijt

for i, j = v, µ. For all symmetric GARCH models, the news impact curve—
see Engle and Ng (1993)—is symmetric and centered at eit−1 = 0. A generalized
residual can be thought of as the distance between a point on the scatterplot of
eit ejt

from a corresponding point on the news impact curve. If the conditional
heteroscedasticity part of the model is correct, Et−1(eit ejt

− hijt
) = 0 for all

values of i and j , generalized residuals should be uncorrected with all information
known at time t − 1. In other words, the unconditional expectation of eit ejt

should
be equal to its conditional one, hijt

. For example, if the model (2)–(3) gives a
covariance news impact surface—a three-dimensional graph of hvµt

against evt

and eµt
—which is too low whenever the shock to the money growth rate is negative

(eµt
< 0), then the vertical distance between hvµt

and evt
eµt

will tend to be positive.
The Engle and Ng (1993) and Kroner and Ng (1998) misspecification indicators

test whether we can predict the generalized residuals by some variables observed
in the past, but which are not included in the model—this is exactly the intuition
behind Et−1(eit ejt

− hijt
) = 0. In this regard, we follow Kroner and Ng (1998)
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TABLE 3. The Multivariate Asymmetric GARCH-M Model: Sum M1

Model: Equations (2) and (3) with p = q = r = s = t = 2 and f = g = 1
Conditional mean equation

a =


0.413

(0.016)

0.498
(0.015)

 ; �1 =


0.693 0.374

(0.003) (0.003)

−0.100 0.297
(0.003) (0.003)

 ;Γ2 =


0.041 −0.330

(0.003) (0.003)

0.309 0.645
(0.003) (0.003)

 ;

Ψ1 =


−0.066 −0.079
(0.001) (0.002)

−0.076 0.049
(0.001) (0.002)

;Ψ2 =


−0.017 0.147
(0.001) (0.002)

−0.046 −0.009
(0.001) (0.002)

;Φ1 =


−0.716 −0.326
(0.032) (0.031)

−1.896 −0.210
(0.032) (0.033)

 ;

Φ2 =


0.778 0.249

(0.033) (0.032)

1.648 0.405
(0.033) (0.034)

 ;Θ1 =


−0.357 −0.456
(0.011) (0.011)

0.108 0.045
(0.011) (0.012)

 ;Θ2 =


−0.148 −0.037
(0.012) (0.013)

−0.148 −0.297
(0.012) (0.014)

 ;

Λ1 =


0.847 0.357

(0.004) (0.028)

0.091 −0.032
(0.004) (0.026)

 ;Λ2 =


−0.765 0.784
(0.004) (0.031)

0.173 −0.714
(0.004) (0.033)

 ;Λ3 =


−0.076 3.261
(0.004) (0.028)

−0.228 −2.880
(0.004) (0.038)


Residual diagnostics

Mean
zvt

0.091 [0.214]
zµt

−0.080 [0.265]

Variance
0.966 [0.982]
0.937 [0.968]

Q(4)

4.086 [0.394]
2.633 [0.620]

Q2(4)

3.619 [0.460]
5.716 [0.221]

Q(12)

13.611 [0.326]
16.154 [0.184]

Q2(12)

8.342 [0.757]
9.156 [0.689]

Conditional variance-covariance structure

C =


2.567 −2.317

(0.014) (0.027)

0.334
(0.072)

 ; B =


0.696 0.192

(0.009) (0.023)

0.407 0.474
(0.011) (0.020)

 ;

A =


0.039 −0.189

(0.015) (0.014)

0.274 −0.581
(0.014) (0.013)

 ; D =


−0.004 0.003
(0.791) (1.015)

−0.259 0.270
(0.026) (0.036)


Hypothesis testing

Diagonal VARMA H0 : γ
(i)
12 = γ

(i)
21 = θ

(l)
12 = θ

(l)
21 = 0, for i, l = 1, 2 [0.000]

No GARCH H0 : αij = βij = δij = 0, for all i, j [0.000]

No GARCH-M H0 : ψk
ij = φk

ij = 0, for all i, j, k [0.000]

No asymmetry H0 : δij = 0, for i, j = 1, 2 [0.000]

Diagonal GARCH H0 : α12 = α21 = β12 = β21 = δ12 = δ21 = 0 [0.000]

