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ABSTRACT

This study investigates a combined optimal financing, reinsurance and divi-
dend distribution problem for a big insurance portfolio. A manager can control
the surplus by buying proportional reinsurance, paying dividends and raising
money dynamically. The transaction costs and liquidation values at bankruptcy
are included in the risk model. Under the objective of maximising the insurance
company’s value, we identify the insurer’s joint optimal strategies using stochas-
tic control methods. The results reveal that managers should consider financing
if and only if the terminal value and the transaction costs are not too high,
less reinsurance is bought when the surplus increases or dividends are always
distributed using the barrier strategy.
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1. INTRODUCTION

In the actuarial and mathematical insurance literature, the classical dividend
problem consists of finding the dividend distribution policy that maximises
the expected total discounted dividend payments until the time of bankruptcy.
However, more complicated models involve controlling both the risk-related
activities and the dividend distribution. This approach becomes particularly
important when modelling the behaviour of a large insurance company. Fre-
quently, in addition to the distribution of part of the surplus as dividends, an
insurance company’s manager faces the problem of how much risk must be
ceded by purchasing reinsurance. Reinsurance refers to controlling revenues by
diverting a portion of premiums to a reinsurer to reduce the insurer’s risk, which
also reduces the insurer’s potential profit. A reinsurance contract is said to be
“cheap” if the cedent pays the same fraction of the premium as the reinsured.
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In a “non-cheap” reinsurance contract, the cedent pays a larger fraction of the
premium than the fraction to be reinsured. The excess can be interpreted as the
transaction cost for a reinsurance contract. Recently, some attention has been
paid to the combined optimal dividend and reinsurance problem for riskmodels.
As an extension of the classical dividend problem, it assumes that the manager
of an insurance company can control the dividend stream and risk exposure in
terms of reinsurance. Proportional and excess-of-loss reinsurance have received
increasing attention from academics and practitioners. The literature on the
combined optimisation of dividend distribution and proportional reinsurance
includes Taksar and Zhou (1998), Høgaard and Taksar (1999, 2004), Taksar
(2000a), Choulli et al. (2003), Cadenillas et al. (2006) and Chen et al. (2013).
Studies on the combined optimisation of dividend distribution and excess-of-
loss reinsurance include Asmussen et al. (2000), Mnif and Sulem (2005), Bai
et al. (2010), Liu and Hu (2014) and the references therein.

When a company is on the verge of bankruptcy, it faces two choices: be
bailed out through financing, or get out of the business. A bail-out requires
financing costs, such as the proportional and fixed transaction costs generated
by the advisory, consulting and issuance of securities. Leaving the business may
lead to bankruptcy and the corresponding liquidation (or terminal) value, say
P. The liquidation value can be viewed as the salvage value for P ≥ 0 and the
penalty amount for P < 0. The decision to raise money or not depends on the
relationships among the model’s parameters. To maximise the company’s value,
themanagermust seek optimal financing, reinsurance and dividend distribution
strategies. Most of the studies in the literature deal with this optimisation prob-
lem in the case of P = 0. The company’s value is measured by the expected
discounted total dividends minus the expected discounted costs of financing
until the time of bankruptcy. For example, He and Liang (2009) and Barth
andMoreno-Bromberg (2014) studied the dividend and financing problem with
“cheap” proportional reinsurance. Peng et al. (2012) further generalised the op-
timisation problem for a case of “non-cheap” proportional reinsurance, but they
assumed that the bankruptcy never occurred based on the belief that financ-
ing would be applied when needed. Guan and Liang (2014) extended these risk
models by allowing for “non-cheap” reinsurance and considering the possibil-
ity of bankruptcy. The proportional and fixed costs in financing and dividend
distribution processes have also been considered. For more detailed discussions
on this issue, see, for example, Meng and Siu (2011), Zhou and Yuen (2012)
and the references therein. Generally speaking, non-zero liquidation better re-
flects reality, but it also complicates the optimisation problem. A few studies
have investigated the optimal dividend and reinsurance problem with non-zero
liquidation, but without financing. They have measured the company’s value
by the sum of the expected present value of all dividends until bankruptcy and
the expected discounted liquidation value. For example, Taksar (2000b) and Xu
and Zhou (2012) studied the optimal dividend problems assuming “cheap” pro-
portional and excess-of-loss reinsurance, respectively, in diffusion models with
a liquidation value P ≥ 0. Note that in the case of “cheap” reinsurance, the
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insurer can avoid debt liability by ceding all risks. Theoretically, the insurer can
keep the surplus non-negative forever by purchasing reinsurance. It is always
optimal to avoid bankruptcy for the insurer if the liquidation value is negative.
Thus, the case of P < 0 becomes trivial. Taksar and Hunderup (2007) and Yao
et al. (2014) encountered similar situations. Clearly, this conclusion does not
agree with the practice. Sometimes, negative liquidation value is unavoidable,
which drives the exploration of the problem under the assumptions of “non-
cheap” proportional reinsurance and arbitrary liquidation value. To the best
of our knowledge, Liang and Young (2012) first investigated this problem with
arbitrary liquidation value P ∈ R when one controls both the dividend distri-
bution and the “non-cheap” proportional reinsurance. Optimal dividend and
reinsurance strategies were obtained using the Legendre transform. They did
not consider financing and transaction costs. Yao et al. (2014) first focused on
the combined optimisation problem of financing, reinsurance and dividend dis-
tribution with positive liquidation value. They assumed that the premium was
calculated via the variance principle, and thus analysed the effects of propor-
tional and fixed transaction costs. With the exception of Yao et al. (2014), very
little work has considered the combined optimal financing, dividend and rein-
surance strategies with non-zero liquidation value.

Motivated by the above references, in this study we examine an optimal fi-
nancing, dividend and “non-cheap” reinsurance problem with arbitrary liqui-
dation value. We include transaction costs in our risk model. Our objective is to
find the optimal management strategies formaximising company value, which is
measured by a new reasonable performance function. We extend the risk model
in Liang and Young (2012) by taking financing and transaction costs into ac-
count and using techniques beyond the Legendre transform to solve the prob-
lem. Then, we provide explicit solutions for the value function and the optimal
strategy in 14 different cases and analyse the influence of transaction costs and
liquidation value P ∈ R. The remainder of this paper is organised as follows.
In Section 2, we use a diffusion approximation of the Cramér–Lundberg model
with reinsurance to formulate the optimisation problem for a controlled diffu-
sion model with dividend, financing and “non-cheap” reinsurance policies. In
Section 3, the Hamilton–Jacobi–Bellman (HJB) equations associated with the
optimisation problem are given and some of the properties of the value func-
tion are discussed. Based on the costs of reinsurance, as measured by the safety
loading, we address the solutions to the value function and associated optimal
strategy in Sections 4 and 5, respectively. Section 6 concludes the study.

2. MODEL FORMULATION AND THE OPTIMAL CONTROL PROBLEM

We start with the classical Cramér–Lundberg risk model. In this model, claims
arrive according to a Poisson process Nt with a rate of λ and the size of the i th
claim is Yi , where Yi ’s are independent and identically distributed. Assume that
the mean μ1 = E(Y1) and the second moment μ2 = E(Y2

1 ) are finite. The risk
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process representing the company’s surplus evolves according to

Ut = x+ ct −
Nt∑
i=1

Yi , (2.1)

where U0 = x ≥ 0 is the initial surplus and c > 0 is the premium rate. Under
the assumption of the expected value principle, it has

c = (1 + θ1)E
( N1∑
i=1

Yi
)

= (1 + θ1)λμ1, (2.2)

where θ1 > 0 is the safety loading for the insurer. Suppose that the insurer
purchases a proportional reinsurance with a retention level of q ∈ [0, 1]. Specif-
ically, for each claim of size Yi , the insurer covers qYi and the reinsurer covers
the rest (1 − q)Yi . Suppose that the reinsurer also uses the expected premium
principle, but with a larger safety loading θ2 ∈ (θ1, ∞), i.e. the reinsurance is
“non-cheap”, then the premium rate for reinsurance is

cq = (1 + θ2)E
( N1∑
i=1

(1 − q)Yi
)

= (1 + θ2)(1 − q)λμ1. (2.3)

Then, the surplus process with reinsurance can be expressed as

Uq
t = x+ (c − cq)t −

Nt∑
i=1

qYi , (2.4)

where Uq
0 = x ≥ 0. Let (�,F, {Ft}t≥0,P) be a probability space, where {Ft}t≥0

is an information filtration, and let {Bt}t≥0 be a standard Brownian motion
adapted to Ft. According to Grandell (1991), we approximate model (2.4) by
a pure diffusion model {Xq

t }t≥0 with the same drift and volatility; that is, Xq
t

satisfies the following stochastic process:

Xq
t = x+ a(θ1 − (1 − q)θ2)t + bqBt, (2.5)

where Xq
0 = x, a = λμ1 and b = √

λμ2. Such an approximation is suitable for
large portfolios.

Suppose that q ∈ [0, 1] can be adjusted dynamically to control the risk ex-
posure, then we use the process {qt}t≥0 to describe a reinsurance strategy. In
addition, we incorporate dividend distribution and financing in model (2.5).
Let Dt denote the total amount of dividends paid from time 0 to t. Let Rt =∑∞

i=1 I{τi≤t}ηi denote the total amount of capital raised by issuing equities from
time 0 to t, where {τi , i = 1, 2, . . .} denote the time points when the equity is is-
sued and {ηi , i = 1, 2, . . .} denote the amounts of equity issued. When applying
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strategy π = (qπ , Dπ , Rπ), the resulting surplus process is modelled by

Xπ
t = x+

∫ t

0
a(θ1 − (1 − qπ

s )θ2)ds +
∫ t

0
bqπ

s dBs − Dπ
t + Rπ

t , (2.6)

where Xπ
0 = x. The definition of an admissible strategy that can be selected by

the manager is as follows.

Definition 2.1. A strategy π = (qπ , Dπ , Rπ) is said to be admissible if it satisfies
the following conditions:

(i) The retention level qπ = {qπ
t }t≥0 is an Ft-adapted process with 0 ≤ qπ

t ≤ 1
for all t ≥ 0.

