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Further experiments and analysis on flow
instability in eccentric annular channels
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The onset and physical patterns of gap instability (GI), characterised previously as an
inviscid, Kelvin–Helmholtz instability, were investigated experimentally and numerically
in an eccentric annular channel with an inner-to-outer diameter ratio d/D = 0.5 and a
length equal to 320 hydraulic diameters. The focus was on the range of low and moderate
eccentricities (0 � e � 0.5) and Reynolds numbers (Re � 12 000). It was found that, in
laminar flow, GI occurred for e as low as 0.05. When, however, the flow was turbulent in
at least part of the cross-section (Re � 5000), GI remained strong only for e � 0.5 but was
essentially undetectable for e � 0.3. For e lower than 0.3, the critical Reynolds number
for the onset of GI increased with decreasing e. Time-frequency analysis of the velocity
time histories has revealed the presence of a single type of dominant mode for e = 0.7
and all considered Re, and two distinct, occasionally coexisting, modes for e � 0.5 and
2000 � Re � 5000. Within a range of low-e or low-Re conditions, quasi-periodic flows
were highly intermittent and less energetic in an upstream section of the channel, but
became progressively less intermittent further downstream. The energy of such motions
generally increased with increasing streamwise distance, e and Re. By exception, this
energy decreased with increasing Re for e � 0.3 and Re � 2000. The gap vortex street
generation mechanism and development was analysed and an improved physical model
was proposed.

Key words: vortex dynamics, vortex shedding, vortex streets

1. Introduction

Flows in annular channels are encountered in oil and gas extraction piping,
power generation plants, catheterised arteries and many other technological systems.
For practical reasons, annular channels are rarely, if ever, perfectly concentric,
and even nominally concentric channels would have some non-zero eccentricity.
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Previous authors have addressed the problem of flow instability in both concentric and
eccentric channels. Linear stability analysis has concluded that the dominant instability
mechanism in concentric annuli is in the form of Tollmien–Schlichting (T–S) waves, and
that the critical Reynolds number Rec for this instability to occur is an order of magnitude
larger than the Reynolds number at which transition to turbulence would occur in a
practical system (White 2011; Moradi & Tavoularis 2019). Eccentricity has a stabilising
effect on T–S waves (Merzari et al. 2008), but triggers a different mechanism, known as
gap instability (Tavoularis 2011); a quasi-periodic process that generates cross-flows and
pairs of staggered, counter-rotating vortices on either side of the inner cylinder. Choueiri
& Tavoularis (2014, 2015) investigated conditions for the onset of gap instability (GI) in
eccentric annuli for a wide range of eccentricities e and three values of the diameter ratio
γ = d/D. For γ = 0.5, these authors only observed GI for e � 0.5, whereas, for lower e,
transition to turbulence occurred at Re ≈ 6000 without any evidence of GI. As Choueiri
& Tavoularis noted, however, GI might have occurred if the test section was longer than
the one used, which was approximately 60Dh in length (Dh = D − d is the hydraulic
diameter). More recently, Moradi & Tavoularis (2019) performed a linear stability analysis
for flows in weakly eccentric annuli (e � 0.1) and found that, for e = 0.1 and γ = 0.5,
GI occurred at the relatively small Reynolds number Re = 920; they also found that GI
could occur for eccentricities as small as e = 0.01. Even though the range of eccentricities
for which gap instability was detected experimentally by Choueiri & Tavoularis (2015)
does not overlap with the one predicted by Moradi & Tavoularis (2019), when considered
together, the two sets of results seem to indicate that GI likely occurs over a very wide
range of e, possibly excluding only values extremely close to 0 and 1, at least for γ = 0.5.
Additional experimental investigations at moderate and low eccentricities are necessary to
validate this hypothesis.

Gap instability is not restricted to annuli but occurs in other types of channels containing
narrow gaps, which are adjacent to regions with higher speed and where the flow speed
is relatively small. In fact, this phenomenon has been known for a long time in the
nuclear reactor thermal hydraulics community (Meyer 2010) as being the cause of strong
intersubchannel mixing in tightly packed rod bundles. Gap instability and vortex streets in
channels with a variety of cross-sectional shapes have been studied by numerous authors
by diverse methods, including theoretical, experimental and computational ones. In many
cases, GI is sufficiently strong to be easily detected, even by relatively crude techniques.
It has also been recognised, however, that, besides the gap geometry, GI is sensitive to
other factors, including inlet conditions, level and waveform of disturbances and evolution
time or length. The dependence of the frequency, wavelength and strength of the resulting
vortices, as well as their exact shape, upon the geometry and other influencing factors has
only been partially documented.

The objective of this work is to investigate experimentally and numerically the onset
and characteristics of GI in an eccentric annular channel, which was much longer than
those in previous studies, thus allowing this phenomenon to evolve more extensively than
previously possible. We examined cases with eccentricities in the range 0 � e � 0.7, but
our focus was in the low eccentricity range 0 � e � 0.5, which has received little attention
in the past. We endeavoured to map the critical Reynolds number for the onset of GI for
a representative diameter ratio over the entire range of eccentricity. We further examined
the influence of the Reynolds number on the streamwise development of GI and on the
energy and dominant modes of GI in ‘fully developed’ flows, and we revisited the idealised
vortex street model of Krauss & Meyer (1998). The present work answers several lingering
questions on gap instability and enhances our global understanding of this phenomenon,
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which has both scientific interest and important implications in many engineering and
biological systems.

2. Methodology

2.1. Apparatus, instrumentation and measurement procedures
The experiments were performed in a recirculating flow loop, shown schematically in
figure 1(a). Distilled water was first pumped into a large inlet tank, from which it entered
the test section through a bell-shaped contraction (‘trumpet’), having an elliptical wall
cross-sectional shape and a 4.2 area ratio. The test section had an annular shape with an
outer diameter D = 37 mm ± 1 % and an inner diameter d = 18 mm ± 1 % (figure 1b),
which gave Dh = D − d = 19 mm and γ = d/D = 0.49. The test section was modular so
that its length could be extended. For the reported results, it comprised four consecutive
parts, each 1.5 m long, so that the total length was L ≈ 320Dh. Each test section part
consisted of an inner and an outer glass tube, which were joined with those in the adjacent
parts by machined plastic couplings. Each inner tube coupling was held in place by two
vertical stainless steel wires, 0.3 mm in diameter, inserted through small holes in the outer
tube coupling and kept taut by guitar tuning keys, which allowed a fine adjustment of the
eccentricity. The eccentricity of each inner coupling was measured with a precision pin,
which was inserted through the outer tube coupling for the measurements and retracted
for the tests. Glass viewing tanks, filled with water, were fitted at several locations along
the test section to permit optical access to the flow without significant distortion due to
light refraction. The water was seeded with polyamide microspheres (Dantec Dynamics),
having a mean diameter of 20 mm and a specific gravity of 1.03.

