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This paper presents a study on the dynamics of a thin liquid film flowing down a vertical
cylindrical fibre under a streamwise thermal gradient. Previous works on isothermal
flows have shown that the inlet flow and fibre geometry are the main factors that
determine a transition from the absolute to the convective instability flow regimes. Our
experiments demonstrate that an irregular wavy pattern and bead coalescence, which are
commonly seen in the convective regime, can also be triggered by applying a thermal
gradient along the fibre. We develop a lubrication model that accounts for gravity,
temperature-dependent viscosity and surface tension to describe the thermal effects on
downstream bead dynamics. Numerical simulations of the model show good agreement
between the predicted droplet coalescence dynamics and the experimental data.
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1. Introduction

Thin liquid films flowing down a vertical fibre subject to thermal effects have been
previously studied owing to their importance in a variety of industrial applications, which
include dry cooling systems (Zeng et al. 2017; Zeng, Sadeghpour & Ju 2018), and heat
and mass exchangers for vapour, CO2 and particle capture (Sadeghpour et al. 2019, 2021;
Zeng, Sadeghpour & Ju 2019). In addition to gravity and bulk surface tension, changes
in liquid properties like surface tension and viscosity, which arise from the presence of a
temperature gradient, influence the characteristics of these thin film flows. An improved
understanding of the thermally-driven bead coalescence is crucial for the systematic design
of these systems (Zeng et al. 2018).
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Several research groups have experimentally investigated and analysed different flow
regimes of liquid films flowing down a string (Kliakhandler, Davis & Bankoff 2001;
Duprat et al. 2007; Ruyer-Quil & Kalliadasis 2012; Ji et al. 2019). Kliakhandler et al.
(2001) ran a set of experiments using a fibre with a size that is comparable to the liquid
film thickness to study the effect of the flow rate on the flow regime. They qualitatively
observed three different regimes of the interfacial patterns in the form of the travelling
liquid beads. At low flow rates, the isolated droplet regime occurs where widely spaced
large droplets flow down the fibre separated by secondary small-amplitude wavy patterns.
At higher flow rates, the Rayleigh–Plateau (RP) flow regime emerges where a stable
train of droplets propagate at a constant speed. If the flow rate is increased further, the
convective instability regime emerges as collisions of large droplets occur in an irregular
fashion. This instability can also be triggered by applying a gradient to the physical
properties (i.e. surface tension/viscosity) of the liquid film along the fibre (Liu, Ding &
Chen 2018).

Prior experimental works have shown that maintaining a stable train of liquid beads
is important for the reliable heat and mass transfer performance in many applications
(Hattori, Ishikawa & Mori 1994; Chinju, Uchiyama & Mori 2000; Migita, Soga & Mori
2005). For example, Nozaki, Kaji & Mod (1998) investigated the cooling of thin films of a
heated silicone oil flowing down a string. They demonstrated that at the same liquid flow
rate, the string-of-beads flow exhibits a higher overall heat transfer coefficient than the
annular film flow.

In our earlier work (Zeng et al. 2017), we experimentally studied the relationship
between flow characteristics and the overall effectiveness of heat exchange for thin liquid
films flowing along a single string against a counterflowing air stream. The experiments
showed that for very high liquid inlet temperatures, the flow no longer remains in the
desired RP regime and can undergo a regime transition along the fibre. After travelling
a certain distance away from the nozzle, the liquid droplets collide with each other,
which causes cascade coalescence further downstream. This type of thermally-driven
coalescence will be the focus of the present study.

For low flow rates where the inertial effects are negligible, the classical lubrication
theory may be applied to model the dynamics of viscous films flowing down vertical
cylinders. Under the small-interface-slope assumption, weakly nonlinear lubrication
equations for the film thickness have been acquired in the works of Frenkel (1992), Chang
& Demekhin (1999) and Kalliadasis & Chang (1994). Both stabilizing and destabilizing
effects of the surface tension are incorporated into the model, which characterizes the axial
and azimuthal curvatures of the free interface. In the work of Craster & Matar (2006),
an asymptotic model was derived using a low Bond number, surface-tension-dominated
theory. Full curvature terms were introduced in the work of Kliakhandler et al. (2001),
and the existence of non-negative solutions to their model is shown in Ji, Taranets
& Chugunova (2020b). Recently, Ji et al. (2019) investigated a full lubrication model
that incorporates fully nonlinear curvature terms, slip boundary conditions and a film
stabilization mechanism.

