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A SPATIAL MODEL FOR SELECTION AND COOPERATION
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Abstract

We study the evolution of cooperation in an interacting particle system with two types.
The model we investigate is an extension of a two-type biased voter model. One type
(called defector) has a (positive) bias α with respect to the other type (called cooperator).
However, a cooperator helps a neighbor (either defector or cooperator) to reproduce at
rate γ . We prove that the one-dimensional nearest-neighbor interacting dynamical system
exhibits a phase transition at α = γ . A special choice of interaction kernels yield that for
α > γ cooperators always die out, but if γ > α, cooperation is the winning strategy.
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1. Introduction

In nature cooperative behavior amongst individuals is widespread. It is observed in animals,
e.g. [5], [11], as well as in microorganisms, e.g. [6], [19]. In an attempt to understand this
phenomenon in terms of models, theoretical approaches have introduced different interpre-
tations and forms of cooperation, mostly within the area of game theory [15]. In all such
approaches, a defector (or selfish) type tends to have more offspring, but there are cases when it
is outcompeted by the cooperator type under some circumstances. Although, in all the models
describing cooperation, the question of extinction and survival of a type or the coexistence
of several types are the main subjects of the mathematical analysis, the frameworks for the
theoretical studies may vary. While (stochastic) differential equations are mainly used for
nonspatial systems (see, e.g. [1], [12]), the theory of interacting particle systems provides a
suitable setup for the analysis of models with local interactions between the particles, [2], [10],
[17]. In this paper we define a model using the latter structure and terminology.

Investigations of models incorporating cooperation are interesting because of the following
dichotomy: in nonspatial (well-mixed) situations, the whole population benefits from the
cooperative behavior. If defectors have a higher fitness than cooperators, defectors always
outcompete cooperators in the long run. However, if the system is truly spatial, cooperators
can form clusters and then use their cooperative behavior in order to defend themselves against
defectors, even though those might have higher (individual) fitness. This heuristic suggests
that only structured models can help to understand cooperative behavior in nature. For the
model studied in the present paper, we will make it precise in Proposition 2 for extinction of
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cooperators in a nonspatial system and in Theorem 1 for extinction of defectors in a spatial
system, if cooperation is strong enough.

Due to the variety of interpretations of cooperative behavior there are different ways of
implementing these mechanisms in a spatial context. In the field of population dynamics,
Sturm and Swart [17] studied an interacting particle system containing a cooperative-branching
mechanism which can be understood as a sexual reproduction event. In [2], Blath and Kurt
studied a branching-annihilating random walk and again, a cooperation mechanism is inter-
preted as sexual reproduction. In contrast, the model introduced by Evilsizor and Lanchier in
[10] originates from the game-theoretical study of a two-player game with different strategies,
where the strategies can be altruistic or selfish. Here, the altruistic strategies represent the
cooperator type. We discuss the findings of these models to our results in Section 4.

Various interacting particle systems that appear in the literature are attractive, i.e. two versions
of the system, which start in configurations where one dominates the other, can be coupled
such that this property holds for all times; see, e.g. [17] for an attractive model mentioned
above. For such processes, there exist several general results (see [13]) which provide some
useful techniques to help in the analysis. However, cooperation often leads to nonattractive
interacting particle systems; see [2], [10], and the one presented here. The reason here is that
cooperators (or altruists) do not distinguish between noncooperators and their own type, which
usually contradicts attractiveness.

The motivation for the present paper came from studies of bacterial cells in the context
of public good dilemmas, e.g. [4], [8]. The idea is that there are two types (defector = 0,
cooperator = 1), where only cooperators produce some public good that helps neighboring
cells to reproduce. However, this production is costly which means that defectors will have a
selective advantage over the cooperator type. The resulting model is a biased voter model with
an additional cooperation mechanism. The main objective of our paper is to study the long-time
behavior of such a model dependent on the parameters of the system.

In particular, we prove, for our main model in one dimension from Definition 1, that the
system clusters independently of the parameter configuration. When starting in a translation
invariant configuration, for α > γ , defectors take over the population, whereas for γ > α

cooperators win; see Theorem 1. Additionally, in higher dimensions, at least we can show that
the parameter region where the defecting particle win is larger than for d = 1; see Theorem 2.
We also show that a finite number of cooperators die out if α > γ , but may survive if γ > α.
The converse holds for the defectors; see Theorem 3. What remains to be seen is if there are
parameter combinations such that cooperators win also in higher dimensions. Some preliminary
results in the limit of small parameters α and γ can be found in [7].

The paper is structured as follows. First, we give a general definition of the model in
Section 2. After the definition we derive some properties of the model, show its existence, and
consider some special cases and related systems. In Section 3 we state limit results for the main
model and its derivatives, mainly restricted to the one-dimensional lattice. Subsequently, in
Section 4, we compare our results with those obtained in similar models, e.g. from [2] and [10].
The rest of the paper is devoted to the proofs of the theorems.

2. The model and first results

2.1. The model

Let V be a countable vertex set, and (a(u, v))u,v∈V be a (not necessarily symmetric) Markov
kernel from V to V . Additionally, (b(u, (v, w)))u∈V, (v,w)∈V ×V is a second Markov kernel
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from V to V × V . We study an interacting particle system X = ((Xt (u))u∈V )t≥0 with state
space {0, 1}V , where Xt(u) ∈ {0, 1} is the type at site u at time t . A particle in state 0 is called a
defector and a particle in state 1 is called a cooperator. The dynamics of the interacting particle
system, which is a Markov process, is (informally) as follows, for some α, γ ≥ 0.

• Reproduction. A particle at site u ∈ V reproduces with rate a(u, v) to site v, i.e. X(v)

changes to X(u). (This mechanism is well known from the voter model.)

• Selection. If X(u) = 0 (i.e. there is a defector at site u ∈ V ), it reproduces with additional
rate αa(u, v) to site v, i.e. X(v) changes to 0. (A defector has a fitness advantage over
the cooperators by this additional chance to reproduce. This mechanism is well known
from the biased voter model.)

• Cooperation. If X(u) = 1 (i.e. there is a cooperator at site u ∈ V ), the individual
at site v (no matter which state it has) reproduces to site w at rate γ b(u, (v, w)) ≥ 0.
(A cooperator at site u helps an individual at site v to reproduce to site w.)

