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We present numerical simulations of laminar and turbulent channel flow of an
elastoviscoplastic fluid. The non-Newtonian flow is simulated by solving the full
incompressible Navier–Stokes equations coupled with the evolution equation for
the elastoviscoplastic stress tensor. The laminar simulations are carried out for a
wide range of Reynolds numbers, Bingham numbers and ratios of the fluid and
total viscosity, while the turbulent flow simulations are performed at a fixed bulk
Reynolds number equal to 2800 and weak elasticity. We show that in the laminar
flow regime the friction factor increases monotonically with the Bingham number
(yield stress) and decreases with the viscosity ratio, while in the turbulent regime
the friction factor is almost independent of the viscosity ratio and decreases with
the Bingham number, until the flow eventually returns to a fully laminar condition
for large enough yield stresses. Three main regimes are found in the turbulent case,
depending on the Bingham number: for low values, the friction Reynolds number and
the turbulent flow statistics only slightly differ from those of a Newtonian fluid; for
intermediate values of the Bingham number, the fluctuations increase and the inertial
equilibrium range is lost. Finally, for higher values the flow completely laminarizes.
These different behaviours are associated with a progressive increases of the volume
where the fluid is not yielded, growing from the centreline towards the walls as
the Bingham number increases. The unyielded region interacts with the near-wall
structures, forming preferentially above the high-speed streaks. In particular, the
near-wall streaks and the associated quasi-streamwise vortices are strongly enhanced
in an highly elastoviscoplastic fluid and the flow becomes more correlated in the
streamwise direction.

Key words: non-Newtonian flows, plastic materials, turbulence simulation

1. Introduction

Many fluids in nature and industrial applications exhibit a non-Newtonian behaviour,
i.e. a nonlinear relation between the shear stress and the shear rate, such as shear
thinning, shear thickening, yield stress, thixotropic, shear banding and viscoelastic

† Email address for correspondence: merosti@mech.kth.se
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behaviours. Moreover, several non-Newtonian features are often present simultaneously.
Here, we focus on elastoviscoplastic fluids, i.e. complex non-Newtonian fluids that
can exhibit simultaneously elastic, viscous and plastic properties. In particular, they
behave as solids when the applied stress is below a certain threshold τ0, i.e. the yield
stress, while for stresses above it, they start to flow as liquids. In this context, the
aim of this work is to explore and better understand the laminar and turbulent flow
of an elastoviscoplastic fluid by means of numerical simulations. Indeed, turbulent
flows of elastoviscoplastic fluids occur in many industrial settings, such as petroleum,
paper, mining and sewage treatment (Hanks 1963, 1967; Maleki & Hormozi 2018).

1.1. Stability of yield stress fluids
Several studies have been devoted to the stability of yield stress fluids (Nouar &
Frigaard 2001; Metivier, Nouar & Brancher 2005; Nouar et al. 2007; Nouar &
Bottaro 2010; Bentrad et al. 2017). The first study on the stability of viscoplastic
fluid flows was reported by Frigaard, Howison & Sobey (1994), who studied the
linear stability of a Bingham fluid in a plane channel flow. More recently, Nouar
et al. (2007) performed a modal and non-modal linear stability analysis of the flow
of a Bingham fluid also in a plane channel; these authors showed that the flow is
always linearly stable and that the optimal disturbance for moderate/high Bingham
number is oblique, i.e. not aligned with the Cartesian coordinate axes as in Newtonian
fluids. A key results arising from the linear stability analysis is that the regions where
the stress is below the yield stress value remain unyielded for linear perturbations, a
fact that can lead to interesting mathematical anomalies. For example, Metivier et al.
(2005) showed that the critical Reynolds number for linear stability is different when
the Bingham number tends to zero, compared to a Newtonian fluid with a null value
of Bingham number. Thus, the authors suggest that the passage to the Newtonian
limit of a yield stress fluid is ill defined in terms of stability. Besides linear analysis,
fully nonlinear (energy) stability results were derived in Nouar & Frigaard (2001).
These authors showed that the critical Reynolds number for transition increases with
the Bingham number; however they also observed that the energy stability results
are very conservative. Moreover, since for yield stress fluids the nonlinearity of the
problem is not simply in the inertial terms, but also in the shear stress and in the
existence of unyielded plug regions, the gap between linear and nonlinear theories is
much wider than with Newtonian fluids. While in Newtonian fluids weakly nonlinear
theories provide useful insights, in the case of viscoplastic fluids, these methods are
algebraically more complicated and only Metivier, Nouar & Brancher (2010) have
performed this type of analysis for a Rayleigh–Bénard–Poiseuille flow, finding that
the range of validity of an amplitude equation is fairly limited. Only a small number
of studies on the stability of more complicated geometries exist: recently, nonlinear
(energy) stability analysis has been extended to multi-layer flows of yield stress and
viscoelastic fluids by Moyers-Gonzalez, Frigaard & Nouar (2004) and Hormozi &
Frigaard (2012). Recently, in order to identify possible paths to transition Nouar &
Bottaro (2010) perturbed the base flow slightly, and found that very weak defects
are indeed capable of exciting exponentially amplified streamwise travelling waves.
Finally, Kanaris, Kassinos & Alexandrou (2015) performed numerical simulations of
a Bingham fluid flowing past a confined circular cylinder to study the viscoplastic
effects in the wake-transition regime.

1.2. Friction losses and drag reduction
Turbulent flows of generalized Newtonian fluids occur in many industrial process.
Despite the numerous applications, it has not been possible to estimate the force
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needed to drive a complex fluid yet, while in a Newtonian flow the pressure
drop can be accurately predicted as a function of the Reynolds number, both in
laminar and turbulent flows (Pope 2001), and for different properties of the wall
surface, e.g. roughness (Orlandi & Leonardi 2008), porosity (Breugem, Boersma
& Uittenbogaard 2006; Rosti, Cortelezzi & Quadrio 2015; Rosti, Brandt & Pinelli
2018b) and elasticity (Rosti & Brandt 2017). This is due to the complexity of such
flows where additional parameters become relevant, such as the yield stress value
(above which the material flows), the relaxation time, the ratio of the solvent to the
total viscosity, . . . ; each of these parameters may affect the overall flow dynamics
in different and sometimes surprising ways. Some work has been done on measuring
and trying to estimate the hydraulic pressure losses in practical applications (Ryan
& Johnson 1959; Hanks 1963, 1967; Hanks & Dadia 1971), with the most popular
phenomenological approach suggested by Metzner & Reed (1955). These authors
provide a closure for the pressure drop as a function of a generalized Reynolds
number defined using the local power-law parameters, subsequently extended to yield
stress fluids by Pinho & Whitelaw (1990) and Founargiotakis, Kelessidis & Maglione
(2008). Rudman et al. (2004) performed numerical simulations of a turbulent pipe
flow of shear-thinning fluids and compared their results with the pressure drop closure
discussed above, finding a decent agreement although with some differences.

There exists a large literature on the turbulent flow with polymer additives, with the
main focus being the drag reduction (Logan 1972; Pinho & Whitelaw 1990; Escudier
& Presti 1996; Den Toonder et al. 1997; Beris & Dimitropoulos 1999; Escudier,
Presti & Smith 1999; Warholic, Massah & Hanratty 1999; Escudier & Smith 2001;
Dubief et al. 2004, 2005; Escudier et al. 2005; Escudier, Nickson & Poole 2009;
Xi & Graham 2010; Owolabi, Dennis & Poole 2017; Shahmardi et al. 2018). The
interested reader is referred to the works by Berman (1978) and White & Mungal
(2008) for a thorough review on the subject.

1.3. Elastoviscoplastic fluid
Despite the numerous studies performed to analyse viscoelastic turbulent flows, much
less attention has been given to viscoplastic and elastoviscoplastic fluids. Indeed,
very few numerical works exist on fully turbulent flows of an elastoviscoplastic
fluid, and to the best of our knowledge the only direct numerical simulations of
the effect of a yield stress on a turbulent non-Newtonian flow were performed by
Rudman & Blackburn (2006) and Guang et al. (2011). These authors simulated a
yield–pseudoplastic fluid using the Herschel–Bulkley model and compared the results
with experimental measurements. Although qualitative agreement was found, the
simulation results strongly overpredict the flow velocity, and the authors were not
able to find the source of the discrepancy. Their numerical results suggest that, as
the yield stress increases, the mean velocity profile deviates more and more from
the Newtonian one, and that the turbulent flow will be fully developed only for low
values of the yield stress.