(i i) {Dπ
t } is an increasing, Ft-adapted càdlàg process with Dπ

0− = 0 and satisfies
�Dπ

t = Dπ
t − Dπ

t− ≤ Xπ
t− for all t ≥ 0.

(i i i) {τπ
i } is a sequence of stopping times w.r.t. Ft and 0 ≤ τπ

1 < · · · < τπ
i < · · · ,

a.s..
(iv) ηπ

i ≥ 0, i = 1, 2, . . . is measurable w.r.t. Fτπ
i
.

(v) P( lim
i→∞

τπ
i < t) = 0, ∀ t > 0.

Condition (i i) means that the total amount of dividends is less than the sur-
plus available at that time. Condition (v) implies that the issuance of equities
may not occur infinitely in a finite time interval.Wewrite	 for the space of these
admissible strategies. For each π ∈ 	, the bankruptcy time is defined as Tπ =
inf{t ≥ 0 : Xπ

t < 0}, which is the first time that the surplus becomes negative.

Problem 2.1. We measure the company’s value associated with strategy π ∈ 	

using the following performance function:

V(x; π) = Ex

(
β1

∫ Tπ

0
e−δsdDπ

s + Pe−δTπ −
∞∑
n=1

e−δτπ
n (β2η

π
n + K)I{τπ

n ≤Tπ }
)
,

(2.7)

which is the expected sum of the discounted liquidation value and the dis-
counted dividends less the expected discounted costs of equity issuances until
the time of bankruptcy. Ex denotes the expectation conditional on Xπ

0 = x and
δ > 0 is the discount factor. In the dividend distribution process, β1 ∈ (0, 1) is
the proportional transaction cost factor, which means that the shareholders can
get β1l if the company pays l as dividends. In the financing process, β2 > 1 is
the proportional transaction cost factor and K > 0 is the fixed cost, such that
the shareholders need to pay β2η + K to meet the capital injection of η. We are
interested in finding the value function

V(x) = max
π∈	

V(x; π) (2.8)

and the associated optimal strategy π∗, such that V(x) = V(x; π∗).
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3. HJB EQUATION AND PRELIMINARY ANALYSIS

Suppose that v : [0, ∞) �→ R is a candidate solution for the value function. Let
C denote the financing operator defined byC v(x) = supy≥0{v(x+y)−β2y−K},
which represents the value of the strategy that consists of choosing the best im-
mediate equity issuance. Another notation used in this paper is the differential
operatorA q , defined byA qv(x) = 1

2q
2b2v′′(x)+(θ1−(1−q)θ2)av′(x)−δv(x).

Assume that v(x) is sufficiently smooth and regular to perform the follow-
ing manipulations. Then, if the process starts at x ≥ 0 and follows an optimal
strategy, the performance function associated with this optimal strategy is v(x).
In contrast, if the process starts at x, selects the best immediate equity issuance
and then follows an optimal strategy, then the performance function associated
with this second strategy is C v(x). Given that the first strategy is optimal, its
performance function is larger than that associated with the second strategy.
Furthermore, these two performance functions are equivalent when it is opti-
mal to finance. Hence, v(x) ≥ C v(x). In the continuation region, that is, when
the manager does not intervene, we must have A qv(x) = 0. In the dividend
region, we must have v′(x) = β1. Considering the Markovian structure of the
problem, as the insurance company is on the brink of bankruptcy, the optimal
strategy should either allow for the surplus process to hit (−∞, 0) by issuing
no new equity, which corresponds to the boundary condition v(0) = P and
C v(0) ≤ v(0), or keep the surplus process in the interval [0, ∞), which corre-
sponds to the boundary condition v(0) ≥ P and C v(0) = v(0). Using stochas-
tic control theory, see Fleming and Soner (1993), we write the HJB equations
associated with Problem 2.1 as

max
{
C v(x) − v(x), max

0≤q≤1
{A qv(x)}, β1 − v′(x)

} = 0; (3.1)

max{C v(0) − v(0), P − v(0)} = 0. (3.2)

Theorem 3.1. Suppose that v(x) is an increasing, concave and twice continu-
ously differentiable solution to HJB equations (3.1) and (3.2), and that the
derivative v′(x) is bounded, then v(x) ≥ V(x; π) for any admissible strategy
π ∈ 	, such that v(x) ≥ V(x). Furthermore, if there exists some strategy
π∗ = (qπ∗

, Dπ∗
, Rπ∗

) ∈ 	, such that v(x) = V(x; π∗), then v(x) = V(x) and π∗
is optimal.

Proof. See Appendix A.

The above theorem drives us to find an appropriate solution to the HJB
equations and construct the associated optimal strategy π∗. In addition, given
the time value of money, it is optimal to postpone raising money for as long
as possible, i.e. issuance of equity may happen when and only when the surplus
process hits the barrier 0. The result can be established by repeating a procedure
that is similar to that in Lemma 3.2 of Peng et al. (2012). Thus,C v(x)−v(x) < 0
holds for all x > 0.
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Lemma 3.1. The value function V(x) defined by (2.8) is increasing for x ≥ 0with

β1(x− y) ≤ V(x) − V(y) ≤ β2(x− y) + K (3.3)

and satisfies the following bounded condition

β1x+ P ≤ V(x) ≤ β1x+ β1θ1a/δ + PI{P>0}. (3.4)

Proof. Consider an admissible strategy π1 with V(x; π1) ≥ V(x)−ε for any
ε > 0. For y < x, we define a new admissible strategy as follows. Collect x− y
dollars by issuing equities immediately and then take the strategy π1 with initial
capital x. Then, for ε > 0, we have

V(y) ≥ V(x; π1) − β2(x− y) − K ≥ V(x) − ε − β2(x− y) − K.

Because ε is arbitrary, V(x) − V(y) ≤ β2(x − y) − K . The first inequality in
(3.3) can be similarly proven.

We now consider another admissible strategy π2. Simultaneously distribute
all of the surplus as dividends and claim the liquidation value. Then, the corre-
sponding performance function is V(x; π2) = β1x+ P. Due to the optimality
of the value function, we have V(x) ≥ V(x; π2) = β1x+ P.

Recall the surplus process Xq
t with only reinsurance in (2.5). We know

Ex

( ∫ Tπ

0
e−δsdXq

s

)
= Ex

( ∫ Tπ

0
e−δs

(
a(θ1 − (1 − q)θ2)

)
ds

)
≤ θ1a/δ.

By Itô’s formula,

e−δTπ

Xπ
Tπ = x− δ

∫ Tπ

0
e−δs Xπ

s ds +
∫ Tπ

0
e−δsdXπ

s .

Given that Xπ
Tπ = 0 and Xπ

t ≥ 0, for t ≤ Tπ , taking the expectation on both
sides yields

−Ex

( ∫ Tπ

0
e−δsdXπ

s

)
= x− Ex

(
δ

∫ Tπ

0
e−δs Xπ

s ds
)

≤ x.
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Then,

V(x; π) = Ex

(
β1

∫ Tπ

0
e−δsdDπ

s + Pe−δTπ −
∞∑
n=1

e−δτπ
n (β2η

π
n + K)I{τπ

n ≤Tπ }
)

≤ β1Ex

( ∫ Tπ

0
e−δsdDπ

s −
∞∑
n=1

e−δτπ
n ηπ

n I{τπ
n ≤Tπ }

)
+ PI{P>0}

= β1

[
Ex

( ∫ Tπ

0
e−δsdXq

s

)
− Ex

( ∫ Tπ

0
e−δsdXπ

s

)]
+ PI{P>0}

≤ β1x+ β1θ1a/δ + PI{P>0}.

Hence, the result follows.

Reinsurance can reduce the insurer’s risk and potential profit. It is under-
standable that the insurer should buy less reinsurance as its cost increases, which
is measured by the safety loading θ2 for the reinsurer. It is expected that full
retention will be taken once θ2 exceeds some critical level. In the following,
we split the optimisation problem into two parts according to the critical level

θ1 +
√

θ2
1 + 2δ

( b
a

)2
.

4. THE CASE OF θ2 ∈ (
θ1, θ1 +

√
θ2
1 + 2δ

( b
a

)2)
Throughout this section, we only consider the case when the safety loading for
the reinsurer satisfies

θ1 < θ2 < θ1 +
√

θ2
1 + 2δ

(b
a

)2
. (4.1)

Motivated by the innovative ideas in Lφkka and Zervos (2008), we discuss
the solutions to HJB equations according to different conditions, such that (3.2)
holds. In addition, we expect the solution to be increasing, concave and twice
continuously differentiable, and for the derivative to be bounded.

4.1. The case without financing

We now consider the first case with v(0) = P and C v(0) − v(0) ≤ 0. It is
optimal to declare bankruptcy whenever the surplus is zero and financing is
unprofitable. Using methodologies from stochastic control theory, in this case
the solution f (x) for v(x) should satisfy

max
0≤q≤1

{A q f (x)} = 0, 0 < x ≤ u0, (4.2)

β1 − f ′(x) = 0, x ≥ u0, (4.3)
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f (0) = P, (4.4)

C f (0) − f (0) ≤ 0, (4.5)

where unknown parameters 0 ≤ u0 < ∞. In fact, (4.2)–(4.5) mean that the
continuation region is [0, u0], the dividend region is [u0, ∞) and the financing
region is empty. Differentiating (4.2) with respect to q and setting the derivative
equal to zero yields

q(x) = −θ2a f ′(x)
b2 f ′′(x)

, if f ′′(x) 
= 0. (4.6)

Plugging (4.6) into (4.2) yields(1
2
θ2aq + (θ1 − θ2)a

)
f ′(x) − δ f (x) = 0. (4.7)

Note that q is a function of x. By taking the derivative with respect to x on
both sides of (4.7) and using (4.6) again, we find

q ′(x) = (2δb2 + a2θ2
2 )q(x) − 2θ2(θ2 − θ1)a2

θ2ab2q(x)
. (4.8)

To proceed with the analysis, we define an increasing linear function on [0, ∞)

φ(x) := (2δb2 + a2θ2
2 )x− 2θ2(θ2 − θ1)a2. (4.9)

Under condition (4.1), there is a unique solution

ρ = 2θ2(θ2 − θ1)a2

2δb2 + a2θ2
2

∈ (0, 1), (4.10)

where φ(ρ) = 0. Clearly, φ(x) > 0 for all x ∈ (ρ, ∞). Assuming that
q(0) := q0 ∈ (ρ, 1], we define another function of x ∈ [q0, 1] as

Q(x) =
∫ x

q0

θ2ab2y

(2δb2 + a2θ2
2 )y− 2θ2(θ2 − θ1)a2

dy.