For higher flow rates where inertial effects are no longer negligible, Trifonov
(1992), Ruyer-Quil et al. (2008) and Duprat, Ruyer-Quil & Giorgiutti-Dauphiné (2009)
investigated systems of coupled equations for the film thickness and the flow rate based
on the integral boundary layer approach. This approach was further extended by Ji et al.
(2020a) through introduction of the film stabilization mechanism to address the influence
of nozzle geometry on the downstream droplet dynamics.
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Although many previous studies have focused on the dynamics of viscous thin films
flowing down fibres, the thermal effects on the fibre coating dynamics have received less
attention. For non-isothermal liquid films flowing along an inclined substrate, Kabova,
Kuznetsov & Kabov (2012) derived a thin film equation that incorporates the influence of
temperature-dependent viscosity and surface tension. This problem was also investigated
by Ruyer-Quil et al. (2005) using a weighted residuals approach. Haimovich & Oron (2011)
studied the dynamics of a non-isothermal liquid film on an axially oscillating horizontal
cylinder. More recently, Liu, Ding & Zhu (2017), Liu et al. (2018), Ding & Wong (2017)
and Ding et al. (2018) used lubrication models to study the influence of thermocapillarity
on the coating flow down a vertical fibre subject to a temperature gradient. Their work
focused on the Marangoni effects that originate from the linear dependence of the variation
of surface tension with temperature. The works of Liu, Chen & Wang (2019) and Dong,
Li & Liu (2020) extended this result by considering a self-rewetting fluid (Batson, Agnon
& Oron 2017) with the surface tension modelled as a quadratic function of temperature.
Ding et al. (2019) also investigated the influence of thermally induced Marangoni effects
and van der Waals attractions on the break-up of ultra-thin liquid films (Ji & Witelski
2017).

In this paper, we experimentally and theoretically investigate the thermal effects on the
dynamics of thin viscous films flowing down a vertical fibre. We propose a lubrication
model that incorporates both temperature-dependent viscosity and surface tension. Using
this model, we numerically explore the downstream flow dynamics that form bead
coalescence and obtain a good agreement with experimental results. A simplified ordinary
differential equation (ODE) model is also developed to capture the influence of thermal
effects on liquid bead dynamics.

The rest of this paper is organized as follows. In § 2, we describe the experimental
set-up. In § 3, we derive the lubrication model for the film thickness by accounting for
the presence of a temperature field. Section 4 provides a discussion on the stability of
the model for both isothermal and weakly non-isothermal cases. In § 5.1, we present a
numerical study of thermally-driven bead coalescence. This is followed by a comparison
between the theory and experimental observations in § 5.2 and a brief investigation of a
reduced ODE model in § 5.3. We present our concluding remarks in § 6. The appendix
includes further details of full Navier–Stokes simulations.

2. Experiments

Figure 1(a) shows a schematic of the experimental set-up used in this study to investigate
the characteristics of a liquid film flowing down a vertical string under a streamwise
temperature gradient. The main parts of this set-up are: (1) a programmable syringe pump
to pump the liquid through the nozzle at a fixed flow rate, (2) an in-line heater that controls
the liquid temperature to a prescribed value at the nozzle inlet, (3) a stainless steel nozzle
with an inner diameter of 1.2 mm and outer diameter of 1.55 mm, (4) a thermocouple
to record the liquid temperature at the tip of the nozzle outlet (additional thermocouples
are used to measure the axial temperature distribution of the liquid along the fibre), (5)
a high-speed camera (frame rate of 1000 frames s−1) mounted on a translation stage, (6)
a weight connected to the fibre to ensure the fibre stays vertical, (7) a liquid reservoir,
(8) a weight scale to measure the liquid mass flow rate and (9) a computer for data
acquisition.

The experiments were performed using polymer-based fibres with a diameter of 0.61
mm. The liquid mass flow rate was varied in the range of 0.0013–0.016 g s−1. The nozzle
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Figure 1. (a) Schematic of the experimental set-up. An inline heater is integrated into the inlet of the nozzle
to create a temperature gradient along the fibre. (b) Schematic of a thin liquid film flowing down a vertical
cylindrical fibre under a streamwise temperature gradient.