Remark 1. (Interpretation) (i) Selection. Since cooperation imposes an energetic cost on
cooperators, the noncooperating individuals can use these free resources for reproduction
processes. This leads to a fitness advantage that we describe with the parameter α.

(ii) Cooperation. The idea of the cooperation mechanism in our model is that each cooperator
supports a neighboring individual, independent of its type, to reproduce to another site according
to the Markov kernel b. A biological interpretation for this supportive interaction is a common
good produced by cooperators and released to the environment, helping the colony to expand.
The corresponding interaction parameter is γ .

We will deal with two situations, depending on whether b(u, (v, u)) > 0 or b(u, (v, u)) = 0.
In the former case, we speak of an altruistic system, since a cooperator at site u can help the
particle at site v to kill it. In the latter case, we speak of a cooperative system.

In order to uniquely define a Markov process, we will need the following assumption.

Assumption 1. (Markov kernels.) The Markov kernels a(·, ·) and b(·, (·, ·)) satisfy∑
u∈V

a(u, v) < ∞ for all v ∈ V (1)

and ∑
u,v∈V

b(u, (v, w)) < ∞ for all w ∈ V . (2)

Remark 2. (Some special cases.) A special case is

b(u, (v, w)) = a(u, v)a(v, w) for all u, v, w ∈ V . (3)

Then, (2) is implied by the assumption

sup
v∈V

∑
u∈V

a(u, v) < ∞,

which is stronger than (1). We will also deal with a similar case by setting b(u, (v, u)) = 0,
which means that u cannot help v to replace u. To be more precise, we set

b(u, (v, w)) =
⎧⎨⎩a(u, v)

a(v, w) 1{w �=u}∑
w′ �=u a(v, w′)

if a(v, u) < 1,

0 otherwise,
for all u, v, w ∈ V . (4)
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The normalizing sum in the denominator emerges from the exclusion of self-replacement, i.e. (4)
is the two-step transition kernel of a self-avoiding random walk.

2.2. Existence and uniqueness of the process

We now become more formal and define the (pre)generator of the process X via its transition
rates. Given X ∈ {0, 1}V , the rate of change c(u, X) from X to

Xu(v) =
{

X(v), v ∈ V \ {u},
1 − X(u), v = u,

is as follows. If X(u) = 0 then

c(u, X) =
∑

v

a(v, u)X(v) + γ
∑

v

X(v)
∑
w

X(w)b(w, (v, u)). (5)

If X(u) = 1 then

c(u, X) = (1 + α)
∑

v

a(v, u)(1 − X(v)) + γ
∑

v

(1 − X(v))
∑
w

X(w)b(w, (v, u)). (6)

Here, the first sum in c(u, X) represents the rates triggered by reproduction and selection,
whereas the last terms emerge from the cooperation mechanism.

The existence of a unique Markov process corresponding to the transition rates c(u, X)

satisfying Assumption 1 is guaranteed by standard theory; see, e.g. [13, Chapter 1]. Precisely,
we define the (pre)generator � of the process through

(�f )(X) =
∑
u∈G

c(u, X)(f (Xu) − f (X)),

where f ∈ D(�), the domain of �, is given by

D(�) := {f : {0, 1}V → R depends only on finitely many coordinates}.
We note that D(�) is dense in Cb({0, 1}V ), the set of bounded continuous functions on {0, 1}V ,
because of the Stone–Weierstrass theorem. We find the following general statement.

Proposition 1. (Existence of a unique Markov process.) If Assumption 1 holds, the transition
rates c(·, ·) given in (5) and (6) define a unique Markov process X on {0, 1}V . Moreover, the
closure �̄ of � is the generator of X.

Proof. We need to show that the closure of � in C({0, 1}V ) is a generator of a semi-group
which then uniquely defines a Markov process (see, e.g. [13, Theorem 1.1.5]). In order to show
this, we follow [13, Theorem 1.3.9] and check the following two conditions:

sup
u∈V

sup
X∈{0,1}V

c(u, X) < ∞, (7)

sup
u∈V

∑
v �=u

c̃u(v) < ∞, (8)

where c̃u(v) := sup{‖c(u, X1) − c(u, X2)‖T : X1(w) = X2(w) for all w �= v measures the
dependence of the transition rate c(u, X) of the site v ∈ V and ‖ · ‖T denotes the total variation
norm.
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Both inequalities follow from Assumption 1 and the definition of the transition rates c(·, ·).
Using these we obtain, for any X ∈ {0, 1}V and u ∈ V ,

c(u, X) ≤ (1 + α)
∑
v∈V

a(v, u) + γ
∑

v,w∈V

b(w, (v, u)) < ∞

proving (7). For (8), we note that c̃u(v) �= 0 only when either a(v, u) > 0 or b(w, (v, u)) > 0
or b(v, (w, u)) > 0 for some w ∈ V . Hence, for all u ∈ V , we obtain∑

v �=u

c̃u(v) ≤
∑
v �=u

(
(1 + α)a(v, u) + γ

∑
w∈V

b(w, (v, u)) + b(v, (w, u))

)
≤

∑
v∈V

(1 + α)a(v, u) + 2γ
∑

v,w∈V

b(v, (w, u))

< ∞,

where we used the inequalities (1) and (2), again proving (8).
Now, using [13, Theorem 1.3.9] we see that the closure of � in C({0, 1}V ) is a Markov

generator of a Markov semigroup. This completes the proof. �
We can now define the voter model with bias and cooperation.

Definition 1. (Cooperative/altruistic voter model with bias and cooperation.) Let a(·, ·) be a
Markov kernel from V to V satisfying (1) and b(·, (·, ·)) be a Markov kernel from V to V × V

satisfying (2).

• The (unique) Markov process with transition rates given by (5) and (6) is called the voter
model with bias and cooperation (VMBC).

• If (3) holds, the VMBC is called the altruistic voter model with bias and cooperation
(aVMBC).

• If (4) holds, the VMBC is called the cooperative voter model with bias and cooperation
(cVMBC).