Due to the positivity of the integrand, Q(x) is strictly increasing and Q(1) < ∞.
Consequently, the inverse Q−1(x) of the function Q(x) exists on [0, x0] with
x0 = Q(1). We conjecture that the switch level for reinsurance x0 is smaller
than that for dividend u0. Together with the condition Q(q0) = 0, we have

q(x) = Q−1(x), 0 ≤ x ≤ x0. (4.11)

Given (4.4) and (4.6), we can express f (x) through q(x) by

f (x) = k3

∫ x

0
e
∫ x0
y

θ2a

b2q(z)
dz
dy+ P, (4.12)
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where k3 > 0 needs to be determined.
Regarding the continuity of retention level, we conjecture that the insurer

will take all risks when the surplus exceeds x0; that is, q(x) ≡ 1 for x ∈ [x0, u0].
Then, (4.2) becomes a second-order ordinary differential equation

1
2
b2 f ′′(x) + θ1a f ′(x) − δ f (x) = 0. (4.13)

Its solution is of the form

f (x) = k1er+(x−x0) + k2er−(x−x0), (4.14)

with undetermined coefficients k1 and k2 and

r+ = a
b2

(
− θ1 +

√
θ2
1 + 2δ

(b
a

)2)
> 0, (4.15)

r− = a
b2

(
− θ1 −

√
θ2
1 + 2δ

(b
a

)2)
< 0. (4.16)

Finally, combining (4.3) with the continuity of f (x) yields

f (x) = β1(x− u0) + f (u0), x ≥ u0. (4.17)

By setting the left first and second derivatives to equal the right first and second
derivatives of f (x) at x0 and u0, we obtain

k1r+ + k2r− = k3, (4.18)

k1(r+)2 + k2(r−)2 = −θ2a
b2

k3, (4.19)

k1r+er+(u0−x0) + k2r−er−(u0−x0) = β1, (4.20)

k1(r+)2er+(u0−x0) + k2(r−)2er−(u0−x0) = 0. (4.21)

Solving (4.18) and (4.19) leads to

k1 = k3c1, k2 = k3c2, (4.22)

where

c1 = r− + θ2a
b2

r+(r− − r+)
> 0, (4.23)

c2 = r+ + θ2a
b2

r−(r+ − r−)
< 0. (4.24)

https://doi.org/10.1017/10.1017/asb.2015.28 Published online by Cambridge University Press

https://doi.org/10.1017/10.1017/asb.2015.28


OPTIMAL DIVIDEND, REINSURANCE AND FINANCING STRATEGIES 375

Here, the inequality c1 > 0 is valid due to (4.1), and c2 < 0 is obvious. Substi-
tuting (4.22) into (4.21) yields

u0 = x0 + 1
r+ − r−

ln
(b2 + θ2a

r+

b2 + θ2a
r−

)
> x0, (4.25)

where the inequality holds because b2 + θ2a
r+

> b2 + θ2a
r−

> 0 in the case of (4.1).
Using (4.22) and (4.25), to solve (4.20) we have

k3 = β1b2

b2 + θ2a
r+

(b2 + θ2a
r+

b2 + θ2a
r−

) −r−
r+−r−

> 0. (4.26)

Lemma 4.1. β1 < k3 <
β1b2

b2+ θ2a
r−
and lim

θ2→− b2
a r−

k3 = ∞.

Proof. To prove the left side of the inequality, we take the log of k3. Due to
the concavity of the log function, we obtain

log k3 = logβ1 + log b2 −
[ r+
r+ − r−

log
(
b2 + θ2a

r+

)
− r−
r+ − r−

log
(
b2 + θ2a

r−

)]

> logβ1 + log b2 − log
[ r+
r+ − r−

(
b2 + θ2a

r+

)
− r−
r+ − r−

(
b2 + θ2a

r−

)]
= logβ1 + log b2 − log b2 = logβ1, (4.27)

which implies k3 > β1. However, together with the following inequalities

b2 + θ2a
r+

> b2 + θ2a
r−

> 1, 0 <
−r−

r+ − r−
< 1,

we derive that

k3 = β1b2

b2 + θ2a
r+

(b2 + θ2a
r+

b2 + θ2a
r−

) −r−
r+−r−

<
β1b2

b2 + θ2a
r+

·
b2 + θ2a

r+

b2 + θ2a
r−

= β1b2

b2 + θ2a
r−

. (4.28)

The inequality is confirmed. It is interesting to note that (4.1) can be re-
expressed as θ1 < θ2 < − b2

a r−. It is also easy to see that

d
dθ2

log k3 = −a2θ2
(b2r+ + θ2a)(b2r− + θ2a)

> 0.

Thus, k3 := k3(θ2) is an increasing function on (θ1, − b2

a r−) and lim
θ2→− b2

a r−
k3 =

∞.
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Thus, far we obtain an increasing, concave and twice continuously differen-
tiable solution to (4.2)–(4.4) as

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

β1(x− u0) + f (u0), x ≥ u0,

k1er+(x−x0) + k2er−(x−x0), x0 ≤ x ≤ u0,

k3
∫ x
0 e

∫ x0
y

θ2a

b2q(z)
dz
dy+ P, 0 ≤ x ≤ x0,

(4.29)

and an associated candidate optimal reinsurance policy characterised by

qπ∗
(x) =

{
1, x ≥ x0,
Q−1(x), 0 ≤ x ≤ x0.

(4.30)

In what follows, we determine q0, x0 and u0. From (4.7), we have

k3(
1
2
θ2aq0 + θ1a − θ2a)e

∫ x0
0

θ2a

b2q(z)
dz = δP. (4.31)

By applying a variable change of y = q(z) and combining it with (4.8), we
arrive at

P = k3
δ

�(q0), ρ < q0 ≤ 1, (4.32)

where�(x) := ( 12θ2ax+θ1a−θ2a)e
∫ 1
x

a2θ22
φ(y) dy.Recalling φ(x) > 0 for x ∈ (ρ, 1], we

know that �(x) is strictly increasing on (ρ, 1], as �′(x) = aδθ2b2x
φ(x) e

∫ 1
x

a2θ22
φ(y) dy > 0.

So the maximum is �(1) = a(θ1 − 1
2θ2). In addition, we can rewrite a2θ2

2
φ(y) :=

γ

y−ρ
with γ = a2θ2

2

2δb2+a2θ2
2

> 0. According to 1
2θ2aρ + θ1a − θ2a < 0 and

lim
x→ρ+

∫ 1
x

γ

y−ρ
dy = +∞, one has lim

x→ρ+ �(x) = −∞. Based on the above analysis,

we conclude that (4.32) has a unique root q0 = q(0) ∈ (ρ, 1) if and only if the
inequality

P <
k3a
δ

(
θ1 − 1

2
θ2

)
(4.33)

is valid. Consequently, the values of x0 = Q(1) and u0 in (4.25) are also ob-
tained.

Next, we define

I(ξ) :=
∫ ξ

0
( f ′(x) − β2)dx = f (ξ) − f (0) − β2ξ, (4.34)

where f (x) is of the form (4.29). Note that I(ξ) is decreasing with respect to β2.
We confirm that f (x) in (4.29) satisfies (4.5), according to the following cases:
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1. In the case ofβ1 < f ′(0) = k3e
∫ x0
0

θ2a

b2q(z)
dz ≤ β2, we have f ′(x) ≤ β2 for all x ≥

0, as f ′(x) is decreasing on [0, ∞). Thus, C f (0) − f (0) = maxy≥0{ f (y) −
β2y− K} − f (0) = −K < 0, (4.5) is established. Figure 1(a) is a graph of
f ′(x) in this case.

2. In the case of f ′(0) = k3e
∫ x0
0

θ2a

b2q(z)
dz

> β2 ≥ k3, f ′(x) is strictly decreasing
from f ′(0) to f ′(u0) = β1 and f ′(x0) = k3. Then, there exists a unique
number ξ ∗

1 ∈ (0, x0), such that f ′(ξ ∗
1 ) = β2. (4.5) holds if and only if

K ≥ I(ξ ∗
1 ), (4.35)

where I(ξ) is defined in (4.34). Figure 1(b) provides a graph of f ′(x) in this
case.

3. In the case of f ′(0) = k3e
∫ x0
0

θ2a

b2q(z)
dz

> k3 ≥ β2, for the same reason as above,
there exists a unique number ξ ∗

2 ∈ (x0, u0), such that f ′(ξ ∗
2 ) = β2. Define

the integral

J(ξ ∗
2 ) :=

∫ ξ∗
2

x0
( f ′(x) − β2)dx = f (ξ ∗

2 ) − f (x0) − β2(ξ
∗
2 − x0), (4.36)

where f (x) is of the form (4.29). J(ξ ∗
2 ) is also decreasing with respect to β2. (4.5)

holds if and only if

K ≥ I(ξ ∗
2 ). (4.37)

Again, where I(ξ) is defined in (4.34). Figure 1(c) is a graph of f ′(x) in this case.
Equation (4.36) is used later.