The flow rate was measured using a calibrated ultrasonic flowmeter (Omega FDT-31).
The test section Reynolds number was computed as

Re = UbDh

ν
, (2.1)

where Ub is the bulk velocity and ν is the kinematic viscosity of the fluid at the temperature
of each test, measured with a thermistor inside the inlet tank, which varied from 21◦ to
23◦. The largest achievable Reynolds number was 12 000 and the estimated uncertainty of
Re was at most 5 %. The uncertainty of the eccentricity was at most 0.05. The standard
deviation of the velocity fluctuations at the exit of the trumpet was at most 3 % of the local
mean speed.

A two-component laser Doppler velocimeter (LDV; Dantec Dynamics, Fibre Flow
2-D LDV with a 160 mm focal length and a BSA F50 signal processor) was used for
time-resolved measurements of the streamwise U and cross-flow W velocity components.
Measurements were performed mainly at mid-gap between the inner and outer tubes,
at the streamwise locations listed in table 1. Depending on the Reynolds number and
eccentricity, the data rate varied from a few Hz to about 100 Hz. The velocity power
spectral densities (PSDs) Eu and Ew were computed using the sample-and-hold method.
This method cannot resolve accurately the PSD for frequencies greater than 2π times the
averaged particle data rate (Albrecht et al. 2003), so the range above this threshold was
disregarded. Spectra were ensemble averaged over intervals 5 to 80 s long, depending on
the conditions. The continuous wavelet transform, computed using the complex Morlet
wavelet in the PyWavelets package (Lee et al. 2019), was used to investigate the presence
and frequency of quasi-periodic motions.

Flow visualisation was performed by observation of fluorescent dye injected
isokinetically at mid-gap via a hypodermic needle inserted through the outer
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(b)

(a) Inlet tank

Trumpet

Test section (part 1)

Test section (part 2)

y

�y

zD d
r

Viewing tank

θ

Figure 1. Schematic diagrams of (a) the experimental apparatus and (b) its annular cross-section; the x-axis
starts at the trumpet exit and is normal to the plane shown. The eccentricity is defined as e = 2�y/(D − d).

Position x/Dh

1 70
2 150
3 230
4 290

Table 1. Streamwise locations of measurements; positions 1, 2 and 3 were 10Dh upstream of the first three
tube couplings and position 4 was 30Dh upstream of the test section discharge.

tube coupling. We verified that dye streak oscillations due to GI were not noticeably
altered when passing from one section to another. This, together with LDV measurements
closely downstream of the supporting wires and tube couplings, are deemed to be sufficient
evidence that these devices did not significantly disturb the flow as far as GI was
concerned.

2.2. Computational procedures
As a complement to the experimental study, numerical simulations of time-dependent,
laminar flow were performed using the open source finite volume code OpenFOAM V6.
The momentum and continuity equations were solved using the PISO algorithm. The
equations were normalised by the hydraulic diameter Dh of the channel and the bulk
velocity Ub. All numerical schemes used were of second order, implicit in time and centred
in space. The maximum Courant number was kept below 0.5; the resulting time step
was between one and two orders of magnitude smaller than the period of any observed
flow fluctuations. Pressure was fixed to zero at the outlet and a zero-gradient condition
was imposed on all other boundaries. At the inlet, a uniform parallel flow having a
velocity u = Ub was imposed. In order to match as much as possible the experimental
conditions, three-dimensional (3-D) velocity fluctuations generated by a pseudo-random
number generator were superimposed to the inlet velocity. The standard deviations of these
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(a) (b)

Figure 2. Cross-section of the mesh used for the case with e = 0.3; the shown elements were extruded in the
streamwise direction to make the 3-D mesh; the detail shows the mesh near the inner wall.

fluctuations were 0.02Ub for the streamwise velocity component and 0.01Ub for the two
transverse components.

The mesh was generated with the open source software Gmsh (Geuzaine & Remacle
2009). A representative mesh, consisting of hexahedral elements, is shown in figure 2
for e = 0.3. The channel length was 330Dh. Mesh dependence simulations were first
performed in steady state, for e = 0.5 and Re = 500, to determine the appropriate
cross-sectional mesh density. A mesh having 3500 quadrangles in the cross-section was
selected, as it produced a fully-developed velocity field that was essentially identical
(within 0.3 %) to the one obtained with a mesh having 30 % more elements. The numerical
solution of the base flow was validated by comparison to the theoretical solution by Snyder
& Goldstein (1965), with which it was found to be in excellent agreement.

The cross-sectional mesh was extruded in the streamwise direction to form prismatic
elements with a uniform length �x. This length was chosen following an additional mesh
dependence study, this time for a time-dependent solution, from which we determined
the GI frequency and wavelength λ for different combinations of Re and e. For cases with
λ/Dh > 10, which typically corresponded to flows with Re < 1300, we determined that the
value �x = Dh provided sufficient accuracy. For cases with λ/Dh < 10, we used the value
�x = 0.5Dh. Simulations performed with meshes having half the value of the chosen �x
gave comparable estimates (within 5 %) of the GI frequency and wavelength. A typical
mesh had between 1.2 and 2.4 million elements.

3. Critical Reynolds number

The critical Reynolds number Rec for each fixed e was determined as the lowest Re
value for which quasi-periodic cross-flow oscillations could be detected at position 4.
The presence of such oscillations was confirmed by two independent methods: first, by
observation of lateral motions of dye streaks injected at mid-gap with dye through a needle;
and, second, by the detection of a peak in the cross-flow velocity spectrum, measured by
LDV with the needle removed. Both methods gave comparable values, which are plotted
in figure 3 for the entire range of eccentricities.