Liquid Density Surface tension Viscosity Inlet temperature Mass flow rate
ρ (kg m−3) σ0 (mN m−1) ν0 (mm2 s−1) T∗

IN (
◦C) Q∗ (g s−1)

v20 950 20.3 22.1 30–70 0.008, 0.016
v50 963 20.4 55.2 30–70 0.0053, 0.008
v100 965 20.6 110.4 30–60 0.0013, 0.0027

Table 1. Experimental cases of different Rhodorsil silicone oils (v20, v50 and v100), inlet temperatures,
mass flow rates and liquid properties at 20 ◦C.

outer diameter was OD = 1.55 mm. We used Rhodorsil silicone oils (v20, v50 and v100)
as well-wetting liquids with a low surface energy. The inlet temperature of the liquid was
changed in the range of 30–70 ◦C. A summary of the experimental conditions is presented
in table 1.

3. Model formulation

We consider a two-dimensional axisymmetric Newtonian fluid of density ρ flowing down
a vertical cylinder of radius R∗ under a temperature gradient (see figure 1b). The dynamics
of the flow is governed by gravity, bulk surface tension and temperature-dependent liquid
properties. In this section, we first discuss the temperature distribution in the liquid film
along the fibre and the temperature-dependent liquid properties. Then we will present a
lubrication model that characterizes the thermal effects on the flow dynamics.

3.1. Temperature distribution along the fibre
Previous studies (Liu et al. 2018) of the thermal effects on liquid films have typically
assumed a constant temperature gradient. In this work, we instead represent the streamwise
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Figure 2. Temperature profiles measured in experiments along the fibre for silicone oil v50 with different inlet
temperatures compared with the prediction based on the model (3.1). The parameters are hb = 44 W (m2 K)−1,
As = 13.2 mm2, c = 1510 J (kg K)−1, mb = 2.04 × 10−6 kg and vb = 19.2 mm s−1.

temperature variations under our experimental conditions using a solution to a lumped
capacitance model

Θ = exp
[
−

(
hbAs

mbvbc

)
x∗

]
. (3.1)

The works of Hattori et al. (1994) and Zeng et al. (2017) showed that the radial temperature
variation within each liquid bead is negligible owing to efficient mixing associated with
internal circulation within the bead. Axial heat conduction is neglected. In the model
(3.1),Θ = (T∗ − T∗

0 )/ΔT is the dimensionless temperature, whereΔT = T∗
IN − T∗

0 is the
temperature scale set by the difference between the inlet temperature T∗

IN and the room
temperature T∗

0 . Here As represents the surface area of the liquid beads, c is the specific
heat of the liquid, vb is the liquid bead velocity, mb is the mass of each bead, x∗ is the
distance from the inlet and hb is the liquid bead-to-air heat transfer coefficient. We use the
empirical relationship for the heat transfer coefficient of flow around a sphere (Whitaker
1972; Mills 1995) to obtain the value of hb,

hbDb

kair
= 2 + (0.4Re1/2

b + 0.06Re2/3
b )Pr0.4

air . (3.2)

Here, Reb = ρairvbDb/μair is the bead Reynolds number, Db is the bead diameter and
Prair is the Prandtl number of air. In addition, μair, ρair and kair are the viscosity, density
and thermal conductivity of air, respectively. The temperature profiles obtained from the
lumped capacitance model (3.1) are used later in the lubrication model to represent the
axial variations in the surface tension and viscosity along the fibre.

As shown in figure 2, the model captures the experimentally measured liquid
temperature profiles well. For later convenience, we rewrite the dimensionless temperature
distribution in a rescaled form

ΘI(x) = 1 − 1 − exp(−χx)
1 − exp(−χL0)

, (3.3)

where x is the dimensionless streamwise spatial variable and L0 is the dimensionless
downstream position where the room temperature T∗

0 is nominally reached. The
temperature profile (3.3) satisfies ΘI(0) = 1 and ΘI(L0) = 0, and the dimensionless
parameter χ specifies the temperature gradient. In all simulations, we set L0 = L∗

0/L,
where L∗

0 = 0.5 m and L is the length scale in the streamwise direction, which will be
defined in § 3.3.
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Figure 3. (a) Surface tension and (b) viscosity of silicone oil v50 as functions of temperature T∗.

