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Abstract. We prove a number of results concerning the Hausdorff and packing dimension
of sets of points which escape (at least in average) to infinity at a given rate under
non-autonomous iteration of exponential maps. In particular, we generalize the results
proved by Sixsmith in 2016 and answer his question on annular itineraries for exponential
maps.
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1. Introduction
In this paper we study the iteration of exponential maps

E,(z) =1, ze€C, AeC\{0}
and, more generally, the non-autonomous exponential iteration
-0 Ey, 0--0FE,,
where A1, A2, ... € C\ {0}. We study the dimension of sets of points z € C which escape

to infinity (at least in average) at a prescribed speed, meaning that a, < |E;, o -0
E;, (z)| < b, for given sequences ay,, by.
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1592 K. Barariski and B. Karpinska

For a transcendental entire map f: C — C the escaping set I (f) is defined as
I(f)={zeC:|f"(2)] > ccasn — oo},

while the Julia set J(f) is the set of points z € C, where the iterates f” do not form a
normal family in any neighbourhood of z. There is a close relationship between the Julia set
and escaping set—the set J(f) is equal to the boundary of I (f), as proved by Eremenko
in [Ere89]. Furthermore, Eremenko and Lyubich showed in [EL92] that for functions f in
the class

B = {transcendental entire maps with a bounded set of critical and asymptotic values},

in particular for exponential maps, the escaping set is contained in the Julia set,
so J(f) =1(f).

The dimension of the Julia sets of transcendental entire functions was first considered by
McMullen in [McM87], who proved that all Julia sets of exponential maps have Hausdorff
dimension (dimg ) equal to 2. Since then, the question of the size of the Julia and escaping
sets and their dynamically defined subsets has attracted a lot of attention (see the references
mentioned in this section).

In fact, in [McM87] it was shown that dimg (A(E})) = 2, where

Ay =1lzeI(f): 1f"M@)] = M}(R),n €N, forsome! > 0}

is the fast escaping set of f, introduced by Bergweiler and Hinkkanen in [BH99] and
then studied by Rippon and Stallard in [RS12]. Here R > 0 is a large fixed number,
My (r) = maxj;—, | f(z)| for r > 0 and M;’c denotes the nth iterate of My (-). In fact,
results by Bergweiler, Karpiriska and Stallard [BKS09] and Rippon and Stallard [RS14]
imply that dimy A(f) = 2 for all transcendental entire f € B of finite order or ‘not too
large’ infinite order. It is then a natural question to determine the dimension of subsets of
J(f)NI(f) consisting of points escaping to infinity at a slower rate, or other dynam-
ically defined subsets of J(f) NI(f)\ A(f). A number of such sets, including slow
escaping set
L(f) = {z € 1(f) < lim sup ~ log |/ (2)| < oo}
n—oo N

and moderately slow escaping set

M(f) = {z € I(f) : lim sup 1 log log | f"(2)| < oo},

n—oo N

have been defined and studied in recent years (see e.g. [RS14, RS11]).

Remark 1.1. (Topological structure) It is well known (see e.g. [DK84, DT86, AO93,
SZ03]) that escaping sets of exponential maps contain disjoint hairs (simple curves
converging to co with some special properties). For exponential maps with an attracting
fixed point and, more generally, for maps of finite order from the class B with a
unique Fatou component, the Julia set is the union of hairs together with their endpoints
(see [Kar99b, Bar(07, RRRS11]). In [RRS10], Rempe, Rippon and Stallard showed
that for all transcendental entire f € B of finite order, the hairs without endpoints are
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contained in A(f). Therefore, for exponential maps with an attracting fixed point, the set
I(E;) \ A(E,) is contained in the union of endpoints of the hairs.

Remark 1.2. (Points with bounded trajectories) Let Jp;(f) denote the set of points
in the Julia set of f with bounded trajectories. In [Kar99a] it is proved that the
Hausdorff dimension of Jp,(E;) is larger than 1. Furthermore, in [UZ03] it is shown
that dimgy (J(E;) \ 1(E))) € (1, 2) for all hyperbolic exponential maps E;. More gener-
ally, dimg (Jpa(f)) > 1 for every transcendental entire map in the class B (see [BKZ09])
and dimyg (J(f) \ (I (f) U Jpa(f)) > 1 for every transcendental entire map f in the class
B (see [0S16]).

To conduct a refined analysis of the sets of points with given escape rate, for a
transcendental entire map f and sequences a = (a,);2 ;, b = (b,);2, With 0 < a, < by,
let

Igé(f) ={z€C:a, <|f")| < b, for every sufficiently large n € N},
Ié(f) ={z € C:|f"()| < b, for every sufficiently large n € N}.

To guarantee that the sets 15( f) are not empty, one usually assumes that the sequence a is
admissible, which roughly means a,, 11 < My (ay) (with a precise definition depending on
the context).

Surprisingly, the natural question of the dimension of the sets IQQ( f) has not been
answered completely, even for the well-known exponential family. Let us summarize what
is known about the size of the sets If(E ) and, more generally, the sets If( f) for f € B.

In [Rem06] Rempe proved that 15(EA) # ) for every admissible sequence a = (a,),2
with a, — oo and b,, = ca,, ¢ > 1. This result was generalized by Rippon and Stallard in
[RS11] to the case of arbitrary transcendental entire (or meromorphic) maps f. Moreover,
they showed that if b, — oo, then 1% HNIf) #@. In [BP13] Bergweiler and Peter
proved that dimg (I (f) N I2(f)) > 1 for every transcendental entire map f in the class
B, provided b,, — oo.

In [KUO06] Karpiniska and Urbanski, considering a related topic, studied the Hausdorff
dimension of subsets of the escaping set for exponential maps consisting of points whose
symbolic itineraries (describing the imaginary part of EY (z)) grow in modulus to infinity
at a given rate. They found that the Hausdorff dimension of these sets could achieve any
number in the interval [1, 2]. As noted in [Six16], the subsets of I(FE}) considered in
[KUO06] are contained in the fast escaping set A(E}y).

A motivation for our work was the paper [Six16] by Sixsmith, who proved several results
on the dimension of the sets If(E ). In particular, he showed that dim g Ig(E 5) = linthe
following cases:

(@ ap,=ciR",b, =cpR"forcy,cr >0,R > 1;

®) a,= n(l"gﬂp("), b, = R" for p € N, R > 1, where (log")” denotes the pth iterate
of logt = max(log, 0);

© a,= exp(nlog+P(n)), b, = exp(eP") for p € N;

() limy o @y = 00, anrt < R% ") Timy oo (10g ans1 /log(ar - - - ay)) = 0 and
b, = Ra, for large n, where R > 1 is a sufficiently large constant.
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Note that in cases (a) and (b) the sets IQQ(E ») are contained in the slow escaping set L(E)),
while in cases (c) and (d) they are subsets of the moderately slow escaping set M (E) ).

In [Six16, Remark 2] the author posed a question: whether the condition in (d) could be
weakened. In this paper we answer this question, extending the results described in (a)—(d)
and proving a number of facts concerning the dimension of points with given escape rate.
The results are presented in a more general setting of non-autonomous iteration

E&: (Ekn O - - ~OE)\1)?’O:1

of exponential maps, with an arbitrary choice of A, € C\ {0}. Furthermore, the points
under consideration are not necessarily escaping. Generally, we only assume that (a,);2

is admissible, a,, > a for large a, (a; - - - a,,)l/” — ooasn — oo, and b,, > ca, forc > 1.
Let us summarize the main results of the paper. The exact formulations are contained
in § 2.

e In Theorem 2.1 we present a general condition which implies that the Hausdorff
dimension of IaQ(E 4) 1s at most 1.

e In Theorem 2.5 and Corollary 2.6 we provide basic estimates for the Hausdorff and
packing dimensions of IaQ(E 5) in terms of the growth of moduli of the annuli {z € C :
{an <|z| < by} compargd to the mean geometric growth of the sequences (a;,)>°

n=1"
(bn)y2 ;-

e Corollary 2.8 provides conditions under which the dimensions achieve extremal values
of 1 or 2.

e InTheorem 2.11, generalizing the results of [Six16], we show that the sets IQQ(E 1) with
moderately slow escape rate have Hausdorff dimension 1.

e Theorem 2.14 shows the same for the sets of points with any given exact growth rate.
In Theorem 2.15 we provide exact formulas for the Hausdorff and packing dimensions
of IQQ(EL) in the case where sup,, |A,| < oo, (log b, /log a,) — 1.

e In Theorem 2.16 we show that the packing dimension of Ig(E ») can achieve any value
in the interval [1, 2], with the Hausdorff dimension beingiequal to 1.

