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The linear MHD (magnetohydrodynamic) stability for high beta plasmas in the inward
shifted Large Helical Device (LHD) configurations has been investigated for a wide
range of magnetic Reynolds numbers S using numerical simulations based on the
kinetic MHD model with kinetic thermal ions where the beta is the ratio of the plasma
pressure to the magnetic pressure. It is found that the dependence of the linear growth
rate of the resistive ballooning modes on the S number changes from γ ∝ S−1/3 to
γ ∝ S−1 by the kinetic thermal ion effects so that the resistive ballooning modes are
significantly suppressed as the S number increases. For a high S number comparable
to experimental values, the most unstable modes are interchange modes. The kinetic
thermal ion effects change the most unstable interchange mode from the ideal mode
to the resistive mode. This transition of the interchange modes by kinetic thermal ion
effects is consistent with the shift of the marginal stability boundary for the ideal
interchange modes observed in the LHD experiments.
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1. Introduction
In the Large Helical Device (LHD) experiments, the volume averaged beta value

(the ratio of the plasma pressure to the magnetic pressure) has achieved 5 %
without large MHD (magnetohydrodynamic) activities in the inward shifted LHD
configurations in which the magnetic axis is shifted inward relative to the centre of
the helical coils (Komori et al. 2009; Yamada 2011). However, previous theoretical
studies based on the MHD model for the inward shifted LHD configurations showed
that the MHD instabilities are significantly unstable compared with those observed in
the LHD experiments (Nakajima, Nührenberg & Nührenberg 2004; Miura & Nakajima
2010; Sato et al. 2017). For example, in nonlinear MHD simulations for high beta
LHD plasmas by Sato et al. (2017), the resistive ballooning modes destabilized in
the peripheral region induce the core crash in which the central pressure significantly
decreases. The discrepancy between the theoretical predictions and the experimental
results suggests that the MHD model is not suitable to evaluate the MHD stability
for high beta LHD plasmas in the inward shifted LHD configurations.
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Recently, in order to solve the discrepancy between the theoretical predictions and
the experimental results, two fluid effects (Miura, Hamaba & Ito 2017) and kinetic
thermal ion effects (Sato & Todo 2019) have been investigated. In Sato & Todo
(2019), it is found that the kinetic thermal ion effects decrease the linear growth rate
of the resistive ballooning modes. This results from the fact that the response of the
deeply trapped ions, which are trapped in the helical ripple, to the instabilities are
weakened by the precession drift motion. In helical plasmas, the deeply trapped ions
have precession drift motion not only in the toroidal direction but also in the poloidal
direction. Because the poloidal wavelengths of the MHD instabilities are much
shorter than the toroidal wavelengths in toroidal plasmas, the poloidal precession drift
frequency with respect to the mode phase can be larger than the linear growth rate of
the slowly growing instabilities. For such cases, the trapped ions can move through
both positive and negative perturbations of the instabilities in the growth phase of
the instabilities. This results in weaker response of the trapped ions to the MHD
instabilities, which leads to the reduction of the linear growth rate of the instabilities.

In the previous analysis (Sato & Todo 2019), the resistive ballooning modes with
n = 10 for S = 105 have been investigated by one pitch torus simulations in which
the periodic boundary condition is imposed at φ = 0 and φ = 2π/10, where n is
the toroidal mode number, S is the magnetic Reynolds number and φ is the toroidal
angle. In this paper, the linear stability has been investigated in a full torus for wide
magnetic Reynolds number region. The S dependence of the suppression effects due to
the kinetic thermal ions for the resistive ballooning modes are discussed in detail. For
high S number, the most unstable mode changes from the resistive ballooning modes
to the interchange modes. The kinetic thermal effects for the interchange modes are
also presented.

The remainder of this paper is as follows. The numerical model based on the kinetic
MHD model is shown in § 2. In § 3, the numerical results for ballooning modes and
interchange modes are presented. The comparison between the numerical results and
the experimental results is discussed in § 4. Finally, the summary is given in § 5.