3.2. Temperature-dependent liquid properties
Liquid properties can change significantly as the temperature is varied. In this work, we
focus on the influence of temperature on the surface tension and viscosity of the liquid.

To characterize the temperature dependence of the surface tension of our liquid, we
measured the rising height, hrise, in a capillary tube with an inner diameter, rtube, of 0.5
mm at various temperatures (20–110 ◦C). We then used σ = (rtubehriseρg)/(2 cos θ) to
estimate the surface tension at each temperature (Washburn 1921). Here, θ is the contact
angle on the capillary tube wall that we measured independently. All the experiments were
performed in an isothermal container.

Figure 3(a) shows the experimental results for the surface tension, σ (mN m−1), of
silicone oil v50. The experimental uncertainty in the measured surface tension is estimated
to be 0.3 mN m−1 and the uncertainty in the measured temperatures is estimated to be
±0.5 ◦C.

The kinematic viscosity ν(T∗) (mm2 s−1) of silicone oil v50 as a function of the
temperature T∗ (◦C) was provided by the manufacturer (see Shin-etsu 2005). A plot of
the relation between viscosity and temperature is included in figure 3(b).

For simplicity, in the model derived here, we make an approximation that the kinematic
viscosity ν and the surface tension σ of the liquid are linearly dependent on temperature,

ν(T∗) = ν0 − νT(T∗ − T∗
0 ), σ (T∗) = σ0 − σT(T∗ − T∗

0 ), (3.4a,b)

where ν0, νT , σ0, σT > 0 are constants. Using the dimensionless temperature variable, one
can also write ν = ν0 − νTΔTΘ and σ = σ0 − σTΔTΘ.

In this paper, we have the reference room temperature T∗
0 = 20 ◦C, σT =

0.0504 mN (m ◦C)−1 and νT = (ν0 − ν(T∗
IN))/ΔT . The density of the liquid is assumed

to be constant.

3.3. Lubrication model
Next we derive the governing equations following the works of Craster & Matar (2006),
Ruyer-Quil et al. (2008) and Ji et al. (2019). We choose the length scale in the radial
direction y as H and the length scale in the streamwise direction x as L = H/ε. The
scale ratio ε is set by the balance between the surface tension and the gravity g, and
is given by ε = (ρgH2/σ0)

1/3. This scale ratio is small (approximately 0.35) in typical
experiments and can also be rewritten as ε = We−1/3, where the Weber number We =
(lc/H)2 compares the capillary length lc = √

σ0/(ρg) with the radial length scale H. The
characteristic streamwise velocity is U = (gH2)/ν0, and the pressure and time scales are
given by ρgL and (ν0L)/(gH2), respectively.
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Thermally-driven coalescence in fibre coating dynamics

Following the approach in Ji et al. (2019, 2020a), we include a film stabilization term
Π(h),

Π(h) = − A
h3 , (3.5)

where A > 0 is a stabilization parameter. This term takes the functional form of
the long-range disjoining pressure of the van der Waals model that characterizes the
microscopic quantities for wetting liquids, and A is typically referred as a Hamaker
constant (de Gennes 1985).

The dynamics of the axisymmetric flows is governed by the Navier–Stokes equations,
the continuity equation and the energy equation. This system is coupled with the
temperature-dependent viscosity and surface tension given by (3.4a,b). With these scales,
we write the non-dimensional Navier–Stokes equations using dimensionless variables as

ε2Re
(
ut + uux + vuy

) = −px −Πx + 1 + (1 − κΘ)

(
uy

y
+ uyy + ε2uxx

)
, (3.6a)

ε4Re
(
vt + vvy + uvx

) = −py + ε2(1 − κΘ)

(
vy

y
+ vyy − v

y2 + ε2vxx

)
, (3.6b)

vy + v

y
+ ux = 0, (3.6c)

where the Reynolds number Re = UL/ν0, and the constants κ = νTΔT/ν0 and ω =
σTΔT/σ0 scale the relative change in viscosity and surface tension as the temperature
is varied. The balances of normal and tangential stresses at y = h + R are expressed as

(1 − ε2h2
x)(ε

2vx + uy)+ 2ε2hx(vy − ux) = −Ma
(1 + ε2h2

x)
1/2

1 − κΘ
(hxΘy +Θx), (3.6d)

p +Π =
(

α

ε2(1 + αh)(1 + ε2h2
x)