At the end of §2 we pose a question, which we find interesting: whether there exists a
set If(E ») with Hausdorff dimension between 1 and 2.

In [Six16], the result (d) mentioned above was described in the language of annular
itineraries, which are the sequences of non-negative integers s, defined by the condition
f"(z) € A, for a partition of the plane by a sequence of concentric annuli A, s > 0,
with radii growing to infinity as s — oo. In [RS15] Rippon and Stallard proved that for all
transcendental entire maps f there exist escaping points with any given admissible annular
itinerary. In §3 of this paper we also take up this approach, determining the dimension of
sets of points sharing a given annular itinerary under non-autonomous exponential iteration
for various sequences of annuli A; (Theorems 3.1 and 3.2).

2. Results
2.1. Preliminaries. We consider a non-autonomous exponential iteration

E)=(Ey, 0---0E )%

n=1
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for A = (A,)%° , where A, € C\ {0}. We extend the definition of the sets IQQ( f) to the

n=1’
non-autonomous setup, setting

I;(EA) ={ze€C:a, <|Ej, o---0Ey (2)| <b, for every sufficiently large n € N},

for a = (ay);2,, b = (by);2; with 0 < a, < b,. Note that, in general, the sequences a,

and b, need not be increasing and need not tend to infinity. We denote by A, the (suitably
normalized) modulus of the annulus {z € C : a, < |z| < b, }, that is,
b
A, =log —.
dn
Our results concern the Hausdorff and packing dimensions (see e.g. [Fal03, Mat95] for
definitions), which are denoted, respectively, by dimy and dimp. Recall that

dimy < dimp.
2.2. General estimates. Our first result provides an upper estimate of the Hausdorff
dimension of the sets IQQ(E ). Geometrically, it states that dimg IQQ(E ,) can be larger than

1 only if the moduli A, grow quickly enough compared with the mean geometric growth
of the sequence a. The proof is contained in §5.

THEOREM 2.1. Leta = (ay);2,, b = (by);,2 | be such that inf,cy a, > 0 and

n=1’
A (1/m
lim inf <—“> —0. (1)
n— 00 a - .- ay

Then dimy I2(E;) < 1.

Remark 2.2. Tt is straightforward to check that (1) holds provided

log A
lim (ar - - an) ™ =00 and liminf —2 =t
n—00 n—00 log(al P an)
or
log A
lim sup(a; - - - @)/ =00 and  lim sup _ 8 Sn+l
n—00 n—00 ]og(al ceeay)

Before formulating the next results, we introduce the notion of admissibility used in
our context. Recall that this condition, bounding the growth of the sequences (a,); | and

.. b . .
(bn);2 . is introduced to ensure that the sets I (E;) under consideration are non-empty.

%)
n=1°

Definition 2.3. We say that sequences a = (ay)
sufficiently large n, we have

b = (by)32, are admissible if, for

|eqan’ |ef(1an

ant1 < |Ant1 buy1 = [Ant1
fora constant 0 < g < 1.

From now on, our general assumptions will be the following.
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Assumptions.

(a) The sequences a = (a,);2 |, b = (b,);2 | are admissible.

®) (a1 ---ay)'/" - coasn — oo.

(¢ Ay, >A>0forneN.

(d) liminf,_ . a, > a, where a is a sufficiently large constant, depending on A and g
from Definition 2.3.

Remark 2.4. Note that if @, — oo and the sequence |1, | is bounded away from 0 and oo,
then the assumptions reduce to A, > A > O and a,4+1 < 79,0 < g < 1, for large n.

The next result provides general lower and upper estimates of the Hausdorff and packing
dimensions of the sets IQQ(E ) in terms of the growth of the moduli A,, compared with the
growth of the sequences a and b. The proof is contained in §§ 6-8.

THEOREM 2.5. Suppose that assumptions (a)—(d) are satisfied. Then

1 + inf lim inf ¢, (x) < dimg I(,Q(E,\) < 1 + sup lim inf ¢, (x),
X n—oo - - X n—oo

1 + inf lim sup v, (x) < dimp IaQ(E;L) < 1 + sup lim sup v, (x),
n all)

n—0oo X n—oo
where x = (x1, x2, . ..) € [a1, b1] x [a2, b2] X - - - and
log(min(Az, x1) - min(Am Xn—1))
n(x) = . ,
log(xy - - - x,) — log min(Ay 41, x,)
log(min(Az, x1) - - - min(A,41, X,))
1/fn(x) = .

log(xy - - - xz)

Theorems 2.1 and 2.5 imply a number of corollaries, presented below. The first one
shows, in particular, that the Hausdorff dimension of the considered sets IQQ(E&) is at
least 1.

COROLLARY 2.6. Under the assumptions of Theorem 2.5,

| < dimy IX(E;) < 1+ lim inf Og(A1 - Ln) :
- n—oo log(ay - - - ap—1) +log™ (an/Ant1)

log(Aq--- A
I < dimp I2(Ey) < 1+ lim sup 2881~ Ant)),
a\ L nooo  log(ay - - - ay)

If, in addition,

An+1

sup
neN dn

< 00, 2
then

log(Ay --- A
dimpy Iaé(Ek) =1, dimp Iaé(E)\) > 1 + lim sup 0g(A| n+1)
o - n—00 log(by - - - by)

Proof. Note first that by the assumptions, log(aj - - - a,—1) > 0 and min(A,, a,—1) > ¢
for large n and some constant ¢ > 0. Hence, the numerator in the expression for ¢, in
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Theorem 2.5 is larger than Cn for a constant C € R, while the denominator is not smaller
than log(ay - - - a,—1), which is positive. Thus,

b > Cln
"= log(ay - - - ay—1) n—oo

since (aj - - - ay)'/" — oco. Hence, liminf, o ¢ >0, so dimy IQQ(EA) > 1. The

remaining assertions follow from Theorem 2.1, Remark 2.2 and Theorem 2.5 in a

straightforward way. O

Remark 2.7. If sup, .y |An]| < 00, then condition (2) holds provided sup,.y(log b,/
log a,) < oo.

Proof. 1If sup,y(og b, /loga,) < oo, then A,y <cloga, for a constant ¢ > 0.
This, together with the admissibility, implies

Apti < Clog An+1 < c(q + log |)\n+l|) < C(C] + 10g+ sup, |)\n|>
- - - a

An dn dn

for large n. O

The following fact provides conditions under which the Hausdorff and packing dimen-
sions of IQQ(E 1) achieve extremal values 1 or 2. Note that assertion (d) is a refinement of
the McMullen result from [McM87].

COROLLARY 2.8. Under the assumptions of Theorem 2.5:
(@) iflim sup(log A, 11/log ay) < 0, then dimy I2(E;) = dimp IX(Ey) = 1;

n—oo
(b) iflim inf(log An1/10g an) < 1, then dimp Ig(Ey) = 1;
n—oo “ fAX
(©) iflim inf(log An1/log by) > 1, then dimp I2(E;) = 2;
n—oo “ L
(d) iflim inf(log Ant1/1og by) > 1, then dimpy 12(E;) = dimp I2(E;) = 2.
n— 00 = e
Remark 2.9. Assertion (b) holds also under the weaker assumption lim inf,_,

(log A 4+1/log(ag - - - ay)) < 1, while (d) holds also under the weaker assumption
infpen(Apt1/by) > 0.

Proof of Corollary 2.8 and Remark 2.9. To prove assertion (a), note that by assumption,
for any ¢ > O there exists ng > 0 such that log A,,+1 < € log a, for n > ng, which gives

log(Al e An—i—l) < IOg(Al o Ano) +e P
log(al e an) log(al o an) n—o0

since (a; - - - an)'/" — oo. Hence, assertion (a) follows from Corollary 2.6. Assertion (b)
under the weaker assumption from Remark 2.9 holds by Theorem 2.1, Remark 2.2 and
Corollary 2.6. To show (c), take a small ¢ > 0 and note that by assumption, there exists
no > 0 such that

log Ayy1 > (1 —¢) log by
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for n > nyg; so, for x,, € [ay,, b,],n > ng, we have
log(min(Ay 1, x,)) = min((1 — &) log by, log x,) = (1 — &) log x,.
Hence, there exists a constant C € R such that for i, from Theorem 2.5,

- CH (1 —¢g)(logx,, + - - -+ log x,)

X1, X2, .. .) > 1
Y (x1, X2 ) log x1 + - - - + log x» o0
since x, > a, and (aj - - - a,)'/" — oo. This implies lim SUP,_, o0 ¥n = 1, so (c) holds
by Theorem 2.5.