2. Numerical model
The simulations have been performed using the MEGA code (Todo et al. 2005;

Todo 2017). In the numerical model used here, the thermal ions are treated with
the drift kinetic model and electrons are treated with the fluid model assuming the
adiabatic law. In the fluid part of the numerical model the following MHD equations
are solved,

ρ
∂u⊥
∂t
= −ρ[(u⊥ + u‖b) · ∇]u⊥ −∇⊥Pe

+ ( j− ji)×B−∇× (νρ∇× u⊥)

+
4
3
∇(νρ∇ · u⊥), (2.1)

∂B
∂t
=−∇×E, (2.2)

∂Pe

∂t
= −∇ · [Pe(u⊥ + u‖b)]

− (Γ − 1)Pe∇ · (u⊥ + u‖b)
+ (Γ − 1)χ∇2(Pe − Pe,eq), (2.3)
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E=−u⊥ ×B+ η( j− jeq), (2.4)

j=
1
µ0
∇×B, (2.5)

ji =
1
B
(P‖∇× b− Pi⊥∇ ln B× b)

−∇

(
Pi⊥

B
b
)
, (2.6)

where ρ, u⊥, B, E, Pi⊥, Pi‖, Pe, j, µ0, mi, qi, Γ , η, ν and χ are density, fluid
velocity perpendicular to the magnetic field, magnetic field, electric field, ion pressure
perpendicular to the magnetic field, ion pressure parallel to the magnetic field, electron
pressure, current density, vacuum magnetic permeability, ion mass, ion electric charge,
adiabatic constant, plasma resistivity, viscosity and thermal conductivity, respectively.
In comparison with the equations used in Sato & Todo (2019), the electron pressure
gradient is neglected in (2.4) for numerical stability. In (2.3) and (2.4), the subscript
‘eq’ indicates the equilibrium quantity. The vector b is a unit vector directed to the
magnetic field, i.e. b=B/B. The fluid part is solved by a fourth-order finite difference
method in the cylindrical coordinates (r, φ, z).

For the ions treated with the drift kinetic model, the guiding-centre velocity v is
given by

v = v∗
‖
+ vE + vB, (2.7)

v∗
‖
=
v‖

B∗
B+ vC, (2.8)

vE =
1
B∗

E∗ ×B, (2.9)

vB =−
1

qiB∗
(µ∇B× b), (2.10)

vC =
ρ‖v‖B

B∗
∇× b, (2.11)

ρ‖ =
miv‖

qiB
, (2.12)

B∗ = B(1+ ρ‖b · ∇× b), (2.13)

E∗ =−u⊥ ×B−
mi

qiρ
∇‖Pe, (2.14)

miv‖
dv‖
dt
= v∗

‖
· (qiE∗ −µ∇B), (2.15)

where v‖ is the velocity parallel to the magnetic field, and µ is the magnetic moment
which is the adiabatic invariant. The ion dynamics is solved by the δf method (Dimits
& Lee 1993; Parker & Lee 1993; Aydemir 1994). The time evolution of the weight
of the jth particle is described by

dwj

dt
=−Vj

[
(vE + v‖δb) · ∇+

dε
dt

∂

∂ε

]
f0, (2.16)
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where δb = b − b0, Vj is the phase space volume of the particle, ε is the kinetic
energy and f0 is the initial distribution, which is a function of the magnetic surface
and energy. Using the weight wj, ρ, u‖, Pi⊥ and Pi‖ appearing in the fluid part are
evaluated through

ρ = ρeq +
∑

j

wjmiS(x−Xj), (2.17)

u‖ =
∑

j

wjv‖ jS(x−Xj), (2.18)

Pi‖ = Pi‖,eq +
∑

j

wjmiv
2
‖ jS(x−Xj), (2.19)