The trends and the values of the present results are generally consistent with those
obtained by Moradi & Tavoularis (2019) via a linear stability analysis at very small e
as well as the measurements by Choueiri & Tavoularis (2015) for larger e, also shown
in figure 3. One may note that the presently found Rec for the case with e = 0.7 was
measurably lower than the value reported by Choueiri & Tavoularis (2015). This difference
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0

2000

0.2 0.4 0.6 0.8 1.0

4000

6000
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Moradi/
Tavoularis From

Choueiri/
Tavoularis

Experiments
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(onset)

Simulations
(large amplitude)

e

Rec

Figure 3. Critical Reynolds number for gap instability in eccentric annuli with γ = 0.5.

is attributed to the fact that the present test section was much longer than the one in the
previous study, thus allowing observation of GI onset at a lower Re, but further away
from the origin than it was possible in the previous study. A much stronger demonstration
of the importance of channel length is provided by the case with e = 0.5, for which, unlike
the present apparatus, the test section of Choueiri & Tavoularis (2015) was apparently
insufficiently long for GI to become detectable in laminar flow. When applying the same
logic to the present results, it becomes evident that one must consider the possibility that
the presently reported experimental values of Rec may be somewhat larger than the ideal
values, which would presumably be measured in an infinitely long channel with the use
of an experimental technique that has an infinite resolution, namely, at conditions that are
impossible to meet in the laboratory.

Besides the experimental investigations, we have also determined the critical Reynolds
number for GI by conducting numerical simulations of laminar flows in the same geometry
for e = 0.5, 0.3 and 0.1 and for 10 � Re � 2000. These have a much higher resolution
than the experimental studies and permit the investigation of much longer channels. We
have even employed the streamwise-periodic boundary condition to simulate numerically
laminar flows in infinitely long channels (§ 8). Our simulations of the e = 0.5 case
have shown that quasi-periodic velocity fluctuations became detectable numerically at a
Reynolds number that was close to the experimentally obtained Rec. In contrast, in the
e = 0.3 and 0.1 cases, the numerically obtained values of Rec were significantly smaller
than the experimental ones (figure 3). This apparent discrepancy between numerical
and experimental estimates of Rec can be resolved by consideration of the amplitude of
cross-flows at mid-gap when Re ≈ Rec. Let us consider, for example, the e = 0.1 case.
The amplitude of cross-flows in the numerical study at Rec,comp ≈ 300 was of the order
of 10−6Ub, a value that is several orders of magnitude smaller than the experimental
resolution. The amplitude of cross-flows in the experimental study at Rec,exp ≈ 1700
was approximately 0.022Ub. Such a cross-flow amplitude was observed in the numerical
simulation of the e = 0.1 case for Re′

c,comp = 1600 (a prime indicates the Reynolds number
of a simulation that has a cross-flow amplitude that is comparable to the experimental
value), i.e. a value that is only slightly lower than Rec,exp. For e = 0.3, we also observed
that Re′

c,comp was significantly larger than Rec,comp, whereas, for e = 0.5, Re′
c,comp ≈

Rec,comp. It may further be noted that removing all turbulence from the inlet boundary
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condition did not affect our estimates of Rec,comp, but slightly increased the ones for
Re′

c,comp.
In conclusion, we consider the reported experimental values of Rec to be reliable

estimates of the onset of robust, albeit not necessarily dominating, GI and speculate that
low-amplitude GI may be present at lower Re, as suggested by our simulation results.

4. Streamwise development of gap instability

The PSD of the cross-flow velocity measured at different streamwise locations is plotted in
figure 4, both for e = 0.3 and different Reynolds numbers (top plots), and for Re = 4000
and different eccentricities (bottom plots). The occurrence of GI is indicated by a clear
and dominant peak in the PSD, whereas the absence of such a peak indicates that GI has
not occurred or is too weak to be detectable with the available means.

First, let us examine the cases with e = 0.3, for which our experimental estimate was
Rec ≈ 600. In the ‘subcritical’ case with Re = 520, no GI was observed in the entire
test section. In the slightly supercritical case with Re = 630, GI was observable only at
position 4. As Re increased to 710, GI also became observable at position 3 and, following
a further increase to 2000, GI was observable at positions 2, 3 and 4, although still not at
position 1. One may further observe that, for a fixed position, the energy associated with
GI (i.e. the area under the peak) increased with increasing Re. Similar observations were
made for other eccentricities for flows in the range Re � 2000.

Next, let us examine the cases with Re = 4000, which is a value considerably larger
than the corresponding Rec for all eccentricities. A very prominent observation is that
the energy of cross-motions is an order of magnitude larger for the e = 0.5 case than for
any case with a lower e. Another general observation is that, at position 1, GI was clearly
observable only for the e = 0.5 case and, even there, its amplitude was much smaller than
further downstream. For lower eccentricities, velocity signals at position 1 were manifestly
still dominated by inlet turbulence, which may have obscured the detection of GI. Such a
statement is supported by our numerical simulations, which, when performed without any
inlet turbulence, generally revealed the presence of a (very mild) peak at a location as close
as 10Dh to the channel entrance. In contrast, when specifying a 2 % inlet turbulence as part
of the boundary conditions, we were sometimes not able to discern a spectral peak until
much further downstream, e.g. at x ≈ 150Dh for the e = 0.1, Re = 900 case. Finally, in all
cases shown in figure 4, in which there was a clear peak at position 2, the peak frequency
somewhat decreased over some distance and reached a nearly constant value at positions
3 and 4.