2.3. Unstructured populations

As a first result, we show that the probability for cooperators to die out on a large, complete
graph tends to 1 (for α > 0). We consider the special case of an unstructured population.
Therefore, let V N be the vertex set of a graph with |V N | = N and

aN(u, v) = 1

N − 1

for u, v ∈ V N with u �= v. Due to the global neighborhood it is equally likely to find
configurations of the form ‘101’ and ‘110’. Hence, cooperation events favoring a defector or
a cooperator happen with the same rate and, thus, cancel out when looking at the mean field
behavior of the system. We will show that defectors always take over the system for large N .
It can easily be seen that the aVMBC is dominated by the cVMBC, so it suffices to show
extinction of cooperators for the cVMBC, i.e. we have

bN(u, (v, w)) = 1{u�=v}
N − 1

1{v �=w} 1{w �=u}
(N − 1)[(N − 2)/(N − 1)] = 1

(N − 1)(N − 2)
1{u,v,w different} .

We prove that in the limit for large N , the frequency of cooperators follows a logistic equation
with negative drift, hence cooperators die out. See also [9, Chapter 11].
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Proposition 2. (Convergence in the unstructured case.) Let XN be a cVMBC on V N and
SN := (1/N)

∑
uX

N(u) the frequency of cooperators. Then, if SN
0 �⇒ s0 as N → ∞ then

SN �⇒ S as N → ∞,

where S solves the ordinary differential equation

dS = −αS(1 − S)

with S0 = s0, independently of γ .

Proof. In order to prove the limiting behavior for N → ∞, we observe that SN is a Markov
process. A calculation of the generator �N applied to some smooth function f yields

�Nf (s) = Ns
1 − s

1 − 1/N

(
f

(
s + 1

N

)
− f (s)

)
+ (1 + α)N(1 − s)

s

1 − 1/N

(
f

(
s − 1

N

)
− f (s)

)
+ γNs

s − 1/N

1 − 1/N

1 − s

1 − 2/N

(
f

(
s + 1

N

)
− f (s)

)
+ γNs

1 − s

1 − 1/N

s − 1/N

1 − 2/N

(
f

(
s

(
− 1

N

))
− f (s)

)
→ −αs(1 − s)f ′(s) as N → ∞.

Applying standard weak convergence results, see, e.g. [9, Theorem 4.8.2], shows the claimed
convergence. �

3. Results on the long-time behavior for V = Z
d

Our main goal is to derive the long-time behavior of the VMBC with V = Z
d . In spin-flip

systems, results on the ergodic behavior can be obtained by general principles if the process is
attractive. Thereby, a spin system is called attractive if for two configurations X, Y ∈ {0, 1}V
with X ≤ Y componentwise, the corresponding transition rates c satisfy the following two
relations for all u ∈ V :

X(u) = Y (u) = 0 �⇒ c(u, X) ≤ c(u, Y ),

X(u) = Y (u) = 1 �⇒ c(u, X) ≥ c(u, Y ). (9)

However, the VMBC is not attractive for γ > 0. Indeed, consider the simple case when
V = {u, v, w} with Markov kernels

a(u, v) = a(v, w) = a(w, u) = 1 and b(u, (v, w)) = a(u, v)a(v, w).

Then, let X = (001) and Y = (101) (i.e. X(u) = 0, Y (u) = 1, X(v) = Y (v) = 0, X(w) =
Y (w) = 1) and note that X ≤ Y , but

c(w, X) = 1 + α < 1 + α + γ = c(w, Y ).

This shows that (9) is not satisfied at w ∈ V . Hence, proofs for the long-time behavior require
other strategies that do not rely on attractiveness of the process.

Before we state our main results we define what we mean by extinction and clustering.
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Definition 2. (Extinction and clustering.) (i) We say that in the VMBC-process (Xt )t≥0 type
i ∈ {0, 1} dies out if

P

(
lim

t→∞ Xt(u) = 1 − i
)

= 1 for all u ∈ V .

(ii) We say that the VMBC process clusters if, for all u, v ∈ V ,

lim
t→∞ P(Xt (u) = Xt(v)) = 1.

We will use V = Z
d and nearest neighbor interaction via the kernels a and b. In this case,

we have, for all u, v, w ∈ Z
d with |u − v| = |w − v| = 1,

a(u, v) = 1

2d
, b(u, (v, w)) = 1

(2d)2 , for the aVMBC, (10)

and

a(u, v) = 1

2d
, b(u, (v, w)) = 1

2d(2d − 1)
1{u�=w}, for the cVMBC.

We say that (the distribution of) a {0, 1}Z
d
-valued random configuration X is nontrivial if

P(X(u) = 0 for all u), P(X(u) = 1 for all u) < 1. Furthermore, we call X translation
invariant if (X(u1), . . . , X(un))

d=(X(u1 + v), . . . , X(un + v)) for all n ∈ N, u1, . . . , un, v ∈
Z

d , where ‘
d=’ denotes equality in distribution. If the VMBC model is started in a translation

invariant configuration X0 ∈ {0, 1}Z
d
, the configuration Xt is translation invariant due to the

homogeneous model dynamics.
Now we can state our main results. For cVMBC, we distinguish between the case α > γ

where we can state a convergence result in all dimensions d ≥ 1, the case γ > α, and the case
γ = α. In the last two cases, the method of proof is applicable only in dimension d = 1.

Theorem 1. (cVMBC limits.) Let V = Z
d and a(·, ·) be the nearest neighbor random walk

kernel, and X be the cVMBC with α, γ ≥ 0 starting in some nontrivial translation invariant
initial configuration.

(i) If d ≥ 1 and α > γ , the cooperators die out.

(ii) If d = 1 and γ > α, the defectors die out.

(iii) If d = 1 and γ = α, the process clusters.

The proof of Theorem 1 can be found in Section 6. Briefly, for α > γ , we will use a
comparison argument with a biased voter model; see Definition 3. For γ > α and d = 1,
however, we prove the convergence result with the help of a cluster-size process that takes
the special form of a one-dimensional jump process. As we will see, for γ > α, a cluster of
cooperators has a positive probability to survive and expand to ∞, which will then yield the
result. Unfortunately, due to the simple description of such a cluster in one dimension, this
argument cannot be extended to higher dimensions. However, resorting to some simulation
results for d = 2 and d = 3, we see a similar behavior (with a different threshold) such as
in d = 1; see Figure 1. For higher dimensions, spatial correlations between sites are weaker,
reducing the impact of clusters on the evolution of the system. This, in turn, leads to a reduced
chance of survival of cooperators.

