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We have investigated the influence of a strong magnetic field on various aspects of
a quantum Fermi plasma. Due to the strong magnetic field, the distribution function
becomes anisotropic. First, we consider non-degenerate quantum, Landau and Kelly
distribution function. It was found that the adiabatic equation is similar to the adiabatic
equation for a Maxwell distribution function, when we include the magnetic field in
the energy expression. Using the Kelly distribution for a degenerate, quantum Fermi
gas, parallel and perpendicular components of the pressure were derived. It was found
that perpendicular component of pressure never becomes zero and three-dimensional
system always stay three-dimensional. Lastly, we investigated electron emission from
metals and have shown the influence of the magnetic field. We calculated thermionic
emission, the so-called Richardson effect. In addition, we investigate the influence of
external electromagnetic radiation on the electron current density (Hallwachs effect)
from metals.
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1. Introduction
Quantum plasmas are a subject of increasing interest due to their potential

applications in modern emerging technologies (Lindsay 2010), e.g. metallic and
semiconductor nanostructures, which include metallic nano-particles, metal clusters,
thin films, spintronics, nanotubes, quantum wells, quantum dots, nanoplasmonic
devices, quantum X-ray free electron lasers, etc. In the case of the degenerate Fermi
gas, the shape of the Fermi surface provides information about the physical properties
of a plasma. Fermi surface is conveniently considered spherical by considering
the isotropic momentum distribution attributed to the Fermi gas particles. A lot of
literature is available that describes various aspects of linear and nonlinear propagation
characteristics of different electrostatic or electromagnetic modes in the context of
isotropic Fermi surfaces (Shukla & Eliasson 2010). However, it is well known
that there do exist certain situations where the concept of spherical symmetry of
a Fermi surface is no longer valid, even in a collisionless regime of a Fermi gas
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(Lifshitz & Peschanskii 1959). In the presence of a magnetic field the momentum
in the parallel and perpendicular directions will be different. A precise study in
such scenarios demands elongated or even cylindrical Fermi surfaces (Landau &
Lifshitz 1980). Tsintsadze and Tsintsadze developed a new type of quantum kinetic
equations for Fermi particles of various species and subsequently obtained a set
of hydrodynamic equations describing a quantum plasma (Tsintsadze & Tsintsadze
2009a,b). Based on these studies, the investigation of linear and nonlinear ion acoustic
waves in quantum plasmas as well as ion acoustic solitary structures has attracted
substantial attention (Eliasson & Shukla 2010; Rasheed, Murtaza & Tsintsadze 2010;
Tsintsadze & Tsintsadze 2010; Shah et al. 2011; Tsintsadze et al. 2011).

In the magnetic field (H), a Lorentz force e/c (v ×H) acts on a particle, with the
charge e, in the perpendicular direction to a velocity v, so it cannot produce work on
the particle. Here, c is the speed of light. Hence, its energy does not depend on the
magnetic field. However, as was shown by Landau that the situation radically changes
in the quantum mechanical theory of magnetism. The point is that in a constant
magnetic field the electrons, under the action of it, rotate in circular orbits in a plane
perpendicular to the field H0(0, 0,H0). Therefore, the motion of the electrons can be
resolved into two parts: one along the field, in which the longitudinal component of
energy is not quantized (E‖= p2

‖
/2me), and the second, quantized (Landau & Lifshitz

1948) in a plane perpendicular to H0 (the transverse component). Thus, in the
non-relativistic case, the net energy of an electron in a magnetic field without taking
into account its spin is E(p‖, l) = p2