At slightly supercritical conditions, one may plausibly anticipate that gap instability
would occur intermittently, a condition that cannot be elucidated by the shape of velocity
spectra alone. It is also reasonable to expect that this intermittency would decrease with
increasing distance from the inlet. To address these issues, we examined time histories
of the velocity along the channel. Figure 5 shows representative time histories of both
the streamwise and the cross-flow velocity components for the case e = 0.5, Re = 520
and for positions 2, 3 and 4. For this case, the experimental Rec was approximately 400.
One may first notice that all time histories contained intervals with strong quasi-periodic
oscillations, during which the local time-averaged streamwise velocity Ū was high,
interspersed with intervals of much weaker activity, during which Ū was low. These
observations are consistent with the fact that cross-flows associated with GI transport
high-speed fluid from the wide gap into the narrow gap region. The duration of the active
intervals increased from roughly 45 % of the total time interval at position 2 to about 72 %
at position 3 and reached 93 % at position 4. A visible difference between the waveforms
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Figure 4. Power spectral density of the cross-flow velocity component at four different streamwise locations.

of the streamwise and cross-flow components during active intervals is that the latter
appeared to have a single dominant frequency, whereas the former was more complex and
appeared to have a higher frequency content. This difference is illustrated clearly by the
corresponding PSD, also shown in figure 5: all cross-flow PSD had a single strong peak at
a frequency to be denoted as fp, whereas the streamwise PSD had two distinct peaks, one
at fp and another at 2fp. The single peak of the cross-flow PSD is confidently attributed
to the passage of a pair of counterrotating vortices on either side of the narrow gap. The
same mechanism is obviously responsible for the peak of the streamwise velocity PSD at
fp (Choueiri & Tavoularis 2014); an explanation for the peak at 2fp will be given in § 5.3.

Lastly, despite the fact that, between position 2 and position 4, the amplitude of the peak
in Ew increased by a factor 2, the maximal amplitude of W/Ub did not change noticeably.
This indicates that the streamwise increase in spectral energy corresponding to GI activity
was not due to the strengthening of cross-flows but to the increase of the portion of the
time that was occupied by quasi-periodic motions.

The main observations made in this section may be summarised as follows.

(i) For a fixed e, the GI onset took place at a location that moved upstream with
increasing Re. For Re � Rec, however, the onset location did not vary measurably
with Re.

(ii) In general, for a fixed Re, GI was observed closer to the inlet at high eccentricity
(e � 0.5) than at low eccentricity (e � 0.3). For instance, for Re = 4000, GI was
observed at 70Dh for e = 0.5, but only at 150Dh for e � 0.3.

(iii) Once GI was triggered, its energy increased and its frequency decreased
downstream, reaching a nearly constant level at some distance from the inlet. For
Re � Rec, this distance typically corresponded to position 3 (x ≈ 230Dh).

(iv) As the streamwise distance increased, the observed quasi-periodic motions across
the gap became less intermittent and their amplitude became more uniform. Such
effects were observed under all conditions, but were particularly noticeable for
slightly supercritical conditions.
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Figure 5. (a) Time history of the dimensionless streamwise and cross-flow velocity components at positions
2 (i), 3 (ii) and 4 (iii) for e = 0.5, Re = 520; (b) PSD of the corresponding streamwise (i) and cross-flow (ii)
velocity fluctuations.

5. ‘Fully developed’ gap instability

Based on the results presented in §§ 3 and 4, one may characterise GI to be ‘fully
developed’ starting from the location where its energy and dominant frequency essentially
reach asymptotic levels. In most cases discussed, such requirements were met at position 4.
In cases, however, in which Re slightly exceeded Rec, it seems logical that, had the channel
been longer, the cross-flows might have continued to grow somewhat before settling.
Similarly, in cases with Re slightly lower than Rec, GI might have been triggered at some
downstream location, which would entail a (presumably small) reduction of Rec.

5.1. The effects of eccentricity and Reynolds number
The power spectral density (PSD) of the cross-flow velocity component at position 4 is
shown in figure 6 for eccentricities in the range 0 � e � 0.5 and Reynolds numbers in the
range 500 � Re � 9100. These results are unique in the literature and allow one to make
the following original observations.

(i) GI in a long channel occurs over a specific range of Re for 0.05 � e � 0.5; this
complements previous observations of GI occurrence in a much shorter channel, but
only for higher eccentricities (e � 0.5).
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Figure 6. Power spectral density of the cross-flow velocity component for selected eccentricities and
Reynolds numbers.

(ii) For a fixed Reynolds number, the energy within the bandwidth of the spectral peak
(namely, the amplitude of cross-gap fluctuations and the portion of the time they
were uninterrupted) generally decreases with decreasing eccentricity.

(iii) Among the cases shown in the plots, the critical Reynolds number for GI is lowest
for e = 0.5 and increases with decreasing e. For example, for Re = 500, the PSD
has a sharp peak when e = 0.5, a much milder peak when e = 0.3 and no peak at all
for lower e.

(iv) For e = 0.5, the PSD had sharp peaks for all values of Re considered, including
9100, which corresponds to fully turbulent flow. Rather unexpectedly, for e =
0.3, 0.2 and 0.1, no spectral peaks were observable for Re � 6100, although
such peaks were present at lower Re. For low e, strong evidence of GI
was thus only found in laminar, and possibly transitional, flows, but not in
fully turbulent ones. This issue will be discussed in more detail in the next
subsection.

Despite the fact that Re = 2000 is close to the transitional Re in concentric annuli,
the observed spectral peak for the e = 0.1, Re = 2000 case is attributed to GI and
not to some transition mechanism. This is supported experimentally by the observation
that, although the peak for the e = 0.1 case was weaker than the peaks in the e �
0.2 spectra, it appeared to be very distinct in light of the absence of such a peak
in the e � 0.05 spectrum. Strong evidence for the presence of GI in the e = 0.1,
Re = 2000 case is provided by our computational study of this case, which identified
quasi-periodic structures with characteristics very similar to the ones observed at higher
e. Additional computational findings regarding GI in low-e flows will be presented
in § 8.
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Figure 7. Normalised energy of mid-gap cross-flows as a function of eccentricity (a) and Reynolds number
(b). The gap instability (GI) energy was computed by integrating the power spectral density (PSD) in the peak
region.

5.2. On the absence of gap instability in low-e–high-Re flows
Figure 7(a) provides quantitative support for the previous observation that, in the range
e � 0.5 and for a fixed Re, the energy of cross-flows associated with GI generally decreases
with decreasing e. This energy was evaluated as the integral of the cross-flow spectrum in
the peak region (typically for f � 5 Hz) and was normalised by U2

b . Figure 7(b) further
supports this and other previous observations. First, when Re � Rec, GI is much stronger
in high-e channels than in low-e ones. Second, for e � 0.3, GI is triggered only within
a range of Re and disappears when Re � 4000. In contrast, for e = 0.5 and 0.7, GI was
found to be strong even for the largest examined Re of 12 000. The near-constancy of
this energy over a long range of Re for e = 0.7 seems to indicate that this property could
maintain the same value at indefinitely large Re. Results for the e = 0.7 case are consistent
with the fact that GI was observed at much higher Re in other geometries having very
small gaps (Meyer & Rehme 1994; Guellouz & Tavoularis 2000) and in tightly-packed rod
bundles (e.g. Möller 1991; Wu & Trupp 1993; Krauss & Meyer 1998). On the other hand,
the observed downward trend for the e = 0.5 curve suggests that the instability may also
decay to an undetectable level at some higher Re (this is consistent with the LES studies
of Merzari & Ninokata (2009) for the e = 0.5 case; these authors noted the presence
of periodic coherent structures for Re = 3200, but not for Re = 27 000); this trend thus
appears to be intermediate between the trends of the e = 0.7 and e � 0.3 cases.