No anticipated causality H0 : ψ
(1)
12 = ψ

(2)
12 = 0 [0.000]

No unanticipated causality H0 : φ
(1)
12 = φ

(2)
12 = 0 [0.000]

No causality H0 : ψ
(1)
12 = ψ

(2)
12 = φ

(1)
12 = φ

(2)
12 = 0 [0.000]

and Shields et al. (2005) and define two sets of misspecification indicators. In a
two-dimensional space, we first partition (evt−1 , eµt−1) into four quadrants in terms
of the possible sign of the two residuals. Then, to shed light on any possible sign
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TABLE 4. The Multivariate Asymmetric GARCH-M Model: Sum M2

Model: Equations (2) and (3) with p = q = r = s = t = 2 and f = g = 1
Conditional mean equation

a =


−0.317
(0.000)

0.738
(0.000)

 ;Γ1 =


0.627 −0.024

(0.000) (0.000)

0.014 0.672
(0.000) (0.000)

 ;Γ2 =


0.021 0.013

(0.005) (0.000)

0.279 0.349
(0.003) (0.000)

 ;

Ψ1 =


−0.010 −0.005
(0.000) (0.000)

−0.007 0.012
(0.000) (0.000)

;Ψ2 =


−0.076 0.193
(0.000) (0.000)

−0.162 0.030
(0.000) (0.000)

;Φ1 =


−0.016 −0.150
(0.001) (0.001)

−0.842 0.039
(0.000) (0.000)

 ;

Φ2 =


0.029 −0.100

(0.001) (0.001)

−0.342 0.011
(0.001) (0.001)

 ;Θ1 =


−0.057 −0.054
(0.000) (0.000)

0.134 −0.278
(0.000) (0.000)

 ;Θ2 =


−0.518 −0.221
(0.001) (0.000)

−0.004 −0.409
(0.000) (0.000)

 ;

Λ1 =


0.755 0.745

(0.000) (0.013)

0.163 −0.309
(0.000) (0.003)

 ;Λ2 =


−0.748 0.809
(0.000) (0.003)

0.089 −0.686
(0.000) (0.002)

 ;Λ3 =


0.013 1.771

(0.000) (0.009)

−0.273 −1.455
(0.0000) (0.0033)


Residual diagnostics

Mean
zvt

0.049 [0.505]
zµt

−0.037 [0.615]

Variance
1.006 [0.997]
0.998 [0.999]

Q(4)

5.510 [0.238]
3.998 [0.406]

Q2(4)

6.283 [0.178]
3.584 [0.465]

Q(12)

17.558 [0.129]
13.609 [0.326]

Q2(12)

11.870 [0.456]
12.940 [0.373]

Conditional variance-covariance structure

C =


2.114 −1.803

(0.000) (0.000)

0.591
(0.000)

 ; B =


−0.078 0.136
(0.000) (0.000)

0.115 −0.043
(0.000) (0.000)

 ;

A =


0.465 0.040

(0.000) (0.000)

0.028 0.420
(0.000) (0.000)

 ; D =


−0.048 0.117
(0.002) (0.001)

−0.297 −0.024
(0.000) (0.006)


Hypothesis testing

Diagonal VARMA H0 : γ
(i)
12 = γ

(i)
21 = θ

(l)
12 = θ

(l)
21 = 0, for i, l = 1, 2 [0.000]

No GARCH H0 : αij = βij = δij = 0, for all i, j [0.000]

No GARCH-M H0 : ψk
ij = φk

ij = 0, for all i, j, k [0.000]

No asymmetry H0 : δij = 0, for i, j = 1, 2 [0.000]

Diagonal GARCH H0 : α12 = α21 = β12 = β21 = δ12 = δ21 = 0 [0.000]

No anticipated causality H0 : ψ
(1)
12 = ψ

(2)
12 = 0 [0.000]

No unanticipated causality H0 : φ
(1)
12 = φ

(2)
12 = 0 [0.000]

No causality H0 : ψ
(1)
12 = ψ

(2)
12 = φ

(1)
12 = φ

(2)
12 = 0 [0.000]

bias of the model, we define the first set of indicator functions as I (evt−1 < 0),
I (eµt−1 < 0), I (evt−1 < 0; eµt−1 < 0), I (evt−1 > 0; eµt−1 < 0), I (evt−1 < 0; eµt−1 > 0)

and I (evt−1 > 0; eµt−1 > 0), where I (·) equals one if the argument is true and zero
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TABLE 5. The Multivariate Asymmetric GARCH-M Model: Divisia M1