Many materials used in experiments, such as Carbopol solutions (i.e. a conventional
yield stress test fluid) and liquid foams, exhibit simultaneously elastic, viscous and
yield stress behaviour. Thus, in order to properly predict the behaviour of such
materials, it is essential to model them as a fully elastoviscoplastic fluid, rather
than an ideal yield stress fluid (e.g. using the Bingham or Herschel–Bulkley model).
Recently, Saramito (2007) proposed a new constitutive equation for elastoviscoplastic
fluid flows, which reproduces a viscoelastic solid for stresses lower than the yield
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stress, and a viscoelastic Oldroyd-B fluid for stresses higher than the yield stress.
Furthermore, in order to describe the yielding process it uses the von Mises
yielding criterion, which has been also experimentally confirmed (Shaukat et al.
2012; Martinie, Buggisch & Willenbacher 2013). Cheddadi et al. (2011) simulated
the inertialess flow of an elastoviscoplastic fluid around a circular object using the
model proposed by Saramito (2007); these authors were able to capture the fore–aft
asymmetry and also the overshoot of the velocity (negative wake) after the circular
hindrance, which was previously observed experimentally by Dollet & Graner (2007)
for the flow of a liquid foam and by Putz et al. (2008) who related this behaviour
to the rheological properties of the fluid. Note that the Bingham model always
predicts fore–aft symmetry and the lack of a negative wake, which is in contradiction
with the aforementioned experimental observations. Recently, the loss of the fore–aft
symmetry and the formation of the negative wake around a single particle sedimenting
in a Carbopol solution was captured by the numerical calculations in Fraggedakis,
Dimakopoulos & Tsamopoulos (2016) using the constitutive law by Saramito (2007);
their results are in a quantitative agreement with experimental observations obtained
with a Carbopol gel.

The model proposed by Saramito (2007) was extended by the same author to
account for shear-thinning effects (Saramito 2009). The new model combines the
Oldroyd viscoelastic model with the Herschel–Bulkley viscoplastic model, with a
power-law index that allows a shear-thinning behaviour in the yielded state. When
the index is equal to unity, the model reduces to the one proposed in his previous
work, i.e. Saramito (2007). Apart from the models proposed by Saramito, many others
exist in the literature. The interested reader is referred to Crochet & Walters (1983),
Balmforth, Frigaard & Ovarlez (2014) and Saramito & Wachs (2016), Saramito (2016)
for a thorough review of models and numerical methods.

1.4. Outline
In this work, we present the first direct numerical simulations of both laminar and
turbulent channel flows of an incompressible elastoviscoplastic fluid. In the laminar
regime, a wide range of Reynolds numbers is investigated, while in the turbulent
regime, we consider the bulk Reynolds number Re= 2800. The non-Newtonian flow
is simulated by solving the full unsteady incompressible Navier–Stokes equations
coupled with the model proposed by Saramito (2007) for the evolution of the
additional elastoviscoplastic stress tensor. In § 2, we first discuss the flow configuration
and the governing equations, and then present the numerical methodology used. A
validation of the numerical implementation is reported in § 2.2, while the results
on the laminar and on the fully developed turbulent channel flows are presented
in § 3. In particular, we discuss the role of some of the parameters defining the
elastoviscoplastic fluid, i.e. the Bingham number Bi and the viscosity ratio β. Finally,
a summary of the main findings and conclusions are presented in § 4.

2. Formulation
We consider the laminar and turbulent flows of an incompressible elastoviscoplastic

fluid through a plane channel with two impermeable rigid walls. Figure 1(a) shows
a sketch of the geometry and the Cartesian coordinate system, where x, y and z (x1,
x2 and x3) denote the streamwise, wall-normal and spanwise coordinates, while u, v
and w (u1, u2 and u3) denote the respective components of the velocity field. The
lower and upper stationary impermeable walls are located at y=0 and 2h, respectively,
where h represents the channel half-height.
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(a) (b)

FIGURE 1. (a) Sketch of the computational domain. (b) Sketch of the mechanical model
of the elastoviscoplastic fluid proposed by Saramito (2007) and used in the present work.

The fluid motion is governed by the conservation of momentum and the
incompressibility constraint:

∂ui

∂t
+
∂uiuj

∂xj
=

1
ρ

∂σij

∂xj
, (2.1a)

∂ui

∂xi
= 0, (2.1b)

where ρ is the fluid density and σij the total Cauchy stress tensor, which is written as

σij =−pδij + 2µf Dij + τij, (2.2)

where p is the pressure, µf the fluid molecular dynamic viscosity (also called solvent
viscosity), δ is the Kronecker delta and Dij the strain rate tensor defined as

Dij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
. (2.3)

In (2.2), τij is the additional elastoviscoplastic stress tensor which accounts for
the non-Newtonian behaviour of the fluid, here described by the model proposed
by Saramito (2007). A one-dimensional schematic of the mechanical behaviour of
the model is shown in figure 1(b): when the stress σ is below the yield stress τ0,
the friction element is rigid and the system predicts only recoverable Kelvin–Voigt
viscoelastic deformation due to the spring κ and the viscous element µf . When the
stress exceeds the yield value τ0, the friction element breaks and an additional viscous
element µm activates; the fluid then behaves as an Oldroyd-B viscoelastic fluid. Thus,
the total strain rate ε̇ is shared between an elastic contribution ε̇e and a plastic one
ε̇p (Cheddadi et al. 2011). The following limits can be identified: the model reduces
to the Oldroyd-B model for τ0 = 0, the Bingham model is recovered for λ = 0 and
the fluid is Newtonian with a total viscosity µ equal to µf +µm for τ0= 0 and λ= 0.
The instantaneous values of all the components of the stress τij are found by solving
the following objective and frame-independent transport equation

λ

(
∂τij

∂t
+
∂ukτij

∂xk
− τkj

∂ui

∂xk
− τik

∂uj

∂xk

)
+max

(
0,
|τd| − τ0

|τd|

)
τij = 2µmDij. (2.4)

Here, λ is the relaxation time, µm is an additional viscosity, τ0 the yield stress and
|τd| represents the second invariant of the deviatoric part of the added stress tensor,
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i.e. |τd| =

√
1/2τ d

ij τ
d
ij . Note that, the first four terms in the left-hand side of the

previous equation are the upper convected derivative of the elastoviscoplastic stress
tensor (Gordon & Schowalter 1972). The elastoviscoplastic parameters µf , µm, λ
and τ0 can be obtained by experimental data following the procedure detailed by
Fraggedakis et al. (2016), based on the determination of the linear material functions,
i.e. the storage modulus G′ and the loss modulus G′′.

The previous set of equations can be rewritten in a non-dimensional form as

Re
(
∂ui

∂t
+
∂uiuj

∂xj

)
=

∂

∂xj
(−pδij + 2βDij + τij), (2.5a)

∂ui

∂xi
= 0, (2.5b)

Wi
(
∂τij

∂t
+
∂ukτij

∂xk
− τkj

∂ui

∂xk
− τik

∂uj

∂xk

)
+max

(
0,
|τd| − Bi
|τd|

)
τij = 2(1− β)Dij, (2.5c)

where we have used the same symbols to define the non-dimensional variables for
simplicity. Four non-dimensional numbers appear in the previous set of equations: the
Reynolds number Re, the Weissenberg number Wi, the Bingham number Bi and the
viscosity ratio β. The Reynolds number is the ratio of inertia and viscous forces
Re= ρUL/µ0, the Bingham number the ratio of the yield and viscous stresses Bi=
τ0L/µ0U, the Weissenberg number the ratio of the elastic and viscous forces Wi =
λU/L (Poole 2012) and the viscosity ratio β = µf /µ0 the ratio between the fluid
viscosity µf and the reference one µ0. In the previous definitions, U and L are a
characteristic velocity and length scales of the flow, ρ the fluid density and µ0 a
characteristic viscosity, set equal to the total viscosity, i.e. µ0=µf +µm. Note that, the
choice of the characteristic viscosity is an open topic of discussion in the community,
with the most common choice being the total viscosity µ0.

2.1. Numerical discretization
The equations of motion are solved with an extensively validated in-house code
(Picano, Breugem & Brandt 2015; Rosti & Brandt 2017, 2018; Rosti, Brandt &
Mitra 2018a). Equations (2.1) and (2.4) are solved on a staggered uniform grid with
velocities located on the cell faces and all the other variables (pressure, stress and
material component properties) at the cell centres. All the spatial derivatives are
approximated with second-order centred finite differences except for the advection
term in (2.4) where the fifth-order WENO (weighted essentially non-oscillatory)
scheme is adopted (Shu 2009; Sugiyama et al. 2011). The time integration is
performed with a fractional-step method (Kim & Moin 1985), where all the terms in
the evolution equations are advanced in time with a third-order explicit Runge–Kutta
scheme except for the elastoviscoplastic stress terms which are advanced with the
Crank–Nicolson method; moreover, a fast Poisson solver is used to enforce the
condition of zero divergence for the velocity field. Note that the choice of an explicit
time integration is typically preferred for high Reynolds number turbulent flows. In
particular, to solve the system of governing equations, we perform the following
steps (see also Min, Yoo & Choi 2001; Dubief et al. 2005): (i) the elastoviscoplastic
stress tensor τij is updated by solving (2.4); (ii) the Navier–Stokes equations (2.1) are
advanced in time by first solving the momentum equation (prediction step), then by
solving a Poisson equation for the projection variable and finally by correcting the
velocity and pressure to make the velocity field divergence free (correction step).
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FIGURE 2. (Colour online) (a) Time evolution of τ11 − τ22 (red) and τ12 (blue) in a
stationary shear flow. The stress components are normalized with µ0γ̇ . (b) Time evolution
of the shear stress τ12 in an oscillating shear flow with Bi= 0 (red) and Bi= 300 (blue).
The stress components are normalized with µ0γ0ω0. In both panels, solid lines are used
for our numerical results and symbols for the analytical solution reported by Saramito
(2007).