To show assertion (d) under the weaker assumption from Remark 2.9, note that if
inf,eN Ant1/bn > 0, then there exist ng, ¢ > 0 such that

log A, 4+1 = log b, + log ¢
for n > ng; so for x,, € [a,, b,,] we have
log(min(A,+1, x,,)) > min(log b, + log c, log x,) > log x, — |log c|.
Hence, for ¢, from Theorem 2.5 and a constant C € R,

C — |log c|n + log xpy + - - - +log x,,—1

1’
log X1+ _|_10g Xpn—1 — |10g c| n— 00

¢n(x1, X2, .. ') 2
as x, > a, and (a; - - ~an)1/”
Theorem 2.5. Note that inf,,cy(log A, 11/log b,) > 0is indeed a weaker assumption, since
the condition lim inf,,_, oo (log A, 4+1/log b,) > 1 implies

— oo. This gives lim sup,_, o, ¢, > 1, and (d) holds by

An+1
—— > bl > a, >a
n

for large n and a constant ¢ > 0. O

2.3. Moderately slow escaping points. We extend the notion of the moderately slow
escaping set to the non-autonomous setting.

Definition 2.10. Let
1
M(E)) = {z € I(E;) : limsup — loglog |E;, o---0 Ey, ()| < oo}
B - n—oo N
be the moderately slow escaping set of E;,.
The following result shows that if the considered set If(E ) 1s contained in the
moderately slow escaping set, then its Hausdorff dimension is equal to 1. In particular,

this generalizes results (a)—(d) from [Six16] mentioned in the introduction, since the sets
considered in [Six16] are contained in the moderately slow escaping set.

THEOREM 2.11. Under the assumptions of Theorem 2.5, ifinfnd\](logJr bn)(]/”) < 00,
then

dimy IX(E;) = 1.
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In particular, this holds if IQQ(E 1) is contained in the moderately slow escaping set M (E})
and the assumptions of Theorem 2.5 are satisfied.

Remark 2.12. By Theorem 2.1, the fact dimpy I;(EA) < 1 holds under weaker assump-
tions inf,en a, > 0, lim,_ o0 (a1 - - - ay) /™ = oo and inf, ey (logt b,) /" < co.

Proof of Theorem 2.11. The first assertion follows from Theorem 2.1 and Corollary 2.6
in a straightforward way. To show the second one, note that if z € IQQ(E ) C M(Ej), then

ap < |z| < min(b,, ") for large n and a constant ¢ > 1. Hence, if IQQ(EA) C M(E,),

then IQQ(E ) 1s contained in a countable union of sets of the form Igb (E}), where

b =), forb, = min(b,, e ),
for some ¢ > 1. Since (log™ b;l)l/” < e, Theorem 2.1 implies dimpg If(EA) < 1. The
opposite inequality follows from Theorem 2.5. O

2.4. Points with exact growth rate.  Our results enable us to determine the Hausdorff and
packing dimensions of the set of points which share the same growth rate under iteration
of E A

Definition 2.13. We say that the iterations of a point z € C under E, have growth rate
a for a sequence a = (ay),2, if an/c < |E;, o-- -0 E;, (2)| < cay, for large n and some
constant ¢ > 1, thatis, z € I;/QC(EQ.

Corollary 2.8 immediately implies the following.

THEOREM 2.14. If apy1 < |An+1le?% for large n and some constant 0 < q < 1,
(ay - ap)'/" — o0 as n — oo and lim inf,_, o a, > a, where a is a sufficiently large
constant depending on q, then the set of points with growth rate a has Hausdorff
dimension 1. If ap+1 < |hp+1le? for large n and a, — 0o as n — 0o, then the set
of points with growth rate a has Hausdorff and packing dimensions 1.

2.5. Precise dimension formulas. In the case sup,cy |An| < 00, lim,_ o (log b,/
log a,) = 1, we can exactly determine the Hausdorff and packing dimensions of IQQ(E 2)-
THEOREM 2.15. Under the assumptions of Theorem 2.5, if sup|i,| <oo and

neN
lim (log b, /log a,) = 1, then
n—oo

log(A - - - A,
dimp 12(Ey) = 1, dimp 12(E;) = 1 + lim sup 22! 1),
- - n— 00 10g(a1 ceap)

Proof. If lim,_, (log b, /log a,) = 1, then

m —— =

=1
n—oo log(aj - - - ap)
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by the Stolz—Cesaro theorem. Therefore, the theorem follows directly from Corollary 2.6
and Remark 2.7. O

The following result provides examples of sets I;(E ») with packing dimension equal to
any given value in the interval [1, 2].

THEOREM 2.16. Forevery D € [1, 2] and every sequence (7,);o | with k, € C\ {0}, such
that sup, cy |An| < 00, there exist admissible sequences a = (an),2 |, b = (bp);2, with
ap — 00, infeny Ay > 0 and lim,,_, oo (log by, /log a,) = 1, such that

dimy I2(E,) =1, dimp IX(E;) = D.

Theorem 2.16 is implied by the following corollary, which is a direct consequence of
Theorem 2.15 and the Stolz—Cesaro theorem.

COROLLARY 2.17. Under the assumptions of Theorem 2.5, if sup,cy |An| < 00,
lim;,_, 5 (log b, /log a,) =1 and lim,_,sc(log Apy1/loga,) =d for d € [0, 1], then
dimy IX(E;) = 1 and dimp I2(E;) = 1 +d.

The following example shows that the assumptions of Corollary 2.17 are actually
satisfied for some sequences (a,)72 |, (b;)o ,, which proves Theorem 2.16.

Example 2.18. For any sequence ()»n);’lo=1 with sup, .y [An] < 00, apq1 = exp(naff) for
d e[0,1) and b, = ay /™, then dimy I2(Ey) = 1, dimp I2(E;) = 1 +d. If @, =
expnal """, by = apy ™™ then dimy I2(Ey) = 1, dimp IX(E;) = 2.

Proof. 1tis a direct calculation to check that (a,);° | and (b,);° ; satisfy the assumptions
of Corollary 2.17. O

We end this section by stating a question, which we find interesting to answer.

Question. Does there exist a set IZ(E,) with dimy I2(E) € (1,2)?

3. Annular itineraries
Sets of the form 15( f) appear naturally in the study of annular itineraries s(z) = (sn)5e
of points z € C under amap f: C — C, defined by

fn(Z)G-Asna n>0, where Ay ={z€C: Ry <|z|] < Ryt1}, s2>0,

for some sequence 0 = Ry < Ry < R, < -- -, with Ry — o0 as s — o0o. Such annular
itineraries, for Ry, = M}_I(Rl), were studied by Rippon and Stallard in [RS15]. In
[Six16], Sixsmith, considering exponential maps, used the annuli defined by Ry = R® for
a large R > 1. He proved that if s, — oo, then the set of points sharing the itinerary
5(z) = (sn)y has Hausdorff dimension at most 1, while the dimension is equal to 1 if, in
addition, R is sufficiently large, s is slowly-growing, that is, ((s,+1)/(s1 + - -+ s,)) —> 0
and s is admissible, in the sense that 5,11 < ¢*. Here we extend the results, answering a
question from [Six16] and showing that the assumption of the slow growth can be omitted.
We also analyse annular itineraries defined by another partition of the plane, given by
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Ry, = R*" for k > 1. In this case one can find examples of the sets of points sharing the
same itinerary, with packing dimension larger than 1.
We extend the notion of annular itineraries to the non-autonomous setup, setting

5(z) = (sp)pey Where Ej, o - -0 E; (z) € As,.
We assume s, > 0 for n > 0. For given symbolic sequence s = (s,),2 . let
Z,(Ey) ={z€C:s(x) = 5.}
Note that

b
Is(E)) = I(Ey) fora, = R;,, by = Ry, 11.

[e¢]

We say that a sequence s = (sn);2, is admissible if the sequences a = (an); .

b = (an);2, for a, = Ry,, by = Ry, 11 are admissible.

3.1. Case Ry = R’. Consider annular itineraries s = (s,)7-, of points under
non-autonomous iteration £, with respect to the annuli

A;={ze€C: R <|z| < R*H1},
fors >0and R > 1.

THEOREM 3.1. The following statements hold.
(@) Iflimsup((s; + - - -+ s,)/n) = oo, then dimpy I, (E,) < 1.