Pi⊥ = Pi⊥,eq + B
∑

j

wjmiµjS(x−Xj), (2.20)

where S(x−Xj) is the shape factor of each super-particle.
The MHD equilibrium analysed in this paper is the same as that for β0=7.5 % used

in Sato et al. (2017), Sato & Todo (2019), where β0 is the central beta value. The
MHD equilibrium is constructed by the HINT code (Suzuki et al. 2006) without the
assumption of the existence of nested flux surfaces. In the construction of the MHD
equilibrium, the pressure profile is assumed to be 1 − s without net plasma current,
where the s is the normalized toroidal flux. In this MHD equilibrium, the core region
is Mercier stable while the peripheral region is Mercier unstable. The previous MHD
analysis for 104 6 S 6 106 in Sato et al. (2017) showed that the most unstable modes
are resistive ballooning mode destabilized in the peripheral region where the magnetic
Reynolds number S is defined as S= η/(µ0vaR0). The initial profiles of the electron
pressure and ion pressure are assumed such as Pe,eq = Pi⊥,eq = Pi‖,eq = PHINT/2 where
PHINT is the pressure obtained from the HINT code. For simplicity, the initial density
profile is assumed to be uniform and the initial distribution function of the ions is
assumed to be a Maxwellian distribution function.

In helical plasmas there is a toroidal periodicity of the MHD equilibrium so that
a toroidal mode with n = n′ couples to the toroidal modes with n = n′ ±M through
the MHD equilibrium component, where M is the toroidal periodicity. Hence, the
eigenmode is the superposition of the toroidal modes with n=n′± kM (k=0,1,2, . . .).
Such a group of modes is designated as a mode family. There are 1+ [M/2] mode
families where [·] is the Gauss symbol (Schwab 1993). For LHD plasmas with
M = 10, there are 1 + [10/2] = 6 mode families. In this paper, for distinction
of the mode families, nf is introduced as the number of the mode family where
nf = 0, 1, . . . , 5. In initial value codes, such as the MEGA code used here, the most
unstable modes in the mode families simultaneously grow and their linear growth
rates can be comparable. For evaluating the linear growth rate correctly, the Fourier
series expansion is useful. In some cases, the multiple eigenmodes belonging to the
same mode family simultaneously grow. Such eigenmodes also can be identified
using Fourier series expansion. In this paper, the data obtained from the MEGA code
using cylindrical coordinates are expanded by Fourier series in Boozer coordinates
(ρψ , θ, ζ ) (Boozer 1980) inside the last closed flux surface, where ρψ =

√
s/sLCFS and

sLCFS is the normalized toroidal flux at the last closed flux surface.
In the simulations, hydrogen plasmas are assumed. The plasma density n0, the ion

temperature Ti0 and the magnetic field strength B0 at the plasma centre are assumed
to be n0 = 3× 1019 m−3, Ti = 0.56 keV and B0 = 0.425 T, respectively. The viscosity
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and the thermal conductivity are assumed to be ν = χ = 10−7vaR0 where va is the
Alfvén velocity and R0 = 3.65 m is the typical major radius. The magnetic Reynolds
number S varies from 104 to 107. The number of grid points is 128× 640× 128 and
the number of marker particles is 128×640×128×8. The finite Larmor radius (FLR)
effects are implemented in the MEGA code in the standard way for the gyrokinetic
particle simulations (Lee 1987). When the FLR effects are included, the linear growth
rate of the n= 10 mode for S= 105 decreases by approximately 7 %. Since the FLR
effects are weaker than the suppression effects due to the precession drift and the finite
orbit width effects, the FLR effects are neglected in this paper for simplicity.

3. Numerical results
3.1. Resistive ballooning modes

Figure 1 shows the linear growth rates (γ ) of the instabilities obtained from the kinetic
MHD model and the MHD model. In the MHD model, the one fluid MHD equations
used in Todo et al. (2010) and Sato et al. (2017) are solved. For the MHD model,
the dependence of the linear growth rate of the resistive ballooning modes on the S
number is γ ∝ S−1/3 for S ∼ 105. The deviation of the linear growth rate from the
scaling γ ∝ S−1/3 for high S number is due to the numerical viscosity. The linear
growth rates obtained from the kinetic MHD model agree well with those obtained
from the MHD model when S = 104. As the S number increases, the linear growth
rate of the resistive ballooning modes obtained from the kinetic MHD model becomes
smaller than that obtained from the MHD model. At S & 105 the S dependence of
the linear growth rate obtained from the kinetic MHD model is γ ∝ S−1. Thus the
resistive ballooning modes are significantly suppressed for high S number when the
kinetic thermal ion effects are included.