1/2 − hxx

(1 + ε2h2
x)

3/2 − A
h3

)
(1 − ωΘ)

+2ε2(1 − κΘ)

1 + ε2h2
x

[
ε2(h2

xux − hxvx)− hxuy + vy

]
, (3.6e)

where Ma = (σTΔT)/(ρgHL) is the Marangoni parameter, α = H/R∗ is the aspect ratio
of the characteristic radial length scale and the fibre radius, and the dimensionless fibre
radius is R = R∗/H. At the interface between the solid substrate and the liquid, y = R, we
impose the no slip and no penetration boundary conditions,

v = u = 0, at y = R. (3.6f )

The kinematic boundary condition at y = R + h is given by

ht + uhx = v, at y = R + h. (3.6g)

Next, we simplify the above set of governing equations following Ruyer-Quil et al.
(2008). Under the lubrication approximation, we neglect the inertial contributions by
assuming that Re = O(1) and ε � 1. Omitting the terms of order O(ε2), we rewrite
the leading order non-dimensional reduced momentum and continuity equations for the
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velocity field (u, v) and the dynamic pressure p as

1 − ∂p
∂x

− ∂Π

∂x
+ (1 − κΘ)

(
∂2u
∂y2 + uy

y

)
= 0, (3.7a)

−∂p
∂y

= 0, (3.7b)

∂u
∂x

+ ∂v

∂y
+ v

y
= 0. (3.7c)

Based on our discussion in § 3.1, the radial temperature variations within liquid droplets
and across the inter-bead precursor layer are negligible compared with the streamwise
temperature variations. Therefore, we assume that the temperature is constant in the radial
direction and only varies in the axial direction in the leading order, Θ = ΘI(x). The
balance of tangential stresses at the free surface y = h + R reduces to

uy = − Ma
1 − κΘ

(hxΘy +Θx) = − MaΘx

1 − κΘ
. (3.7d)

The balance of normal stresses at the free surface y = h + R becomes

p +Π =
(

α

ε2(1 + αh)
− ∂2h
∂x2 − A

h3

)
(1 − ωΘ). (3.7e)

The two terms on the right-hand side of (3.7e), α/(ε2(1 + αh)) and ∂2h/∂x2, describe
both the destabilizing and stabilizing roles of the surface tension that originate from the
azimuthal and axial curvature of the free surface, respectively. The balance between the
azimuthal and axial scales is characterized by α and ε. Here we use linear forms for both
curvature terms; a discussion of other appropriate forms for the curvature terms can be
found in Ji et al. (2019).

Combining the kinematic boundary condition (3.6g), the no slip and no penetration
boundary conditions (3.6f ) and the continuity equation (3.7c) lead to the mass
conservation equation

(1 + αh)
∂h
∂t

+ ∂q
∂x

= 0, where q = 1
R

∫ h+R

R
uy dy. (3.8)

Equation (3.7b) indicates that the pressure p is a function of x only. Integrating (3.7a)
twice and using (3.7d) yields

u = 1
1 − κΘ(x)

[
1 − px −Πx

2

(
−1

2
( y2 − R2)+ (h + R)2 ln

( y
R

))
−MaΘx(R + h) ln

( y
R

) ]
. (3.9)

Because α = H/R∗ = 1/R, by using (3.8), we obtain the form of flux q

q = 1
1 − κΘ

(
h3

3
φ(αh)(1 − px −Πx)− 1

2
MaΘxh2ψ(αh)

)
, (3.10)
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where the shape factors φ and ψ are functions defined by

φ(X) = 3
16X3 [(1 + X)4(4 ln(1 + X)− 3)+ 4(1 + X)2 − 1], (3.11)

ψ(X) = 1 + X
X2

[
(1 + X)2 ln(1 + X)− X

(
1
2

X + 1
)]
. (3.12)

In the limit of X → 0, we have

φ(X) = 1 + X + 3
20 X2 + O(X3), ψ(X) = 1 + 4

3 X + 1
4 X2 + O(X3). (3.13a,b)

Given a dimensional volumetric flow rate Qm and fibre radius R∗, we define the volumetric
flow rate per circumference unit q∗

0 as q∗
0 = Qm/(2πρR∗). We set the characteristic axial

length scale H by solving (3.10) for h with q = q∗
0, Θ ≡ 0, Πx ≡ 0 and px ≡ 0. That is,

we set the length scale H by the film thickness h∗
N of a uniform Nusselt flow at room

temperature T∗
0 with constant dynamic viscosity ν0 (Ruyer-Quil et al. 2008; Duprat et al.