® If glg)gémissible, nlgglo ((s1+ - - -4+ s,)/n) = oo and R is sufficiently large, then
dimyg Z;(E;) = dimp I (Ey) = 1.
Proof. As noted above, we have dim Z;(E)) = dim IQQ(E 3) for
an = R, b, = R

In particular, a, > R, a; - - - a, = R*"7" " and A, =log R. Hence, the assertions
follow immediately from Theorem 2.1 and Corollary 2.6. O
Note that the admissibility condition according to Definition 2.3 has the form

qR" +log [Ay41]
log R

Sp+1 =

for 0 < g < 1, and in the non-autonomous case it is satisfied provided s,+; < R?*", if R
is sufficiently large.

3.2. Case Ry = R*“. Consider now annular itineraries s = (sp)52, with respect to the
annuli

Ay ={zeC:R" <|z| < ROTDY,

fors >0and R > 1,k > 1.
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THEOREM 3.2. Suppose sup,cy |An| < 00, s is admissible and R is sufficiently large.
Then the following statements hold.

(@) Iflim sup((s’f + .- +55)/n) = oo, thendimpy I, (E,) < 1.

n— oo
(d) If lim s, = oo, then:
n—>oo

dimy Z; (Ey) = 1;

. k—1 . log 541
dimp Z,(E;) =1 + lim sup —;
P i( L) log nﬁoop Slf + -+ sk

1
dimp Z,(E;) <2 — —.
- T K

Proof. In this case we have dim Z; (E;) = dim IQQ(EA) for

a, = Rsﬁ’ bn — R(Sn"r])/(.

In particular, @, > R and a; - - - a, = RSt By the assumption sup, .y |An| < 00,
the admissibility condition is equivalent to
1/k
q sk /i
s < Rn 3
n+1 = <10g R) 3

for large n and a constant 0 < g < 1. Moreover,
log b 1\*
g u == (1 + _> s
log a, Sp

Ap = ((sp+ D =55 1log R > (ks ') log R > i log R.

and

By the mean value theorem,
(k — D logsy+1 —cp <log Ayt < (k — 1) log sp+1 + 1 @

for a constant ¢; > 0 and, by (3),

K

log s,11 < s?" log R+ ¢ )

for a constant ¢; > 0. Furthermore, (4) and (5) imply

. log A,41
lim sup ——
n—oo log(ai - - - ap)

k—1_, sp+ /(= D)((c1 +c2(k — 1))/ log R)  k —1
lim sup <

<
K nooo R S K

<1,

which proves (a) by Theorem 2.1, since lim sup,,_, (a7 - - - ap)'/" = oo by the assump-
tions.
The first assertion of (b) follows from (a) and Corollary 2.6. To prove the other ones,

note that if s, — oo, then (log b, /log a,) — 1, so by Theorem 2.15 and (4),
Kk —1 log sy + - - - 4+ log sp+1

lim su
log R n_)oop O R

dimp Z,(Ey) = 1 +
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Since
1 R |
Ogs;i—i_ +(I)(gsn_>0’
sl + N + sn
we have
—1 1
dimp Z,(E;) = 1 + —— lim sup —— =1

log R n—>oo s1—|—~~~+s,’1"
and, by (5), dimp Z;(E)) < 2 — (1/k), which proves the second and third assertions
of (b). O

Finally, we provide examples of sets Z; (E}) with packing dimension larger than 1.

COROLLARY 3.3. Suppose sup,cy |in| < 00, lim,_o0((log s,4+1)/s5) = ((d log R)/
(k — 1)) for d € [0,1 — (1/k)) and R is sufficiently large. Then s is admissible and
dimy Z,(E;) = 1, dimp Zy(Ey) = 1 +d.

Proof. The proof follows directly from assertion (b) of Theorem 3.2 and (3). O]

The conditions of Corollary 3.3 are actually satisfied for some sequences (s,)5, as
shown in the following example.

Example 3.4. f 5,41 = R/~ for d € [0, 1 — (1/«)), then dimy Z; (E;) = 1 and
dimp Z,(E;) = 1 +d.

4. Proofs of Theorems 2.1 and 2.5—preliminaries
We use the notation

diam X = supf{|x — y|: x, y € X}
and
dist(z, X) =inf{|z — x| : x € X}, dist(X,Y)=inf{|x —y|:x € X,y e Y}

forzeC;X,Y cC.
Let

Ivn ={z€C:anyy < |Ejy,, 00 Eyy(2)| < byyy forevery n > 0}

for N € N. By definition,

o
b _
IZ(E) = WU | J(Exy_y o0 B2 (Un)
N=2

and

JNl C (EAN271 o:++0 EKNI)_I(JNz)
for every 1 < N; < Nj. As E;, are non-constant holomorphic maps, we have dim Jy, <
dim Jy, for Ny < N, and

o]

dim I2(E;) = dim < U JN> = sup dim Jy = lim dim Jy, (6)
- - N=1 NeN N—o0
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where dim denotes the Hausdorff or packing dimension. Therefore, to estimate the
dimensions of the sets IQQ(EL), it is sufficient to bound the suitable dimensions of Jy
for large N.

From now on, we fix a large N and write J for Jy. Forn > 0, let

by in

_ =log ——
|)¥N+n|

and
Sy ={ze€C: A, <Re(z) < By}
for n € N. Recall that

b
By — Ap = Anyn = log N+n~
aAN+n
Note that
Z € Sn <: aN-i—n S |EA.N+n(Z)| S bN—i—n,
SO
J={zeC:zeS80, Eny,,0-0E;y(2) € Sy forevery n > 0}. @)

Forasmall § > 0 and j, k € Z, let
V" ={z € C: j§ —log |An1al < Re@) < (j + 1)8 — log [Anal},
HW {z € C:km — Arg(yn) < Im(2) < (k + D7 — Arg(y4n))
with Arg(An+n) € [0, 27). Set
KW =v"

(see Figure 1). Note that

if K) NS, # @ then logaven _ _ logb%, s0 e an4n < e’ < byig.
®)
We have
Einn (K(")) =Ujk
for

Uix ={z€C:e/® <|z] <™ kx < Arg(z) < (k + 1)7 mod 27}
Note that
Ujriz=Ujx.
Set
K™ = (K} : j ke,
forn > 0, and
KW ={K e K™ : KN Ujx NSy # 0},
K ={K e K™ : K CUjx N Sy)
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FIGURE 1. The sets S),, Q,({") and Kj(."k).

for n > 1. Obviously,

(1) (n)

Kjk € K-
Let

0" ={z€C:z€ S8y Ansnk <Im(z) < Aypn(k + 1)}
forn >0, k € Z, and
QN =10/ : 0" NUjx #0, 1 € 7)

forn > 0; k, j € Z (see Figure 1). Finally, let

U= Ujx =z € C\ {0} : km < Arg(z) < (k+ 1))
JEZL
and

g,E”): Uy — H,f")

1605

€))

for k € Z be inverse branches of E;, ., on Uy. Note that g,({") can be extended to any simply

connected domain in C \ {0} containing Uy.

5. Proof of Theorem 2.1
Fix jo, ko € Z, and take ji, ..., j, € Z, k1, ...,k, € Z and | € Z such that

(1) (1 () () (n+1) (n+1)
Kjlskl € ]Cjoyko’ T an,kn € an—lskn—l’ Ql € an,kn

https://doi.org/10.1017/etds.2021.26 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2021.26

1606 K. Barariski and B. Karpinska

E/\N E*N+n
— —7
(IU) N [
(n)
KJ(JJCU !];(C(;) glc:

Snt+1

FIGURE 2. Successive images of the sets K;"k).