Figure 2 shows the radial eigenmode structures of the electron pressure (P̃e) of
the n = 6 mode and the ion pressure perpendicular to the magnetic field (P̃i⊥) for
S= 104. The amplitude of each mode is normalized to the amplitude of the poloidal
mode, which has the largest amplitude in P̃e of the n = 6 mode. For S = 104, the
amplitude of P̃i⊥ is almost the same as that of P̃e. However, as shown in figure 3,
the amplitude of P̃i⊥ is significantly suppressed for S = 106. The suppression of P̃i⊥
results from the poloidal precession drift motion of the deeply trapped ions which are
trapped in the helical ripple (Sato & Todo 2019). Figure 4 shows the mode structure
of the perturbed electron pressure of the resistive ballooning mode with n = 6 for
S= 106 and the orbit of a deeply trapped ion. In helical plasmas, the precession drift
motion of the deeply trapped ions is not only in the toroidal direction but also in
the poloidal direction. Because the poloidal wavelengths of the MHD instabilities
are much shorter than the toroidal wavelengths in toroidal plasmas, the poloidal
precession drift frequency with respect to the mode phase can be larger than the
linear growth rate of the instabilities. For such cases, the motion of the trapped ions
through both the positive and the negative perturbations renders the response of the
deeply trapped ions to the instabilities weakened, which leads to the reduction of the
perturbed perpendicular ion pressure.

In LHD plasmas, the deeply trapped ions have a large finite orbit (FOW) width
in the inner torus. The FOW effects can also suppress the instabilities since the ion
can respond to the mode only in the intersection region of the ion trajectory and
the mode localization region (Gorelenkov, Cheng & Fu 1999; Mikhailovskii et al.
2004; Sharapov, Mikhailovskii & Huysmans 2004; Chen & Zonca 2016). There is
a similarity between the suppression mechanism due to the trapped ions’ precession
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(a) (b)

(c) (d)

(e) (f)

FIGURE 1. Linear growth rates of the instabilities obtained from MHD model (green
curves) and kinetic MHD model (red curves). ‘B’ and ‘I’ denote the ballooning mode
and the interchange mode, respectively.
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(a) (b)

FIGURE 2. Radial eigenmode structures of (a) the electron pressure and (b) the ion
pressure perpendicular to the magnetic field of the n = 6 mode for S = 104. Here, m is
the poloidal mode number.

(a) (b)

FIGURE 3. Radial eigenmode structures of (a) the electron pressure and (b) the ion
pressure perpendicular to the magnetic field of the n= 6 mode for S= 106.

drift motion and that due to the FOW effects in that the response of the ions to the
instabilities becomes weakened. However, there is a difference between them in that
the suppression mechanism due to the trapped ions’ precession drift motion works
well even when the trapped ions remain well inside the radial profile of the mode.
Hence, for the ballooning modes localized in the outer torus, the suppression of the
instabilities mainly results from the trapped ions’ precession drift motion rather than
the FOW effects.

The precession drift motion of the trapped ions is induced by the curvature drift
and the gradient B drift. In order to evaluate the effect of the precession drift motion
of the trapped ions, the simulations without the curvature drift and the gradient B
drift are also carried out by omitting vc and vB in (2.8) and (2.10) artificially. In
figure 5(a), the ratio of the maximum amplitude of the perturbed perpendicular ion
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FIGURE 4. The orbit of a deeply trapped ion and the mode structure of P̃e of the n= 6
mode for S = 106. The red and the blue correspond to positive amplitude and negative
amplitude of P̃e, respectively.

(a) (b)

FIGURE 5. (a) The dependence of Max(P̃i⊥)/Max(P̃e) of the n = 6 mode on S where
Max(P̃i⊥) and Max(P̃e) are the maximum amplitudes of P̃i⊥ and P̃e of the n = 6 mode,
respectively. (b) The dependence of Max(P̃i⊥)/Max(P̃e) on the toroidal mode number for
S= 106. The open blue circles are obtained by multiplying the reduction factor ∆ by the
value without the curvature drift and the gradient B drift.

pressure (Max(P̃i⊥)) to that of the perturbed electron pressure (Max(P̃e)) of the n= 6
mode is illustrated as a function of S. The results with and without the curvature drift
and the gradient B drift are shown by the red closed circles and the sky blue squares,
respectively. Although the relative amplitude of P̃i⊥ without the curvature drift and the
gradient B drift is slightly suppressed, the relative amplitude of P̃i⊥ with the curvature
drift and the gradient B drift is significantly reduced for S & 105. This demonstrates

https://doi.org/10.1017/S0022377820000501 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000501


Ion kinetic effects on linear MHD instabilities 9

that the suppression effect due to the precession drift motion of the deeply trapped
ions becomes more effective as the linear growth rate of the instabilities decreases.