2.2. Code validation
The present implementation for single and multiphase flows of an elastoviscoplastic
fluid has been extensively validated in Izbassarov et al. (2018), where the details
of the algorithm are discussed in further detail. Nonetheless, we report here two
validation cases for the sake of completeness.

First, we consider a simple constant shear flow, with the shear rate γ̇0: the
Weissenberg number is fixed to Wi= λγ̇0= 1, the Bingham number Bi= τ0/(µ0γ̇ )= 1
and the viscosity ratio β = 1/9. The time evolution of τ11 − τ22 (the normal stress
difference) and τ12 (the wall-normal shear stress) are reported in figure 2(a) with
red and blue lines, respectively. We observe that, initially both the stress components
grow linearly, but when the stress level is above a threshold, i.e. the yield stress, the
growth stops and they reach a plateau, as expected in the yielded state. As shown
in the figure, we find a very good agreement with the analytical results by Saramito
(2007) depicted with symbols of the same colours.

Next, we consider a time-periodic uniform shear flow, i.e. γ0 sin(ω0t), where γ0 is
the strain amplitude and ω0 the angular frequency of the oscillations. The Weissenberg
number is Wi= λω0= 0.1 and two Bingham numbers Bi= τy/(µ0γ0ω0) are considered:
Bi= 0 and 300. Note that, when Bi= 0, the material behaves like a viscoelastic fluid,
and when Bi = 300 as an elastic solid. The viscosity ratio β is null in both cases,
i.e. µf = 0. The evolution of τ12 is plotted in figure 2(b) for the two cases (red Bi= 0
and blue Bi= 300) and compared with the analytical solution provided by Saramito
(2007), shown with symbols in the figure. Again, an excellent agreement is found.

2.3. Numerical set-up
For all the cases considered hereafter, the equations of motion are discretized by using
1728 × 576 × 864 grid points on a computational domain of size 6h × 2h × 3h in
the streamwise, wall-normal and spanwise directions. The spatial resolution has been
chosen in order to properly resolve the turbulent scales, as well as the unyielded
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plug regions which form intermittently in the domain. In the high Reynolds number
simulations at Reb = 2800, the resolution satisfies the constraint 1x+ =1y+ =1z+ <
0.6, where the superscript + indicates the wall units defined in the next section. In
one of the simulations at Reb = 2800, a grid refinement study was performed using
2160× 720× 1080 grid points in the streamwise, wall-normal and spanwise directions
(around 25 % more in each direction); the difference in the resulting friction coefficient
Cf was less than 2 %. Note that, in the low Reynolds fully laminar cases, the spatial
resolution was relaxed and the domain size in the homogeneous directions reduced.

In all the simulations, periodic boundary conditions are used in the streamwise
and spanwise directions, while the no-slip and no-penetration boundary conditions
are enforced on the solid walls. All the turbulent flows are initialized with a fully
developed channel flow with zero elastoviscoplastic added stress (τij = 0). After
the flow has reached statistically steady state, the calculations are continued for an
interval of 500h/Ub time units, during which around 100 full flow fields are stored
for further statistical analysis. To verify the convergence of the statistics, we have
computed them using a different number of samples and verified that the differences
are negligible.

3. Results
We study both laminar and turbulent channel flows of an elastoviscoplastic fluid,

together with the baseline Newtonian cases. All the simulations are performed at a
constant flow rate, so that the flow Reynolds number based on the bulk velocity is
fixed, i.e. Re = ρUbh/µ0, where the bulk velocity Ub is the average value of the
mean velocity computed across the whole domain and µ0 is the total viscosity,
i.e. µ0 = µf + µm. In the present work, consistently with choosing Ub as the
characteristic velocity, we opt for enforcing the constant flow rate condition; hence,
the necessary value of the instantaneous streamwise pressure gradient is determined
at every time step. This choice facilitates the comparison between the non-Newtonian
and Newtonian flows. In the laminar regime, the bulk Reynolds number is varied
between 0.1 and 2800, where the corresponding baseline Newtonian solutions are
known analytically; in the turbulent regime, the bulk Reynolds number is fixed to
2800, corresponding to a nominal friction Reynolds number Reτ = ρuτh/µ0= 180 for
a Newtonian fluid, being uτ the friction velocity defined later on. In the turbulent
case, we compare our Newtonian solution with the seminal work of Kim, Moin &
Moser (1987).

The properties of the elastoviscoplastic fluids are chosen as follows: the Weissenberg
number Wi= λUb/h is fixed in all the simulations to 0.01 in order to limit the role
of fluid elasticity in this first study of elastoviscoplastic flows; the Bingham number
Bi = τ0h/µ0Ub is varied in the range between 0 and 1000 in the laminar cases (0,
0.1, 1, 10, 100 and 1000), and between 0 and 2.8 (0, 0.28, 0.7, 1.4 and 2.8) in
the turbulent cases, which are computationally significantly more expensive than
Newtonian turbulence. Finally, all the cases have been studied for three different
viscosity ratios: β = µf /µ0 = 0.25, 0.5 and 0.95. Overall, we have performed 108
laminar and 15 turbulent simulations.

Viscous units, used above to express the spatial resolution, will be often employed
in the following; they are indicated by the superscript +, and are built using the
friction velocity uτ as the velocity scale and the viscous length δν = ν/uτ as the length
scale. For a Newtonian turbulent channel flow, the dimensionless friction velocity is
defined as

uτ =

√
1

Reb

du
dy

∣∣∣∣
y=0

, (3.1)
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where u is the mean velocity, and the derivative is taken at y= 0, the location of the
wall. When the fluid is non-Newtonian, equation (3.1) must be modified to account
for the elastoviscoplastic shear stress that is in general non-zero at the wall. Similarly
to previous works with polymers (Shahmardi et al. 2018), we define

uτ =

√(
1

Reb

du
dy
+ τ 12

)∣∣∣∣
y=0

. (3.2)

Note that, the actual value of the friction velocity in our simulations is computed from
the friction coefficient, found by the driving streamwise pressure gradient, rather than
from its definition, i.e. uτ =

√
−δ/ρ dp/dx.

3.1. Laminar flow
We start our analysis by considering the laminar flow of an elastoviscoplastic fluid.
First, we consider the effect of the Bingham number on the frictional resistance of
the flow quantified by the Fanning friction factor f , defined as 2τw/ρU2

b being τw the
total wall shear stress including both the viscous and elastoviscoplastic contributions.
Figure 3(a) shows the Fanning friction factor f as a function of the Reynolds
number in the case with β = 0.95, Wi = 0.01 and for various Bingham numbers. In
particular, the grey, orange, brown, purple, cyan and gold lines are used for Bi = 0,
0.1, 1, 10, 100 and 1000, respectively. In the figure we also show the Newtonian
analytical solution f = 6/Reb with a black line. The results clearly show that all the
non-Newtonian fluids have the same slopes as the reference Newtonian case, but with
increasing f as the Bingham number Bi increases. As expected, the case with Bi= 0
(grey line) is almost indistinguishable from the Newtonian flow, since the elastic
effects are small for the low value of the Weissenberg number Wi chosen. The results
shown here are consistent with the experimental measurements reported by Guzel,
Frigaard & Martinez (2009), who also found a linear relation between the Reynolds
number and the friction factor in a laminar pipe flow.

Figure 3(b) shows the effect of β on the Fanning friction factor f at Reb = 1. We
find that f decreases nonlinearly with the viscosity ratio β, and that the dependency
on β increases with the Bingham number Bi. The increase in the friction factor, due
to the increase of wall shear stress, comes from the change of the laminar streamwise
velocity profile u shown in figure 4(a) as a function of the wall-normal distance y,
with u and y being normalized with the bulk velocity Ub and h, respectively. Again,
we observe that the viscoelastic flow (Bi = 0) almost perfectly overlaps with the
Newtonian solution due to the very low Weissenberg number considered in this study.
As expected, as the Bingham number Bi increases, we note the appearance of a region
in the middle of the channel with a uniform velocity, i.e. a plug is formed away from
the walls flowing with uniform velocity; this corresponds to the region where the
fluid is not yielded and behaves as an elastic solid. Consequently, the centreline
velocity Uc = u(y = h) reduces and the wall shear increases for mass conservation.
The volume of the unyielded fluid, denoted Vols, grows with the Bingham number Bi
from 0 % for Bi= 0 up to 87 % for Bi= 1000, as shown in figure 4(b).

Finally, we provide a fit to our numerical data for the Fanning friction factor f
(figure 3). In general, the Fanning friction factor f of an elastoviscoplastic fluid in a
channel flow is a function of inertia (Reb), elasticity (Wi), plasticity (Bi) and viscosity
ratio β, i.e. f = F(Re, Wi, Bi, β). In our study the Weissenberg number is fixed to
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FIGURE 3. (Colour online) Fanning friction factor f as a function of (a) the bulk Reynolds
number Reb for β = 0.95 and (b) the viscosity ratio β for Re= 1, for different Bingham
numbers Bi. In all the elastoviscoplastic cases, the Weissenberg number is fixed to Wi=
0.01. Grey, orange, brown, purple, cyan and gold colours are used for Bi= 0, 0.1, 1, 10,
100 and 1000, respectively, and the black line is the Newtonian analytical solution. Note
that, the lines in the graphs are simple connections between the available data points.