Considering the opposite of (4.33), for

P ≥ k3a
δ

(θ1 − 1
2
θ2), (4.38)

(4.32) has no solution on (ρ, 1). We set q(x) ≡ 1, i.e. the insurer does not use
reinsurance at all. An intuitive interpretation is that the insurer is willing to take
all risks if the “salvage value” is large enough.A suggested solution to (4.2)–(4.4)
is of the form

f (x) =
{

β1(x− u0) + f (u0), x ≥ u0,
k1er+x + k2er−x, 0 ≤ x ≤ u0,

(4.39)

with some u0 > 0. The principle of smooth fit at u0 results in

k1 = β1r−
r+(r− − r+)

e−r+u0 > 0, (4.40)

k2 = β1r+
r−(r+ − r−)

e−r−u0 < 0. (4.41)
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  )
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β
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β
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β
2

β
1

0
ξ*
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0

x

← area equal to I(ξ*
3
  )
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(e)
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β
1

↓  v ’ (x)=f ’ (x) ≡ β
1

 u
0
=0

(f)

FIGURE 1: The graph of the derivative v′(x) = f ′(x) without financing
(a) P < k3a

δ
(θ1 − 1

2 θ2), β1 < f ′(0) = k3e
∫ x0
0

θ2 a

b2 q(z)
dz ≤ β2;

(b) P < k3a
δ

(θ1 − 1
2 θ2), f ′(0) = k3e

∫ x0
0

θ2 a

b2q(z)
dz

> β2 ≥ k3, K ≥ I(ξ ∗
1 );

(c) P < k3a
δ

(θ1 − 1
2 θ2), f ′(0) = k3e

∫ x0
0

θ2 a

b2 q(z)
dz

> k3 ≥ β2, K ≥ I(ξ ∗
2 );

(d) k3a
δ

(θ1 − 1
2 θ2) ≤ P <

β1θ1a
δ

, f ′(0) = k1r+ + k2r− ≤ β2;
(e) k3a

δ
(θ1 − 1

2 θ2) ≤ P <
β1θ1a

δ
, f ′(0) = k1r+ + k2r− > β2, K ≥ I(ξ ∗

3 );
(f) P ≥ β1θ1a

δ
. (Color online)
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The switching level u0 can be determined by boundary condition (4.4); specifi-
cally,

β1r−
r+(r− − r+)

e−r+u0 + β1r+
r−(r+ − r−)

e−r−u0 = P. (4.42)

To prove the existence of u0, we consider the following function:

w(x) := β1r−
r+(r− − r+)

e−r+x + β1r+
r−(r+ − r−)

e−r−x,

for x ≥ 0. It is easy to see that w(0) = β1(r++r−)

r+r−
= β1θ1a

δ
> 0, w′(x) < 0 and

w(∞) = −∞, which imply that w(x) is strictly decreasing from β1θ1a
δ

to −∞.
Thus, under the condition of

k3a
δ

(θ1 − 1
2
θ2) ≤ P <

β1θ1a
δ

, (4.43)

(4.42) has a unique solution u0 ∈ (
0, 1

r+−r− ln(
b2+θ2a/r+
b2+θ2a/r−

)], which is a decreasing
function of P. The above inequality suggests that

k3a
δ

(θ1 − 1
2
θ2) <

β1θ1a
δ

. (4.44)

Recall the expression of k3. We rewrite inequality (4.44) as

b2

b2 + θ2a
r+

(b2 + θ2a
r+

b2 + θ2a
r−

) −r−
r+−r−

(θ1 − 1
2
θ2) < θ1. (4.45)

The proof of (4.45) can be found in Appendix B. Then, we check inequality (4.5)
when f (x) is of the form (4.39).

1. In the case of f ′(0) = k1r+ + k2r− = β1r−
r−−r+ e

−r+u0 + β1r+
r+−r− e

−r−u0 ≤ β2,
it has f ′(x) ≤ β2 for all x ≥ 0, as f ′(x) is decreasing on [0, ∞). Hence,
C f (0) − f (0) = maxy≥0{ f (y) − β2y − K} − f (0) = −K < 0 and (4.5)
follows. Figure 1(d) is a graph of f ′(x) in this case.

2. In the case of f ′(0) = k1r+ + k2r− = β1r−
r−−r+ e

−r+u0 + β1r+
r+−r− e

−r−u0 > β2, f ′(x)
is strictly decreasing from f ′(0) to f ′(u0) = β1. Then, there exists a unique
number ξ ∗

3 ∈ (0, u0), such that f ′(ξ ∗
3 ) = β2. Apparently, (4.5) holds if and

only if

K ≥ I(ξ ∗
3 ), (4.46)

where I(ξ) is defined by (4.34) with f (x) in (4.39). Figure 1(e) is a graph of f ′(x)
in this case.
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Finally, we are in the position to consider the last case

P ≥ β1θ1a
δ

. (4.47)

Then, (4.42) has no positive solution. In this case, we set u0 = 0, which means
that the insurer pays all of the current surplus as dividends and claims the liq-
uidation value immediately. The corresponding performance function is

f (x) = β1x+ P, x ≥ 0, (4.48)

which is indeed a solution to (4.2)–(4.5), and the proof is omitted. Figure 1(f) is
a graph of f ′(x) in this case.

Remark 4.1. Consider the special case P = 0, as in Taksar (2000a). If θ1 < θ2 ≤
2θ1, then (4.32) has a unique solution q0 = 2(θ2 − θ1)/θ2 ∈ (ρ, 1] and the value
function takes the form of (4.29). However, for 2θ1 < θ2, there is no solution
to (4.32) on the interval (ρ, 1] because 2(θ2 − θ1)/θ2 > 1. The value function
coincides with f (x) in (4.39) because condition (4.43) holds. These results are
consistent with those in Theorem 6.1 of Taksar (2000a).

4.2. The case without bankruptcy

The analysis above proves that no appropriate solution satisfies (4.2)–(4.5) si-
multaneously when (4.35), (4.37) or (4.46) fails. In other words, it is no longer
optimal to withdraw from the market when the surplus is null. We now consider
the second case with v(0) ≥ P and C v(0) − v(0) = 0; that is, the manager
should raise an appropriate amount of capital to prevent bankruptcy. Then, the
solution f (x) for v(x) should satisfy

max
0≤q≤1

{A q f (x)} = 0, 0 < x ≤ ũ0, (4.49)

β1 − f ′(x) = 0, x ≥ ũ0, (4.50)

f (0) ≥ P, (4.51)

C f (0) − f (0) = 0, (4.52)

with some parameter ũ0 ≥ 0. In fact, (4.49)–(4.52) establish that the continu-
ation region is (0, ũ0], the dividend region is (ũ0, ∞) and the financing region
is {0}. In what follows, we solve (4.49)–(4.52) when (4.35), (4.37) or (4.46) fails.
There are four cases to be discussed.

1. If P < k3a
δ

(θ1 − 1
2θ2), f

′(0) = k3e
∫ x0
0

θ2a

b2q(z)
dz

> β2 ≥ k3 and K < I(ξ ∗
1 ) hold,

let x0 = Q(1) and u0, f (x) and qπ∗
(x) be given in (4.25), (4.29) and (4.30),

respectively. We give a candidate solution f1(x) = f (x + p∗
1) with some
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parameter p∗
1 > 0, i.e.

f1(x) =

⎧⎪⎪⎨
⎪⎪⎩

β1(x− u1) + f1(u1), x ≥ u1,

k1er+(x−x1) + k2er−(x−x1), x1 ≤ x ≤ u1,

k3
∫ x+p∗

1
0 e

∫ x0
y

θ2a

b2q(z)
dz
dy+ P, 0 ≤ x ≤ x1,

(4.53)

where x1 = x0 − p∗
1 > 0 and u1 = u0 − p∗

1 > 0. Given (4.6), we define the
candidate optimal reinsurance policy as qπ∗

1 (x) = qπ∗
(x+ p∗

1), i.e.

qπ∗
1 (x) =

{
1, x ≥ x1,
Q−1(x+ p∗

1), 0 ≤ x ≤ x1.
(4.54)

It is easy to see that f1(x) and qπ∗
1 (x) satisfy (4.49)–(4.51) with ũ0 = u1,

as they can be obtained by shifting f (x) and qπ∗
(x) to the left p∗

1 units,
respectively. A graph of v′(x) = f ′

1(x) can be found in Figure 2(a). Now,
we need to determine the value of p∗

1 > 0, such that (4.52) holds. Define a
function of p, ϕ(p) = ϕ(p; ξ), as

ϕ(p) = ϕ(p; ξ) := f (ξ) − f (p) − β2(ξ − p) − K, 0 ≤ p ≤ ξ. (4.55)

The condition K < I(ξ ∗
1 ) leads to

ϕ(0; ξ ∗
1 ) = f (ξ ∗

1 ) − f (0) − β2ξ
∗
1 − K = I(ξ ∗

1 ) − K > 0. (4.56)

In addition, we have

ϕ(ξ ∗
1 ; ξ ∗

1 ) = −K < 0,

ϕ′(p; ξ ∗
1 ) = β2 − f ′(p) < 0.

Thus, there exists a unique solution p∗
1 ∈ (0, ξ ∗

1 ) that satisfies ϕ(p∗
1; ξ ∗

1 ) = 0
or, equivalently,

f1(η∗
1) − f1(0) − β2η

∗
1 − K = 0,

where η∗
1 := ξ ∗

1 − p∗
1 > 0. Noting that f ′

1(η
∗
1) = f ′(ξ ∗

1 ) = β2, then (4.52)
comes from

C f1(0) = max
y≥0

{ f1(y) − β2y− K} = f1(η∗
1) − β2η

∗
1 − K = f1(0). (4.57)

Similarly, we can present the solutions to (4.49)–(4.52) in other cases, but
we omit the details here.