For the aVMBC, we can state a threshold only when cooperators die out.
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Theorem 2. (aVMBC limits.) Let V = Z
d and a(·, ·) be the nearest neighbor random walk

kernel, and X be the aVMBC with α, γ ≥ 0 starting in some nontrivial translation invariant
initial configuration.

(i) If d ≥ 1 and α > γ (d − 1)/d , the cooperators die out. In particular, for d = 1, the
cooperators die out if α > 0 independently of γ .

(ii) If d = 1, the process is equal to the cVMBC with parameters α + γ /2 and γ /2 in
distribution. In particular, if γ > α = 0, the process clusters.

The proof of the Theorem can be found in Section 6. Again, for α > γ (d − 1)/d, we can
use a comparison argument with the biased voter model. However, it remains an open question
whether cooperators in the aVMBC have a positive probability of survival in any dimension.
On the one hand, the difference between the aVMBC and the cVMBC becomes smaller in high
dimensions and Figure 1 suggests survival of cooperators for the cVMBC in all dimensions,
if γ is large enough. On the other hand, clustering is usually more difficult in higher dimensions
but the cooperators can only survive due to clustering. First simulation results for d = 2 and
d = 3 show that survival of cooperators is unlikely.

Remark 3. (Cooperation only among cooperators.) Another cooperation mechanism we
might consider arises if cooperators help only other cooperators, i.e. the cells recognize related
cells. In ecological literature, this behavior is called kin-recognition or kin-discrimination;
see [16] for an overview. As to the theoretical behavior of the model, this changes the transition
rate in (6), i.e. if X(u) = 1 then

c(u, X) = (1 + α)
∑

v

a(v, u)(1 − X(v)).

Figure 1: Relative frequencies of cooperators after 100,000 transitions of the cVMBC on a 1,000 sites
torus in one dimension (dashed line), a 40×40 sites torus in two dimensions (solid line) and a 12×12×12
sites torus in three dimensions (dotted line). The initial configuration was a Bernoulli-product measure
with probability 0.5 and the selection rate α was set to 0.5. We suspect that the smaller slope in three

dimensions is a finite-number effect.
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Here, cooperators are less likely to die and, hence, this process dominates the cVMBC.
In particular, for translation invariant initial conditions, defectors die out for γ > α in one
dimension. Moreover, as can be seen from a calculation similar as in the proof of Lemma 1, a
biased voter model, where type 0 is favored, still dominates this process for α > γ . Hence, we
also have that cooperators die out in this case and the same results as in Theorem 1 hold.

Since cooperators always die out in d = 1 for the aVMBC (as long as α > 0), we focus on
the cVMBC in the sequel. We state some results if the starting configuration is not translation
invariant, but contains only a finite number of cooperators or defectors.

Theorem 3. (Finite initial configurations.) Let V = Z and a(·, ·) be the nearest neighbor
random walk kernel, and X be the cVMBC with α, γ ≥ 0. Let X0 contain either finitely
many defectors or finitely many cooperators (i.e. X0 = 1A or X0 = 1 − 1A for some finite
A ⊆ V ).

(i) The process clusters.

(ii) If α ≥ γ and X0 contains finitely many cooperators, the cooperators die out.

(iii) If γ ≥ α and X0 contains finitely many defectors, the defectors die out.

Remark 4. (Starting with a single particle.) A particularly simple initial condition is given if
|A| = 1. In the case that there is initially only a single cooperator, we note that the size of the
cluster of cooperators (Ct )t≥0 is a birth–death process which jumps from C to

C + 1 at rate 1{C>0} +γ 1{C≥2}, C − 1 at rate (1 + α) 1{C>0} .

Conversely, if there is only a single defector, the size of the cluster of defectors (Dt )t≥0 is a
birth–death process which jumps from D to

D + 1 at rate (1 + α) 1{D>0} +γ 1{D=1}, D − 1 at rate (1 + γ ) 1{D>0} .

Hence, either cooperators or defectors die out, depending on whether (Ct )t≥0 (or (Dt )t≥0) hits 0
or not.

The proof of Theorem 3 is given in Section 6. Note that the only situations where the process
does not converge to a deterministic configuration in this setting are the cases where γ > α

(α > γ ) and the process starts with finitely many cooperators (defectors). Here, the limit
distribution is a linear combination of the invariant measures δ0 and δ1 which basically means
that we observe clustering, which is statement (i) above.

4. Comparison to results from [2] and [10]

In this section we compare our results on the cVMBC to those obtained by Blath and Kurt
in [2] and the system introduced by Evilsizor and Lanchier in [10]. We choose these two models
since both have mechanisms favoring one type, while a second type is favored only if it occurs
in a cluster.

4.1. Comparison to [2]

One model studied is the cooperative caring double-branching annihilating random walk
(ccDBARW) on the integer lattice Z. Particles migrate to neighboring sites with rate m and an-
nihilate when meeting another particle. (Note that this mechanism favors the unoccupied state.)
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The double-branching events happen with rate 1 − m. Here, the authors restrict branching to
particles with an occupied neighboring site and such particles branch to the next unoccupied
site to the left and to the right. (That is, if a cluster of size ≥ 2 already exists, the branching
mechanism extends the cluster.) Their result about this process, starting in a finite configuration
(see Theorem 2.4 in the paper), states that for m < 1

2 , particles survive with positive probability,
whereas for m > 2

3 , particles die out almost surely.

Although Blath and Kurt discuss only the case of a finite initial configuration, the results are
in line with our findings. If the mechanism to favor enlargement of existing clusters (cooperation
in our case and cooperative branching in their case) is too weak, type 0 (or the unoccupied state)
wins. Importantly, in both models, enlargement of existing clusters can be strong enough in
order to outcompete the beneficial (or unoccupied) type.