‖
/2me + h̄wce(l + 1/2), where me is the electron

rest mass and wce = |e|H0/(mec) is the cyclotron frequency of the electron. Effects
of Landau quantization on the longitudinal electric wave characteristic in a quantum
plasma are considered in Tsintsadze (2010). Novel branches of longitudinal waves
are found, which have no analogies without Landau quantization. Using Tsintsadze
(2010), an effect of trapping in a degenerate quantum plasma in the presence of
Landau quantization was considered in Tsintsadze et al. (2015). Our understanding
of the thermodynamics of a Fermi quantum plasma, which is of great interest due
to its important application in astrophysics (Landstreet 1967; Bisnovatyi-Kogan 1971;
Shapiro & Teukolsky 1983; Lipunov 1987; Haensel, Potekhin & Yakovlev 2007),
has recently undergone some appreciable theoretical progress. The influence of a
strong magnetic field on the thermodynamic properties of a medium is an important
issue in supernovae and neutron stars, the convective zone of the Sun and the early
pre-stellar period of evolution of the universe. A wide range of new phenomena arises
from the magnetic field in the Fermi gas such as the change of shape of the Fermi
sphere and thermodynamics (the De Haas & Van Alphen (1930) and Shubnikov & de
Haas (1930) effects). Quite recently, an adiabatic magnetization process was proposed
in Tsintsadze & Tsintsadze (2014) for cooling the Fermi electron gas to ultra-low
temperatures. It should be noted that the diamagnetic effect has a purely quantum
nature and in the classical electron gas it is absent.

If a particle has a spin, the intrinsic magnetic moment of the particle interacts
directly with the magnetic field. The correct expression for the energy is obtained by
adding an extra term µH0, corresponding to the energy of the magnetic moment µ
in the magnetic field H0. Hence, the electron energy levels εl,δ

e are determined in the
non-relativistic limit by the expression

εl,δ
e =

p2
‖

2me
+ (2l+ 1+ δ)µBH0, (1.1)
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where l is the orbital quantum number (l= 0, 1, 2, 3, . . .), δ is the operator to the z
direction and describes the spin orientation s= δ/2(δ =±1) and µB = |e|h̄/(2mec) is
the Bohr magneton.

From the expression (1.1) one sees that the energy spectrum of the electrons
consists of the lowest Landau level l= 0, δ =−1 and pairs of degenerate levels with
opposite polarization δ = 1. Thus each value with l 6= 0 occurs twice and that with
l= 0 once. Therefore, in the non-relativistic limit εl,δ

e can be rewritten as

εl,δ
e = ε

l
e =

p2
‖

2me
+ h̄wcel, (1.2)

where h̄ is the Plank constant divided by 2π.

2. Thermodynamics of magnetized plasmas
We investigated thermodynamic quantities of the quantum plasma using two types

of distribution function: one is the non-degenerate quantum, Landau and Kelly
distribution function and the second one is the Kelly distribution function for a
degenerate Fermi gas. First, we consider non-degenerate electron gas in the strong
magnetic field.

2.1. Thermodynamics of Landau–Kelly distribution function
As was shown by Landau & Lifshitz (1948, p. 90) and Kelly (1964): for particles
executing small oscillations about some equilibrium positions (as we say, to an
oscillator) that the distribution function of Landau–Kelly statistics has the form

f lk
0 = exp

(
−

p2
z

2mT
−

p2
⊥

2mε⊥

)
, (2.1)

where ε⊥ = h̄wce/2 coth(h̄wce/2T), T is the temperature in energy units, and H0 is
external magnetic field.

We note that in the magnetic field, the condition for non-degeneracy is

εFe� T1/3ε
2/3
⊥ . (2.2)

On the left side of the inequality the Fermi energy of electrons is derived from the
Fermi distribution function in the absence of the magnetic field. On the right side
is the energy of the electrons in the magnetic field derived from the Landau–Kelly
distribution function. Therefore, the inequality gives the condition for non-degeneracy.