0.5

0

1.0

0 0.5 1.0

Bi 50

0

100

500 10000

(a) (b)

FIGURE 4. (Colour online) (a) Mean streamwise velocity profile u as a function of the
wall-normal distance y. (b) Percentage of the unyielded volume Vols as a function of the
Bingham number Bi. The Reynolds number is equal to 1, and the colour scheme is the
same as in figure 3. Note that, the lines in the graphs are simple connections between the
available data points.

a very low value (Wi= 0.01), thus we drop its dependency. A very good agreement
with our data is found when using the following expression

f =
6+ C

√
Bi

Reb
, (3.3)

where C is a fit parameter which depends on β: C = 2.47 for β = 0.25, 7.55 for
β = 0.5 and 8.86 for β = 0.95. Equation (3.3) clearly recovers the Newtonian
analytical solution for Bi = 0, and provides an error below 2 % for all the
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FIGURE 5. (Colour online) (a) Fanning friction factor f as a function of the Bingham
number Bi for Reb = 2800 and β = 0.95. The points on the black line correspond to
laminar flows, while those on the grey line to turbulent flows. (b) The friction Reynolds
number Reτ as a function of the Bingham number Bi, with the vertical error bars
measuring the variance of Reτ . The dashed, dash-dotted and solid lines are used for
β = 0.25, 0.5 and 0.95, respectively. The Reynolds number is equal to Reb = 2800 for
all cases. The blue, magenta, red, orange and green colours are used for the turbulent
cases with Bi = 0, 0.28, 0.7, 1.4 and 2.8, respectively, while the colour scheme for the
laminar results is the same as in figure 3.

elastoviscoplastic results. It is worth noticing, that an analogous expression was
found by De Vita et al. (2018) for the flow of an elastoviscoplastic fluid through a
porous media, with the same dependency on Reb and Bi.

3.2. Turbulent flow
Next, we examine the turbulent flow cases, all at a fixed bulk Reynolds number
Reb= 2800 and Weissenberg number Wi= 0.01. The turbulent purely viscoelastic flow
with Bi= 0 has a Fanning friction factor f higher than its laminar counterpart, rising
by 300 % from 0.002 in the laminar case to 0.008 in the turbulent one, as shown
in figure 5(a) for the case with β = 0.95. As the Bingham number increases, the
Fanning friction factor progressively decreases, with an opposite trend to the laminar
elastoviscoplastic cases. The decrease of f is small for the two lowest Bi (−1.4 %
for Bi = 0.28 and −3.1 % for Bi = 0.7), moderate for the intermediate Bi (−7.7 %
for Bi = 1.4) and large for the highest Bi (−41 % for Bi = 2.8). For the highest Bi
considered here, the turbulence cannot be sustained and hence f reaches its laminar
value.

The friction Reynolds number Reτ is depicted in figure 5(b) as a function of
the Bingham number. Again, we observe a progressive decrease of Reτ with Bi,
corresponding to a net drag reduction when compared to a Newtonian turbulent
channel flow at the same flow rate (horizontal grey line). The error bar in the figure
represents the variance of the value, which is initially small, then grows suddenly
for Bi= 1.4 (as discussed later), and finally becomes null for Bi= 2.8. The different
line styles used in figure 5(b) correspond to different values of the viscosity ratio
β. We observe that, in the turbulent regime the results are almost independent of
the viscosity ratio, both in terms of mean and root mean square (r.m.s.) values.
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FIGURE 6. (Colour online) (a) Time history of the streamwise pressure drop dp/dx for
different Bingham numbers Bi. (b) Probability of the fluid being unyielded Ps as a function
of the wall-normal distance y. The percentages reported in the legend show the mean
unyielded volume Vols. The blue, magenta, red, orange and green colours are used for
Bi= 0, 0.28, 0.7, 1.4 and 2.8, respectively. The viscosity ratio β is fixed equal to 0.95.

To summarize, we identify three different regimes: (i) for low Bingham numbers
(.1) the friction Reynolds number decreases slowly, approximately linearly, with
approximately constant r.m.s. values; (ii) for intermediate values, Reτ decreases more
than linearly and its r.m.s. increases; (iii) for high Bingham numbers (& 2) the flow
becomes stationary and fully laminar. Interestingly, these three separate regimes are
found to be independent of the value of the viscosity ratio β.

We can define a Bingham number in wall units, i.e. Bi+, as the ratio between the
yield stress τ0 and the wall shear stress τw as Bi+ = τ0/τw: from the results of our
simulations we found that Bi+ = 0, 0.025, 0.064, 0.135 and 0.425 for the turbulent
simulations at Re= 2800 with Bi= 0, 0.28, 0.7, 1.4 and 2.8. Based on the values of
Bi+ we have available, we can infer that the first regime depicted above holds for yield
stress values that are below 6 % the wall shear stress value, while the third regime
holds for yield stress values above 42 % the wall shear stress.

The time history of the instantaneous pressure drop along the channel dp/dx is
shown in figure 6(a). This quantity represents the forcing term needed to drive the
flow, which in the turbulent regime oscillates around a mean value in order to maintain
a constant flow rate in the domain. We observe that for the low Bingham cases (Bi=0,
0.28 and 0.7) the time histories of dp/dx are very similar, with only slightly different
mean values; on the other hand, for Bi = 1.4 the mean value is further decreased
while the amplitude of the oscillations increases. Finally, for Bi = 2.8 the pressure
drop smoothly decays from the turbulent value imposed as initial condition to the
final laminar value. Thus, the figure clearly confirms the differences between the three
regimes highlighted above.

In order to understand the physical origin of the three regimes, we start by showing
visualizations of the instantaneous distributions of the regions where the flow is
yielded and not yielded, see figure 7. In the wall-normal and cross-stream planes in
the figure we also report colour contours of the spanwise (left column corresponding
to a x–y plane) and streamwise vorticity (right column displaying y–z planes), ωz and
ωx. At Bi= 0 we recognize the classic vorticity field of turbulent channel flows, with
high vorticity levels at the walls, and the footprints of the classical turbulent streaky
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(a) (b)

(c) (d )

(e) ( f )

(g) (h)

(i) ( j)

FIGURE 7. (Colour online) Contours of the instantaneous spanwise vorticity −ωz in
an x–y plane (a,c,e,g,i) and of the streamwise vorticity ωx in a y–z plane (b,d,f,h,j).
Colour scale ranges from −3Ub/h (blue) to 3Ub/h (red). The brown areas represent the
instantaneous regions where the flow is not yielded. The Bingham number Bi increases
from top to bottom (Bi = 0, 0.28, 0.7, 1.4 and 2.8) and the viscosity ratio β is fixed
equal to 0.95.

structures. For non-zero Bingham numbers, we see the appearance of unyielded
regions – shown in brown – around the centre of the channel and far from the walls.
These regions are mostly disconnected and with a limited spanwise length for the two
lowest Bi (corresponding to the first regime), while for Bi= 1.4 and 2.8 the unyielded
region extends over the full streamwise and spanwise directions. The bottom row of
the figure clearly shows that the flow is fully laminar.

Figure 8 shows the instantaneous state of the fluid: S indicates an unyielded fluid
and F a yielded one. This information is extracted by various numerical probes
at different wall-normal locations. In particular, we show in the figure the results
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FIGURE 8. (Colour online) Intermittency of the yield/unyield process (F/S) as a function
of time. The four panels correspond to probes located at x = 3h, z = 1.5h and different
wall-normal distances: (a) y≈ 0.25h, (b) 0.49h, (c) 0.74 and (d) 0.98h. The lines in every
panel are the results with different Bingham number, with the colour scheme being the
same as in figure 6.

for four different wall-normal distances, i.e. y ≈ 0.25h, 0.49h, 0.74 and 0.98h. The
intermittent nature of the flow is evident; also it is clear that the fluid close to the
wall is preferentially yielded, while close to the centreline it is mostly not yielded,
even at low Bingham numbers.

As clearly indicated by the previous pictures, the flow and the yield/unyield process
are inherently unsteady, thus we need to analyse the phenomenon in statistical terms.
Going back to figure 6(b), we display the probability to have an unyielded region
Ps as a function of the wall-normal distance y, together with the mean percentage
of the unyielded volume Vols reported in the legend. The value Ps = 1 indicates a
location where the material behaves as an elastic solid throughout the computational
time, whereas the material behaves uniquely as a viscoelastic (Oldroyd-B) fluid when
Ps = 0. For Bi = 0, we clearly have no solid anywhere, while as Bi increases, the
probability of the fluid to be not yielded increases around the centreline, while still
remains null in the near-wall region. Finally, for Bi = 2.8 when the flow is fully
laminar, the probability of being yielded or unyielded is either 0 or 1, with 54 %
of the total volume being not yielded. Note that, even for the Bingham number
Bi = 1.4, representative of the second regime, the probability to be unyielded in the
middle of the channel is not exactly equal to unity. Indeed, as also shown in the third
row of figure 7, instantaneous region where the fluid is yielded can appear around
the centreline, thus decreasing the overall percentage. In particular, for Bi = 0.28
the probability of the fluid being yielded at the centreline is approximately 85 %,
for Bi = 0.7 is 40 % and for Bi = 1.4 is 8 %. This effect contributes to the highly
unsteady and intermittent behaviour discussed in relation to the pressure drop and
friction factor.