Model: Equations (2) and (3) with p = q = r = s = t = 2 and f = g = 1
Conditional mean equation

a =


0.200

(0.000)

0.063
(0.000)

 ;Γ1 =


0.562 0.332

(0.000) (0.000)

−0.014 0.276
(0.000) (0.000)

 ;Γ2 =


0.032 −0.319

(0.000) (0.000)

0.335 0.698
(0.000) (0.000)

 ;

Ψ1 =


−0.036 −0.044
(0.000) (0.000)

−0.106 0.035
(0.000) (0.000)

 ;Ψ2 =


−0.136 0.174
(0.000) (0.000)

−0.051 0.046
(0.000) (0.000)

;Φ1 =


−0.589 −0.855
(0.000) (0.000)

−1.626 −0.563
(0.000) (0.000)

 ;

Φ2 =


1.890 0.811

(0.000) (0.000)

1.368 1.747
(0.002) (0.000)

 ;Θ1 =


−0.626 −0.254
(0.000) (0.000)

−0.177 −0.644
(0.001) (0.000)

 ;Θ2 =


0.062 0.264

(0.000) (0.001)

−0.499 −0.754
(0.000) (0.002)

 ;

Λ1 =


0.800 0.871

(0.000) (0.001)

0.148 −0.679
(0.000) (0.001)

 ;Λ2 =


−0.730 0.453
(0.000) (0.001)

0.176 −0.373
(0.000) (0.002)

 ;Λ3 =


−0.046 2.482
(0.000) (0.002)

−0.271 −2.209
(0.000) (0.003)


Residual diagnostics

Mean
zvt

0.043 [0.563]
zµt

−0.013 [0.855]

Variance
0.993 [0.997]
0.962 [0.983]

Q(4)

5.464 [0.242]
4.834 [0.403]

Q2(4)

4.261 [0.371]
4.555 [0.336]

Q(12)

20.283 [0.061]
25.758 [0.011]

Q2(12)

5.473 [0.940]
6.795 [0.870]

Conditional variance-covariance structure

C =


1.647 −1.512

(0.000) (0.000)

0.411
(0.000)

 ; B =


−0.013 0.028
(0.000) (0.000)

0.561 −0.525
(0.000) (0.000)

 ;

A =


0.549 0.458

(0.000) (0.000)

0.259 0.795
(0.000) (0.000)

 ; D =


0.413 −0.449

(0.000) (0.000)

−0.555 0.521
(0.000) (0.000)


Hypothesis testing

Diagonal VARMA H0 : γ
(i)
12 = γ

(i)
21 = θ

(l)
12 = θ

(l)
21 = 0, for i, l = 1, 2 [0.000]

No GARCH H0 : αij = βij = δij = 0, for all i, j [0.000]

No GARCH-M H0 : ψk
ij = φk

ij = 0, for all i, j, k [0.000]

No asymmetry H0 : δij = 0, for i, j = 1, 2 [0.000]

Diagonal GARCH H0 : α12 = α21 = β12 = β21 = δ12 = δ21 = 0 [0.000]

No anticipated causality H0 : ψ
(1)
12 = ψ

(2)
12 = 0 [0.000]

No unanticipated causality H0 : φ
(1)
12 = φ

(2)
12 = 0 [0.000]

No causality H0 : ψ
(1)
12 = ψ

(2)
12 = φ

(1)
12 = φ

(2)
12 = 0 [0.000]

otherwise. Significance of any of these indicator functions indicates that the model
(2)–(3) is incapable of predicting the effects of some shocks to either vt or µt .
Moreover, because the possible effect of a shock could be a function of both the
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TABLE 6. The Multivariate Asymmetric GARCH-M Model: Divisia M2

Model: Equations (2) and (3) with p = q = r = s = t = 2 and f = g = 1
Conditional mean equation

a =


−0.346
(0.000)

1.158
(0.000)

 ;Γ1 =


0.614 0.061

(0.000) (0.000)

0.067 0.682
(0.000) (0.000)