2009).
Finally, by rescaling the time scale t → t/φ(α), and combining (3.8), (3.10) and (3.7e),

we obtain the dimensionless governing equation for 0 ≤ x ≤ L,

∂

∂t

(
h + α

2
h2

)
+ ∂q
∂x

= 0, (3.14a)

where the flux takes the form

q = M(h)
(

1 − ∂

∂x
[(1 − ωΘ) (Z(h)− hxx)]

)
− h2

2
ΘxMa

1 − κΘ

ψ(αh)
φ(α)

, (3.14b)

where the mobility function is

M(h) = h3

3(1 − κΘ)

φ(αh)
φ(α)

, (3.14c)

and the function Z(h) consists of the destabilizing azimuthal curvature term α/(η(1 +
αh)) and the film stabilization term Π(h),

Z(h) = α

η(1 + αh)
+Π(h), Π(h) = − A

h3 , (3.14d)

where the scaling parameter η = ε2.
This choice of time scale leads to a normalized mobility function that satisfies M = 1/3

for h = 1 and Θ ≡ 0. The model (3.14) can be written as a fourth-order nonlinear partial
differential equation (PDE) for the thickness h(x, t). It accounts for temperature-dependent
viscosity and surface tension gradients, gravity and azimuthal instabilities, but neglects
the inertia and streamwise viscous dissipation that are included in the work of Ruyer-Quil
et al. (2009). We note that because 0 ≤ κ < 1 and 0 ≤ Θ ≤ 1, we have 0 < 1 − κΘ ≤ 1
in (3.14b) and (3.14c).

Compared with the prior work in Liu et al. (2018) that focuses on the thermocapillarity
effects in similar dynamics, this new model includes additional physics through the
temperature-dependent viscosity and does not require the aspect ratio α to satisfy α � 1.
Our model with κ = Ma = ω = A = 0 is also consistent with the model derived in the
work of Craster & Matar (2006) except for a scaling difference.

In the limit α → 0, the model (3.14) describes the dynamics of a draining film flowing
down an incline under thermal effects. If we assume that the viscosity is constant and set
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κ = Ma = ω = A = 0, (3.14) reduces to (3.15), which describes thin film dynamics driven
by the gravity and a surface tension gradient owing to a temperature gradient,

ht + (1
3 h3 − 1

2 h2ΘxMa)x = −1
3 (h

3hxxx)x. (3.15)

The cubic term and quadratic term on the left-hand side of (3.15) originate from gravity
and the Marangoni stress, respectively. In this paper, we consider a decreasing temperature
field, Θx < 0, and the surface tension gradient is expected to promote the downward
movement of the film.

4. Stability analysis

In this section, we investigate the instability of the model by considering two cases, (a) the
isothermal case where the fibre is uniformly heated and (b) the weakly non-isothermal
case, where a temperature gradient is imposed along the fibre. We will discuss the
influence of the temperature-dependent liquid properties on both the temporal instability
and absolute/convective instability transition of the system.

4.1. Isothermal films
We begin by considering the flow instability of a uniformly heated thin fluid film flowing
down a vertical fibre. Specifically, we study an isothermal film with spatially-constant
surface tension and viscosity at a temperature Θ(x) ≡ Θ0 and dΘ/dx = 0, where 0 ≤
Θ0 ≤ 1. Then the governing equation (3.14) reduces to

∂

∂t

(
h + α

2
h2

)
+ ∂

∂x

[
M(h)

(
1 − (1 − ωΘ0)

∂

∂x

(
α

η(1 + αh)
− hxx +Π(h)

))]
= 0,

(4.1)

where the mobility function takes the form M(h) = [h3φ(αh)]/[3(1 − κΘ0)φ(α)]. We
perturb the uniform base state h̄ = 1 by an infinitesimal Fourier mode,

h = h̄ + ψ̄ ei(kx−Λt), (4.2)

where k is the wavenumber, Λ is the wave frequency and ψ̄(� 1) is the initial amplitude.
Expanding the PDE (4.1) then gives the dispersion relation

Λ = C(α, κ,Θ0)k + ik2D(α, κ,w,Θ0)

[
−k2 + α2

η(1 + α)2
− 3A

]
, (4.3)

where

C(α, κ,Θ0) = αφ′(α)+ 3φ(α)
3(1 − κΘ0)(1 + α)φ(α)

, D(α, κ,w,Θ0) = 1 − ωΘ0

3(1 − κΘ0)(1 + α)
.