The equilibrium density of electrons is defined as

ne =
2

(2πh̄)3

∫
dpf lk

0 . (2.3)

Here, the factor 2 is on account of the electron spin, dp= 2πp⊥ dp⊥ dpz.
Substituting the Landau–Kelly distribution function (2.1) into (2.3), we obtain such

expression for the density of electrons

ne = 2
(

m
2πh̄2

)3/2

T1/2ε⊥. (2.4)

Let us present the asymptotic expression of (2.4).
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For small x= h̄wc/2T

ne = 2
(

m
2πh̄2

)3/2

T3/2
= n0, (2.5)

and for large x,

ne =

(
m

2πh̄2

)3/2

T1/2h̄wce = n0
h̄wce

2T
� n0. (2.6)

We are using a strong magnetic field approximation, where h̄wce � 2KBT .
Numerically, it corresponds to the inequality H0 � 2 × 104T . From here we can
see that at temperatures 1–10◦, the magnetic field should be greater than 104–105 G.

The mean kinetic energy for one electron is defined in the form

〈ε〉 =
2

(2πh̄)3ne

∫
∞

−∞

dpz

∫
∞

0
2πp⊥dp⊥ ∗

(
p2

z

2me
+

p2
⊥

2me

)
f0 = ε⊥ +

kBT
2
. (2.7)

The specific heat for the electron gas is

CV =
∂〈ε〉

∂T
= kB

(
1
2
+

x2

sinh x2

)
, (2.8)

where sinh x is the sine hyperbolic function. It’s expression in power series is

sinh x=
∞∑

k=0

x2k+1

(2k+ 1)!
. (2.9)

For x = h̄wce/(2kBT)� 1, the magnetic field is very small and the specific heat is
slightly less than 3/2kB, i.e.

CV =
3
2 kB(1− 2

9 x2). (2.10)

For the strong magnetic field h̄wce > kBT , we obtain the specific heat in a form

CV = kB

(
1
2
+

(
h̄wce

kBT

)2

e−h̄wce/kBT

)
. (2.11)

From the expression (2.8) we can conclude that the specific heat at the given
temperature is a function of the magnetic field: it has a maximum value CV = 3/2kB
when the magnetic field is zero, it has a tendency to decrease with an increase in
magnetic field and goes to the constant limit CV = 1/2kB when the thermal energy is
negligible due to the magnetic field energy.

For the calculation of the entropy per particle by the Landau–Kelly distribution
function, we use the well-known expression S = −kB/ne

∫
dpf ln f , which leads to

the result

S= kB ln
(2πme)

3/2 T1/2ε⊥

ne
. (2.12)

Since for an adiabatic process dS= 0, from (2.12) we obtain the adiabatic equation

T1/2ε⊥

ne
= const. (2.13)
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First, in the case of a weak magnetic field, i.e. kBT > h̄wce, we have the following
adiabatic equation:

T3/2

ne

(
1+

1
12

(
h̄wce

kBT

)2
)
= const. (2.14)

Next, in the case of a strong magnetic field, i.e. h̄wc � kBT , which is a more
interesting case, the adiabatic equation reads

T1/2H
n
= const. (2.15)

We want to emphasize that the same adiabatic equation (2.15) was found in our paper
(Tsintsadze & Tsintsadze 2014) in the same approximation. There we used Maxwell’s
distribution function with energy ε = p2

z/2m + h̄wcel (where l is the orbital quantum
number l= 0, 1, 2, 3, . . .).

Thus the Maxwell distribution function, which is quite different from the Landau–
Kelly distribution function, gives a similar expression for the adiabatic equation.

2.2. Thermodynamics of the Kelly distribution function
Next, we consider a degenerate Fermi electron gas. To describe the state of Fermi
particles Kelly (1964) derived the distribution function

f k
α =

2
(2πh̄)3

e−(p
2
x+p2

y )/(mα h̄wcα)
∑
l=0

(−1)lLl

(
2

p2
x + p2

y

mαh̄wcα

)
e(εl−µα)/T + 1

. (2.16)

Magnetic field is along the z axis. Here suffix α stands for the particle species, Ll(x)
is the Laguerre polynomial of order l (Gradshteyn & Ryzhik 2010), for which the
following condition exists 2(−1)l

∫
e−w2

Ll(2w2)w dw= 1, εl = p2
‖
/2me + h̄wcl, and µα

is the chemical potential defined by the normalization condition.

nα = 2
∫

dpf k
α (p⊥, p‖). (2.17)

Here, the factor 2 is on account of the particle spin. For simplicity we use the
notation w2

α = p2
⊥
/(mαh̄wcα) = (p2

x + p2
y)/(mαh̄wcα). We note that such a distribution

function was independently derived by Zilberman (1970). Kelly’s distribution function
represents a hybrid distribution function. In a plane perpendicular to the magnetic
field H, Kelly’s distribution function is Boltzmannian, but along the magnetic field
distribution function is a Fermi distribution function.