2. If P < k3a
δ

(θ1 − 1
2θ2), f ′(0) = k3e

∫ x0
0

θ2a

b2q(z)
dz

> k3 ≥ β2 and J(ξ ∗
2 ) < K <

I(ξ ∗
2 ) hold, let u0, f (x) and qπ∗

(x) be given by (4.25), (4.29) and (4.30),
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FIGURE 2: The graph of the derivative v′(x) = f ′
i (x) with forced financing

(a) P < k3a
δ

(θ1 − 1
2 θ2), f ′(0) = k3e

∫ x0
0

θ2 a

b2q(z)
dz

> β2 ≥ k3 and 0 < K < I(ξ ∗
1 );

(b) P < k3a
δ

(θ1 − 1
2 θ2), f ′(0) = k3e

∫ x0
0

θ2 a

b2 q(z)
dz

> k3 ≥ β2 and J(ξ ∗
2 ) < K < I(ξ ∗

2 );

(c) P < k3a
δ

(θ1 − 1
2 θ2), f ′(0) = k3e

∫ x0
0

θ2 a

b2q(z)
dz

> k3 ≥ β2 and 0 < K ≤ J(ξ ∗
2 ) < I(ξ ∗

2 );
(d) k3a

δ
(θ1 − 1

2 θ2) ≤ P <
β1θ1a

δ
, f ′(0) = k1r+ + k2r− > β2 and 0 < K < I(ξ ∗

3 ). (Color online)
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respectively. Define a candidate solution f2(x) = f (x+ p∗
2)

f2(x) =

⎧⎪⎪⎨
⎪⎪⎩

β1(x− u2) + f2(u2), x ≥ u2,

k1er+(x−x2) + k2er−(x−x2), x2 ≤ x ≤ u2,

k3
∫ x+p∗

2
0 e

∫ x0
y

θ2a

b2q(z)
dz
dy+ P, 0 ≤ x ≤ x2,

(4.58)

where x2 = x0 − p∗
2 > 0, u2 = u0 − p∗

2 > 0 and p∗
2 ∈ (0, x0) is the unique

solution to ϕ(p; ξ ∗
2 ) = 0 or, equivalently,

f2(η∗
2) − f2(0) − β2η

∗
2 − K = 0, (4.59)

where η∗
2 := ξ ∗

2 − p∗
2 > 0. Accordingly, define a candidate optimal reinsur-

ance policy qπ∗
2 (x) = qπ∗

(x+ p∗
2)

qπ∗
2 (x) =

{
1, x ≥ x2,
Q−1(x+ p∗

2), 0 ≤ x < x2.
(4.60)

Then, f2(x) and qπ∗
2 (x) satisfy (4.49)–(4.52) with ũ0 = u2. Figure 2(b) is a

graph of v′(x) = f ′
2(x) in this case.

3. If P < k3a
δ

(θ1 − 1
2θ2), f ′(0) = k3e

∫ x0
0

θ2a

b2q(z)
dz

> k3 ≥ β2 and 0 < K ≤
J(ξ ∗

2 ) < I(ξ ∗
2 ) hold, let u0, f (x) and qπ∗

(x) be given by (4.25), (4.29) and
(4.30), respectively. Define a candidate solution f3(x) = f (x+ p∗

3)

f3(x) =
{

β1(x− u3) + f3(u3), x ≥ u3,
k1er+(x−u3) + k2er−(x−u3), 0 ≤ x ≤ u3,

(4.61)

where u3 = u0 − p∗
3 > 0 and p∗

3 ∈ [x0, ξ ∗
2 ) is the unique solution to

ϕ(p; ξ ∗
2 ) = 0 or, equivalently,

f3(η∗
3) − f3(0) − β2η

∗
3 − K = 0, (4.62)

where η∗
3 := ξ ∗

2 − p∗
3 > 0. Correspondingly, define a reinsurance policy

qπ∗
3 (x) = qπ∗

(x+ p∗
3) ≡ 1, x ≥ 0. (4.63)

Then, f3(x) and qπ∗
3 (x) satisfy (4.49)–(4.52) with ũ0 = u3. Figure 2(c) is a

graph of v′(x) = f ′
3(x) in this case.

4. If k3a
δ

(θ1 − 1
2θ2) ≤ P <

β1θ1a
δ

, f ′(0) = k1r+ + k2r− > β2 and K < I(ξ ∗
3 )

hold, let f (x) and u0 be defined by (4.39) and (4.42), respectively. Define a
candidate solution f4(x) = f (x+ p∗

4)

f4(x) =
{

β1(x− u4) + f4(u4), x ≥ u4,
k1er+(x−u4) + k2er−(x−u4), 0 ≤ x ≤ u4,

(4.64)
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where u4 = u0 − p∗
4 and p∗

4 ∈ (0, ξ ∗
3 ) is the unique solution of ϕ(p; ξ ∗

3 ) = 0 or,
equivalently,

f4(η∗
4) − f4(0) − β2η

∗
4 − K = 0, (4.65)

where η∗
4 := ξ ∗

3 − p∗
4. Define a reinsurance policy by

qπ∗
4 (x) ≡ 1, x ≥ 0. (4.66)

Then, f4(x) and qπ∗
4 (x) solve (4.49)–(4.52) with ũ0 = u4. Figure 2(d) is a graph

of f ′
4(x) in this case.

4.3. The value function and optimal strategy

Based on the analysis above, we identify the explicit solution to the value func-
tion and construct the associated optimal strategy in this section. Before pre-
senting the main results, we introduce a definition

Dπ∗
t (u) = (x− u)+ +

∫ t

0
I{Xπ∗

s ≥u}dD
π∗
s . (4.67)

Theorem 4.1. Under the assumption of (4.1), V(x) and π∗ can be obtained in the
following 10 cases, which exhaust all of the possibilities. In what follows, k3, I(ξ)

and J(ξ ∗
2 ) are defined as (4.26), (4.34) and (4.36), respectively.

Case 1: P < k3a
δ

(θ1 − 1
2θ2) and β1 < f ′(0) = k3e

∫ x0
0

θ2a

b2q(z)
dz ≤ β2.

In this case, let u0 and f (x) be given by (4.25) and (4.29), respectively. The
value function V(x) coincides with f (x). The surplus process controlled by the
optimal strategy π∗ = (qπ∗

, Dπ∗
, Rπ∗

) satisfies that

{
Xπ∗
t = x+ ∫ t

0

(
a(θ1 − (1 − qπ∗

(Xπ∗
s ))θ2)

)
ds + ∫ t

0 q
π∗

(Xπ∗
s )bdBs − Dπ∗

t ;
Xπ∗
t ≤ u0.

(4.68)

The optimal reinsurance policy qπ∗
is determined by (4.30). Dπ∗

is a barrier
dividend strategy with switch level u0, which is described by (4.67), where
ui = u0 > 0. In this case, it is unprofitable to raise new money, so Rπ∗

t ≡ 0.

Case 2: P < k3a
δ

(θ1 − 1
2θ2), f

′(0) = k3e
∫ x0
0

θ2a

b2q(z)
dz

> β2 ≥ k3 and K ≥ I(ξ ∗
1 ).

The value function V(x) and associated optimal strategy π∗ take the same
forms as those in Case 1.

Case 3: P < k3a
δ

(θ1 − 1
2θ2), f

′(0) = k3e
∫ x0
0

θ2a

b2q(z)
dz

> k3 ≥ β2 and K ≥ I(ξ ∗
2 ).
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The value function V(x) and associated optimal strategy π∗ take the same
forms as those in Case 1.

Case 4: k3a
δ

(θ1 − 1
2θ2) ≤ P <

β1θ1a
δ

and f ′(0) = k1r+ + k2r− ≤ β2.

In this case, let f (x) and u0 be given by (4.39) and (4.42), respectively. The
value function V(x) is consistent with f (x). The controlled surplus process as-
sociated with optimal strategy π∗ = (qπ∗

, Dπ∗
, Rπ∗

) satisfies that

{
Xπ∗
t = x+ θ1at + bBt − Dπ∗

t ;
Xπ∗
t ≤ u0.

(4.69)

The insurer should take full retention all the time; that is, qπ∗
t ≡ 1, the barrier

dividend strategy Dπ∗
with switch level u0 > 0 is optimal, which is described

by (4.67), where u = u0. It is unprofitable to raise new money all of the time, so
Rπ∗
t ≡ 0.

Case 5: k3a
δ

(θ1 − 1
2θ2) ≤ P <

β1θ1a
δ

, f ′(0) = k1r+ + k2r− > β2 and K ≥ I(ξ ∗
3 ).

The value function V(x) and π∗ take the same forms as those in Case 4.

Case 6: P ≥ β1θ1a
δ

.

The value function V(x) coincides with f (x) in (4.48). It is optimal
to distribute all of the surplus x as dividends and immediately claim the
liquidation value at bankruptcy time. Mathematically, qπ∗ ≡ 0, Dπ∗

t ≡ x and
Rπ∗
t ≡ 0.

Case 7: P < k3a
δ

(θ1 − 1
2θ2), f

′(0) = k3e
∫ x0
0

θ2a

b2q(z)
dz

> β2 ≥ k3 and K < I(ξ ∗
1 ).

Let u0 be given by (4.25) and u1 = u0 − p∗
1 in this case. Then, the value func-

tion V(x) is identical to f1(x) in (4.53). The surplus controlled by the optimal
strategy π∗ = (qπ∗

1 , Dπ∗
, Rπ∗

) satisfies that

⎧⎪⎨
⎪⎩
Xπ∗
t = x+ ∫ t

0

(
a(θ1 − (1 − qπ∗

1 (Xπ∗
s ))θ2)

)
ds + ∫ t

0 q
π∗
1 (Xπ∗

s )bdBs − Dπ∗
t

+ ∑∞
n=1 I{τπ∗

n ≤t}ηπ∗
n ;

0 ≤ Xπ∗
t ≤ u1.

(4.70)

The optimal reinsurance policy qπ∗
1 is characterised by (4.54). The barrier div-

idend strategy Dπ∗
with level u1 is optimal, which is described by (4.67), where

u = u1. It is profitable to raise new money when and only when the surplus is
null, and the surplus immediately jumps to η∗

1 = ξ ∗
1 − p∗

1 once it reaches 0 by

https://doi.org/10.1017/10.1017/asb.2015.28 Published online by Cambridge University Press

https://doi.org/10.1017/10.1017/asb.2015.28


386 DINGJUN YAO, HAILIANG YANG AND RONGMING WANG

issuing equities. Thus, Rπ∗
is characterised by⎧⎪⎨

⎪⎩
∫ ∞
0 I{t:Xπ∗

t >0}dR
π∗
t = 0,

τπ∗
1 = inf{t ≥ 0 : Xπ∗

t− = 0},
τπ∗
n = inf{t > τπ∗

n−1 : X
π∗
t− = 0}, n = 2, 3, . . . ,

(4.71)

and

ηπ∗
n ≡ η∗

1 = ξ ∗
1 − p∗

1, n = 1, 2, . . . . (4.72)

Case 8: P < k3a
δ

(θ1 − 1
2θ2), f

′(0) = k3e
∫ x0
0

θ2a

b2q(z)
dz

> k3 ≥ β2 and J(ξ ∗
2 ) < K <

I(ξ ∗
2 ).