 ;Γ2 =


0.098 −0.010

(0.000) (0.000)

0.197 0.306
(0.000) (0.000)

 ;

Ψ1 =


0.116 −0.085

(0.000) (0.000)

0.018 −0.027
(0.000) (0.000)

;Ψ2 =


0.086 −0.062

(0.000) (0.000)

−0.122 −0.165
(0.000) (0.000)

;Φ1 =


−0.669 −1.331
(0.003) (0.003)

−0.565 0.049
(0.003) (0.002)

;

Φ2 =


0.231 −0.557

(0.004) (0.003)

0.333 0.125
(0.003) (0.002)

 ;Θ1 =


−0.223 0.302
(0.001) (0.001)

−0.031 0.020
(0.001) (0.001)

 ;Θ2 =


−0.357 −0.006
(0.001) (0.002)

−0.096 −0.484
(0.001) (0.002)

 ;

Λ1 =


0.839 0.355

(0.000) (0.005)

0.073 0.099
(0.000) (0.007)

 ;Λ2 =


−0.724 0.768
(0.000) (0.004)

0.034 −0.735
(0.000) (0.004)

 ;Λ3 =


−0.150 2.249
(0.000) (0.007)

−0.114 −1.850
(0.000) (0.008)


Residual diagnostics

Mean
zvt 0.092 [0.194]
zµt −0.105 [0.139]

Variance
0.910 [0.954]
0.912 [0.960]

Q(4)

2.653 [0.617]
0.826 [0.934]

Q2(4)

1.975 [0.740]
13.670 [0.934]

Q(12)

4.964 [0.326]
13.670 [0.322]

Q2(12)

4.533 [0.971]
10.226 [0.596]

Conditional variance-covariance structure

C =


1.950 −1.701

(0.000) (0.000)

0.443
(0.000)

 ; B =


0.292 −0.307

(0.028) (0.001)

0.302 −0.444
(0.005) (0.000)

 ;

A =


0.318 0.511

(0.001) (0.001)

0.034 0.780
(0.001) (0.000)

 ; D =


0.350 −0.1661

(0.001) (0.0011)

0.358 −0.362
(0.003) (0.001)


Hypothesis testing

Diagonal VARMA H0 : γ
(i)
12 = γ

(i)
21 = θ

(l)
12 = θ

(l)
21 = 0, for i, l = 1, 2 [0.000]

No GARCH H0 : αij = βij = δij = 0, for all i, j [0.000]

No GARCH-M H0 : ψk
ij = φk

ij = 0, for all i, j, k [0.000]

No asymmetry H0 : δij = 0, for i, j = 1, 2 [0.000]

Diagonal GARCH H0 : α12 = α21 = β12 = β21 = δ12 = δ21 = 0 [0.000]

No anticipated causality H0 : ψ
(1)
12 = ψ

(2)
12 = 0 [0.000]

No unanticipated causality H0 : φ
(1)
12 = φ

(2)
12 = 0 [0.000]

No causality H0 : ψ
(1)
12 = ψ

(2)
12 = φ

(1)
12 = φ

(2)
12 = 0 [0.000]

size and the sign of the shock, we define a second set of indicator functions,
e2
vt−1

I (evt−1 < 0), e2
vt−1

I (eµt−1 < 0), e2
µt−1

I (evt−1 < 0), and e2
µt−1

I (eµt−1 < 0). These
indicators are technically scaled versions of the former ones, with the magnitude
of the shocks as a scale measure.
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TABLE 7. Diagnostic tests based on the News Impact Curve

Sum M1 Sum M2 Divisia M1 Divisia M2

I (evt−1 < 0) 0.245 0.255 0.751 0.147
I (eµt−1 < 0) 0.236 0.129 0.788 0.094
I (evt−1 < 0, eµt−1 < 0) 0.528 0.291 0.207 0.469
I (evt−1 > 0, eµt−1 < 0) 0.885 0.633 0.573 0.358
I (evt−1 < 0, eµt−1 > 0) 0.542 0.360 0.651 0.476
I (evt−1 > 0, eµt−1 > 0) 0.646 0.906 0.872 0.079
e2
vt−1

I (evt−1 < 0) 0.753 0.787 0.670 0.454

e2
vt−1

I (eµt−1 < 0) 0.180 0.097 0.961 0.044

e2
µt−1

I (evt−1 < 0) 0.306 0.306 0.922 0.258

e2
µt−1

I (eµt−1 < 0) 0.712 0.389 0.498 0.269

Note: Numbers are tail areas of tests.