We now proceed by presenting the main flow statistics. Figure 9 shows the mean
streamwise velocity component u as a function of the wall-normal distance y. In (a)
(in bulk units) we can again find the three different behaviours described above. Up to
Bi≈ 1, the profiles are quite similar, with only little reductions of the wall shear and
an increase of the centreline velocity as Bi grows. The difference with the Newtonian
case becomes more noticeable for Bi = 1.4, where a region with zero shear appears
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FIGURE 9. (Colour online) Mean streamwise velocity profile u as a function of the wall-
normal distance y in bulk (a) and wall units (b). The colour scheme is the same as in
figure 6, with the addition of the black symbols used for the Newtonian case, taken from
the results by Kim et al. (1987). The viscosity ratio β is fixed equal to 0.95.

at the centreline. Finally the profile for Bi = 2.8 clearly differs from the other ones,
with a large zero-shear region occupying more than 50 % of the channel. In (b) the
same velocity profiles are shown in wall units. In most of the turbulent cases we can
identify three regions in the velocity profile, similarly to those found for a Newtonian
turbulent channel flow (black symbols): first, the viscous sublayer for y+ < 5 where
the variation of u+ with y+ is linear; then, the so-called log-law region, y+>30, where
the variation of u+ versus y+ is logarithmic; finally, the region between 5 and 30 wall
units is called buffer layer and neither law holds here. As Bi increases, the extension
of the inertial ranges reduces eventually disappearing, thus indicating the absence of
an equilibrium range. By comparing the three regions discussed above present in the
mean velocity profile and the extension of the unyielded region shown in figure 6, we
can observe that the flow remains unyielded mostly in the logarithmic and outer layer,
while it is always yielded in the viscous sublayer.

We continue our comparison between the turbulent channel of a Newtonian and
elastoviscoplastic fluid by analysing the wall-normal distribution of the diagonal
component of the Reynolds stress tensor; these are shown in figure 10 together with
the data from Kim et al. (1987) for the Newtonian case, represented with the black
symbols +. Also in the Reynolds stress profiles, we find the distinction between
the three regimes previously mentioned. First, for low Bi, the fluctuations are only
slightly affected, with the differences being noticeable only in the buffer layer, while
the profiles in the viscous sublayer and in the inertial range still show a good collapse
in wall units. Then, for high Bingham numbers (Bi= 1.4) the profiles undergo strong
modifications, which are not limited to the buffer layer, but extend to the inertial
range and viscous sublayer as well. Finally, the full laminarization of the flow for
Bi = 2.8 is proved again by showing the null values assumed by all the Reynolds
stress components, in the whole domain.

We also observe a clear trend, although not linear, of the Reynolds stress
components with the Bingham number: the streamwise component u′u′ increases,
while the wall-normal v′v′ and spanwise w′w′ decrease. Also, all the peaks are
displaced away from the wall, towards the centreline. In relative terms, the
wall-normal and spanwise components are the most affected ones, decreasing by
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FIGURE 10. (Colour online) Wall-normal profiles of the different components of the
Reynolds stress tensor, normalized with u2

τ . (a–c) Show the diagonal components u′u′,
v′v′ and w′w′, while (d) shoes the cross-term u′v′. The colour scheme is the same as
in figure 6.

almost 40 %. Finally, figure 10(d) depicts the wall-normal profile of the off-diagonal
component of the Reynolds stress tensor u′v′. Also this cross component is affected by
the elastoviscoplasticity of the fluid in a similar fashion as the diagonal components.
In particular, the maximum value decreases and moves away from the wall as the
Bingham number increases. Nevertheless, the stress profiles still vary linearly between
the two peaks of opposite sign close to each wall, but with different slopes (not
shown here). The Reynolds stress modifications due to the elastoviscoplastic property
of the fluid are similar to what observed in other drag reducing flows, such as the
turbulent flow over riblets (García-Mayoral & Jiménez 2011), the turbulent flow over
anisotropic porous walls (Rosti & Brandt 2018), and turbulent flows with polymers
(Dubief et al. 2004; Shahmardi et al. 2018). In general, the increased amplitude of
the streamwise fluctuations, and the reduction of the other components, is usually
associated with the strengthening of streaky structures above the wall, which is true
also in the present case, as shown in the next paragraphs.

An overall view of the velocity fluctuations can be inferred by considering the
turbulent kinetic energy K = (u′2 + v′2 + w′2)/2, shown in figure 11(a), normalized
by the friction velocity uτ . As usual, the symbols represent the profiles from the
direct numerical simulation of Kim et al. (1987) of a turbulent channel flow. Close
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FIGURE 11. (Colour online) Wall-normal profiles of (a) the turbulent kinetic energy K=
(u′2 + v′2 + w′2)/2 and of (b) the turbulent production P =−u′v′ du/dy, both normalized
with the friction velocity uτ . The colour scheme is the same as in figure 6, with the blue,
magenta, red, orange and green colours used for the turbulent cases with Bi= 0, 0.28, 0.7,
1.4 and 2.8, respectively.
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FIGURE 12. (Colour online) Wall-normal profiles of (a) the turbulent dissipation ε =

µ∂u′i/∂xj∂u′i/∂xj in wall units and of (b) the shear effective viscosity µe. The colour
scheme is the same as in figure 6. The inset figure in (b) shows µe as a function of
the shear rate γ̇ .

to the wall and close to the centreline, all the profiles coincide. On the contrary, in
the region where the maximum of K is located, i.e. the buffer layer, we observe
a strong increase for Bi = 1.4, and only a moderate one for the other values of
Bingham number. Also, the peak is displaced to higher wall-normal distances y+ than
its Newtonian counterparts. The increased value of the peak is mainly due to the
increase of the streamwise component of the velocity fluctuations discussed above.
An opposite behaviour is evident in figure 11(b), where the turbulent production
P =−u′v′ du/dy is displayed. Indeed, although all the profiles of P still collapse at
the wall and at the centreline, in the buffer layer the turbulent production decreases
with the Bingham number, with differences noticeable in the viscous sublayer as well.
Figure 12(a) shows the turbulent dissipation ε = µ∂u′i/∂xj∂u′i/∂xj of the fluctuating
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FIGURE 13. (Colour online) (a) Trace and (b) shear component of the mean
elastoviscoplastic stress tensor τ ij as a function of the wall-normal distance y. The colour
scheme is the same as in figure 6.

velocity field u′i. We observe that ε has a maximum at the wall and then decreases
moving towards the centreline where it reaches its minimum value which is the
approximately same for the considered turbulent cases. The case with Bi= 0 shows a
dissipation profile similar to the one of a Newtonian fluid (Rosti et al. 2015), while
increasing Bi the dissipation decreases monotonically, being null in the laminar case
when Bi= 2.8. The decrease of dissipation with Bi is consistent with the progressive
decrease of Reτ previously observed.

We now discuss in more details the elastoviscoplastic stress tensor τij. Figure 13
shows the mean profile of the microstructure stress tensor trace τ ii (a) and the shear
component τ 12 (b) as functions of the Bingham number. All the stress profiles have
their maximum values at the wall (y= 0) and their minimum absolute values at the
centreline (y= h), with the trace being symmetric with respect to y= h and the shear
component anti-symmetric. In the turbulent flows (Bi . 2), the normal stresses vary
only slightly across the channel, except in the near-wall region where they rapidly
grow. On the other hand, this trend is almost inverted for the laminar flow (Bi =
2.8). A similar behaviour is shown by the shear stress component τ 12, except that
the almost uniform region is less wide, since in the middle of the channel the stress
needs to vanish. Moreover, this region with an almost uniform elastoviscoplastic shear
stress further reduces with the Bingham number Bi. We observe that the shear stress
component and the trace of the stress tensor are approximately of the same magnitude,
and that the values of the stress components approximately scale with Bi, but only
when the flow is turbulent.

To gain further understanding, we report in figure 14 the shear stress budget for the
cases with Bi = 0 and Bi = 1.4, normalized with the corresponding wall stress. For
Bi = 0, the additional elastoviscoplastic stress is very small and the behaviour is
therefore similar to that of a standard Newtonian turbulent channel flow, with the
viscous stress dominating at the wall and then rapidly decreasing towards the channel
core; the Reynolds stresses, on the other hand, are zero at the wall and at the
centreline and attain a maximum relatively close to the wall. Note that, although
very small, the elastoviscoplastic stress is not null at the wall, thus the total wall
shear stress is the sum of the two contributions, the elastoviscoplastic and viscous
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FIGURE 14. (Colour online) Normalized shear stress balance across the channel, for (a)
Bi= 0 and (b) Bi= 1.4. The dashed, dotted and dash-dotted lines are used for the viscous,
Reynolds and elastoviscoplastic shear stress, respectively, while the solid line is the total
shear stress, which varies linearly across the channel height.

stresses. The situation differs in the flow at the Bingham number Bi= 1.4. Here, the
elastoviscoplastic stress increases across the whole channel, reaching approximately
15 % of the total stress at the wall. Its increase is compensated by a changes of the
other two stress components; in particular, the Reynolds stress peak reduces from
70 to 55 % of the total, while the viscous stress peak from 95 to 85 %. An overall
picture of the total shear stress profile can be gained by studying the effective shear
viscosity µe normalized with the total viscosity µ0, reported in figure 12(b). This is
defined as follows:

µe

µ0
=

µf
du
dy
+ τ 12

µ0
du
dy

. (3.4)

The effective shear viscosity µe grows with the Bingham number Bi and moving
from the wall towards the centre of the channel. The inset of the figure shows the
same quantity µe as a function of the shear rate γ̇ here defined as µ0 du/dy, i.e. the
denominator of (3.4); from the figure we can appreciate the shear-thinning behaviour
of the elastoviscoplastic fluid described by the Saramito model (Saramito 2007).