Sato & Todo (2019) showed that a factor ∆ = 1/
√

1+ (ωd/γ )2 gives a good
approximation for the reduction of the weight of the trapped ions between the
cases with and without the curvature drift and the gradient B drift, where ωd is the
precession drift frequency with respect to the mode phase. The factor ∆ is derived by
assuming that the influence of MHD instabilities on the trapped ions is proportional
to exp(γ t) sin(ωdt + δ), where δ is an initial phase. In the analysis in Sato & Todo
(2019), the precession drift frequency of the deeply trapped ions with respect to the
mode phase is evaluated as ωdτa= 0.042 for the n= 10 mode in which the amplitude
of the (m, n)= (13, 10) mode is largest, where m is the poloidal mode number. Since
the amplitude of the (m, n) = (9, 6) mode is largest in the n = 6 mode for S = 106,
the ωd value for the n = 6 mode can be estimated as ωdτa ∼ 0.042 × 9/13 ∼ 0.029.
It is noted that the precession drift frequency is close to the linear growth rate of
the n = 6 mode obtained from the kinetic MHD model for S = 105, as shown by
figure 1(e). In figure 5(a), the blue open circles are drawn by multiplying ∆ by the
value for the results without the curvature drift and the gradient B drift. For S= 106,
the blue open circle is close to the corresponding red closed circle. The same analysis
is carried out for other toroidal modes for S = 106 in figure 5(b) where the modes
with n > 4 are resistive ballooning modes and the modes with n = 2 and n = 3 are
interchange modes. The blue open circles are close to the corresponding red closed
circles for all toroidal modes. Hence, the factor ∆ is a good approximation for the
reduction of the perturbed perpendicular ion pressure.

The weak response of the trapped ions to the instabilities means that the
contribution of the ion pressure gradient to the energy source for driving the
instabilities becomes weaker so that the instabilities are mainly driven by the electron
pressure gradient. For high beta LHD plasmas, the peripheral region is marginally
stable against the ideal ballooning modes from the MHD analysis (Nakajima et al.
2006). The reduction of the energy source due to the kinetic thermal ion effects
causes the ideal ballooning modes to be more stable. From the analytic MHD theory
(Bateman & Nelson 1978; Sánchez et al. 1997) the S dependence of the linear
growth rate of the resistive ballooning modes transits from γ ∝ S−1/3 to γ ∝ S−1

when the ideal ballooning modes are significantly stable. The analytic MHD theory
suggests that the dependence of γ ∝ S−1 for the kinetic MHD model obtained in
this paper results from the fact that the kinetic thermal ion effects make the ideal
ballooning modes significantly stable. In the analytic MHD theory, the relation of
γ ∝ S−1 is obtained for the incompressible limit (Γ = 0). When the compressibility
effects are included, the modes with γ ∝ S−1 are suppressed by the sound wave.
However, the modes with γ ∝ S−1 remain unstable in our kinetic MHD simulations
with compressibility effects. This is attributed to a weak suppression effect of the
sound wave associated with the parallel fluid velocity calculated from the velocity
moment of the ion distribution function.