We investigate the Kelly distribution function in a strong magnetic field, when
the magnetic energy is greater than or equal to the Fermi energy. As the Kelly
distribution describes degenerate systems, we shall consider gas at the temperature
limit |lh̄wc −µ|� T , where the thermal energy is neglectable. In this case the Fermi
distribution function is, to a good approximation, described by the Heaviside step
function H

(
µ− εl

)
, from which follows µ= εFe= ε

l
=p2

‖
/2me+ lh̄wce. For the parallel

component of momentum we get the expression p‖=±
√

2me (εFe − lh̄wce)
1/2. The last

expression reads that the summation along l is limited by the condition εFe > lh̄wce,
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so that lmax = εFe/h̄wce. As we are interested in strong magnetic fields, when
h̄wce >= εFe the orbital number can have only two possible values l= 0, 1.

First, we consider the case when the magnetic energy is greater than the Fermi
energy. Orbital number restriction yields l = 0. For the lowest Landau level δ = −1
(see (1.1)). In this case Kelly’s distribution function is

f k
α

(
p
⊥
, p‖
)
=

2e−wα

(2πh̄)3
1

exp

(
p2
‖
/2mα −µα

Tα

)
+ 1

. (2.18)

At T = 0, Kelly’s distribution function (2.18) reads

f k
α

(
p
⊥
, p‖
)
=

2e−wα

(2πh̄)3
H
(
µα − p2

‖
/2mα

)
, (2.19)

where H(x) is the Heaviside step function and µα = p2
F/2mα. Substituting the

distribution function (2.19) into (2.17) we obtain the expression for the density

nα =
mαh̄wcαpF

π2h̄3 , (2.20)

which is true for the lowest Landau level (l = 0), i.e. this expression is associated
with the Pauli paramagnetism and the self-energy of particles. If we suppose that
the density of electrons is constant, then from (2.20) follows an important statement,
namely, that the Fermi momentum decreases along with the increase of the magnetic
field, so that a pancake configuration of the Fermi energy thins.

Now, we calculate the mean energy of the particles at the lowest Landau level by
Kelly’s distribution function (2.18).

〈ε〉 = 〈ε⊥〉 + 〈ε‖〉 =
2
ne

∫
dp
⊥

∫
∞

−∞

dp
‖

(
p2
‖

2m
+

p2
⊥

2m

)
f k
0e. (2.21)

The result of the calculation is

〈ε〉 =
h̄wc

2
+
εF

3

(
1+

π2

6

(
kBT
εF

)2
)
. (2.22)

We know, that for the specific heat of a Fermi gas CV = (∂〈ε〉/∂T)V .
We know that in all temperature regions a metal consists of two subsystems: a

crystalline lattice of ions and a free electron gas. Therefore, the specific heat of a
metal can be presented as a sum of two items

CV =Clat
V +Ce

V, (2.23)

where Clat
V is the specific heat of the lattice and

θD� T, Clat
V = 3kBN. (2.24a,b)

θD� T, Clat
V =

12π4

5
kBN

(
T
θD

)3

, (2.25a,b)
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where θD is the Debye characteristic temperature, N is the total number of particles,
Ce

V is the specific heat for a free electron isotropic gas. For T� TF

Ce
V =

3
2 kBN, (2.26)

and for T� TF

Ce
V =

π2

2
KBN

(
T
TF

)
, (2.27)

where TF = (3π2)2/3h̄2n2/3
e /(2mekB).