Finally, figure 15 shows the cross-correlation ρi defined as

ρi =
u′i f ′i
u′i f ′i

, (3.5)

where fi is the elastoviscoplastic volume force, i.e. the contribution to the Navier–
Stokes equation of the elastoviscoplastic stress tensor τij defined as fi= ∂τij/∂xj. Note
that there is no summation over the repeated indices in the previous relation. The left
and right panels of the plot show the cases with Bi = 0 (a) and Bi = 1.4 (b), with
the dashed, solid and dash-dotted lines in each plot corresponding to the streamwise,
wall-normal and spanwise cross-correlations: ρ1, ρ2 and ρ3. In general, when ρi

equals 1 or −1, the flow velocity and elastoviscoplastic force are perfectly correlated
or anti-correlated, while when ρi = 0 they are not correlated. We observe that for
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FIGURE 15. (Colour online) Wall-normal profiles of the cross-correlations ρi of the
streamwise (dashed line), wall-normal (solid line) and spanwise (dash-dotted line) velocity
component ui and elastoviscoplastic contribution fi, defined in (3.5), for (a) Bi= 0 and (b)
Bi= 1.4.

the case Bi = 0 all the cross-correlation components ρi are negative in most of the
channel, except in the near-wall region where ρ1 equals 1 and ρ2 equals 0. In this
case, the cross-correlation is almost uniform across the whole channel height, with
a negative value equal to ρi ≈ −0.5: the elastoviscoplastic body force and velocity
are anti-correlated in the bulk of the flow away from the walls, thus indicating that
the elastoviscoplastic contribution is opposing the turbulent fluctuations. Close to
the wall, however, the high positive values attained by ρ1 suggest a role played
by the viscoelastic stresses in the increase of the streamwise velocity fluctuations.
Note that, this is similar to what was found by Dubief et al. (2005) for a turbulent
channel flow with a polymer solution. On the other hand, the high Bingham case
(Bi= 1.4) shows a similar trend only close to the wall (y . 0.5h), while in the bulk
the cross-correlations ρi interestingly go to zero. The fact that the flow velocity and
the elastoviscoplastic stress tensor are not correlated around the centreline can be
associated with the continuous cycle of yielding and unyielding processes.

The elastoviscoplastic character of the flow affects the near-wall turbulent structures,
and this is visually confirmed in figure 16. The left panels identify the low- (blue)
and high-speed (red) near-wall streaks with isosurfaces of the streamwise velocity
fluctuations, u′, corresponding to the levels u′+ =±0.25Ub, while the pictures in the
middle and right columns show the footprints of these structures on the wall-parallel
planes at y = 0.15h and 0.44h. It is evident that the structures in the buffer layer
are less fragmented and more elongated in the streamwise direction as the Bingham
number increases. Also, their spanwise extension increases, and consequently the
number of streaks reduces. Indeed, the attenuation of the small-scale features is
consistent with a picture where the larger coherent structures grow in size due to
the reduction of the friction Reynolds number Reτ , i.e. drag reduction. This effect
– decreasing drag and wider and more coherent structures – is similar to what
is found in other drag reducing flows, such as riblets, polymer suspensions and
anisotropic porous walls, as already discussed previously. From the three-dimensional
visualizations, we observe that the low-speed streaks penetrate to higher wall-normal
distances than the high-speed ones; the former are usually associated with wall-normal
velocity fluctuations v′ away from the wall, and their high-speed counterparts with
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FIGURE 16. (Colour online) (a,d,g,j,m) Isosurfaces and ((b,e,h,k,n) and (c,f,i,l,o)) contours
of instantaneous streamwise velocity fluctuation u′. The flow goes from left to right and
the colour scale ranges from −0.25Ub (blue) to 0.25Ub (red). The brown regions in all
the figures represent the unyielded fluid. The two slices on the right are x–z planes at
y= 0.15h and y= 0.44h. The Bingham number Bi increases from top to bottom (Bi= 0,
0.28, 0.7, 1.4 and 2.8), and the viscosity ratio β is fixed equal to 0.95.

wall-normal velocities towards the wall (Kim et al. 1987). This tendency interacts
with the yield/unyield process; indeed, from the rightmost panels in the figure we
note that the regions where the fluid is not yielded are mostly located in the positions
above an high-speed streak, while almost all the fluid above the low-speed streaks
remains fully yielded. These visual observations will be now quantified statistically
by analysing the autocorrelation functions.

The effect of the Bingham number Bi on the flow coherence is quantified by the
two-point velocity autocorrelation functions, reported in figure 17 for the cases with
Bi= 0, 0.28, 0.7 and 1.4. The two-point autocorrelation function Rii is defined here
as

Rii(x, r)=
u′i(x)u′i(x+ r)

u′2i (x)
, (3.6)

where the bar denotes average over time and the two homogeneous directions, and
the prime the velocity fluctuation. Note that, there is no summation over the repeated
indices in the previous relation. The top row in the figure shows the distribution
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FIGURE 17. (Colour online) Stack of two-point velocity autocorrelation functions across
the channel Rii(y). (a–d) Shows the streamwise autocorrelation function of the streamwise
velocity R11, while (e–h) the spanwise autocorrelation function of the wall-normal velocity
R22. The Bingham numbers increase from left to right (Bi = 0, 0.28, 0.7 and 1.4).
The solid and dashed lines correspond to positive and negative values of autocorrelation,
ranging from −0.1 to 0.9 with a step of 0.2 between two neighbouring lines. The colour
scale ranges from −0.1 (purple) to 1.0 (red).

in the x–y plane of the streamwise velocity component autocorrelation along the
streamwise direction x, while the bottom row the distribution in the z–y plane of
the wall-normal velocity component autocorrelation along the spanwise direction z.
In the case Bi = 0 (shown in the leftmost column), the correlations appear to be
very similar to the baseline Newtonian case with highly elongated streaky structures
that alternate at the canonical spanwise distance (i.e. 1z+ ' 100+) (Kim et al. 1987).
As the Bingham number Bi is increased (panels from left to right), the streamwise
correlation length monotonically increases, thus indicating a higher level of coherency
of the flow structures; in particular, this reveals that the velocity streaks are more
elongated in the streamwise direction. The spanwise correlation also increases when
increasing Bi as the velocity streaks become wider than in a Newtonian fluid, despite
the existence of yielded regions in the channel core (see figure 16). Note also that,
the increased correlation lengths in both the streamwise and spanwise directions are
not limited to the near-wall regions occupied by the streaky structures, as in the other
drag reducing flows cited above (Dubief et al. 2004; García-Mayoral & Jiménez
2011; Rosti & Brandt 2018; Shahmardi et al. 2018), but extend up to the centreline.
However, this increased spanwise correlation does not extend towards the centreline
as much as the streamwise coherence. This difference originates from the fact that
the flow at a high wall-normal distance y is still not yielded, thus behaving as a
viscoelastic solid.

4. Conclusion
We present numerical simulations of laminar and turbulent channel flow of a

non-Newtonian elastoviscoplastic fluid. The elastoviscoplastic flow is simulated
with the model proposed by Saramito (2007), where the incompressible Navier–
Stokes equations are coupled with an additional equation for the evolution of the
elastoviscoplastic stress tensor. In particular, the model predicts only recoverable
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Kelvin–Voigt viscoelastic deformation for stress below the yield stress value, while
when the stress exceeds the yield value, the fluid behaves as an Oldroyd-B viscoelastic
fluid. For both the laminar and turbulent regimes, we examine the flow behaviour
when changing the values of the material plasticity (Bingham number) and viscosity
ratio (β), while keeping the elasticity constant (Weissenberg number) to a small value,
to more clearly identify the role of the plasticity.

For the laminar channel flow, we carried out a full parametric study and find
that the friction factor increases with the Bingham number and decreases with the
Reynolds number and the viscosity ratio. The drag increase due to the Bingham
number originates from the increase of the portion of the channel where the stress
is below the yield stress value and thus the fluid is not yielded. In these regions,
forming initially at the centreline and then growing towards the wall as the Bingham
number increases, the flow presents a flat velocity profile with zero shear. We propose
an empirical correlation for the friction factor in a laminar channel flow, which is
function of the Reynolds number, Bingham number and viscosity ratio. We show
that the Fanning friction factor is inversely proportional to the Reynolds number and
proportional to the square root of the Bingham number (a result interestingly found
also for the flow of the same kind of fluid in a porous medium).