(see Figure 2). Define inductively

1
Qjyknl = g,ﬁ?(Q}”* 'n Ujp kn)s

_ ,m=1 ) _
Qjm—l,km—l,~-~,jn,kn,l - gkm—l (leilskM7“'7jn’knsl N U]mfl’kmfl) form =n,..., 1’

and let
£ = Qs s K €K KL KD 0P € QD)
JlseeesJn €2, ki,....kn€Z, 1€}
forn € N.
LEMMA 5.1. For every n € N, the family E™ is a cover of J N K/('(()),)ko'

Proof. Takez € J N K By (7).foreverym > 1,E;,, o0 E;u(x) € K"} NSy
for some ju, k, € Z. Hence, for given ne€N, Ej,, . o---0FE;,(2) € Kj(:j)km
Ujp_rdmy NSy for m=1,...,n, and E;,  o---0E,(2)€ Ql(nH) NUj,k, for

(n+1) c Q(.n+1)'

some [ € Z. Therefore, Kj(,r:)km € K;’;’il,km for m=1,...,n and Q, s

By induction,

-1

(m)
gkm (E)‘N+m 0---0 E)\N (Z)) = E)‘N+m—l S E)\N (Z) € Qjm,kmr--’jnaknal m Ujm—lakm—]

form=mn,...,1,and
0
S (Esy (2)) = 2 € Qjpkorindind € E™. O

By (8) we can write
() . (n)
5 - U U gjlw-’jn’ (10)
(logan+1/8)—1<ji<logby+1/8 (log an+n/8)—1<jn<log by1n/8
where

E = AQkgindnt €E™ ki, ky €L, 1 € L},

Take Ji, . . ., jo as in (10). If Q jyko...jnkni € 5](.:’3“’ ;,» then Kj(f)k N U](.Z: N # for
m=1,...,n,s0

K](:')km C {z € C: [Im(z)| < eVm-1+D3y.
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Moreover, by (8) and the assumption inf @, > 0, we can assume e/n~1% > g for a constant
a > 0. This implies

. R X (n) Jm—16
#hm € L2 Q joko.oosjukad € €}V S C1€M

.....

for every ko, . . ., km—1, km+1> - - - » kn, | € Z and some constant ¢; > 0, so

#lkts k) € Z" 1 Qykgvpdnd € E5 Y < ettt
for every I € Z. Similarly, Q""" e Q&ZI}:), so0 0" n U;:,)k,, # () and

0"V C (2 eC: Im@)| < e + Aniuti)s

which gives

( ) ejrlé
#{lEZ:QjO,kO ]nkn,leg -}<—+2

,,,,,

for every ko, . . . , k, € Z. We conclude that

: , 1 2
() n,(jot++jn)d - 4=
#oitein = 1€ (AN+n+1 * ejné). (n

Now we estimate the diameter of the sets Q jo .....ju kil € €}, i ;- We have

. 1 I ;
diam Q, 1,1 < sup |(g)'| diam(Q" "V N Uj, 1) < —5 min(V2Ay .y 1, D).
Jnskn ’
Note also that any two points z1, z2 in Uj, for j, k € Z, can be joined within U ; by a
circle arc of length at most 27|71 — z2]|. Hence,

: (m 1)
dlam QjWL*lkaL*ls'“sjllvknvl S 27.[ Sup |(g ) | dlam Q]imkm» »]n,knsl
Uj

m—1km—1

2r
= ejm713 dlam Qjmakm ------ /n»knyl

form =1, ..., n, which implies

i Un+D3é
i ' _ L Min(v2AN 11, € )
dlam Qj(),k(),‘..,‘]n,kn,l S (27[) e(jo++]n)8 N (12)

Fix D > 1 and let

PP L= Y @iam)P, PW= Y (diam Q)
Qef,‘(") QeEm

for n € N. By (11) and (12),

D—1
) < 0 (U ANns1 + 2/€7%) (min(v2A N0t 6(’"+1)‘S)D< nf ANtnt1
s = elo+-+jn)d(D—1) 3\ eliot+in)8
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for some constants ¢, c3 > 0 (the latter estimate is by a straightforward calculation).
Hence, by (10),

) Aninsr \77
n n n
P <l )D - 2. (mﬁﬁm)

(ogayt1/8)—1<ji<logby41/8 (og an4n/8)—1<jp<log byin/é

D—1
A
- CZ( N+n+1 )
4N * - AN+n
for some constant ¢4 > 0. By assumption, for infinitely many n we have

ANtn+1 n
—<ey,
ay - - - AN4n
where ¢, > 0, &, — 0; therefore,
P < (048,?_1)” < o
for infinitely many »n, so lim inf,_ P™ —= (. Recall that by Lemma 5.1, EM is a

sequence of covers of J N Kj(‘(?)ko' Hence, by the definition of the Hausdorff measure we

have dimg (J N K/('(?,)ko) < Dforany jo, kg € Zand D > 1,soinfactdimy J < 1. By (6),

dimy If(EA) < 1, which proves Theorem 2.1.

6. Proof of Theorem 2.5—preliminaries
Observe first that if N is chosen large enough, then the assumptions of Theorem 2.5 can
be written as

IANtns1le” N4 < an g < [ANgngr ]9V, (13)
1lim (ay - ay4a) /" = 00, (14)
aN+n > a, (15)
ANign > A (16)

for n > 0 and some constants 0 < g < 1, a > 0, A > 0, where a is sufficiently large
depending on g and A (to be specified later). We fix §, used in the definition of the sets

K j("k) , to be a positive number such that

§ <min(A/4,1), J/ge® <1. a7
Forn >0, j € Z, let
D;") = min(B,, e(jH)‘s) —max(A,, —e(jH)E).
The following lemma estimates the size of sets U x N S,.

LEMMA 6.1. There exist c1, c2, c3 > 0 such that for everyn > 1, j, k € Z:
(@ Ujx NSy is contained in a rectangle of width D;") and height elths.
b)) if K](.flk_l) NSy—1 #W, then Ujx NS, contains a rectangle of width ch;.”) and

height c1e/%; moreover, K;",g is non-empty and contains a set K ](73(, with j', k' € 27;
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©) ifK}{’;“ N Su_1 # 0, then

| ; . ; ;
c3 < — min(Ay 1, el%) < Dﬁn) < ¢y min(An4n, e’%) < crel®.
2

Proof. Let
An = max(A,, _e(j+1)5), Bn = min(B,, e(j-H)tS)

forn > 0, j € Z. By the definition of D",

D =B, — A,, {z€C:Re() €A, B,J}CS, (18)
and
Ujx NSy C {{Z € C:Re(z) € [I‘En, énl Im(z) € [0, e(-jH)‘S]} if k is even,
’ {z € C:Re(2) € [Ay, Byl, Im(z) € [—eVUF1%, 01} if k is odd,

which, together with (8), (15) and (16), gives assertion (a). Note also that by (13) and (17),
we have

A,, < qe(j“)‘s < \/aej‘S < ej‘s, é,, > —qe(j‘H)S > —ﬁeja > —eld, (19)

This, together with (8), (15) and (16), gives assertion (c). Moreover, (19) implies that the
vertical line {z € C : Re(z) = (A, + én)/Z} intersects the circle dD(0, ((e? + 1)/2)e’?)
at some point zg. Then the upper (respectively lower) half of the disc D(zp, (e —
1)/2)e’?®) is contained in U j k for even (respectively odd) . It follows that U; x N S, con-
tains a rectangle of width min(D;.”), V2(( - 1)/2)e/%) and height 4((65 —1)/2)els.
This, together with assertion (c), proves the first part of (b). To show the second part of
(b), it is enough to notice that by (8), (15), (16), (17), (19) and the definition of D;"),

V28 —1

5 8
min (Dj»n), ﬁeng5> > min <AN+”, \/Ee 616) > 48, 7 B

if a is chosen sufficiently large. O

e/’ > 4x,

We will also need the following technical lemma.

LEMMA 6.2. Suppose Kj(f’k_l) NSy_1 # @ for somen > 1, j, k € Z and

|A, + /%] > cel®,  |B, — e/®| > ge’® (20)
for some constant € > 0. Then for every z € U NS, there exists a right triangle T C

Uj i N Sy, with one of its vertices at z, a horizontal leg of length chﬁn) and a vertical leg

of length c2e/®, containing at least one element of 165",2 where the constants c1, cy > 0
depend only on a, € and q.

The proof of Lemma 6.2, using (19) and (20), is an elementary but a bit tedious exercise
and is left to the reader.