Comparison between Clat
V and Ce

V shows us that for temperatures T > 1◦, Clat
V is

always more than Ce
V . As was shown by Tsintsadze (2010), a strong magnetic field

leads to a reduction of the Fermi energy

εF = kBTF = γ
( n

H

)2
, (2.28)

where γ = π4h̄4c2/(2mee2). In our case the specific heat follows from the expression
of (2.22)

Ce
V =

π2

9
kBN

(
kBT
εF

)
, (2.29)

Here, εF is defined by (2.28). Therefore, when the magnetic field increases, i.e. in this
case the Fermi energy εF decreases, this leads to an increase of the specific heat.

We obtained the above expression equation (2.22)–(2.29) in the limit: h̄wc >εF =µ.
Now we suppose that h̄wc = εF. So, in this case, the orbital quantum number can be
only l= 0, 1. In this limit, Kelly’s distribution function is

f k
0 =

2e−w2

(2πh̄)3

 1

exp
p2
‖
/2me −µ

kBT
+ 1
−

L1

(
2p2
⊥

mh̄wc

)
exp

p2
‖

kBT
+ 1

 , (2.30)

where L1(2p2
⊥
/mh̄wc)= 1− 2p2

⊥
/mh̄wc.

In such a case, from the last term of equation (2.30) it follows that T 6= 0. Using
the anisotropic distribution function (2.30) we obtain the expression for the electron
density

ne =
mwcpf

π2h̄2

(
1+ 0.5

√
kBT
εF

)
. (2.31)

For the mean kinetic energy of per particle

〈ε〉 = 〈ε⊥〉 + 〈ε‖〉 =
5
6

h̄wc +
1
3

h̄wc

√
kBT
h̄wc

. (2.32)

Following (2.32), for the specific heat we obtain

CV =
∂〈ε〉

∂T
=

kB

6

√
h̄wc

kBT
. (2.33)

To get the expression for the specific heat (2.33) we supposed, that h̄wc ∝ εF� kBT ,
but the temperature here cannot be zero. We can rewrite the relation as h̄wc ∝ εF =

γ (n/H)2, where γ is defined under (2.27). Therefore the specific heat (2.33) can be
called anomalous.
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3. Parallel and perpendicular components of pressure and Fermi gas compressibility
for the Kelly distribution function

We now derive the perpendicular component of the pressure using the Kelly
distribution function (2.19) for electrons in the lowest Landau level (l = 0, δ = −1)
for the temperature T = 0.

P⊥e =
1
3

∫
dp
(p2

x + p2
y)

me
f k
e ( p

⊥
, p‖). (3.1)

After simple integration of (3.1) we obtain

P⊥e =
1
3 h̄wcene, (3.2)

where ne is the density defined by (2.20).
At temperatures lower than the degeneracy temperature, TF = β(n/H0)

2 (where β =
π4h̄4c2/(2mee2); Tsintsadze (2010)) from (2.17) and (2.18) the density of the electrons
follows the expression

ne =
meh̄wcepF

π2h̄3

(
1−

π2

24

(
T
TF

)2
)
. (3.3)

In this case ne in (3.2) is governed by (3.3). It is obvious from (3.2) that at l= 0, P⊥
is not zero.

Next, for the parallel component of the pressure, in the same case, i.e. l = 0 and
T = 0, we obtain

P‖e =
1
3
× 2

∫
dp

p2
‖

me
f k
e . (3.4)

Use of (2.19) in (3.4) yields

p‖e = γ
(ne

H

)2
ne, (3.5)

where γ =π4h̄4c2/(9mee2).
Having expressions (3.2) and (3.5), we can calculate the compressibilities to both

directions.

u2
⊥
=

1
me

∂P⊥
∂ne
=

h̄wce

3me
. (3.6)

As we can see, the perpendicular compressibility does not contain the density of
particles as well as the temperature. It is just a function of the magnetic field. Thus
this velocity is new.