In the turbulent flows, the bulk Reynolds number is fixed to 2800 due to
computational costs and the effects of different yield stress values and viscosity ratios
are studied via both statistical data and instantaneous visualizations. Unlike the case
of laminar flows, the Fanning friction factor is almost independent of the viscosity
ratio and decreases with the Bingham number. We show that all the elastoviscoplastic
flow configurations analysed are drag reducing, and since the Weissenberg number
considered is very low, we have demonstrated that this is not an effect of the elasticity.
We identify three different regimes depending on the value of the Bingham number:
for low Bingham numbers, the turbulence is only slightly modified, except for a
slowly progressive reduction of the friction Reynolds number. Next, for intermediate
Bingham numbers, the flow becomes highly intermittent, with a continuous cycle of
yielding and unyielding process in the centre of the channel which is responsible
for the increased fluid oscillations. We also document strong streamwise velocity
fluctuations, with the mean velocity profile departing from the usual log law and the
loss of the inertial equilibrium range; all of the flow statistics are affected both in
the buffer and logarithmic layers. Finally, for high values of the Bingham number,
the flow fully laminarizes.

We show that the progressive increase of the amount of fluid which is not yielded
with the Bingham number has a strong influence on the flow. Indeed, these regions
grow from the centreline towards the walls as the Bingham number increases, similarly
to the laminar regime, but introduce a strong unsteadiness in the flow when they
extend over the full streamwise and spanwise dimensions.

In the elastoviscoplastic flow we observed an enhancement of the near-wall streak
intensity and of the associated quasi-streamwise vortices, regions with localized high
stress values. The low-speed streaks, usually associated with positive wall-normal
fluctuations, reach higher wall-normal distances than the high-speed streaks, thus
inducing the flow to yield at higher wall-normal distances if the local stress reaches
the yield stress threshold. Indeed, the unyielded regions preferentially form above
high-speed streaks. Overall, the flow becomes more and more correlated in the
streamwise direction when increasing the Bingham number, with high levels of flow
anisotropy close to the wall, similarly to what observed in other drag reducing
flows. Differently from the other flows, however, both the streamwise and spanwise
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correlations grow with the Bingham number also away from the wall, due to the
growth of the unyielded region.

The analysis performed here assumed a very low level of elasticity of the flow.
The present results can therefore be extended by introducing this additional effect
and investigating how the dynamics described here changes. Furthermore, more
complex flow configurations, e.g. separating and fully inhomogeneous flows, as well
as the addition of a dispersed solid phase in this complex matrix deserve further
consideration. Another interesting extension of the present work is the analysis of
these flows at higher Reynolds numbers, investigating how the friction factor depends
on the Bingham number and the absence of unyielded regions in the viscous sublayer.

Acknowledgements

M.E.R. and L.B. were supported by the European Research Council grant no. ERC-
2013-CoG-616186, TRITOS and by the Swedish Research Council grant no. VR 2014-
5001. D.I. and O.T. acknowledge financial support by the Swedish Research Council
through grants no. VR2013-5789 and no. VR 2014-5001. S.H. acknowledges financial
support by NSF (grant no. CBET-1554044-CAREER), NSF-ERC (grant no. CBET-
1641152 Supplementary CAREER). The authors acknowledge computer time provided
by SNIC (Swedish National Infrastructure for Computing).

REFERENCES

BALMFORTH, N. J., FRIGAARD, I. A. & OVARLEZ, G. 2014 Yielding to stress: recent developments
in viscoplastic fluid mechanics. Annu. Rev. Fluid Mech. 46, 121–146.

BENTRAD, H., ESMAEL, A., NOUAR, C., LEFEVRE, A. & AIT-MESSAOUDENE, N. 2017 Energy
growth in Hagen–Poiseuille flow of Herschel–Bulkley fluid. J. Non-Newtonian Fluid Mech.
241, 43–59.

BERIS, A. N. & DIMITROPOULOS, C. D. 1999 Pseudospectral simulation of turbulent viscoelastic
channel flow. Comput. Meth. Appl. Mech. Engng 180 (3–4), 365–392.

BERMAN, N. S. 1978 Drag reduction by polymers. Annu. Rev. Fluid Mech. 10 (1), 47–64.
BREUGEM, W. P., BOERSMA, B. J. & UITTENBOGAARD, R. E. 2006 The influence of wall

permeability on turbulent channel flow. J. Fluid Mech. 562, 35–72.
CHEDDADI, I., SARAMITO, P., DOLLET, B., RAUFASTE, C. & GRANER, F. 2011 Understanding and

predicting viscous, elastic, plastic flows. Eur. Phys. J. E 34 (1), 1.
CROCHET, M. J. & WALTERS, K. 1983 Numerical methods in non-Newtonian fluid mechanics. Annu.

Rev. Fluid Mech. 15 (1), 241–260.
DE VITA, F., ROSTI, M. E., IZBASSAROV, D., DUFFO, L., TAMMISOLA, O., HORMOZI, S. &

BRANDT, L. 2018 Elastoviscoplastic flow in porous media. J. Non-Newtonian Fluid Mech.
258, 10–21.

DEN TOONDER, J. M. J., HULSEN, M. A., KUIKEN, G. D. C. & NIEUWSTADT, F. T. M. 1997 Drag
reduction by polymer additives in a turbulent pipe flow: numerical and laboratory experiments.
J. Fluid Mech. 337, 193–231.

DOLLET, B. & GRANER, F. 2007 Two-dimensional flow of foam around a circular obstacle: local
measurements of elasticity, plasticity and flow. J. Fluid Mech. 585, 181–211.

DUBIEF, Y., TERRAPON, V. E., WHITE, C. M., SHAQFEH, E. S. G., MOIN, P. & LELE, S. K.
2005 New answers on the interaction between polymers and vortices in turbulent flows. Flow
Turbul. Combust. 74 (4), 311–329.

DUBIEF, Y., WHITE, C. M., TERRAPON, V. E., SHAQFEH, E. S. G., MOIN, P. & LELE, S. K.
2004 On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall
flows. J. Fluid Mech. 514, 271–280.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

59
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.591


512 M. E. Rosti, D. Izbassarov, O. Tammisola, S. Hormozi and L. Brandt

ESCUDIER, M. P., NICKSON, A. K. & POOLE, R. J. 2009 Turbulent flow of viscoelastic shear-
thinning liquids through a rectangular duct: quantification of turbulence anisotropy. J. Non-
Newtonian Fluid Mech. 160 (1), 2–10.

ESCUDIER, M. P., POOLE, R. J., PRESTI, F., DALES, C., NOUAR, C., DESAUBRY, C., GRAHAM,
L. & PULLUM, L. 2005 Observations of asymmetrical flow behaviour in transitional pipe flow
of yield-stress and other shear-thinning liquids. J. Non-Newtonian Fluid Mech. 127 (2–3),
143–155.

ESCUDIER, M. P. & PRESTI, F. 1996 Pipe flow of a thixotropic liquid. J. Non-Newtonian Fluid
Mech. 62 (2–3), 291–306.

ESCUDIER, M. P., PRESTI, F. & SMITH, S. 1999 Drag reduction in the turbulent pipe flow of
polymers. J. Non-Newtonian Fluid Mech. 81 (3), 197–213.

ESCUDIER, P. & SMITH, S. 2001 Fully developed turbulent flow of non-Newtonian liquids through a
square duct. Proc. R. Soc. Lond. A 457, 911–936.

FOUNARGIOTAKIS, K., KELESSIDIS, V. C. & MAGLIONE, R. 2008 Laminar, transitional and turbulent
flow of Herschel–Bulkley fluids in concentric annulus. Can. J. Chem. Engng 86 (4), 676–683.

FRAGGEDAKIS, D., DIMAKOPOULOS, Y. & TSAMOPOULOS, J. 2016 Yielding the yield-stress analysis:
a study focused on the effects of elasticity on the settling of a single spherical particle in
simple yield-stress fluids. Soft Matt. 12 (24), 5378–5401.

FRIGAARD, I. A., HOWISON, S. D. & SOBEY, I. J. 1994 On the stability of Poiseuille flow of a
Bingham fluid. J. Fluid Mech. 263, 133–150.

GARCÍA-MAYORAL, R. & JIMÉNEZ, J. 2011 Hydrodynamic stability and breakdown of the viscous
regime over riblets. J. Fluid Mech. 678, 317–347.

GORDON, R. J. & SCHOWALTER, W. R. 1972 Anisotropic fluid theory: a different approach to the
dumbbell theory of dilute polymer solutions. Trans. Soc. Rheol. 16 (1), 79–97.

GUANG, R., RUDMAN, M., CHRYSS, A., SLATTER, P. & BHATTACHARYA, S. 2011 A DNS
investigation of the effect of yield stress for turbulent non-Newtonian suspension flow in
open channels. Particul. Sci. Technol. 29 (3), 209–228.

GUZEL, B., FRIGAARD, I. & MARTINEZ, D. M. 2009 Predicting laminar–turbulent transition in
Poiseuille pipe flow for non-Newtonian fluids. Chem. Engng Sci. 64 (2), 254–264.

HANKS, R. W. 1963 The laminar-turbulent transition for flow in pipes, concentric annuli, and parallel
plates. AIChE J. 9 (1), 45–48.

HANKS, R. W. 1967 On the flow of Bingham plastic slurries in pipes and between parallel plates.
Soc. Petrol. Engng J. 7 (04), 342–346.