The next lemma provides basic estimates of the derivative of the inverse branches of
Exy,0-0E.
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LEMMA 6.3. For every n € N and jo, ..., jn €Z, ko, . .., k, € Z, such that K/(‘(?,)ko N
So # 0, Kj(l])kl € Kﬁ(l))ko , Kj(':l,)k,, € K.E‘:l)_hkn_l’ the branch
g o rog
is defined on K ) Ky , for some extensions of the branches from (9), with the distortion
bounded by a canstant independent of n and jo, . . ., jn, ko, - - . , kn. Moreover,
—n n

o <@ o o8k, | < ﬁ <
for some constant ¢ > Q.
Proof. Take jo, ..., jn, kos - . ., ky as in the lemma. By assumption,

K NSua #0, K NUjy ik, #0 @21)

form=1,...,n. Let

do = V2 + 682

be the diameter of the sets K € UZO:O JC™ . The first assertion of (21), together with (8)
and (15), implies

ejmfl‘S > eiaaN-H'n—l > 67861 > 2d() + 2, (22)

if a is chosen sufficiently large. Hence,

Ujmflskmfl c {Z € (C : |Z| 2 e—(Sa}’ (23)
and the branch g(m DonU, jm_1.km_ Can be extended to
0//11—1ak/;1—1 = {Z € C : diSt(Z’ Ujm—lakm—l) < 2d0}
Let
1), 2 (s
Vi = K" o Vs =g 0o gl V(KY)
form=0,...,n,s =m+1,...,n. Now we show, by backward induction on m, that
Vs are well defined fors =m, ..., n,
diam V,,,; < 0 fors=m,...,n,
’ 28—m 24)
Vins C U/m—lakm—l fors =m,...,n,
Vins N Vinsy1 0 fors=m,...,n—1.
For m = n, (24) follows from (21). Suppose, by induction, that (24) holds for some 1 <
m <n. Then V,_; = g,&m 1)(Vm 5) for s =m,...,n are well defined. Take s € {m —
1,...,n}. By (22) and the fourth assertion of (24)

1
Vm,sC{ZGC:Izlze_‘sa—do(1+~-~+2—m>}C{ZGC:IZIZZ},
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SO
_ diam V, d
. 1 . s 0
diam Vi1 5 < sup (g~ )| diam Vi s < 5 2 < Tl (25)
By (21) and the fourth assertion of (24), Viy—15 N Vip—1 541 # Bfors=m —1,...,n — 1.
Hence, by (21), to have V,,,_1 5 C ijfz,kmfz fors =m —1,...,n,itis enough to check
that

diam Vj,—1m—1 + - - - +diam V,,_1 , < 2d,

which follows from (25). This ends the inductive proof of (24).

By (24), form = 0, s = n, we conclude that the branch g(o) g,i" Y is defined on

K ](:)kn The distortion of the branch is estimated in a standard way. By (22), (23) and (24),
for z1, z2 € Vi, we have

m—1

(m—1)

1
|(gkm DUEN _ lzal lz1 — 20| diam V,, , do
1™ Dy ()] st ===+ = — =1+
1(8g,,_, ) (@2l T lal T |21 e=da — 2dy pn—m

Hence, for z1, z2 € Viun,

© 4 (n— 1) ’ n n
|(g tr0 gk ) (Zl)| < ex Z do < ed°/2
<0) =Y 2m+1 = Cexp om+ ’

T e T e
so the distortion of the branch is universally bounded. Finally, (22) and the third assertion
of (24) give
c z 1
- - () . (n 1)
T 1—[ eUm—1+D38 1 24, ‘(g ) 'K“” i

- 1 - " 1
<1 - L
e./m—l‘s — dO - e(./0+"'+]n71)5 Qn

for ¢ = max(e®(1 4 2dp/a), 1/(1 — 2dpe’® Ja)), Q = e Pa/c. Choosing a sufficiently
large, we can assume Q > 2. O

7. Proof of Theorem 2.5—estimate from above
In this section, we prove the upper estimate in Theorem 2.5. First, we do this under an
additional technical assumption:

|A, + /%] > ce/®,  |B, — e/®| > ge’® (26)

for every n > 0, j € Z and some constant ¢ > 0. In the last subsection we show how to
reduce the general situation to this case.

7.1. Construction of the measure w. Take jo, ko € Z such that J N K ((()))ko #¢. In
particular, we have K © oo N Sp # @. By Lemma 6.3, we can define families F ™ pn >0,

setting

o (0)
FO — {Kjoko} for Kjory = Kjoako’
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and
0 1
F® = {K joukoserssjunin :g]E())O.' ngn '(k /(:,)kn):
() (D (n) (n) .
Kjl,kl eICjO’kO,...,ijkn eIC]n oy Jls-o s jn €2, ki,...,ky €Z}
forn € N.

Since, for given n, the sets K;"k) e K™ are pairwise disjoint, the sets K ) ko.....jnky €
F® are also pairwise disjoint. Moreover, for every set K Joskosersjuskn € F ™ and
Jn+1, kny1 € Z, we have

(n+1) IC(nJr])
jn+l ykn-%—l jn-kn (27)

— Kjokovsjnsiknir N Kjokosowsjuskn 7 9-

. . (n+1)
K]O»k0,~~~,]n+lskn+l €F — K

For KjO,kO,m,jn Jkn € F(n)’ let

. +1
NjO’kO’---’jrlakn = #{(JI’H‘I’ kl’l+l) : Kjo,ko ..... Jn+1-kn+1 € .F(n+1)} = #ICE: )

By (8), (15) and Lemma 6.1,
0 < Nijpkgsonjnks < 1DJVei? (28)

for some constant ¢; > 0, and, if K ; e F+D then

J0sKOs- s Jn+1Kkn+1

(n)\s 88 1
<c sup l(g™")] <= <
Ujpn a 2

diam Ky k..., jus 1.kt

. (29)
diam Ky kq,.... j kn

for a constant ¢ > 0, provided a is chosen sufficiently large.
Let

o0
Koo =) JF®.

n=0
In the same way as for Lemma 5.1, we show

JnN K](g)ko C Keo. (30)

Zj07k0»~~-’jnskn € Kj(),k(),...,jn,k,ﬂ

and note that by (27) and (29), if K, k..., jmkm € F for some m > n, then

1 . do
|Zj0’k0 ----- jmakm - ZjU,kO aaaaa jn,kn| < <1 + e + 2m7n dlam Kj()vk() aaaaa jnakn < 2}1—1 ' (31)

Define a sequence of Borel probability measures wu,, n > 0, setting

Mo = ijO,kO,

V. .
fhas] = Z Z 2jo-ko:--rint1:Kn+1
n+l1 — 1)
N; i

™ (j : (n+1) Njoko -
K jokgueersinskn €F ™ Gntokn 1)K jo ko ey €F
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.....

so by induction, using (31), we obtain

P (D(Z jiy ko juoken > 2 diam K g ko ke )) = ({2 g kg jurken 1)

1
= (32)
Njoko = Njokossjutkn—1

for every m > n. By (31),

Hence, the sequence w, converges weakly along a subsequence to a Borel probability
measure p with support in ID(z j, k., 2do).
Take K j ko....jnkn € F ™. By (28) and (32),

M(I%jo,ko ...... jnkn) = (33)

DWW ... DWW plottin-1)8
Jo Jn—1
for

A

Kj07k07~~~7jnskn = {Z € (C : dlSt(Z’ Kj05k07'~~7jnvkn) S 2 dlam KjOskO,~~~,jn,kn}‘

7.2. Estimate of the local dimension of u. Since every point in the support of u is a
limit of points from supp w,, for some ny; — oo, taking a suitable subsequence and using
(31) we obtain

suppu C{zeC:z= nll)rgo Zjoskosejndn» Where ji, ki, jo, ko, ... €7Z
and K j, k... vk € FU for every n > 0}.
The same argument shows
Koo C supp u. (34)

Take z = liMy—s 00 Zjgko.....jnkn € SUPP iy Where K o ko jnkn € F W for every n > 0.

For simplicity, denote

------

dp = diam Ko ko inkes  Zn = Zjokosesjuskn-
By (31), we have
|z =zl < 2d,. (35)
Let
rp, = Cd,

for a large constant C > 0. Note that by (29), the sequence r, is strictly decreasing to 0.
Now we estimate u(ID(z, r)) for a small . Let n be such that

Fn+1 <r <ry,
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and let
r

B \/Edn+] .

Note that if » varies in [r,+1, 1), then R varies in [R(_"), RE:L)) for

d
R™ =Jc, RV =JC".

dn+1

By Lemma 6.3,
vC R
<r< c2+1v

Cg+1 e(j0+“‘+jn)5 (]0+ +]n)5 (36)
and
C . ,
V€ s RY < cx/Cel? (37)
2
for some constant c¢; > 0. Enlarging also C, by Lemma 6.1 and (37) we can
assume
3 pm (n+1) (n)
—R’ < D; <R (38)
ﬁ J}l +
for some constant c¢3 > 0.
Let
w = EAN+n 0--+0 E}LN(Z"[+1)'
By definition, w € K{"") e KW'tV Take K", € KLY such that K )
y ’ stk S n+1’k;,+1 Jnrkn

D(w, R). By 27), K ko....jnnj kL € FrtD and by Lemma 6.3, there exists a

constant ¢4 > 0 such that

|Zj0,k0,~--,jn,kn,j,,,+1,k;,+l - Zn+l| < C4Rd"+l’ diam K]O ko,.. sjn7kn’jy/l+1sk;,+1 < C4dn+l'
Using this together with (35) we obtain
Iejo,ko """ Jnskn g1 Kl C D(z, (caR + ca + 2)dp+1)

) c4+2

=D|z, —r + T

(Z NG "“)
Cq c4+2

C ID)(Z, <— + >r> C DG, r) (39)

e ¢

if C is chosen sufficiently large.