Let u0 be given by (4.25) and u2 = u0 − p∗
2 in this case. The value func-

tion V(x) is identical to f2(x) in (4.58). The surplus process is controlled by the
optimal strategy π∗ = (qπ∗

2 , Dπ∗
, Rπ∗

) satisfies that⎧⎪⎨
⎪⎩
Xπ∗
t = x+ ∫ t

0

(
a(θ1 − (1 − qπ∗

2 (Xπ∗
s ))θ2)

)
ds + ∫ t

0 q
π∗
2 (Xπ∗

s )bdBs − Dπ∗
t

+ ∑∞
n=1 I{τπ∗

n ≤t}ηπ∗
n ;

0 ≤ Xπ∗
t ≤ u2.

(4.73)

The optimal reinsurance strategy qπ∗
2 is given by (4.60). The barrier dividend

strategy Dπ∗
with level u2 is optimal, which is described by (4.67), where u = u2.

It is profitable to raise new money when and only when the surplus is zero, and
the surplus immediately jumps to η∗

2 = ξ ∗
2 − p∗

2 once it reaches 0 by issuing
equities. Mathematically, Rπ∗

can be characterised by (4.71) and

ηπ∗
n ≡ η∗

2 = ξ ∗
2 − p∗

2, n = 1, 2, . . . . (4.74)

Case 9: P < k3a
δ

(θ1 − 1
2θ2), f

′(0) = k3e
∫ x0
0

θ2a

b2q(z)
dz

> k3 ≥ β2 and 0 < K ≤
J(ξ ∗

2 ) < I(ξ ∗
2 ).

Let u0 be given by (4.25) and u3 = u0− p∗
3 in this case. Then, V(x) is identical

to f3(x), as given by (4.61). The surplus process is controlled by the optimal
strategy π∗ = (qπ∗

3 , Dπ∗
, Rπ∗

) satisfies that{
Xπ∗
t = x+ θ1at + bBt − Dπ∗

t + ∑∞
n=1 I{τπ∗

n ≤t}ηπ∗
n ;

0 ≤ Xπ∗
t ≤ u3.

(4.75)

The optimal reinsurance policy is qπ∗
3 (x) ≡ 1. The barrier dividend strategy Dπ∗

with switch level u3 is optimal, which is described by (4.67), where u = u3. It is
profitable to raise new money when and only when the surplus is null, and the
surplus immediately jumps to η∗

3 = ξ ∗
2 − p∗

3 once it reaches 0 by issuing equities;
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that is, Rπ∗
can be characterised by (4.71) and

ηπ∗
n ≡ η∗

3 = ξ ∗
2 − p∗

3, n = 1, 2, . . . . (4.76)

Case 10: k3a
δ

(θ1− 1
2θ2) ≤ P <

β1θ1a
δ

, f ′(0) = k1r++k2r− > β2 and 0 < K < I(ξ3).

Let u0 be given by (4.42) and u4 = u0 − p∗
4 in this case. Then, V(x) coincides

with f4(x), as given by (4.64). The controlled surplus process associated with
optimal strategy π∗ = (qπ∗

4 , Dπ∗
, Rπ∗

) satisfies that

{
Xπ∗
t = x+ θ1at + bBt − Dπ∗

t + ∑∞
n=1 I{τπ∗

n ≤t}ηπ∗
n ;

0 ≤ Xπ∗
t ≤ u4.

(4.77)

The optimal reinsurance policy is qπ∗
4 ≡ 1. The barrier dividend strategy Dπ∗

with switch level u4 is optimal, as described by (4.67), where u = u4. It is prof-
itable to raise newmoneywhen and onlywhen the surplus is null, and the surplus
immediately jumps to η∗

4 = ξ ∗
3 − p∗

4 once it reaches 0 by issuing equities; that is,
Rπ∗

can be characterised by (4.71) and

ηπ∗
n ≡ η∗

4 = ξ ∗
3 − p∗

4, n = 1, 2, . . . . (4.78)

Proof. We check that the functionV(x) given in the 10 cases above is increas-
ing, concave and twice continuously differentiable, and that the derivative V′(x)
is bounded. Substituting V(x) in (3.1) and (3.2), we prove that V(x) solves HJB
equations. By applying Theorem 3.1, we establish thatV(x) and π∗ are solutions
to Problem 2.1. We only provide the detailed proof of Case 7 in Appendix C as
an example, even though themethod is applicable to other cases. Hence, we have
successfully obtained the solution to Problem 2.1.

Remark 4.2. Observing Figures 1 and 2, we also draw several conclusions
regarding the effects of the cost factors and liquidation value on optimal
strategies.

1. As Figure 1 shows, no financing is optimal when either the proportional
factor β2 or the fixed cost factor K is too large, i.e. when β2 ≥ f ′(0) or
K ≥ I(ξ ∗

i ). In Figures 1(a)–(c), the dividend barrier u0 and the initial ceded
proportion 1−qπ∗

(0) are increasing with respect to β1 if P ≥ 0. The opposite
is true if P < 0. In addition, both u0 and 1−qπ∗

(0) are decreasing in P, which
means that the insurer would take higher risks with larger P and would pur-
chase no reinsurance once the liquidation value P exceeded k3a

δ
(θ1− 1

2θ2). See
Figures 1(d)–(f). When the liquidation value P is greater than β1θ1a

δ
, it is opti-

mal for the insurer to declare bankruptcy and claim the liquidation value im-
mediately. Note that β1θ1a

δ
is the present value of a perpetuity with a discount

rate of δ and an income rate of β1θ1a, which is the expected after-tax profit
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rate under the full retention strategy. See risk model (2.5), where qs = 1, and
Figure 1(f).

2. As Figure 2 shows, the dividend barrier ui , the amount of financing η∗
i and

the initial ceded proportion 1 − qπ∗
i (0) are all increasing with respect to K .

The interpretation is as follows.When the fixed cost K increases, themanager
should reserve more money and buy more reinsurance to protect against fi-
nancial risk. He/she should also try to reduce the frequency of raising money
from equity markets by enhancing the amount of η∗

i . The manager may con-
sider financing only when both the conditions β2 < f ′(0) and K < I(ξ ∗

i )

hold. The insurer does not purchase any reinsurance once the liquidation
value P exceeds k3a

δ
(θ1 − 1

2θ2).

5. THE CASE OF θ2 ∈ [θ1 +
√

θ2
1 + 2δ

( b
a

)2
, ∞)

In this section, we address the case

θ2 ≥ θ1 +
√

θ2
1 + 2δ

(b
a

)2
. (5.1)

As in Section 4, we consider two sub-optimal problems, each corresponding
to different boundary conditions. In particular, the proofs resemble those in
Section 4, so we present the main results in this section but omit most of the
proofs and interpretations.

5.1. The case without financing

As in the previous section, we start with the boundary conditions v(0) = P
and C v(0) − v(0) ≤ 0. In this case, the solution g(x) for v(x) should satisfy
that

max
0≤q≤1

{A qg(x)} = 0, 0 < x < d0, (5.2)

β1 − g′(x) = 0, x ≥ d0, (5.3)

g(0) = P, (5.4)

C g(0) − g(0) ≤ 0, (5.5)

with some parameter d0 ≥ 0. Under condition (5.1), we conjecture that it is
always optimal to buy no reinsurance; that is, q(x) ≡ 1 for all x ≥ 0. Then, by
solving (5.2) and (5.3) with q ≡ 1, we obtain an increasing, concave and twice
continuously differentiable solution

g(x) =
{

β1(x− d0) + g(d0), x ≥ d0,
l1er+x + l2er−x, 0 ≤ x ≤ d0.

(5.6)
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Using the principle of smooth fit at d0, the constants l1 and l2 can be obtained
by solving

l1 = β1r−
r+(r− − r+)

e−r+d0 > 0, (5.7)

l2 = β1r+
r−(r+ − r−)

e−r−d0 < 0. (5.8)

The boundary condition (5.4) leads to the equation satisfied by d0

β1r−
r+(r− − r+)

e−r+d0 + β1r+
r−(r+ − r−)

e−r−d0 = P. (5.9)

For the same reason as given for (4.42), there exists a unique solution d0 > 0
to (5.9) if and only if P <

β1θ1a
δ

. Here, d0 is also a decreasing function of P. To
prove that q(x) ≡ 1 is optimal, given (4.6), it suffices to prove that

G(x) := −θ2ag′(x)
b2g′′(x)

= θ2a
b2

· −r−e−r+(d0−x) + r+e−r−(d0−x)

r+r−
(
e−r+(d0−x) − e−r−(d0−x)

) ≥ 1 (5.10)

for all x ∈ [0, d0]. Applying

θ2 ≥ θ1 +
√

θ2
1 + 2δ

(b
a

)2 = −b2
a

r− and r+r− = −2δ
b2

,

we derive

G(0) = θ2a
b2

· −r−e−r+d0 + r+e−r−d0

r+r−
(
e−r+d0 − e−r−d0

) ≥ 2δe−r−d0 + (br−)2e−r+d0

2δe−r−d0 − 2δe−r+d0 > 1 (5.11)

and

G ′(x) = −θ2a(r+ − r−)2

b2(r+r−)3
(
e−r+(d0−x) − e−r−(d0−x)

)2 · e−(r++r−)(d0−x) > 0. (5.12)

Thus, (5.10) is established by (5.11) and (5.12).
It is not difficult to see that g′(0) = β1

r+−r−
(
r+e−r−d0 − r−e−r+d0) > β1 for

d0 > 0. We check inequality (5.5) in two different cases.