HANKS, R. W. & DADIA, B. H. 1971 Theoretical analysis of the turbulent flow of non-Newtonian
slurries in pipes. AIChE J. 17 (3), 554–557.

HORMOZI, S. & FRIGAARD, I. A. 2012 Nonlinear stability of a visco-plastically lubricated viscoelastic
fluid flow. J. Non-Newtonian Fluid Mech. 169, 61–73.

IZBASSAROV, D., ROSTI, M. E., NIAZI, A. M., SARABIAN, M., HORMOZI, S., BRANDT, L. &
TAMMISOLA, O. 2018 Computational modeling of multiphase viscoelastic and elastoviscoplastic
flows. Intl J. Numer. Meth. Fluids (accepted, https://doi.org/10.1002/fld.4678).

KANARIS, N., KASSINOS, S. C. & ALEXANDROU, A. N. 2015 On the transition to turbulence of
a viscoplastic fluid past a confined cylinder: a numerical study. Intl J. Heat Fluid Flow 55,
65–75.

KIM, J. & MOIN, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes
equations. J. Comput. Phys. 59 (2), 308–323.

KIM, J., MOIN, P. & MOSER, R. 1987 Turbulence statistics in fully developed channel flow at low
Reynolds number. J. Fluid Mech. 177, 133–166.

LOGAN, S. E. 1972 Laser velocimeter measurement of Reynolds stress and turbulence in dilute
polymer solutions. AIAA J. 10 (7), 962–964.

MALEKI, A. & HORMOZI, S. 2018 Submerged jet shearing of visco-plastic sludge. J. Non-Newtonian
Fluid Mech. 252, 19–27

MARTINIE, L., BUGGISCH, H. & WILLENBACHER, N. 2013 Apparent elongational yield stress of
soft matter. J. Rheol. 57 (2), 627–646.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

59
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1002/fld.4678
https://doi.org/10.1017/jfm.2018.591


Turbulent channel flow of an elastoviscoplastic fluid 513

METIVIER, C., NOUAR, C. & BRANCHER, J. P. 2005 Linear stability involving the Bingham model
when the yield stress approaches zero. Phys. Fluids 17 (10), 104106.

METIVIER, C., NOUAR, C. & BRANCHER, J. P. 2010 Weakly nonlinear dynamics of thermoconvective
instability involving viscoplastic fluids. J. Fluid Mech. 660, 316–353.

METZNER, A. B. & REED, J. C. 1955 Flow of non-Newtonian fluids – correlation of the laminar,
transition, and turbulent-flow regions. AIChE J. 1 (4), 434–440.

MIN, T., YOO, J. Y. & CHOI, H. 2001 Effect of spatial discretization schemes on numerical solutions
of viscoelastic fluid flows. J. Non-Newtonian Fluid Mech. 100 (1), 27–47.

MOYERS-GONZALEZ, M. A., FRIGAARD, I. A. & NOUAR, C. 2004 Nonlinear stability of a visco-
plastically lubricated viscous shear flow. J. Fluid Mech. 506, 117–146.

NOUAR, C. & BOTTARO, A. 2010 Stability of the flow of a Bingham fluid in a channel: eigenvalue
sensitivity, minimal defects and scaling laws of transition. J. Fluid Mech. 642, 349–372.

NOUAR, C. & FRIGAARD, I. A. 2001 Nonlinear stability of Poiseuille flow of a Bingham fluid:
theoretical results and comparison with phenomenological criteria. J. Non-Newtonian Fluid
Mech. 100 (1–3), 127–149.

NOUAR, C., KABOUYA, N., DUSEK, J. & MAMOU, M. 2007 Modal and non-modal linear stability
of the plane Bingham–Poiseuille flow. J. Fluid Mech. 577, 211–239.

ORLANDI, P. & LEONARDI, S. 2008 Direct numerical simulation of three-dimensional turbulent rough
channels: parameterization and flow physics. J. Fluid Mech. 606, 399–415.

OWOLABI, B. E., DENNIS, D. J. C. & POOLE, R. J. 2017 Turbulent drag reduction by polymer
additives in parallel-shear flows. J. Fluid Mech. 827, R4.

PICANO, F., BREUGEM, W. P. & BRANDT, L. 2015 Turbulent channel flow of dense suspensions of
neutrally buoyant spheres. J. Fluid Mech. 764, 463–487.

PINHO, F. T. & WHITELAW, J. H. 1990 Flow of non-Newtonian fluids in a pipe. J. Non-Newtonian
Fluid Mech. 34 (2), 129–144.

POOLE, R. J. 2012 The Deborah and Weissenberg numbers. Rheol. Bull. 53, 32–39.
POPE, S. B. 2001 Turbulent Flows. Cambridge University Press.
PUTZ, A. M. V., BURGHELEA, T. I., FRIGAARD, I. A. & MARTINEZ, D. M. 2008 Settling of an

isolated spherical particle in a yield stress shear thinning fluid. Phys. Fluids 20 (3), 033102.
ROSTI, M. E. & BRANDT, L. 2017 Numerical simulation of turbulent channel flow over a viscous

hyper-elastic wall. J. Fluid Mech. 830, 708–735.
ROSTI, M. E. & BRANDT, L. 2018 Suspensions of deformable particles in a Couette flow. J. Non-

Newtonian Fluid Mech. (accepted, https://doi.org/10.1016/j.jnnfm.2018.01.008).
ROSTI, M. E., BRANDT, L. & MITRA, D. 2018a Rheology of suspensions of viscoelastic spheres:

deformability as an effective volume fraction. Phys. Rev. Fluids 3 (1), 012301(R).
ROSTI, M. E., BRANDT, L. & PINELLI, A. 2018b Turbulent channel flow over an anisotropic porous

wall – drag increase and reduction. J. Fluid Mech. 842, 381–394.
ROSTI, M. E., CORTELEZZI, L. & QUADRIO, M. 2015 Direct numerical simulation of turbulent

channel flow over porous walls. J. Fluid Mech. 784, 396–442.
RUDMAN, M. & BLACKBURN, H. M. 2006 Direct numerical simulation of turbulent non-Newtonian

flow using a spectral element method. Appl. Math. Model. 30 (11), 1229–1248.
RUDMAN, M., BLACKBURN, H. M., GRAHAM, L. J. W. & PULLUM, L. 2004 Turbulent pipe flow

of shear-thinning fluids. J. Non-Newtonian Fluid Mech. 118 (1), 33–48.
RYAN, N. W. & JOHNSON, M. M. 1959 Transistion from laminar to turbulent flow in pipes. AIChE

J. 5 (4), 433–435.
SARAMITO, P. 2007 A new constitutive equation for elastoviscoplastic fluid flows. J. Non-Newtonian

Fluid Mech. 145 (1), 1–14.
SARAMITO, P. 2009 A new elastoviscoplastic model based on the Herschel–Bulkley viscoplastic

model. J. Non-Newtonian Fluid Mech. 158 (1), 154–161.
SARAMITO, P. 2016 Complex Fluids. Springer.
SARAMITO, P. & WACHS, A. 2016 Progress in numerical simulation of yield stress fluid flows. Rheol.

Acta 79, 1–20.
SHAHMARDI, A., ZADE, S., ARDEKANI, M. N., POOLE, R. J., LUNDELL, F., ROSTI, M. E. &

BRANDT, L. 2018 Turbulent duct flow with polymers. J. Fluid Mech. (under review).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

59
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1016/j.jnnfm.2018.01.008
https://doi.org/10.1017/jfm.2018.591


514 M. E. Rosti, D. Izbassarov, O. Tammisola, S. Hormozi and L. Brandt

SHAUKAT, A., KAUSHAL, M., SHARMA, A. & JOSHI, Y. M. 2012 Shear mediated elongational flow
and yielding in soft glassy materials. Soft Matt. 8 (39), 10107–10114.

SHU, C. W. 2009 High order weighted essentially nonoscillatory schemes for convection dominated
problems. SIAM Rev. 51 (1), 82–126.

SUGIYAMA, K., II, S., TAKEUCHI, S., TAKAGI, S. & MATSUMOTO, Y. 2011 A full Eulerian finite
difference approach for solving fluid–structure coupling problems. J. Comput. Phys. 230 (3),
596–627.

WARHOLIC, M. D., MASSAH, H. & HANRATTY, T. J. 1999 Influence of drag-reducing polymers
on turbulence: effects of Reynolds number, concentration and mixing. Exp. Fluids 27 (5),
461–472.

WHITE, C. M. & MUNGAL, M. G. 2008 Mechanics and prediction of turbulent drag reduction with
polymer additives. Annu. Rev. Fluid Mech. 40, 235–256.

XI, L. & GRAHAM, M. D. 2010 Active and hibernating turbulence in minimal channel flow of
Newtonian and polymeric fluids. Phys. Rev. Lett. 104 (21), 218301.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

59
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.591

	Turbulent channel flow of an elastoviscoplastic fluid
	Introduction
	Stability of yield stress fluids
	Friction losses and drag reduction
	Elastoviscoplastic fluid
	Outline

	Formulation
	Numerical discretization
	Code validation
	Numerical set-up

	Results
	Laminar flow
	Turbulent flow

	Conclusion
	Acknowledgements
	References