By (26) and Lemma 6.1, there exist u € k"""

ko NUj, k, N Sp+1 and a right triangle

T CUj,k, NSyt1, with one of its vertices at u, a horizontal leg of length CD;::-H)

and a vertical leg of length ¢’e/»?, for some constants c, ¢’ > 0, containing at least one

element of IC("H) Note also that Lemma 6.3 implies that if K AR G AR =

"
n+1°"n+1 jn+l kn-H

IC("+1) and dist(K (.',1+l), , K> (1) ) > c5 for a sufficiently large constant c5 > 0, then

"
1 Kn1” 1K

jo,ko ..... skl K and K, JoskOseesjnskinsj KL BTE disjoint. Using these facts and noting

that R > +/C for a large C, we show by elementary geometry considerations that D(w, R)
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contains at least M sets KD ¢ ICE.ZE), such that K

i / are pairwise
In41Kn+1 +1

J0sKOs-wes sk iy 1 K,
disjoint, where

coR? if R < D;:’H),

cﬁDj.:‘“)R if R > Dj.:*”,
for some constant cg > 0. By (33) and (39),

C6cl_(n+l) Rz

pW ... p@tD (ot +jn)s
Jo Jn

if R < D§:+1),

uM(z,r)) > 1
C6Cl_(n+ R

DD .. p® ot tin)s
Jo Jn—1

if R > Dj.jj*”,

so by (36),

log n(D(z, 1))

< 1+ hu(R), (40)
log r

where

log(D;(])) . D;:‘Jr])) —log x 4 cn

if x < DUtV

o+ -+ jn)d —logx —cn -
hy(x) = X (41)
log(Dj," - DY)+ ean

(jo+ -+ ju)d —logx —c7n

ifx > D;:H),
forx € [R(_"), Rf)) and some constant ¢; > 0, which can be chosen arbitrarily large. Note

that by (8) and (14), we have

Jo+ -+
n

— 00 asn — 0. 42)

Together with (37), this implies that the denominators in (41) are positive for large n, so h,,
is well defined.
Now we estimate the infimum and supremum of the function #,,.

LEMMA 7.1. We have

(1 ()
log(D. " ---D." )
lim inf  h, — i Jn-t x| =0
n=>0 | (g g™ (jo+ -+ ju)d —log D}/
log(DY ... D™ ) 1og(DV ... pU"tD)
lim sup  hy, —max( S L~ N0 In )‘ =
n—00 o+ -+ jn-1)8  CGo+---+ju)d

[R™ R
Proof. We can write
R @) +h () ifx < Dj.’:“),

hn(x) = h(n) . (n+1)
3 (X) if x > Djn ,
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where
1 1 . .
log(D})) -+ DYy — (jo+ -+ -+ jn)d — csn
(Jo+---+ jn)d —logx —cn
(2c7 + cg)n

b}

R () =1+

(n)

hy’(x) = s

2 ) = G s —logx —
log(DY ... D™ )+ e7n

h:(;ﬂ) ()C) — Jo Jn—1

(Jo+ -+ jn)d —logx —cn
forx € [RT), Rgfl)) and a large constant cg > 0. Let

en= sup |AY),
[R™,R™)

and note that by (37) and (42), we have ¢, — 0 as n — oco. By Lemma 6.1, h(ln) is
decreasing and hg") is increasing, if ¢7 and cg are chosen sufficiently large. This together
with (38) implies that if D;:H) > R<_"), then

inf h, — hﬁ")(D;ZH)) < &n, sup h, — max(h(ln)(R(f)), hgn)(Rif'))) < é&n,
(R [R™ R™)
and if D;.:H) < R™, then
inf  h, — h(ln)(R(_"))‘ < &y, sup  h, — h;")(Rf)) < égy.
(R™ R (R™.R{)
Furthermore, using (37), (38) and (42), we obtain
M
B (DO _ log(Dj, Dj,_) S0
n . . 1 ’
! o+ -+ jn)8 —log D"V
(1 (n+1)
B (R _ log(Dj;" - D}, )‘ o
T Go+ -+ jn)8 ’
(ORI
h(n)(R(n)) B log(DjO Djn—l) '
P ot 4 a8
and
h{" (DY) — n{" (R — 0 if YD < RY
as n — oo. This proves the lemma. O

73. Conclusion. By (30), (34), (40) and Lemma 7.1, for every jo, ko € Z such

that J N KJ(.(()))kO # @ and every z € JN KJ(.(?),(O, there exist ji, k1, j2, k2, ... € Z with
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2 = 1My 00 Zjoko.....juoky AN

. log n(D(z, r)) log(D%) ...D")

lim inf —————= < 1 4 lim inf It EEnE
r—0 log r n=>00 (o4 -+ j,)8 — log Dj:’
1 1
 log p(D, 1) - log(Dy - DY)
lim sup ——— = < 1 + lim sup - ;
0 10g r n—00 (]O +---+ Jn)(S

This, together with Lemma 6.1, (8) and (42), implies

log u(D(z, r))

lim inf <14 liminf ®,(8jo, . .., 8jn),
r—0 logr n—00
1 D(z, . . .
tim sup 2EALED) i up WG ). (43)
r—0 IOg r n—oo
where
min(log Ay41, xg) + - - - +min(log Ay 1p, X4—1)
D, (x0,...,x) = . s
xp+ -+ x, — min(log Ay 441, Xn)
in(log A , cee in(log A ,
Uy (o ) = min(log Ay41, Xo) + - - - + min(log An4u41, Xn) a4
for xo € [log ay, log by], x1 € [log an+1,log by+1], . ... By the standard dimension

estimates (see e.g. [Mat95, PU10]), (43) gives

dimyg J <1+ sup lim inf @, (xq, . . ., x,),
X n—0oo

dimp J < 14 sup lim sup W, (xo, - . . , X)

X n—oo

for x = (xg, x1,...) € [logan, logby] x [logan+1,log byy1] x - - -. Together with
(6), this proves the upper estimate in Theorem 2.5.

7.4. General case. Suppose now that the assumption (26) does not hold. For n > 0, if
A, < 0, then let «;, € Z be such that

_e(an"l‘])(s S An < _eans

Similarly, if B, > 0, then let 8,, € Z be such that

ofrd < B < oD,
Seta,, = am, b, = b, forl <m < N, and

Al B/
a;v.q_n = |AN4nle™n, b?v.,.n = |[AN4nle™n
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for n > 0, where

) —e@nt3/D8 f _ plentDd < f o o
A =
" A if A, >0,
;o e(ﬂn+3/2)8 lf elgnfS S Bn < e(ﬂn‘l’l)‘s,
" | B, if B, <O0.
By definition,
/ / / /
A s o A Bu o sp o Ba i
g]‘s - ej‘s - ’ ej5 - e]‘S -

for every n >0, j € Z, so condition (26) is satisfied for A}, B), instead of A,, B,.
Therefore, we can repeat the proof contained in this section, replacing a, by a;, and b,
by b}, Since

e PA, <A, <A, B,<B, <eB,
for every n > 0, this replacement does not spoil the assumptions of Theorem 2.5.

Moreover, the values of log D("H) n > 0, change at most by an additive constant. Hence,
using (42), we see that the rlght -hand sides of the inequalities i 1n (43) do not change, so

the upper estimates of the Hausdorff and packlng dimensions of I (E ») fora’ = ()52,
= (b, o 1 are the same as those for I . (Ey). But since a;, < a, and b;, > b,, we have

I (Ey) C I (E;L) so the estimates are also valid for I (Ey).