4.2. Comparison to [10]

The model studied in [10]—called the death–birth updating process—emerges from a game
theoretic model with two strategies. This means that transition rates are derived from a 2 × 2
payoff matrix with entries aij for i, j ∈ {1, 2} representing the payoff obtained by a particle of
type i due to interacting with a particle of type j . Now, a particle dies with rate 1 and is replaced
by a particle in its neighborhood proportional to its fitness which is determined by the values
of the payoff matrix. The neighborhood is given by blocks of radius R. The authors analyze
this model in different settings. They call a strategy i selfish if aii > aji for j �= i (i.e. the
payoff having strategy i as opponent is larger if one has the same strategy i) and altruistic if
aii < aji . Again, in a nonspatial version of this game, selfish strategies always outcompete
altruistic strategies. Noting that selfish strategies seem to be fitter, altruistic strategies might
become favorable if they form a large cluster since altruists might have a high payoff. As the
results in [10] show (see their Figure 2), there are parameter regions—in particular in a spatial
prisoner’s dilemma—where altruists can outcompete selfish strategies.

Clearly, the cVMBC is a much simpler model than the death–birth updating process. This is
seen in the results, since [10] show parameter combinations with coexistence for the death–birth
updating process, but our results never show coexistence for the cVMBC. However, as in our
findings for the cVMBC, [10] find that types unfavorable in a nonspatial context can indeed
win in all dimensions. Unfortunately, they can give bounds only on the phase transition in their
model, while we have seen that α = γ is a sharp threshold.

5. Preliminaries

Here, we provide some useful results for the proofs of our theorems. In particular, we
provide a comparison with a biased voter model in Section 5.1 and a particular jump process
in Section 5.2.

5.1. Comparison results

In cases where α > γ , it is possible to prove a stochastic domination of the VMBC by
a biased voter model. The precise statements will be given below. But first, we define this
process, which was introduced by Williams and Bjernkes in [18] and first studied by Bramson
and Griffeath in [3].
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Definition 3. (Biased voter model.) The biased voter model with bias β ≥ −1 and δ ≥ −1 is
a spin system X̃ with state space {0, 1}V and transition rates as follows. If X̃(u) = 0 then

c̃(u, X̃) = (1 + β)
∑

v

a(v, u)X(v).

If X̃(u) = 1 then
c̃(u, X̃) = (1 + δ)

∑
v

a(v, u)(1 − X(v)).

Remark 5. (Long-time behavior of the biased voter model.) The long-time behavior of the
biased voter model is quite simple. In [3], the limit behavior of the biased voter model in V = Z

d

with nearest neighbor interactions was studied. Generalizations to the case of d-regular trees
for d ≥ 3 can be found in [14]. We restate the results for V = Z

d .
Let X̃ be a biased voter model with bias β > −1 and δ > −1 as introduced in Definition 3.

For any configuration X0 ∈ {0, 1}Z
d

with infinitely particles of each type, it holds that the type
with less bias dies out, i.e.

(i) if β > δ, type 0 dies out (i.e. P(limt→∞ X̃t (u) = 1) = 1 for all u ∈ V );

(ii) if δ > β, type 1 dies out (i.e. P(limt→∞ X̃t (u) = 0) = 1 for all u ∈ V ).

Lemma 1. (cVMBC is equal to or less than the biased voter model.) Let X be a cVMBC with
bias α and cooperation coefficient γ , and X̃ a biased voter model with bias γ and α. Then, if
b(·, (·, ·)) satisfies

∑
ub(u, (v, w)) ≤ a(v, w), and X0 ≤ X̃0, it is possible to couple X and X̃

such that Xt ≤ X̃t for all t ≥ 0.

Proof. We need to show (see [13, Theorem 3.1.5]) that, for X ≤ X̃,

if X(u) = X̃(u) = 0 then c(u, X) ≤ c̃(u, X̃),

if X(u) = X̃(u) = 1 then c(x, X) ≥ c̃(u, X̃).
(11)

We start with the first assertion and write

c(u, X) =
∑

v

a(v, u)X(v) + γ
∑

v

X(v)
∑
w

X(w)b(w, (v, u))

≤
∑

v

a(v, u)X(v) + γ
∑

v

X(v)a(v, u)

≤ (1 + γ )
∑

v

a(v, u)X̃(v)

= c̃(u, X̃),

and for the second inequality, we have

c(u, X) = (1 + α)
∑

v

a(v, u)(1 − X(v)) + γ
∑

v

(1 − X(v))
∑
w,v

X(w)b(w, (v, u))

≥ (1 + α)
∑

v

a(v, u)(1 − X(v))

≥ (1 + α)
∑

v

a(v, u)(1 − X̃(v))

= c̃(u, X̃). �
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Next, we focus on the aVMBC in the V = Z
d case and a symmetric, nearest-neighbor

random walk kernel.

Lemma 2. (aVMBC is equal to or less than the biased voter model.) Let V = Z
d , a(·, ·) be

the nearest-neighbor random walk kernel defined in (10), X be an aVMBC with bias α and
cooperation coefficient γ , and X̃ a biased voter model with bias γ (2d−1)/(2d) and α+γ /(2d).
Then, if X0 ≤ X̃0, it is possible to couple X and X̃ such that Xt ≤ X̃t for all t ≥ 0.

Proof. Again, we need to show that for X ≤ X̃ the inequalities in (11) hold. We start with
the first assertion and write, using the fact that X(u) = 0,

c(u, X) =
∑

v

a(v, u)X(v) + γ
∑

v

X(v)
∑
w

X(w)a(v, w)a(v, u)

≤
∑

v

a(v, u)X(v) + γ
∑

v

X(v)a(v, u)
∑
w �=u

a(v, w)

≤
(

1 + γ
2d − 1

2d

) ∑
v

a(v, u)X̃(v)

= c̃(u, X̃),

and for the second inequality, now using X(u) = 1, we have

c(u, X) = (1 + α)
∑

v

a(v, u)(1 − X(v)) + γ
∑

v

(1 − X(v))
∑
w

X(w)a(w, v)a(v, u)

≥ (1 + α)
∑

v

a(v, u)(1 − X(v)) + γ
∑

v

(1 − X(v))a(u, v)a(v, u)

=
(

1 + α + γ

2d

) ∑
v

a(v, u)(1 − X(v))

≥
(

1 + α + γ

2d

) ∑
v

a(v, u)(1 − X̃(v))

= c̃(u, X̃).