The compressibility along the magnetic field reads

u2
‖
=

1
me

∂P‖
∂ne
=

3γ
me

(ne

H

)2
. (3.7)

We want to emphasize that, when the magnetic field increase, the transverse part of
compressibility increases and the parallel part decreases.
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4. Richardson effect

Now we consider the Richardson effect (Greiner, Neise & Stöcker 1995, pp. 350–
353) in two limit cases. According to the model of an ideal Fermi gas at finite
temperature, for electrons in the conductive band of metals there will be a number
of electrons with enough energy to leave the metal. This is the so-called Richardson
effect, or thermionic emission, where an electron current evaporates from the heated
metal. The work function ϕ is defined as the amount of energy necessary to leave
the metal.

We shall assume that the conductive electrons in the metal are free and independent
particles in a constant potential well of depth W, produced by the interaction of
electrons and metallic ions. We want to suggest that all electrons which hit a surface
area element dx dy= dSz with moment pz and fulfil the requirement εz = p2

z/2me > W
can leave the metal, independent of their momentum component perpendicular to the
surface normal.

The current density of electrons that leave the metal is given by the expression

Jz =
2e

(2πh̄)3

∫
∞

√
2meW

dpz
pz

me

∫
∞

−∞

dpx

∫
∞

−∞

dpyf . (4.1)

Where the z axis is along the normal to the metal surface. The factor two is due to
the spin.

4.1. Richardson effect for Landau–Kelly distribution
First, we investigate the Richardson effect for the Landau–Kelly distribution function.
Magnetic field is perpendicular to the metal surface. After simple integration of the
current density equation (4.1) using the Landau–Kelly distribution (2.1) we get

J⊥z =
emε⊥T
2π2h̄3 e−W/T . (4.2)

If the magnetic field is weak T� h̄wce, we obtain the current density for the classical
Richardson effect

J⊥z = en
(

T
2πm

)1/2

e−W/T
=

emT2

2π2h̄3 e−W/T
≡ JRCM

z (4.3)

and the work function ϕ agrees with the bottom of the well in the classical case.
In the limit of a strong magnetic field, T� h̄wce,

Jz(H)=
emh̄wceT

4π2h̄3 e−W/T
=

(
h̄wce

2T

)
JRCM

z , (4.4)

where JR
z is the current density for the classical Richardson effect.

This expression shows us the strong increase of the Richardson effect in the strong,
external magnetic field: Jz(H)� JR

z .
Now we investigate the case where the magnetic field is across the surface and the

surface normal is perpendicular to the field (B⊥n). The magnetic field is along the x
axis and the surface normal is in the z direction: B= (B, 0, 0), n= (0, 0, n). Original
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indices in the Landau–Kelly distribution function defined by (2.1) are changed to
reflect magnetic field orientation. We can rewrite the distribution function as

f = exp

(
−

p2
x

2mT
−

p2
z

2mε⊥
−

p2
y

2mε⊥

)
. (4.5)

Integrating (4.1) will give the current density expression

J‖z =
emε⊥
√
ε⊥T

2π2h̄3 e−W/ε⊥, (4.6)

and therefore, if comparing current density expressions for parallel (4.6) and
perpendicular (4.2) case,

J‖z /J
⊥

z =
√
ε⊥/T exp[W/T −W/ε⊥]. (4.7)

Since the perpendicular energy is increased by the magnetic field, it is clear that
ε⊥ > T , and therefore J‖z /J

⊥

z > 1. This means that the magnetic field more efficiently
increases the current density when it is along the surface.

4.2. Richardson effect for the Kelly distribution
Next, we shall consider the Richardson effect in the degenerate Fermi electron gas
in the metal, with the presence of a strong external magnetic field. We use the Kelly
distribution function.

The current density of electrons for the Kelly model can be calculated by using (4.1)
with the Kelly distribution function f K defined in (2.16).