8. Proof of Theorem 2.5—estimate from below

8.1. Construction of the measure ji. By (17), we can find jo, kg € 2Z such that Kl( )ko C
So. Define families F ™ >0, by
(0 o 0)
FO =(Kjyxo) for Kjpxo = K]O o
and
7 ” (V] ( 1)) ( ) .
‘7:(”) = {KjO»kO,-~-,jnskn gko ! " ( /:Lk,,) °
1 > (1 . .
kS ek K}j}kn € /cy:{l, Jloeeosin €27, kiy. .. ky € 27)
for n > 1. Note that here we consider only even values of jo, ko, j1, k1, . . . . Obviously,
for every K jo ko.....jnkn € F@ and Jn+1s kny1 € 27,
. = 1
if Kjo KOs fnti kg1 € ]:(n+ ) 4
h K(n+1) ’C(n+1) d IE’ . IZ . ( 5)
then Jn+1 kn+] an ./ka()s---a]n+lakn+l C ]OskOv--'v]n’kn'

Moreover, the sets K j, ,....j,.k, are pairwise disjoint for given n. Let

OO— [e)e]
km = m U ]}(n) = ﬂ U{Igjo,ko,...,jn,k,, : Isz»k()»---,jn,kn € ]}(n)}
n=0 n=0
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By definition, we have

> 0 _ (0)

Ko CJnN Kjo,ko =JN Kjo,ko’ (46)
since J is closed.

For kjo,ko,,,,,jn,kn e FM let
Nipseorojmden = ¥l 1s knt1) 2 Kjgsegjmorsns € FTDY.
By (8), (15) and Lemma 6.1,
Niokonoiudey = E1DY D ed? > 0 (47)

for a constant ¢; > 0.

.....

and define a sequence of Borel probability measures ji,, n > 0, setting
10 = V3 40

Vs )
fing] = 2joksrdnt1-kn+1
n+l — E E =

Nik - Ni g ik
; 2 (i ; 5 Joko J05Kk0 -5 s
K jo koo €F W Gtk 1)K o gy gy €F @D o

.....

1

Fon (K jo kg jnden) = o (K jo g jden) = = (48)

Njoko =+ Njokoueosjnotkni

for every m > n. Hence, taking a weak limit along a subsequent of fi,, we find a Borel
probability measure [ such that

supp it C Koo (49)
and

BCK jo kg nden) = o (K gy kg i den)

for K jy ko....jnks € F, 50 by (47) and (48),

BCK o korojndin) < (50)

DW ... DW elottin1)8
Jo Jn—1

8.2. Estimate of the local dimension of ji. Take a point z € Koo. Then there exist
Jis ki, ja, ko, . . . € 27 such that K jy ko....j, &, € F for every n > 0,

K jokousjuden C -+ C Kjoko-
Set

dp = diam Kjo ko jukys  Zn = Zjokouwnkn-
In the same way as for (29), we show

dpy1 < —, (51)

Q&
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where Q > 0 is a constant, which can be chosen arbitrarily large, provided a is big enough.
In particular, this implies that z is the unique point of (72 K JoskQseens sk + SINCE Z, Zpy €
I%jo,ko,,,,,jmkn, we have
|2 — Zu] < dy. (52)
Let
dy
n = —<
C
for a large constant C > 0. By (51), the sequence 7y, is strictly decreasing to 0. To estimate
1(D(z, r)) for a small r, take n such that

I'n41 < <y,

let

V&

dn—H

R=

and note that if r varies in [ry, 41, 7',), then R varies in [R(”) Iéf)) for

go— L g L4
\/E \/Edn—H
By Lemma 6.3, we have
- ] -
! - R — <7 < 9 - R - (53)
E;l+l é e(]0+"'+]n)5 \/E e(]0+"‘+]n)5
and
jna - -~ .
L <RY < e (54)
&Hv e Ve

for some constant ¢, > 0. Enlarging also C, by Lemma 6.1 and (54) we can assume
R™ < D"V < &V CRY (55)

for some constant ¢3 > 0.
Let

W= EA‘N+" ©---0 EAN(Zn+1)~

Then W € K{"*) e V"%V Take ji, ..., j,,  €2Z, Kk|,....k, , €2Z such that
K o koo Kool kL, € f<"+1> and (ji, Ky, ..o kL) # Gk gt kng)-

Let
m =min({s € [1,n 4+ 11: (j;, k)) # (s, ks)}).
We have dist(K (") KJ"”}(, ) = 8, 50, by Lemma 6.3 and (45),

dist ety K jo ko ji k101 ) = DK ok i ki K oy ko j1 ki) > Caclm
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for some constant ¢4 > 0. Hence, if m < n, then by (51) and (52),

5 1)\ - &Cr
dist(z, K J0sKkos J{ K seesd 15K n+1) - <C4 B E)dn g

if C and Q are chosen sufficiently large. Consequently, if K

>r,

i /  intersects
KOs J{ K s Ky

D, r), then (ji, ki, ..., jp.ky) = (i ks ooy jus kn). Furthermore, if D(w, R) does
not intersect K (nt 12/ , then by Lemma 6.3,
n+l n+1

diSt(Zn_H, I% ) > CSRdn—H

. .y .
]O,k()’]l ’kl s'“’.]n+l IH~1

for some constant ¢5 > 0, so by (52),

1
dlSt(Z’ JokosJiKyseeesdp g k:z-H) z (CsR B l)dn_H C N ( ¢~ E)r -7

provided C is chosen sufficiently large. We conclude that if K e Forth

and Ko o it kil

and D(, R) intersects

Josko.J Ky iy €
K intersects D(Z, 7), then (j{, ki, ..., jin. k) = (jtokts oo Juskn)
K("H;, . Note also that in this case we have K(n+1]1, Nﬁ":”,
In+1Kn 41 ntn
which follows from (54), if C is chosen sufficiently large. Since by Lemma 6.1, the set

U Iq:'};:) is contained in a vertical strip of width D;.:H) passing through w, the disc
D(®, R) intersects at most M sets K ("Hz, I@E."H), where
Jn41Kn+1 n
o R? if R < D;jj“),

M =
&GDVVR if R > DY,
for some constant ¢g > 0. By (50),

&oc; "R

R < DD
D(.l) . D;n+l)e(j0+'“+jn)5 ! = "

aMz, r)) =

—(n+1) 5
c R -
- it R > D",
DW ... p® Go+-+jn)s Jn
Jo Jn—1
so, by (53),
log i (D(z, r -~
% <147 (R), (56)
where
(e9) (n+1) ~
log(D}’ --- D"y —log x + ¢n
Jo Jn . (n+1)
ifx <D} s
_ (jo+ -+ 4+ Jjn)d —logx — cn =Y
n ) = ) o)
n ~
log(Dj"---D; ") +cm fx > pUHD
gn

(Jo+ -+ jn)d —logx —cyn
for x € [Ié@, Ié_(:)) and some constant ¢7 > 0. Note that jg, ji, . .. satisfy (42). In the
same way as for Lemma 7.1, using (55) instead of (38), we prove the following.
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LEMMA 8.1. We have

_ log(D§;) - DI )
lim inf  h, — 0 n-l | =0
=20 [ (RORD) T (ot - -+ jn)d — log DY
. . log(D;.é) S D;")l) log(D;.é) e D;.”H))
lim sup  h, — max ( - — - - ) =
n—>00 Jot+---+jn-1)8  CGot---+Jn)d

[R™,R{")

8.3. Conclusion. By (46), (49), (56) and Lemma 8.1, we can find jy, ko € 2Z
such that for f-almost every z € J N K;(??ko there exist ji, k1, jo, k2, ... € 2Z with
= hmn—>00 Zj(),k(),“.,jn,kna and

. (e)) (n)
1 D log(D%’ --- DY)
tim inf 8 FPED i ing Jo o
r—0 log r n>00 (o4 -4 j,)8 — log Dj:
1 1
. log 1(D(z, r)) , log(D;.O) . Dj{j* ))
lim sup ———— = > 1 + lim sup - -
r—0 log r n—00 Jo+---+Jju)d
This, together with Lemma 6.1, (8) and (42), implies
log (D(z, ..
lim inf M > 1 + lim inf ®,(3jo, . . ., 6jn),
r—0 log r n—00
log (D o7
lim sup M > 1 + lim sup ¥, (8jo, - - - , 8jn),
}’—>O 10g r n—o00
for @, W defined in (44). Again, by the standard dimension estimates, (57) shows that
dimg J > 1+ inf lim inf &, (xo, . . ., x,),
X n— 00
dimp J > 1 + inf lim sup ¥, (xo, . . ., Xp),
X n—o0
forx = (xg, x1,...) € [logan, log by] x [log an+1,log by+1] x - - - . Together with (6),

this proves the lower estimate in Theorem 2.5.
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