In view of the fact that, at low e, Rec increases with decreasing e, it becomes evident that
the range of Re over which GI can be observed diminishes with decreasing eccentricity.
For the lowest achieved 0 � e � 0.05, this range was reduced to 2500 � Re � 4000.
This observation accentuates the complexity of the gap instability mechanism(s). It also
underscores the difficulty in detecting GI in the limit of vanishing eccentricity.

Another important observation in figure 7 is that the cross-flow energy for e = 0.2 and
0.3 dropped by nearly an order of magnitude as Re was increased from 2000 to 4000,
which presumably coincides with the onset of transition somewhere in the annular channel.
If one considers that (Merzari & Ninokata 2009) transition may first occur in the wide
gap of the annulus, one may speculate that, under such conditions, the flow could be
laminar in the narrow gap and transitional or turbulent elsewhere. A laminar profile would
have a relatively large velocity peak at mid-gap, whereas a turbulent profile would have a
comparatively smaller peak, which would diminish the azimuthal velocity gradient, thus
weakening the source of instability.
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Figure 8. Wavelet transform of the cross-flow velocity component for Re = 6000, e = 0.1 (a); zoomed portion
of the wavelet plot (b); two realisations of the corresponding velocity spectrum computed using different time
intervals, namely for the 600 s full signal and the 90 s zoomed portion (c).

The absence of a strong peak in the cross-flow PSD under turbulent conditions does
not necessarily mean that GI was never triggered under such conditions. One may also
examine the possibility that GI was occasionally triggered, but was quickly suppressed
by conventional turbulence or remained too weak to be easily detectable. We investigated
such possibilities using the continuous wavelet transform, which detected coherent events
as a function of time. An example of a wavelet plot, obtained for e = 0.1 and Re = 6000, is
shown in figure 8. One may observe the presence of some relatively short intervals of time
displaying a high wavelet activity in the frequency range where GI is expected to occur,
which in this case was f ∼ 1 Hz. When computing the PSD by considering such a localised
time period, one can actually observe a clear peak. Even though such observations were not
reproducible in a consistent manner, they seem to indicate that GI is occasionally triggered
in high-Re-moderate/low-e flows, namely, for e � 0.3 and for Re � 5000, but it is weak
and highly intermittent, so that it is mostly obscured by turbulence.

5.3. An explanation for the two peaks in the streamwise velocity spectrum
The measured streamwise velocity spectra that were presented in figure 5 for e = 0.5 and
Re = 520 showed two distinct peaks, one at fp and another at 2fp. The spectral content
of Eu was analysed by examining numerical results for the case with e = 0.5 and Re =
700, for which the flow pattern was comparable to that corresponding to the previously
cited figure. We found that, in the narrow gap region, streamwise velocity fluctuations
generated by two successive vortices were positively correlated for positions near the
channel symmetry plane, and that the correlation weakened and became negative towards
the wide gap. These correlations can be explained by the self-evident expectation that
consecutive vortices have nearly the same shape, when shifted streamwise and reflected
on the geometric plane of symmetry (see also § 7). In contrast, cross-flow fluctuations
were found to be negatively correlated nearly everywhere in the cross-section. These
observations are supported by the three plots in figure 9, in which Eu and Ew are plotted,
respectively, at mid-gap and at two other locations away from it. At mid-gap (left plot), only
one strong peak was observable in Eu, at a frequency equal to 2fp. For a location slightly
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Figure 9. Numerical estimates of the power spectral density (PSD) of the streamwise and cross-flow velocity
(Eu and Ew, respectively) at three different cross-sectional locations, which are indicated by red dots; e = 0.5,
Re = 700; x/Dh = 250.

to the side of mid-gap (middle plot), Ew did not change measurably but Eu developed a
second measurable peak at fp. Further away from the narrow gap (right plot), the peak at 2fp
nearly vanished, whereas the one at fp became dominant. The findings and trends observed
in the numerical simulations are generally consistent with our experimental results and
observations. For example, in the experiments, a peak at 2fp was indeed only observable
near the channel symmetry plane, although we noticed that the amplitude of this peak
relative to the one at fp was very sensitive to the azimuthal location. Hence, the presence
of the two Eu peaks in figure 5 was most probably due to the fact that measurements were
not performed exactly at mid-gap, but at a location slightly offset towards either side of
the annulus.

6. Strouhal number and gap instability modes

The dominant dimensionless frequency of cross-flows is represented by the Strouhal
number St = fpd/Ub, where, as mentioned previously, fp is the frequency of the cross-flow
PSD peak and Ub is the bulk velocity. In most cases considered, the PSD had a clear single
peak, which provided an unambiguous estimate of fp. In some cases, however, the peak was
broadband, thus introducing uncertainty in the estimate of St. To obtain St in, as much as
possible, ‘fully developed’ flows, we determined fp at position 4, for various eccentricities
and Reynolds numbers. Based on these results, which are plotted in figure 10, we can make
the following observations and comments.

(i) The range of Re for each e is bounded from below by the corresponding Rec.
(ii) For the e = 0.7 and 0.5 cases, there is no upper bound for the Re-range. In contrast,

for e � 0.3, there is an upper bound in the vicinity of 4000, which indicates that GI
was not observed clearly in turbulent, and possibly transitional, flows. The presence
of such an upper bound has already been documented by figure 7.

(iii) For all e, St increases monotonically up to some Re. In this Re range, St increases
monotonically with decreasing e.