Jz =
2e

(2πh̄)3

∫
∞

√
2meW

dpz
pz

me

∫
∞

−∞

dpx

∫
∞

−∞

dpyf k. (4.8)

Integration of (4.1) by px and py leads us to the integral

Jz =
eh̄ωce

2π2h̄3

∑
l=0

∫
∞

√
2meW

dpz
pz

exp
[

p2
z/(2m)+ h̄ωcel−µ

T

]
+ 1

. (4.9)

We can rewrite (4.9) in the form

Jz =
eh̄ωcemeT

2π2h̄3

∞∑
l=0

∫
∞

W/T

dx
ex+δl + 1

, (4.10)

where x= p2
z/(2mT) and δ = (h̄ωcel−µ)/T . The result of the integration over x is

Jz =
eh̄ωcemeT

2π2h̄3

∞∑
l=0

ln
(

1+ exp
[
−(W −µ)− h̄ωcel

T

])
. (4.11)

The exponential term in (4.11) is very small, even at l= 0 and T = 2000 K. So we
can expand the logarithm into power series.

Jz =
eh̄ωcemeT

2π2h̄3 e(W−µ)/T
∑
l=0

e−(h̄ωcel)/T, (4.12)
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and summation of the geometric progression gives

∞∑
l=0

e−(h̄ωcel)/T
=

1
1− e−(h̄ωce)/T

. (4.13)

Finally, the current density which leaves the metal reads as

Jz =
eh̄ωcemeT

2π2h̄3

e(W−µ)/T

1− e−(h̄ωce)/T
. (4.14)

We can express work using the depth of the potential well W and the Fermi energy
εF. Since the difference between the bottom of the well and the Fermi energy (εF =

p2
F/2m) at T = 0 is the work function ϕ, where pF is the momentum of the quasi-

particles on the Fermi surface,

ϕ =W − εF > 0. (4.15)

For the current density we have

Jz =
eh̄ωcemeT

2π2h̄3

e−ϕ/T

1− e−(h̄ωce)/T
. (4.16)

Let suppose that the external magnetic field is zero (h̄ωce = 0). Then, from (5.5)
follows the Richardson current density for the quantum case JRQM

z .

Jz =
emeT2

2π2h̄3 e−ϕ/T ≡ JRQM
z . (4.17)

In the case of a strong magnetic field h̄ωce� T

Jz =
eh̄ωcemeT

2π2h̄3 e−ϕ/T, (4.18)

or in another form

Jz(H)=
emeT2

2π2h̄3 e−ϕ/T
h̄ωce

T
= JRQM

z
h̄ωce

T
. (4.19)

Comparing expressions (4.17) and (4.19), we clearly see that at the same temperature,
the magnetic field helps electrons leave the metal and increases current density.

5. Hallwachs effect
We already considered thermionic emission, where electrons in the conductive

band leave the metal using thermal energy. Now we calculate the current density
of electrons emerging from the metal when it is illuminated with short wavelength
photons, the so-called Hallwachs effect (Greiner et al. 1995, pp. 353–354). We use
the same model of the metal as in the Richardson effect and assume that electrons
in the conductive band, which scatter with photons of energy h̄ω, obtain the same
amount of energy as additional kinetic energy. Electrons in the metal can absorb
the whole energy of a photon because in the metal there are enough other particles
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(for example atoms) to satisfy momentum balance. We can say that such electrons
can leave the metal in the z direction if the condition p2

z/2m+ h̄ω>W is fulfilled.
For the current density we can write

Jz =
2e

(2πh̄)3

∫
∞

√
2me(W−h̄ω)

dpz
pz

me

∫
∞

−∞

dpx

∫
∞

−∞

dpyf . (5.1)

Here, we should note that Jz is the current density of only scattered electrons which
leave the metal. The number of scattering processes increases proportionally to the
intensity of the incoming radiation. In the expression for the total current density we
will have constant of proportionality, which will depend on the reflecting power of the
metal, the intensity of the radiation and the cross-section of the scattering process.