3.2. Interchange modes

For S > 106, the most unstable mode becomes the interchange mode with (m, n) =
(3, 2), as shown in figure 1. For the MHD model, the linear growth rate of the
(m, n) = (3, 2) mode does not depend on the S number, thus the mode is the ideal
interchange mode. However, for the kinetic MHD model, the linear growth rate of
the (m, n) = (3, 2) mode depends on the S number. Hence, the kinetic thermal ion
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FIGURE 6. The orbit of a deeply trapped ion and the mode structure of the perturbed
electron pressure of the n = 2 mode for S = 106. The red and the blue correspond to
positive amplitude and negative amplitude, respectively.

effects change the interchange mode from the ideal mode to the resistive mode. As
shown in figure 5(b), P̃i⊥ of the n= 2 mode is significantly suppressed, as with the
resistive ballooning modes with n> 4. Figure 6 shows the perturbation of the electron
pressure with the n= 2 mode and the orbit of a deeply trapped ion. As opposed to
the ballooning modes, the interchange mode is destabilized not only in the outer torus
but also in the inner torus. Since the finite orbit width of the deeply trapped ions is
large in the inner torus, the deeply trapped ions can interact with the mode only in
the outer torus. Hence, in addition to the suppression effect of the precession drift
motion, the finite orbit width effects also play an important role in suppressing the
interchange modes.

Figure 7 shows the eigenmode structure of the pressure of the (m, n) = (3, 2)
mode obtained from the MHD model. The maximum amplitude of the (m, n)= (3, 2)
mode is nearly located at the rational surface of ι= 2/3, so that it is the interchange
parity mode structure. However, for the mode structure for S= 107 obtained from the
kinetic MHD model as shown in figure 8(b), the position of the maximum amplitude
of the (m, n) = (3, 2) mode is shifted from the rational surface of ι = 2/3. This
suggests that the tearing parity mode is generated. In order to decompose the profile
of the (m, n) = (3, 2) mode into the interchange parity mode and the tearing parity
mode, P̃ ± (x) is defined as P̃±(x) = (P̃(x) ± P̃(−x))/2 for −0.1 6 x 6 0.1 where
x = ρψ − ρψ,s, and ρψ,s is the position of the rational surface of ι = 2/3. Figure 9
shows the profiles of P̃± (x) corresponding to figure 8, where the even function (P+)
corresponds to the interchange parity mode and the odd function (P−) to the tearing
parity mode. The amplitude of the tearing parity mode is smaller than that of the
interchange parity mode for S = 106 while the amplitude of the tearing parity mode
is comparable with that of the interchange parity mode for S = 107. For evaluation
of the linear growth rate of both parity modes, the time evolution of F± is shown
in figure 10 where F± =

∫ x+0.1
x−0.1 |P̃±(x)| dx. For S = 106, the linear growth rate of

the tearing parity mode is clearly smaller than that of the interchange parity mode.
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FIGURE 7. Radial eigenmode structure of the pressure of the (m, n) = (3, 2) mode for
S = 107 obtained from the MHD model. The dashed vertical line shows the position of
the rational surface for ι= 2/3 where ι is the rotational transform.

(a) (b)

FIGURE 8. Radial eigenmode structures of the electron pressure of the (m, n) = (3, 2)
mode for (a) S= 106 and (b) S= 107 obtained from the kinetic MHD model. The dashed
vertical line shows the position of the rational surface for ι= 2/3 where ι is the rotational
transform.

However, for S= 107, their linear growth rates are almost equal. The same phenomena
are observed in the analysis of the interchange modes by the reduced MHD model
in the cylindrical plasmas (Ueda et al. 2014). In Ueda et al. (2014), when the
ideal modes are unstable, the linear growth rate of the interchange parity mode is
sufficiently larger than that of the tearing parity mode. As the beta value decreases,
the difference of the linear growth rate between the interchange parity mode and the
tearing parity mode becomes smaller. When the ideal modes are strongly stable,
the linear growth rate of the interchange parity mode is almost the same as that
of the tearing parity mode. Hence, the results for the interchange modes obtained
from the kinetic MHD model in this paper correspond to the case in which the ideal
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(a) (b)

FIGURE 9. Radial profile of the interchange parity and the tearing parity of the electron
pressure of the (m, n)= (3, 2) mode for (a) S= 106 and (b) S= 107. The dashed curves
correspond to the profile of the (m, n) = (3, 2) mode shown in figures 4(b) and 4(c),
respectively. The dashed vertical line shows the position of the rational surface for ι=2/3.