We conducted indicator tests for hvv , hµv , and hµµ (that is 120 tests), but in
Table 7 we only report the results for hµv which is the focus of attention in this
paper. As can be seen in Table 7, all indicators (except the one for Divisia M2) fail
to reject the null of no misspecification—all test statistics in Table 7 are distibuted
as χ2(1). Hence, our model (2)–(3) captures the effects of all sign bias and sign-
size scale depended shocks in predicting volatility and there is no significant
misspecification error. This means that the exclusion of an inflation measure (in
either yt or zt−k) is not expected to lead to significant misspecification problems.

Turning now back to Tables 3–6, the diagonality restriction, γ (i)
12 = γ

(i)
21 = θ

(l)
12 =

θ
(l)
21 = 0 for i, l = 1, 2, is rejected, meaning that the data provide strong evidence

of the existence of dynamic interactions between vt and µt . The null hypothesis
of homoscedastic disturbances requires the A, B, and D matrices to be jointly
insignificant (that is, αij = βij = δij = 0 for all i, j) and is rejected at the 0.01%
level or better, suggesting that there is significant conditional heteroscedasticity
in the data. The null hypothesis of symmetric conditional variance-covariances,
which requires all elements of the D matrix to be jointly insignificant (that is,
δij = 0 for all i, j ), is rejected at the 0.01% level or better, implying the existence
of some asymetries in the data which the model is capable of capturing. Also,
the null hypothesis of a diagonal covariance process requires the off-diagonal
elements of the A, B, and D matrices to be jointly insignificant (that is, α12 =
α21 = β12 = β21 = δ12 = δ21 = 0), but these estimated coefficients are jointly
significant at the 0.01% level or better.

Thus the inflation-velocity growth process is strongly conditionally het-
eroscedastic, with innovations to inflation significantly influencing the conditional
variance of velocity growth in an asymetric way. Moreover, the sign as well as the
size of inflation innovations are important. To establish the relationship between
the volatility of money growth and velocity, in the last three rows of Tables 3–6, we
test the following three null hypotheses: the null that the volatility of anticipated
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money growth does not (Granger) cause velocity, ψ
(1)
12 = ψ

(2)
12 = 0, the null that

the volatility of unanticipated money growth does not (Granger) cause velocity,
φ

(1)
12 = φ

(2)
12 = 0, and the null that the volatility of anticipated and unanticipated

money growth does not (Granger) cause velocity, ψ
(1)
12 = ψ

(2)
12 = φ

(1)
12 = φ

(2)
12 = 0.

It is clear that all these null hypotheses are rejected—the causality tests are carried
out in terms of both Wald and LR statistics, producing the same results. Hence, we
find strong evidence in support of Friedman’s money growth volatility hypothesis.

We also have investigated the robustness of our results by reestimating our
asymmetric GARCH in Mean model over the pre– and post–October 1979 periods
(because of the announced change in Federal Reserve operating procedures in
October 1979) with each of the four money measures. The results (available on
request) are consistent with those in Tables 3–6, suggesting that the money growth
variability/velocity relationship is robust to monetary policy regimes.

Finally, it should be noted that we have relied on the asymptotic distributions of
the underlying test statistics. Although this issue could be explored using properly
designed simulations, we have investigated the robustness of our results to the use
of monthly data over the same sample period (a total of 549 observations). The
results (available upon request) are qualitatively similar to the ones reported here.

6. CONCLUSIONS

This paper provides a study of the relationship between velocity and the variability
of money growth, using recent advances in the financial econometrics literature.
In particular, the central hypothesis of the paper is that VARMA GARCH-in
mean volatility of unanticipated money growth has a more systematic causal
relation to the velocity of money than other measures of volatility. In contrast to
Brocato and Smith (1989), Mehra (1989), and Thornton (1995), we find evidence
of Friedman’s hypothesis that the variability of money growth helps predict
velocity and that the money/velocity relationship is robust to monetary policy
procedures. We also find that the money variability/velocity relationship is robust
to alternative methods of aggregating monetary assets.
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