5.1. Hallwachs effect for the Landau–Kelly distribution function
First, we investigate the Hallwachs effect for the Landau–Kelly distribution function.
After simple integration of the current density equation (5.1) using the Landau–Kelly
distribution (2.1) we get

Jz =
emε⊥T
2π2h̄3 e(h̄ω−W)/T . (5.2)

This correspond to pure thermal emission with the work function decreased by h̄ω.
Increasing the photon energy (frequency) exponentially increases the current density.
In the special case where the radiation just provides the work function, i.e. h̄ω=W,
the current density is Jz= emε⊥T/(2π2h̄3) and therefore is significantly different from
zero because of thermal excitation.

5.2. Hallwachs effect for the Kelly distribution
Next, we shall consider the Hallwachs effect in the degenerate Fermi electron gas in
the metal. For this purpose we use the Kelly distribution function. The current density
of electrons for the Kelly model can be calculated by using equation (5.1) with the
Kelly distribution function f K defined in (2.16). Using the same method as for the
Richardson effect for the Kelly distribution, we arrive at the current density expression

Jz =
eh̄ωcemeT

2π2h̄3

∞∑
l=0

ln
(

1+ exp
[
µ+ h̄ω−W − h̄ωcel

T

])
. (5.3)

Here, we cannot say that the exponential term in (5.3) is very small, since the photon
energy can compensate for the difference between the depth of the potential well and
the magnetic energy.

First, we investigate (4.12) in the limit exp[(µ+ h̄ω−W)/T] � 1. We expand the
logarithm into power series and then summation of the geometric progression will give

Jz =
eh̄ωcemeT

2π2h̄3

e−(ϕ−h̄ω)/T

1− e−(h̄ωce)/T
. (5.4)

Current density is therefore increased due to the radiation because radiation decreases
the work function and more electrons, which scatter on the photons, can leave the
metal.
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Secondly, we investigate a metal in strong radiation with energy exceeding the work
function: h̄ω − W − µ� T , the magnetic field is strong and satisfies the condition
h̄ωce� h̄ω−W −µ. From (5.3) we obtain the current density expression in the form

Jz =
eh̄ωceme

2π2h̄3 (h̄ω+µ−W) . (5.5)

Current density is linearly proportional to the single photon energy and increases with
an increase of it.

6. Summary
To summarize, we studied various thermodynamic quantities of the quantum plasma

in a strong, external, uniform and constant magnetic field, using two anisotropic
distribution functions for non-degenerate and degenerate quantum Fermi plasmas.
The Landau–Kelly distribution function gives us the specific heat that has maximum
and minimum values which depends on the external magnetic field: specific heat
decreases with an increasing magnetic field. For the Kelly distribution function we
investigate the specific heat for two cases: (i) When the magnetic energy exceeds the
Fermi energy, an orbital number can have only a l = 0 value and the specific heat
increases with an increase of the magnetic field. (ii) When the magnetic energy is
equal to the Fermi energy (l = 0, 1), specific heat still increases with the increase
of magnetic energy, also it increases with a decrease of temperature, so it can be
called anomalous. We derived the parallel and perpendicular components of pressure
and we calculated compressibility of a Fermi gas for the Kelly distribution function.
We have shown that the perpendicular compressibility increases and the parallel
compressibility decreases with an increase of the magnetic field. We also note that
perpendicular compressibility depends only on the magnetic field and its expression
is new.

We compare the Richardson effect current density expression with and without a
magnetic field. The Richardson effect expressions for classical and quantum systems
without the magnetic field are well known. In degenerate systems, the work function is
smaller than in non-degenerate systems, that is why the electron current for a Fermi
distribution is greater than for a Maxwell distribution. Adding an external magnetic
field perpendicular to the metal surface significantly increases the current for both the
Landau–Kelly and Kelly distribution functions. In addition, for strong magnetic fields,
with an increase of the external magnetic field the current increases two times faster
for the Kelly distribution than for the Landau–Kelly distribution function.

Moreover, when we illuminate the metal surface with short wavelength radiation,
photons give additional kinetic energy to the metal electrons and the current density
increases and exceeds the thermionic current density for both distribution functions. In
the special case where the photon energy compensates the work function, the electron
current is significantly different from zero due to the thermal excitation and external
magnetic field.
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