(iv) For e = 0.7, St settles at approximately 0.09 at Re ≈ 4000.
(v) For e � 0.5 the rise in St is followed by a drop, which becomes more abrupt as

the eccentricity decreases. For e = 0.5, the rate of decrease is mild, whereas, for
e � 0.3, St suddenly drops to ≈ 0.065 for Re ≈ 2900 and maintains this value for
2900 � Re � 4000.
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Figure 10. Strouhal number of gap instability as a function of the Reynolds number (a) and eccentricity (b).
Solid and dashed lines in the right plot refer to the primary and secondary GI modes, respectively; dotted lines
connect simulation results.

(vi) The intense drop observed for e � 0.3 is preceded by a range with large variations of
St, which may be attributed to a high sensitivity of GI characteristic to the Reynolds
number.

(vii) For e = 0.3, Re = 2900, two values are plotted for St, corresponding to the two peaks
marked by circles in the power spectrum of figure 6.

(viii) The Strouhal number values in the simulations are generally lower than the
corresponding experimental ones, but they follow similar trends: St increases for
decreasing e and for increasing Re.

Results obtained for e = 0.7 are consistent with earlier findings in annular channels
(Choueiri & Tavoularis 2015) and rod bundles (Möller 1991; Meyer 2010), namely that
St increases with Re in laminar flows and settles at an approximately constant value in
turbulent flows. The same observation also seems to apply to the case with e = 0.5, but
not to cases with lower eccentricities. To elucidate this difference, we may reconsider
the PSD shown in figure 6. For e = 0.5, the GI peak broadened as Re was increased to
1300 and remained broad at higher Re. For e � 0.3, however, this peak became noticeably
narrower as Re was increased from 2900 to 4000, which may signify that one or more
modes disappeared or became attenuated. This issue will be further investigated in the
following by observation of wavelet plots of the mid-gap cross-flow velocity component.

Let us start by comparing the three wavelet plots for e = 0.5, corresponding,
respectively, to Re = 2000, 4000 and 11 500 and shown in figure 11. A first general
observation is that the instantaneous dominant frequency, identified by large values of
the wavelet coefficient, wandered in time. Such frequency wandering, which was noticed
for all eccentricities and Reynolds numbers in both experiments and simulations, could
not be accounted for by fluctuations of the flow rate and has already been observed by de
Melo et al. (2017) for the turbulent flow inside a compound rectangular channel. Figure 11
further shows that the width of the wavelet band, bounded by the two white dashed lines
in the figure, increased considerably while Re was increased from 2000 to 4000, but then
decreased at higher Re to a level that was comparable to the one observed for Re = 2000.
A widening of the wavelet band was also noticed for e � 0.3 and Re ≈ 2900, but was not
observed for e = 0.7. These effects are illustrated in figure 12, where the ratio fh/fl of the
two frequencies bounding the GI wavelet band is plotted as a function of the Reynolds
number for four different eccentricities. For e = 0.3, 0.2 (not shown) and 0.1, a sharp peak
on the ratio separates data for Re � 2000 from those for Re = 4000; a similar peak of this
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cross-flow velocity component for e = 0.5 and various Re. The abscissa range of each wavelet plot was set at
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and Reynolds numbers.

ratio can also be observed for e = 0.5 at somewhat higher Re, but the data for e = 0.7
show no peak.

Now, let us consider the wavelet plot shown in figure 13 for the intermediate case having
Re = 2900 and e = 0.3. In contrast to previous ones, this wavelet plot shows the presence
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Figure 13. Continuous wavelet transform (a) and power spectral density (PSD) (b) of the cross-flow velocity
component for Re = 2900, e = 0.3.

of two modes having well separated frequencies and thus resulting in two distinct spectral
peaks. The figure also shows that these modes did not occur simultaneously but rather
alternated in time, and that the frequency of each mode wandered somewhat over time.
(By ‘mode’ here we do not refer to a single frequency, but rather to frequencies in the
range [ fl, fh].) It should be noted that the frequency ratio plotted in figure 12 for this
case was evaluated by only considering the width of the more energetic among the two
wavelet bands (namely the one at higher frequencies), and thus does not include the large
frequency interval separating the two spectral peaks. We may then hypothesise that the
high-frequency mode is the one that was found to be dominant in laminar flow for all e,
whereas the low-frequency mode corresponds to one that was triggered at intermediate
Re for e � 0.3, and possibly for e = 0.5. The validity of this hypothesis is demonstrated
in figure 10(b), where it is evident that the higher of the two observed St for e = 0.3 and
Re = 2900 follows the trend that was observed for Re = 1300 and Re = 2000, whereas
the lower St follows the trend observed for Re = 2900 and Re = 4000, which was very
different from the previous one. Mode switches also seemed to have occurred for e = 0.1
and e = 0.2 at slightly lower Re as depicted by large St variations in figure 10. Considering
the previous analysis of figures 11 and 12, we may further conjecture that the mode in
laminar flow is of the same type as the one occurring for e = 0.5 under fully turbulent
conditions and for e = 0.7 for the entire considered range of Re, which includes both
laminar and fully turbulent regimes. To distinguish this from other motions, we may refer
to it as the ‘primary’ GI mode. For some ranges of Re in the same eccentricity range
(e � 0.3), this primary mode seems to coexist with a lower-frequency, ‘secondary’ mode.
This secondary mode becomes dominant for Re � 2900, but either vanishes or is too
weak and intermittent to be detectable in fully turbulent flow. One is reminded that, as
Re exceeded this approximate bound of 2900, both St and the GI energy dropped sharply
for the low-e cases (figures 7 and 10). The concurrent presence of two modes at low
eccentricities follows our previous postulation that the flow in the wide gap underwent
intermittent transition to turbulence, while the flow in the narrow gap remained laminar.
In high-e flows, the primary mode may be too strong for any other secondary mode to
grow or become observable.

Lastly, for e = 0.5 and Re = 4000, the local increase of the frequency ratio observed in
figures 11 and 12 suggests that the secondary mode may have alternated with the primary
one in this case as well, but without either of the modes being dominant. Because, however,
the spectrum had a single broad peak, we cannot assert with confidence that multiple
modes were present. As stated previously, the case with e = 0.5 appears to be a borderline
eccentricity, which shares some characteristics with low-e flows and others with high-e
flows, at least as far as GI is concerned.
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7. An improved vortex street model

The mechanism of gap instability has been associated with the formation of a ‘gap vortex
street’, an idealised, 2-D model of which was proposed by Möller (1991) and refined by
Krauss & Meyer (1998). This model is consistent with some of the main experimental and
numerical findings, but cannot explain some other observations. Besides, it is self-evident
that gap vortices are not isolated and cannot be 2-D, while confined in an annular channel.
In this section, we present a more realistic model of a gap vortex street, which is based on
our numerical results and is consistent with the experimental evidence.