1. In the case where β1 < g′(0) = β1
r+−r−

(
r+e−r−d0 − r−e−r+d0) ≤ β2, it has

g′(x) ≤ β2, as g′(x) is decreasing on [0, ∞). Thus,C g(0)−g(0) = −K < 0,
and (5.5) follows.

2. In the case where g′(0) = β1
r+−r−

(
r+e−r−d0 − r−e−r+d0) > β2, there exists a

unique number ς∗ ∈ (0, d0) such that g′(ς∗) = β2, i.e.

β1r−
r− − r+

er+(ς∗−d0) + β−r+
r+ − r−

er−(ς∗−d0) = β2. (5.13)
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Define the integral

H(ς∗) :=
∫ ς∗

0
(g′(x) − β2)dx = g(ς∗) − g(0) − β2ς

∗, (5.14)

where g(x) is defined by (5.6) and is decreasing with respect to β2. Then, (5.5)
holds if and only if

K ≥ H(ς∗). (5.15)

The opposite case is treated in the next subsection.
If P ≥ β1θ1a

δ
, there is no positive solution to (5.9) and the solution to (5.2)–

(5.5) takes the following form

g(x) = β1x+ P, x ≥ 0. (5.16)

The associated optimal strategy is to distribute all of the surplus as dividends
and claim the liquidation value immediately.

5.2. The case with forced financing

In the case P <
β1θ1a

δ
and 0 < K < H(ς∗), there is no suitable solution to

(5.2)–(5.5). This means that it is optimal to raise new capital once the surplus is
zero, and bankruptcy is forbidden forever. In this case, the solution g(x) to HJB
equations (3.1) and (3.2) should satisfy

max
0≤q≤1

{A qg(x)} = 0, 0 < x < d̃0, (5.17)

β1 − g′(x) = 0, x ≥ d̃0, (5.18)

C g(0) − g(0) = 0, (5.19)

g(0) ≥ P, (5.20)

with some parameter 0 ≤ d̃0 < ∞. Let g(x) be given by (5.6), then the solution
for (5.17)–(5.20) is g1(x) = g(x+ �∗); that is,

g1(x) =
{

β1(x− d̃0) + g1(d̃0), x ≥ d̃0,

l1er+(x−d̃0) + l2er−(x−d̃0), 0 ≤ x ≤ d̃0,
(5.21)

where d̃0 = d0 − �∗ > 0 and �∗ ∈ (0, ς∗) is the unique solution such that

g(ς∗) − g(�∗) − β2(ς
∗ − �∗) − K = 0. (5.22)

Correspondingly, qπ∗
(x) ≡ 1 is the optimal retention level.
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5.3. The value function and optimal strategy

In this subsection, we identify the explicit solutions to the value function and
construct the associated optimal strategies under condition (5.1).

Theorem 5.1. Under condition (5.1), V(x) and π∗ can be established in the fol-
lowing four cases, which exhaust all of the possibilities. In what follows, d̃0 =
d0 −�∗ and d0, ς∗, H(ς∗) and �∗ are defined by (5.9), (5.13), (5.14) and (5.22),
respectively.

Case 1: P <
β1θ1a

δ
and β1 < g′(0) = β1

r+−r−
(
r+e−r−d0 − r−e−r+d0) ≤ β2.

The value function V(x) is identical to g(x) in (5.6). The optimal strategy
π∗ = (qπ∗

, Dπ∗
, Rπ∗

) satisfies that{
Xπ∗
t = x+ θ1at + bBt − Dπ∗

t ;
Xπ∗
t ≤ d0.

(5.23)

The optimal dividend strategy Dπ∗
is barrier style, which can be characterised

by (4.67), where u = d0. Moreover, Rπ∗
t ≡ 0 and qπ∗

(x) ≡ 1 for all x ≥ 0.

Case 2: P <
β1θ1a

δ
, g′(0) = β1

r+−r−
(
r+e−r−d0 − r−e−r+d0) > β2 and K ≥ H(ς∗).

The value function V(x) and associated optimal strategy π∗ take the same
forms as those in Case 1.

Case 3: P ≥ β1θ1a
δ

.

The solutions toV(x) and π∗ are the same as those in Case 6 of Theorem 4.1.

Case 4: P <
β1θ1a

δ
, g′(0) = β1

r+−r−
(
r+e−r−d0 −r−e−r+d0) > β2 and 0 < K < H(ς∗).

The value function V(x) takes the same form as g1(x) in (5.21). The optimal
strategy π∗ = (qπ∗

, Dπ∗
, Rπ∗

) satisfies that{
Xπ∗
t = x+ θ1at + bBt − Dπ∗

t + ∑∞
n=1 I{τπ∗

n ≤t}ηπ∗
n ;

0 ≤ Xπ∗
t ≤ d̃0.

(5.24)

The optimal reinsurance policy is qπ∗
(x) ≡ 1. The optimal dividend strategy

Dπ∗
is the barrier style with level d̃0 = d0 −�∗ > 0, which is described by (4.67),

where u = d̃0. It is profitable to finance when and only when the surplus is zero,
and the surplus immediately jumps to ς̃∗ = ς∗ − �∗ once it reaches 0 by issuing
equities. Mathematically, Rπ∗

is characterised by (4.71) and

ηπ∗
n ≡ ς̃∗ = ς∗ − �∗, n = 1, 2, . . . . (5.25)
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Proof. The conclusions can be proven as in Theorem 4.1, thus the details
are omitted here.

Remark 5.1.

1. If the cost of reinsurance is relatively high, i.e. (5.1) holds, then the man-
ager does not consider reinsurance. Consequently, Problem 2.1 is simplified
to an ordinary optimal dividend and financing control problem. Theorem
5.1 provides the solutions in four cases that explore all of the possibilities.
When no issue of equity is optimal, as in Cases 1–3, the dividend barrier d0
is increasing with respect to β1 in the case of P ≥ 0;, and decreasing in the
case of P < 0. In addition, when P increases on the interval (−∞,

β1θ1a
δ

),
the dividend barrier d0 gradually decreases. These results come from the
property of (5.9). The insurance company declares bankruptcy immediately
once the liquidation value P exceeds β1θ1a

δ
.

No bankruptcy is optimal if and only if the costs for financing are relative
low, i.e. β2 < g′(0) and K < H(ς∗). See Case 4. The dividend barrier d̃0
and the amount of financing ς̃∗ are both increasing with respect to K .

2. If we let θ2 → θ1 in the model, the reinsurance reduces to the “cheap”
style, then the transaction cost of the reinsurance contract vanishes. Thus,
the company can keep the surplus non-negative forever by taking q ≡ 1, i.e.
transferring all the business to the reinsurer. If the company never declares
bankruptcy to claim a negative liquidation value, then the optimisation
problemwith P < 0 does not make sense. See, for example, Taksar (2000b),
Xu and Zhou (2012), Yao et al. (2014), etc. Obviously, the assumption of
“non-cheap” reinsurance seems more reasonable.

3. From the results of Theorems 4.1 and 5.1, we know that the strategies
without financing are optimal when at least one of the two cost factors K
and β2 is large enough, which corresponds to the cases studied in Liang and
Young (2012). Similarly, the optimisation problem studied in Peng et al.
(2012) can be viewed as a special case in this paper when P → −∞. The
verification processes are left to the interested readers.

6. CONCLUSION

To maximise an insurance company’s value, we consider a combined optimal
financing-reinsurance-dividend distribution problem. To reflect reality, the liq-
uidation value at bankruptcy and the transaction costs incurred in the control
processes are included in the risk model. We use the stochastic control method
to solve the optimisation problem and obtain some interesting results. The in-
surer should take all risks if the reinsurance is too expensive, and likewise should
not choose financing if the costs are too high. The insurer does not distribute
dividends until the surplus exceeds some level, and the excess is paid out im-
mediately as dividends. When the liquidation value is too large, it is optimal to
distribute all surplus as dividends and claim the liquidation value immediately.

https://doi.org/10.1017/10.1017/asb.2015.28 Published online by Cambridge University Press

https://doi.org/10.1017/10.1017/asb.2015.28


OPTIMAL DIVIDEND, REINSURANCE AND FINANCING STRATEGIES 393

The value function can be expressed in terms of retention function qπ∗
(x), which

is an increasing function of surplus x ≥ 0. The initial (minimal) retention level
qπ∗

(0) ∈ (ρ, 1] is an increasing function of liquidation value P. Due to reinsur-
ance contract costs, the insurer’s admissible retention must be larger than the
lowest level ρ whenever the reinsurance is taken. In summary, the optimal strate-
gies depend on the relationships among the parameters. The main contribution
of this paper is that we take both financing and bankruptcy into account and
investigate the effects of liquidation value P on optimal strategies, for P ∈ R.
Compared with the work of Liang and Young (2012) and Peng et al. (2012), the
risk models and associated results herein are extended and the techniques are
different.
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APPENDIX A. THE PROOF OF
THEOREM 3.1

Proof. For each given strategy π = (qπ , Dπ , Rπ ) ∈ 	, define �π
D = {s : Dπ

s− 
=
Dπ
s }, �π

R = {s : Rπ
s− 
= Rπ

s } = {τπ
1 , τ π

2 , . . . , τ π
n , . . .}. Let D̂π

t = ∑
s∈�π

D,s≤t(D
π
s − Dπ

s−) be

the discontinuous part of Dπ
t and d̃π

t = Dπ
t − D̂π

t be the continuous part of Dπ
t . Similarly, R̂π

t
and R̃π

t stand for the discontinuous and continuous parts of Rπ
t , respectively. Then, applying

Itô’s formula, we derive that

e−δ(t∧Tπ )v(Xπ
t∧Tπ ) − v(x)

=
∫ t∧Tπ

0
e−δsA qπ

v(Xπ
s )ds +

∫ t∧Tπ

0
bqπ

s dBs −
∫ t∧Tπ

0
e−δsv′(Xπ

s )dd̃π
s

+
∫ t∧Tπ

0
e−δsv′(Xπ

s )dR̃π
s +

∑
s∈�π

R∪�π
D,s≤t∧Tπ

e−δs
(
v(Xπ

s ) − v(Xπ
s−)

)
. (A.1)