(a) (b)

FIGURE 10. Time evolution of the amplitude of the interchange parity mode and the
tearing parity mode of the (m, n)= (3, 2) mode for (a) S= 106 and (b) S= 107 obtained
from the kinetic MHD model.

modes are significantly stable. This results from the reduction of the energy source
for driving instabilities due to the kinetic thermal ion effects in the same way as the
ballooning modes discussed in the previous section.

4. Discussion
In LHD experiments, the instabilities do not cause significant degradation of the

plasma confinement when the linear growth rate of the low modes evaluated from
the linear MHD code is γ τa . 0.01 ∼ 0.015 (Watanabe et al. 2005). The observed
magnetic fluctuations for high beta plasmas implies that the unstable modes are
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resistive interchange modes (Sakakibara et al. 2008). As shown in figure 1(c), the
linear growth rate of the interchange mode analysed in this paper is γ τa ∼ 0.01 for
the MHD model, which is near the effective marginal stability boundary evaluated
from the experimental results. Such interchange mode changes from the ideal mode to
the resistive mode in our simulation results. This is consistent with the experimental
observations.

In the super-density core plasmas, which were obtained by repetitive pellet injection
in the outward shifted LHD configurations, core density collapse phenomena are
observed (Ohyabu et al. 2006; Sakamoto et al. 2007). From the MHD analysis for
such plasmas, it is found that ideal ballooning modes with γ τa ∼ 0.1 are unstable
(Ohdachi et al. 2010, 2017). Since the linear growth rate is sufficiently larger than
the precession drift frequency of the deeply trapped ions, i.e. γ >ωd, the suppression
effect of the kinetic thermal ions is considered to be weak.

5. Summary
We have investigated the linear MHD stability for high beta plasmas in the

inward shifted LHD configurations for a wide range of S numbers using numerical
simulations based on the kinetic MHD model with kinetic thermal ions. We found
that the dependence of the linear growth rate of the resistive ballooning modes on the
S number changes from γ ∝ S−1/3 to γ ∝ S−1 by the kinetic thermal ion effects, so that
the resistive ballooning modes are significantly suppressed as the S number increases.
For high S numbers comparable to experimental values, the most unstable modes
are interchange modes. The kinetic thermal ion effects change the most unstable
interchange mode from the ideal mode to the resistive mode. This transition of the
interchange modes by the kinetic thermal ion effects is consistent with the shift of
the marginal stability boundary for the ideal interchange modes observed in LHD
experiments.

The poloidal precession drift motion of the deeply trapped ions play an important
role in the suppression of the MHD instabilities. In helical plasmas, the deeply
trapped ions which are trapped in the helical ripple have the precession drift motion
not only in the toroidal direction but also in the poloidal direction. Since the poloidal
wavelengths of the MHD instabilities are much shorter than the toroidal wavelengths
in toroidal plasmas, the precession drift frequency of the trapped ions with respect
to the mode phase can be comparable to or smaller than the linear growth rate
of the instabilities. For such cases, the influence of the instabilities on the deeply
trapped ions is smoothed so that the response of the trapped ions to the MHD
instabilities becomes weakened. This results in the suppression of the perturbed ion
pressure perpendicular to the magnetic field, which leads to the reduction of the linear
growth rate of the instabilities. The weaker response of the trapped ions to the MHD
instabilities also means that the contribution of the ion pressure gradient to the energy
source for driving the MHD instabilities becomes weaker. Then the MHD instabilities
are mainly driven by the electron pressure gradient. The reduction of the energy
source for driving the MHD instabilities causes the ideal MHD instabilities to be
significantly stable. This results in the dependence of γ ∝ S−1 for resistive ballooning
modes and the degenerated parity modes in the resistive interchange modes obtained
in our simulations with kinetic thermal ion effects. The dependence of γ ∝ S−1 is the
same as that of the resistive MHD instabilities obtained from the MHD model when
the ideal MHD instabilities are significantly stable.

In this paper, the analysis is limited to the linear phase. For further verification and
validation, the nonlinear saturated state obtained from the kinetic MHD simulations
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should be compared with the experimental results. The effect of the kinetic thermal
ions on the nonlinear evolution of the instabilities in helical plasmas will be reported
in the near future.
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