Figure 14(a) shows a snapshot of a computed, fully developed, gap vortex street for a
representative case with e = 0.5 and Re = 700. The vortices (coherent structures) were
identified by the Q criterion (Jeong & Hussain 1995), namely as isosurfaces of the
parameter Q = (‖Ω‖2 − ‖S‖2)/2, where Ω and S are, respectively, the anti-symmetric
(rotation) and symmetric (strain rate) parts of the velocity gradient tensor. The isosurfaces
shown in this figure correspond to Q = 0.15U2

b/D2
h and were coloured red or blue to

denote, respectively, a positive or negative sign of the azimuthal component (namely,
the one in the θ direction, which has been defined in figure 1) of the vorticity vector.
Each of the presented isosurfaces of Q is wrapped around the core of the channel, it is
elongated strongly in the streamwise direction, and it is continuous on one side of the
core and broken on the other side. The shape of these isosurfaces indicates that gap
vortices, when adequately developed, may be roughly described as twisted, tilted and
broken rings, which are asymmetric with respect to the geometric plane of symmetry.
Each gap vortex is paired with a secondary, counterrotating vortex in the outer region of
the wide gap (such secondary vortices were also observed by Chang & Tavoularis (2012)
in their simulations of turbulent flow in a rectangular annulus); these secondary vortices,
which are driven by the main vortices in a manner similar to vortices in cavities, will not
be discussed further. Successive gap vortices are both tilted and twisted in an opposite
manner, but, in all cases, the vortex part in the narrow gap is downstream of the part in the
wide gap. Consistent with the fact that vortex rings are tightly wrapped around the inner
cylinder, a region where the azimuthal vorticity ωθ ≈ −∂u/∂r is negative, all vortices
rotate counterclockwise. In combination with the vortex tilting, this vortex orientation
induces cross-flows between consecutive vortices that transport fluid across the gap from
both sides of the inner cylinder, in a manner similar to the cross-flows produced by the
Krauss/Meyer model.

The twisting of the rings orients some vorticity in the streamwise direction, as illustrated
in the bottom plot of figure 14, where isosurfaces are coloured according to the sign of
the streamwise vorticity component. The sign of the streamwise vorticity alternates from
one vortex to the next, thus clearly distinguishing consecutive vortices, which may be
considered as pairs. This alternation of streamwise vorticity is essential for the generation
of alternating cross-gap flows. In the figure, the red and blue arrows mark the approximate
direction of the vorticity vector on the unbroken side of each vortex.

It is evident that the vortex patterns in annular channels are too complex to be captured
by an all-encompassing, simple physical model. It is possible, however, to improve the 2-D
model of Krauss & Meyer by idealising the gap vortex street as a sequence of oppositely
tilted and twisted, interconnected vortex rings. Both models are illustrated schematically in
the top sketch of figure 15. Although the previously presented isosurfaces of Q are open at
both ends (points A and B in figure 15), a careful inspection of isosurfaces corresponding
to lower values of Q indicated that each vortex splits at end A into two branches: a branch
that was connected to the downstream vortex, in a manner reminiscent of the streamwise
vortex connections between von Kármán vortices in the wake of a cylinder, and a second
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Figure 14. Vortices identified numerically as isosurfaces of the parameter Q for the case with e = 0.5 and
Re = 700. The streamwise axis was scaled down by a factor of two, so that the vortices were actually twice as
long as they appear to be. In the 3-D view (a), the isosurfaces have been coloured according to the azimuthal
vorticity component, whereas, in the side view (b), the colouring corresponds to the streamwise vorticity
component. The solid arrow drawn on the side view marks the overall direction of the vorticity vector within
the vortex on the front of the inner cylinder and the dashed arrow marks this direction behind the inner cylinder.
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A 

Present model (broken rings) Krauss/meyer model

Present model (interconnected rings)(b)

(a)

Figure 15. Sketches of fully developed gap vortices according to the Krauss & Meyer (1998) model and
according to the present model. The sketch at the top shows idealised Q isosurfaces, whereas the sketch at
the bottom is a simplified version of the ‘interconnected rings’ model.

branch that reconnected at another point of the original vortex, thus closing the ring; a
similar branch connected end B of each ring to the upstream vortex. An interconnected
version of our model is proposed at the bottom of figure 15. This model is consistent with
the observation that circulation in each fully developed vortex is stronger in the two gap
regions than on the sides of the annulus, where the vortex splits into branches.
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8. Vortex generation and development