The last term on the right side can be written as

∑
s∈�π

R∪�π
D,s≤t∧Tπ

e−δs
(
v(Xπ

s ) − v(Xπ
s−)

)

=
∑

s∈�π
D,s≤t∧Tπ

e−δs
(
v(Xπ

s ) − v(Xπ
s−)

)
+

∑
s∈�π

R,s≤t∧Tπ

e−δs
(
v(Xπ

s ) − v(Xπ
s−)

)

≤ −
∑

s∈�π
D,s≤t∧Tπ

e−δsβ1(Dπ
s − Dπ

s−) +
∞∑
n=1

e−δτπ
n (β2η

π
n + K)I{τπ

n ≤t∧Tπ }, (A.2)

where the inequality is because v(x) satisfies the HJB equation (3.1) with v′(x) ≥ β1 and
C v(x) ≤ v(x). Moreover, given (3.1), the first term on the right side of (A.1) is non-positive.
Hence, substituting (A.2) into (A.1), we obtain

e−δ(t∧Tπ )v(Xπ
t∧Tπ ) ≤ v(x) +

∫ t∧Tπ

0
e−δsbqπ

s v′(Xπ
s )dBs

−β1

∫ t∧Tπ

0
e−δsdDπ

s +
∞∑
n=1

e−δτπ
n (β2η

π
n + K)I{τπ

n ≤t∧Tπ }. (A.3)
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Given that v(x) is an increasing function and v(0) ≥ P, we have

e−δ(t∧Tπ )P ≤ v(x) +
∫ t∧Tπ

0
e−δsbqπ

s v′(Xπ
s )dBs

−β1

∫ t∧Tπ

0
e−δsdDπ

s +
∞∑
n=1

e−δτπ
n (β2η

π
n + K)I{τπ

n ≤t∧Tπ }. (A.4)

The stochastic integral with respect to the Brownian motion in (A.4) is a uniformly inte-
gratable martingale if v′(x) is bounded. Taking expectation and limit on both sides of (A.4)
yields

v(x) ≥ Ex

(
β1

∫ Tπ

0
e−δsdDπ

s + Pe−δTπ −
∞∑
n=1

e−δτπ
n (β2η

π
n + K)I{τπ

n ≤Tπ }
)

= V(x;π). (A.5)

Consequently, v(x) ≥ V(x) follows.

APPENDIX B. THE PROOF OF
INEQUALITY (4.45)

Proof. In the case 2θ1 ≤ θ2 < θ1 +
√

θ2
1 + 2δ

(
b
a

)2
, direct computations show that the left

side of (4.45) is non-positive, so it holds automatically. Next, we focus on the opposite case
θ1 < θ2 < 2θ1. Let us define a function in θ2 as

�(θ2) := b2

b2 + θ2a
r+

(b2 + θ2a
r+

b2 + θ2a
r−

) −r−
r+−r−

(θ1 − 1
2
θ2), θ2 ∈ [θ1, 2θ1). (B.1)

Then,

log�(θ2) = log b2 − log(b2 + θ2a
r+

) − r−
r+ − r−

(
log

(
b2 + θ2a

r+

) − log
(
b2 + θ2a

r−

))

+ log
(
θ1 − 1

2
θ2

)
. (B.2)

Vieta’s theorem leads to

r+ + r− = −2δ
b2

, r+r− = −2θ1a
b2

. (B.3)
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We deduce that

d
dθ2

log�(θ2) = a

(b2 + θ2a
r+ )(r− − r+)

+ a

(b2 + θ2a
r− )(r+ − r−)

− 1

2(θ1 − 1
2 θ2)

= −a2θ2
r+r−(b2 + θ2a

r+ )(b2 + θ2a
r− )

− 1

2(θ1 − 1
2 θ2)

= 1
2δb2

θ2a2
+ 2(θ1 − 1

2 θ2)
− 1

2(θ1 − 1
2 θ2)

< 0. (B.4)

Thus, �(θ2) is decreasing on the interval [θ1, 2θ1). With the help of b2 + θ1a
r+ > b2 + θ1a

r− > 0

and 0 <
−r−
r+−r− < 1, we derive

�(θ2) ≤ �(θ1) = b2

b2 + θ1a
r+

(b2 + θ1a
r+

b2 + θ1a
r−

) −r−
r+−r−

(θ1 − 1
2
θ1)

≤ b2

2(b2 + θ1a
r− )

θ1 < θ1. (B.5)

The last inequality is confirmed by the definition of r−, and (4.45) is proved when θ1 < θ2 <

2θ1. In summary, (4.45) holds for all θ2 ∈ (θ1, θ1 +
√

θ2
1 + 2δ

(
b
a

)2
).

APPENDIX C. THE PROOF OF CASE 7 IN
THEOREM 4.1

Proof. Suppose that P <
k3a
δ

(θ1 − 1
2 θ2), f

′(0) = k3e
∫ x0
0

θ2a

b2q(z)
dz

> β2 ≥ k3 and K < I(ξ ∗
1 ).

First, we verify that f1(x) and qπ∗
1 satisfies HJB equations (3.1) and (3.2).

• Step 1: To show max0≤q≤1{A q f1(x)} ≤ 0 on [0, ∞).

i. If 0 ≤ x ≤ u1, by construction, f1(x) and qπ∗
1 (x) satisfy (4.49) with ũ0 = u1. That is,

max0≤q≤1{A q f1(x)} = A qπ∗
1 f1(x) = 0.

ii. If x > u1, then f1(x) ≥ f1(u1), f ′
1(x) = f ′

1(u1) = β1 and f ′′
1 (x) = f ′′

1 (u1) = 0. So, for
each q ∈ [0, 1], we derive that

A q f1(x) = 1
2
q2b2 f ′′

1 (x) + (θ1 − (1 − q)θ2)a f ′
1(x) − δ f1(x)

= 1
2
q2b2 f ′′

1 (u1) + (θ1 − (1 − q)θ2)a f ′
1(u1) − δ f1(x)

≤ 1
2
q2b2 f ′′

1 (u1) + (θ1 − (1 − q)θ2)a f ′
1(u1) − δ f1(u1)

= A q f1(u1) ≤ 0.
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• Step 2: To show f ′
1(x) ≥ β1. It can be established directly from the expression of f1(x) in

(4.53).

• Step 3: To show C f1(x) ≤ f1(x). We have

C f1(x) − f1(x) = max
y≥0

{ f1(x+ y) − β2y− K} − f1(x)

= max
y≥0

{ ∫ x+y

x
( f ′

1(s) − β2)ds
}

− K.

i. If 0 ≤ x ≤ η∗
1, then f ′

1(x) − β2 ≥ 0 if and only if 0 ≤ x ≤ η∗
1. Thus,

C f1(x) − f1(x) = max
y≥0

{ ∫ x+y

x
( f ′

1(s) − β2)ds
}

− K

≤
∫ η∗

1

0
( f ′

1(s) − β2)ds − K = 0,

the equality holds if and only if x = 0 and y = η∗
1.

ii. If η∗
1 < x < ∞, the inequality f ′

1(x) − β2 < 0 is always true, then

C f1(x) − f1(x) = max
y≥0

{ ∫ x+y

x
( f ′

1(s) − β2)ds
}

− K

= −K < 0.

• Step 4: Clearly, f1(x) = f (x + p∗) > P is true because f ′
1(x) ≥ β1 and

f1(0) = f (p∗) > f (0) = P.

Thus, f1(x) satisfies (3.1) and (3.2). Clearly, f1(x) is a twice continuously differentiable
with increasing and concave function, and its derivative satisfies β1 ≤ f ′

1(x) ≤ f ′
1(0) < ∞.

Thus, f1(x) ≥ V(x) holds according to Theorem 3.1. Finally, we verify the optimality of
strategy π∗ = (qπ∗

1 , Dπ∗
, Rπ∗

) ∈ 	 as described by (4.54), (4.67), where u = u1, (4.71) and

(4.72). Given that A qπ∗
1 f1(Xπ∗

t ) = 0 for 0 ≤ Xπ∗
t ≤ u1, we have

∫ t∧Tπ∗

0
e−δsA qπ∗

1 f1(Xπ∗
s )ds =

∫ t∧Tπ∗

0
e−δsA qπ∗

1 f1(Xπ∗
s )I{0≤Xπ∗

s ≤u1}ds = 0. (C.1)

Furthermore, (4.67), (4.71) and (4.72) indicate that∑
s∈�π∗

D ∪�π∗
R ,s≤t∧Tπ∗

e−δs
(
f1(Xπ∗

s ) − f1(Xπ∗
s−)

)

=
∑

s∈�π∗
D ,s≤t∧Tπ∗

e−δs
(
f1(Xπ∗

s ) − f1(Xπ∗
s−)

)
I{Xπ∗

s =u1}

+
∑

s∈�π∗
R ,s≤t∧Tπ∗

e−δs
(
f1(Xπ∗

s ) − f1(Xπ∗
s−)

)
I{Xπ∗

s− =0}

= −
∑

s∈�π∗
D ,s≤t∧Tπ∗

e−δsβ1(Dπ∗
s − Dπ∗

s−) +
∞∑
n=1

e−δτπ∗
n (β2η

π∗
n + K)I{τπ∗

n ≤t∧Tπ∗ }. (C.2)
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Replacing π,Tπ , v by π∗,Tπ∗ = ∞, f1 in Itô’s formula (A.1) and taking expectations, we
have

f1(x) = Ex[e−δt f1(Xπ∗
t )] + Ex

(
β1

∫ t

0
e−δsdDπ∗

s −
∞∑
n=1

e−δτπ∗
n (β2η

π∗
n + K)I{τπ∗

n ≤t}
)
. (C.3)

Letting t → ∞, the first term on the right side vanishes, then we obtain

f1(x) = Ex

(
β1

∫ ∞

0
e−δsdDπ∗

s −
∞∑
n=1

e−δτπ∗
n (β2η

π∗
n + K)I{τπ∗

n <∞}
)

= V(x;π∗), (C.4)

which, together with f1(x) ≥ V(x), establishes that f1(x) = V(x) = V(x; π∗).
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