This yields the statement. �
5.2. A result on a jump process

In the proof of Theorem 1, we will use the dynamics of the size of a cluster of cooperators
and rely on a comparison of this cluster-size process with a certain jump process (which jumps
downward by at most one and upwards by at most two). The following proposition will be
needed.

Proposition 3. (A jump process.) Let (μ(t))t≥0, (λ1(t))t≥0, and (λ2(t))t≥0 be an R+-valued
càdlàg stochastic processes, adapted to some filtration (Ft )t≥0, which satisfy

λ1(t) + 2λ2(t) − μ(t) > ε > 0 for some ε,

λ1(t) + λ2(t) + μ(t) < C for some C > 0.
(12)

In addition, let (Ct )t≥0 be a Z-valued (Ft )t≥0 Markov jump process, which jumps at time t

from x to

x − 1 at rate μ(t), x + 1 at rate λ1(t), x + 2 at rate λ2(t).
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Then,

(i) Ct → ∞ as t → ∞ almost surely, and

(ii) P(T1 = ∞) > 0 for C0 = 2 and T1 := inf{t : Ct = 1}.
Proof. In the case of time-homogeneous rates, i.e. constant μ, λ1, and λ2, the assertion

is an immediate consequence of the law of large numbers. We prove the general case by
using martingale theory. We assume without loss of generality that λ1(t) + λ2(t) + μ(t) = 1
for all t ≥ 0. (Otherwise, we use a time rescaling. Note that this rescaling is bounded by
assumption (12) and, therefore, Ct → ∞ as t → ∞ holds if and only if it holds for the rescaled
process.)

We start by showing that there exists ac > 0 such that, for all a ∈ (0, ac), the process
(exp(−aCt ))t≥0 is a positive (Ft )t≥0-supermartingale. For this, consider the (time-dependent)
generator of the process (Ct )t≥0 applied to the function f (x) = exp(−ax) which yields, at
time t ,

(GC
t f )(x) = λ1(t) exp(−a(x + 1)) + λ2(t) exp(−a(x + 2))

+ μ(t) exp(−a(x − 1)) − exp(−ax)

= exp(−ax)(λ1(t) exp(−a) + λ2(t) exp(−2a) + μ(t) exp(a) − 1)

= exp(−ax)gt (a)

for gt (a) := λ1(t) exp(−a) + λ2(t) exp(−2a) + μ(t) exp(a) − 1. Noting that, for all t , we
have gt (0) = 0 and

∂gt

∂a
(0) = −λ1(t) − 2λ2(t) + μ(t) < −ε

by (12), we find ac > 0 such that gt (a) < 0 for all 0 < a < ac and all t ≥ 0, which means
that (exp(−aCt ))t≥0 is an (Ft )t≥0-supermartingale. By the martingale convergence theorem,
it converges almost surely and—since the sum of rates is bounded away from 0—the only
possible almost sure limit is 0. Now, (i) follows since Ct → ∞ as t → ∞ if and only if
exp(−aCt ) → 0 as t → ∞ for some a > 0. For (ii), the process (exp(−aCt∧T1))t≥0 is a
nonnegative supermartingale by optional stopping. Let us assume that T1 < ∞ almost surely,
which occurs if and only if Ct∧T1 → 1 as t → ∞ almost surely. Then, using the optional
stopping theorem, we obtain, with C0 = 2,

exp(−2a) = E[exp(−aC0)]
≥ lim

t→∞ E[exp(−aCt∧T1)]
= E[ lim

t→∞ exp(−aCt∧T1)]
= exp(−a),

a contradiction since a > 0. Thus, we have P(T1 = ∞) > 0. �

6. Proofs

Here, we will show our main results.

Proof of Theorem 1. For (i), we have α > γ . The assertion is a consequence of the coupling
with the biased voter model from Lemma 1 (with bias γ and α). Since the biased voter model
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dominates the cVMBC and type 1 dies out in the biased voter model (5), the same holds for
the cVMBC.

The proof of (ii) is more involved. We have to show that cooperators survive almost surely
when started in a nontrivial translation invariant configuration. Therefore, we analyze an
arbitrary cluster of cooperators and show that the size of such a cluster has a positive probability
to diverge to ∞. Note that the flanking regions of a cluster of cooperators can have three different
forms:

Case A Case B Case C
001 · · · 100︸ ︷︷ ︸

Cluster of cooperators

101 · · · 101︸ ︷︷ ︸
Cluster of cooperators

001 · · · 101︸ ︷︷ ︸ or 101 · · · 100︸ ︷︷ ︸
Cluster of cooperators

These are the only possible environments a cluster of cooperators can encounter in one dimen-
sion. Note that a cluster can also only consist of a single cooperator. The dynamics of the
cluster size depends on the environment. Precisely, by the dynamics of the process, we obtain
the following. A cluster of size x > 1,

in case A, jumps to

{
y = x + 1 at rate 1 + γ,

y = x − 1 at rate 1 + α;

in case B, jumps to

{
y ≥ x + 2 at rate at least 2 + γ,

y = x − 1 at rate 1 + α + γ ;

in case C, jumps to

⎧⎪⎨⎪⎩
y ≥ x + 2 at rate at least 1 + 1

2γ,

y = x + 1 at rate 1
2 (1 + γ ),

y = x − 1 at rate 1 + α + 1
2γ.

(13)

Under the assumptions of Theorem 1, let (Vt )t≥0 be a stochastic process representing the
cluster of cooperators that is closest to the origin and contains at least two cooperators. (If there
is no such cluster at time 0, wait for some time ε > 0 and pick the cluster then.) We will show
that

P(Vt ↑ Z) > 0. (14)

For this, we compare |V | = (|Vt |)t≥0 with a jump process (Ṽt )t≥0 as in Proposition 3, where
the jump rates at times t are given as follows:

in case A,

⎧⎪⎨⎪⎩
λ1(t) = 1 + γ,

λ2(t) = 0,

μ(t) = 1 + α;

in case B,

⎧⎪⎨⎪⎩
λ1(t) = 0,

λ2(t) = 2 + γ,

μ(t) = 1 + α + γ ;

in case C,

⎧⎪⎨⎪⎩
λ1(t) = 1

2 (1 + γ ),

λ2(t) = 1 + 1
2γ,

μ(t) = 1 + α + 1
2γ.