The previous model describes the vortex street only at its fully developed state. The present
simulations, however, allow us to describe the vortex street from its inception to its full
development. Q-isosurfaces relatively close to the inlet, shown for a representative case in
figure 16(a), illustrate that, in agreement with observations by previous authors (Choueiri
& Tavoularis 2014; Moradi & Tavoularis 2019), the vortices were not generated in the
narrow gap, but rather on the two sides of the annulus. The vortex generation mechanism
may be summarised as follows. The flow enters the annulus with a uniform velocity, but
the growing, lower-velocity, wall layers occupy a larger portion of the narrow gap region
than that of the wide gap region. As a consequence, fluid is displaced through the sides
from the narrow gap towards the wide gap. This motion generates streamwise vorticity,
which is strongest on the two sides of the channel core. As they evolve downstream,
the vortical regions on the sides of the core become more elongated and intensified.
At some distance from the inlet, they become unstable and break down into discrete
vortices, which, at this immature stage, resemble the vortices in the 2-D model. (It is
worth mentioning that streamwise vortical regions were also observed near the inlet for
subcritical Re, but they were stable and did not break down to discreet vortices. In some
cases with Re ≈ Rec, especially in low-e channels and when using the streamwise-periodic
boundary condition, weak cross-flows were observable close to the inlet, but the flow
stabilised further downstream.) The axes of these vortices get tilted, thus converting some
streamwise vorticity to azimuthal vorticity, which, as vortices get convected downstream,
generates cross-flow fluctuations with largest amplitude in the narrow gap. With further
development, each vortex gets stretched into and around the narrow and wide gaps towards
the other side of the core, where its ends split and reconnect to another part of the same
vortex or a consecutive vortex. At this stage and beyond, the 2-D model fails to describe,
even roughly, these vortices. Figure 16(a) illustrates that, for this case that has a moderate
eccentricity, discrete vortices appear relatively close to the channel inlet and specifically
at x/Dh ≈ 30, whereas quasi-periodic cross-flows were observable as close to the inlet as
at x/Dh ≈ 10. For low eccentricities, however, we have already (§ 5.3) presented evidence
that GI becomes first detectable much further downstream. For example, for e = 0.1 and
Re = 2000, vortices were first identified by the Q criterion at x/Dh ≈ 230. Despite the
slowness in its activation, the laminar vortex generation mechanism for very low e is
the same as the one observed for the moderate and large e cases. This is illustrated in
figure 16(c), which shows that vortices that appear in the far downstream region for the
case with e = 0.1 and Re = 2000 have the same shape as vortices that appear in the
near-inlet range for the case with e = 0.5 and that, in both cases, the vortices are located
on the side of the annulus. We have further performed streamwise-periodic simulations for
the e = 0.1 case and found that, given enough development time (tUb/Dh ≈ 750, which
is equivalent to a distance of 750Dh, if one assumes that the convection speed of the
vortices is equal to Ub), the vortices eventually evolved into interconnected rings. These
observations support our assertions that the same GI generation mechanism is present in
laminar flows in channels with both small and moderate/large eccentricities and that the
GI onset location depends on the values of e and Re and may move very far downstream
as e decreases to small values. Lastly, simulations were also performed by imposing the
fully-developed basic flow field at the inlet. It is interesting to note that such a condition did
not impede the triggering of GI, but rather accelerated the vortex development process. As
observed in figure 16(d), the inlet vortical regions were in this case barely observable and
the discrete vortices were formed much closer to the inlet than in cases with the uniform
inlet velocity.
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Figure 16. Generation and streamwise development of a gap vortex street for (a,b) e = 0.5, Re = 700 and (c)
e = 0.1, Re = 2000, as identified by the Q criterion with Q = 4 × 10−4U2

b/D2
h; (d) same as (a), but obtained

with the use of the fully-developed basic flow field as the inlet condition and Q ten times lower.

To conclude this discussion, we would like to emphasise that vortices in eccentric
annular channels were not always as well-defined as the ones shown in figures 14 and
16 and that the presence of such vortices is not a necessary condition for the existence
of GI. In some cases, for example the case with e = 0.3 and Re = 1600, we found that
vortices that were generated by the GI mechanism broke down with distance, so that they
were no longer identifiable by the Q criterion; nevertheless, the presence of a distinct
peak in the w spectrum (not shown here) proved that the GI mechanism remained active
beyond the location of vortex breakdown. In some other cases, vortices generated and
broken down formed again further downstream; such a case, computed with the use
of streamwise-periodic boundary conditions for e = 0.1 and Re = 1600, is shown in
figure 17. Furthermore, signs of vortex breakdown were also present in some experiments,
as documented by the observation of dye streaks. In the range 0.3 � e � 0.7, dye streaks
had quasi-sinusoidal shapes when 1000 � Re � 1300, but, for higher Re, they often broke
down and got mixed with the surrounding fluid within 2Dh past the dye injection point.
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y

x
z

e = 0.1
Re = 1600

20Dh

Figure 17. Isosurfaces of the Q parameter, coloured as in figure 14 (bottom), for an example showing the
breakdown and regeneration of vortices; e = 0.1, Re = 1600, streamwise-periodic boundary conditions, Q =
0.01U2

b/D2
h.

In general, for e < 0.3 or for Rec � Re � 1000, quasi-periodic dye streaks were
observable, but successive waves were rather irregular.

9. Conclusions

In this work, we further documented experimentally and computationally the onset,
frequency and amplitude of quasi-periodic cross-flows in eccentric annular channels, a
phenomenon that has been termed gap instability. Our attention was focussed on annular
channels with a diameter ratio of about 0.5 and moderate or low eccentricities, namely,
in the range 0 � e � 0.5. We have complemented and expanded findings by previous
investigators and have reached the following new conclusions.

(i) GI occurs in laminar flow for a very wide range of eccentricities, including values as
low as 0.05 and possibly lower.

(ii) The critical Reynolds number for the onset of GI is lowest for e ≈ 0.3 and maintains
values of the order of a few hundred in the range 0.2 � e � 0.7; outside this range,
it increases monotonically towards the two bounds 0 and 1.

(iii) The Reynolds number for the observation of robust, albeit not necessarily
dominating, GI is lowest for e ≈ 0.5.

(iv) The range of Reynolds numbers for which GI is observable is reduced as e is
decreased below 0.5.

(v) The intensity of cross-flows increases and their intermittency decreases with
streamwise distance from the inlet; hence, GI may not be observable upstream
of some streamwise location along the channel and not at all in relatively short
channels, particularly for low-e flows.

(vi) For all Re it is present, GI is generally weaker at lower eccentricities (e < 0.5) than
at higher ones, especially in turbulent flows; this explains the lack of observations
of GI in studies of weakly eccentric annuli and loosely packed rod bundles, most of
which were conducted under turbulent flow conditions.

(vii) In laminar flow (Re � 3000), GI is driven by the same mechanism, regardless of
the eccentricity; this mechanism is the same as the one that occurs for e = 0.7
(and possibly for higher e) under turbulent conditions. For Re � 3000 and e � 0.5,
however, there seem to be more than one instability mechanisms. In such cases, GI
becomes weaker with increasing Reynolds number and is essentially undetectable
for Re � 5000, whereas, for e � 0.5, GI has a significant strength for indefinitely
large Re.
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(viii) The e = 0.5 case had some common features with the e = 0.7 case, but also some
similarities with the e � 0.3 cases. One may thus infer that the value 0.5 is the
approximate boundary between low-e and high-e flows.

(ix) The ‘gap vortex street’ in eccentric annular channels may be idealised as a sequence
of oppositely tilted and twisted, interconnected vortex rings wrapped around the
inner cylinder.
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