Moreover, this process is stopped when reaching 1. By the comparison in (13), we see that
we can couple |V | and Ṽ such that Ṽ ≤ |V |, at least until Ṽ reaches 1. Since the jump rates
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of Ṽ indeed satisfy 2λ2(t) + λ1(t) − μ(t) > ε > 0 for all times t ≥ 0, we find Ṽt → ∞ as
t → ∞ with positive probability which implies that P(|Vt | → ∞) > 0 as t → ∞ holds as
well. Still, we need to make sure that the cluster does not wander to ±∞. For this, consider
both boundaries of the cluster if it has grown to a large extent. The right boundary is again
bounded from below by a jump process of the form as in Proposition 3 with λ1(t) = 1

2 (1+γ ), 0;
λ2(t) = 0, 1+ 1

2γ and μ(t) = 1
2 (1+α), 1

2 (1+α +γ ) for the cases A and B (note that the right
boundary alone of case C is already captured by the right boundaries of the cases A and B).
So, again, we see from Proposition 3 that the right border of the cluster goes to ∞ with positive
probability. The same holds for the left border of the cluster which tends to −∞. Therefore,
we have shown (14).

Now we use (14) to show that defectors indeed go extinct. Note that, from the argument
given above, the probability of survival of a cluster of cooperators depends on the environment,
but is bounded away from 0 by some p > 0. We start at time 0 with a cluster of cooperators
which has at least probability p to survive as proved above. In the case that it survives we are
done, otherwise it goes extinct in finite time and has at most merged with finitely many other
cooperating clusters until then. Thus, at this extinction time we can choose another cluster of
cooperators that exists due to the translation invariance of the starting configuration. This cluster
again has a probability of survival of at least p, independently of the history of the interacting
particle system. This allows for a Borel–Cantelli argument showing that when repeating these
steps arbitrarily often eventually one of the cooperating clusters survives. This happens at the
latest after a geometrically distributed number of attempts and, thus, in finite time. Hence, we
have P(limt→∞ Xt(u) = 1) = 1 for all u and we are done.

For (iii), in order to prove clustering in the α = γ > 0 case, there are actually two proofs.
One relies on the dual lattice and the study of the process of cluster interfaces, which performs
annihilating random walks. This technique would actually show clustering for all parameters α

and γ . However, we show clustering by studying the probability of finding a cluster edge in
the special case α = γ . Clustering for the other parameter configurations was already shown
in (i) and (ii) since extinction also implies clustering of the process.

For our method, we write pt (i0 · · · ik) := P(Xt (0) = i0 · · · Xt(k) = ik) for i0, · · · , ik ∈
{0, 1} and k = 0, 1, 2, . . .. We have to show that

pt (10) → 0 as t → ∞, pt (01) → 0 as t → ∞ (15)

since then—by translation invariance—every configuration carrying both types has vanishing
probability for t → ∞.

We start with the dynamics of pt (1), which reads (recall that α = γ )

∂pt (1)

∂t
= 1

2
(pt (10) + pt (01)) + γ

2
(pt (110) + pt (011))

− 1 + α

2
(pt (10) + pt (01)) − γpt (101)

= −α

2
(pt (10) + pt (01)) + α

2
(pt (10) + pt (01) − 2pt (010)) − γpt (101)

= −γ (pt (101) + pt (010))

≤ 0.

Since pt (1) ∈ [0, 1], this probability has to converge for t → ∞, hence ∂pt (1)/∂t → 0 as
t → ∞, and, therefore,

pt (101) → 0 as t → ∞, pt (010) → 0 as t → ∞. (16)
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Now, consider the dynamics of pt (11), which is

∂pt (11)

∂t
= pt (101) + γ

2
(pt (1101) + pt (1011))

− 1 + α

2
(pt (110) + pt (011)) − γ

2
(pt (1011) + pt (1101))

= pt (101) − 1 + α

2
(pt (110) + pt (011)).

Since we know that pt (101) → 0 as t → ∞ by (16), and since pt (11) ∈ [0, 1], we also have

pt (110) → 0 as t → ∞, pt (011) → 0 as t → ∞.

We now conclude with

pt (10) = pt (010) + pt (110) → 0 as t → ∞,

pt (01) = pt (010) + pt (011) → 0 as t → ∞,

which shows (15). �
Proof of Theorem 2. (i) We use the comparison with the biased voter model from Lemma 2.

Therefore, we have α > γ (d − 1)/d if and only if α + γ /(2d) > γ (2d − 1)/(2d). Since, for
this choice of parameters, type 1 goes extinct in the biased voter model which dominates the
aVMBC and we are done.

(ii) For d = 1 and the nearest neighbor random walk, the altruistic mechanism is such that a
configuration 01 (or 10) turns into 00 at rate α/2 + γ /4. The same holds for the cVMBC with
selection rate α + γ /2. In addition, 110 (or 011) turns to 111 at rate γ /2, which is the same
as for the cVMBC with cooperation parameter γ . This shows that the transition rates for the
altruistic process X̃ satisfy the following. If X̃(u) = 0 then

c(u, X̃) = 1

2

∑
v : |v−u|=1

X̃(v) + γ

4

∑
v : |v−u|=1

X̃(v)
∑

w : |w−v|=1,w �=u

X̃(w).

If X̃(u) = 1 then

c(u, X̃) = 1 + α + γ /2

2

∑
v : |v−u|=1

(1 − X̃(v)) + γ

4

∑
v : |v−u|=1

(1 − X̃(v))
∑

w : |w−v|=1,w �=u

X̃(w).

These resemble the transition rates of a cVMBC with selection rate α + 1
2γ and cooperation

rate 1
2γ ; see also (5) and (6). In particular, clustering follows from Theorem 1(iii). �

Proof of Theorem 3. At time t , let Nt be the number of finite clusters in Xt with sizes
C1

t , . . . , C
Nt
t . If the process starts with finitely many defectors (cooperators), C1

t , C3
t , C5

t , . . .

are sizes of clusters of defectors (cooperators), and C2
t , C4

t , . . . are sizes of clusters of cooper-
ators (defectors). Note that (Nt , C

1
t , . . . , C

Nt
t )t≥0 is a Markov process. We will show that the

following hold.

(a) Either Nt → 0 as t → ∞ or Nt → 1 as t → ∞.

(b) In Theorems 3(ii) and 3(iii), Nt → 0 as t → ∞.

(c) If Nt → 1 as t → ∞ then C1
t → ∞ as t → ∞.
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Note that (a) and (c) together imply Theorem 3(i), i.e. X clusters in all cases. Of course, (b)
implies Theorems 3(ii) and 3(iii).

(a) The process N = (Nt )t≥0 is nonincreasing and bounded from below by 0, so convergence
of N is certain. We assume that N0 = n ≥ 3. Note that N0 is odd and remains so until it hits 1
from where it may or may not jump to 0. In order to prove the claim, we show that the hitting
time inf{s : Ns < n} is finite almost surely. For this, it suffices to show that

T := inf{s : Ck
s = 1 for some 1 ≤ k ≤ Ns} < ∞ (17)

almost surely, since by time T , some cluster has size 1 and there is a positive chance that N

decreases at the next transition. If N does not decrease, there is the next chance after another
finite time and eventually N will decrease.

If α ≥ γ , consider the size Ct of a cluster of cooperators. Before time T , all clusters have
size at least 2, so Ct jumps

from C to C + 1 at rate 1 + γ , from C to C − 1 at rate 1 + α,

hence, (Ct∧T )t≥0 is dominated by a symmetric random walk with jump rate 1 + α, stopped
when hitting 1, which implies that T < ∞ almost surely due to the recurrence of the symmetric
random walk in one dimension. If γ ≥ α, the same argument shows that T < ∞ if the role of
cooperators and defectors is exchanged. Hence, we have proved (17) and (a) is shown.

(b) If Nt → 1 as t → ∞ and α ≥ γ , the remaining finite cluster must consist of defectors
(since the argument used in (a) shows that a finite cluster of cooperators would die out).
Therefore, in Theorem 3(ii), we must have Nt → 0 as t → ∞. If γ ≥ α, the remaining
finite cluster consists of cooperators for the same reason. Hence, in Theorem 3(iii), we must
have Nt → 0 as t → ∞. Thus, we have shown (b).

(c) As just argued in (a) and (b), if Nt → 1 as t → ∞, the remaining finite cluster must
contain the stronger type, i.e. defectors for α > γ and cooperators for γ > α. The size of the
remaining finite cluster therefore is a biased random walk which goes to ∞ on {Nt → 1} as
t → ∞ and the result follows. �

Acknowledgements

We would like to thank two anonymous referees for a thorough reading and useful comments
which improved the manuscript. This research was supported by the DFG through grant
Pf-672/5-1.

References

[1] Archetti, M. and Scheuring, I. (2012). Review: game theory of public goods in one-shot social dilemmas
without assortment. J. Theoret. Biol. 299, 9–20.

[2] Blath, J. and Kurt, N. (2011). Survival and extinction of caring double-branching annihilating random walk.
Electron. Commun. Prob. 16, 271–282.

[3] Bramson, M. and Griffeath, D. (1981). On the Williams-Bjerknes tumour growth model I. Ann. Prob. 9,
173–185.

[4] Brockhurst, M. A., Buckling, A., Racey, D. and Gardner, A. (2008). Resource supply and the evolution
of public-goods cooperation in bacteria. BMC Biology 6, 6pp.

[5] Clutton-Brock, T. (2009). Cooperation between non-kin in animal societies. Nature 462, 51–57.
[6] Crespi, B. J. (2001). The evolution of social behavior in microorganisms. Trends Ecol. Evol. 16, 178–183.
[7] Czuppon, P. (2016). Phenotypic heterogeneity in bacterial populations – a mathematical study. Doctoral Thesis,

University of Freiburg.
[8] Drescher, K. et al. (2014). Solutions to the public good dilemma in bacterial biofilms. Current Biol. 24, 50–55.

https://doi.org/10.1017/jpr.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.15


A spatial model for selection and cooperation 539

[9] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. John Wiley,
New York.

[10] Evilsizor, S. and Lanchier, N. (2016). Evolutionary games on the lattice: death-birth updating process.
Electron. J. Prob. 21, 29pp.

[11] Griffin, A. S. and West, S. A. (2003). Kin discrimination and the benefit of helping in cooperatively breeding
vertebrates. Science 302, 634–636.

[12] Hutzenthaler, M., Jordan, F. and Metzler, D. (2015). Altruistic defense traits in structured populations.
Preprint. Available at https://arxiv.org/abs/1505.02154v1.

[13] Liggett, T. M. (1985). Interacting Particle Systems. Springer, New York.
[14] Louidor, O., Tessler, R. and Vandenberg-Rodes, A. (2014). The Williams–Bjerknes model on regular trees.

Ann. Appl. Prob. 24, 1889–1917.
[15] Nowak, M. A. (2006). Five rules for the evolution of cooperation. Science 314, 1560–1563.
[16] Penn, D. J. and Frommen, J. G. (2010). Kin recognition: an overview of conceptual issues, mechanisms and

evolutionary theory. In Animal Behaviour: Evolution and Mechanisms, Springer, Heidelberg, pp. 55–85.
[17] Sturm, A. and Swart, J. M. (2015). A particle system with cooperative branching and coalescence. Ann. Appl.

Prob. 25, 1616–1649.
[18] Williams, T. and Bjerknes, R. (1972). Stochastic model for abnormal clone spread through epithelial basal

layer. Nature 236, 19–21.
[19] Wingreen, N. S. and Levin, S. A. (2006). Cooperation among microorganisms. Plos Biol. 4, 3pp.

https://doi.org/10.1017/jpr.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.15

	1 Introduction
	2 The model and first results
	2.1 The model
	2.2 Existence and uniqueness of the process
	2.3 Unstructured populations

	3 Results on the long-time behavior for V=Zd
	4 Comparison to results from blath and lanchier
	4.1 Comparison to blath
	4.2 Comparison to lanchier

	5 Preliminaries
	5.1 Comparison results
	5.2 A result on a jump process

	6 Proofs
	Acknowledgements
	References