(4.4a,b)

The relation (4.3) indicates that the azimuthal curvature term α/(η(1 + αh)) is
destabilizing, and both the streamwise curvature term hxx and the film stabilization
term Π(h) are stabilizing. For κ > 0, the temporal instability is enhanced by the
thermal-viscosity influence.

Following the work of Ji et al. (2019), we select the stabilization parameter A based
on the dimensional thickness εp = Hhc of a stable uniform layer based on experiments,
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where hc is the dimensionless thickness of the stable coating film. Specifically, we pick
A = Ac, where

Ac = α2h4
c

3η(1 + αhc)2
, (4.5)

which ensures that any thin flat film h ≤ hc is linearly stable (Im(Λ) < 0) for all real wave
numbers k > 0.

To understand the spatiotemporal stability of the uniform state, we consider the peak of
a localized wave packet that travels with a speed given by the group velocity vg = dΛ/dk,
where both Λ and k are complex. The merging of two disconnected spatial branches
at a point in the complex k-plane leads to a vanishing group velocity, vg|k=k0 = 0,
which defines the absolute wavenumber k0 and the corresponding absolute frequency
Λ0 = Λ(k0) (Duprat et al. 2007; Scheid, Kofman & Rohlfs 2016). For Im(Λ0) > 0, the
system presents absolute instability; for Im(Λ0) < 0, the fluid film shows convective
instability. The absolute/convective (A/C) instability transition corresponds to a real
absolute frequency, Im(Λ0) = 0.

Following the approach in the work of Duprat et al. (2007), we introduce the
transformation

k = k̃
(

C
3D

)1/3

, Λ = Λ̃C
(

C
3D

)1/3

,
α2

η(1 + α)2
− 3A = β

(
C

3D

)2/3

(4.6a–c)

and reduce the dispersion relation (4.3) to the equation

Λ̃ = k̃ + i
k̃2

3
(β − k̃2). (4.7)

This corresponds to the dispersion relation for a weakly nonlinear lubrication model
studied in Frenkel (1992). Based on the calculation in Duprat et al. (2007), the instability of
the system becomes absolute when β > βca ≡ [9/4(−17 + 7

√
7)]1/3 ≈ 1.507. This leads

to the A/C threshold for the instability of isothermal films,

3(1 − ωΘ0)φ(α)

αφ′(α)+ 3φ(α)

(
α2

η(1 + α)2
− 3A

)3/2

= β3/2
ca , (4.8)

which shows that the A/C marginal curve is influenced by the thermal effects only through
the prefactor 1 − ωΘ0, and the temperature-dependent viscosity does not play a role.
We note that this conclusion may change if moderate inertia effects or streamwise heat
diffusion is included in the model (Ruyer-Quil et al. 2008; Scheid et al. 2016; Ding et al.
2018).

Following the studies of Duprat et al. (2009) and Ruyer-Quil & Kalliadasis (2012), we
rewrite the threshold (4.8) in terms of R∗/lc and α and obtain

1
Ck(α)(1 + α)4

[
α2/3 − 3(α + 1)2

(
R∗

lc

)4/3

A

]3/2

= β3/2
ca S2, (4.9)

where R∗/lc is the ratio of the fibre radius R∗ and the capillary length lc, Ck(α) is the
linear wave speed C(α, κ,Θ0) in (4.4a,b) for κΘ0 = 0, and S = (R∗/lc)[1 − ωΘ0]−1/2.
For ωΘ0 = 0 and A = 0, this threshold (4.9) is consistent with the A/C threshold proposed
in the works of Ruyer-Quil & Kalliadasis (2012) and Duprat et al. (2009).

Figure 4 presents the A/C instability regimes predicted by (4.9) for isothermal films
with A = 0. Downstream flow dynamics for the experiments in table 1 are shown in
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0
0.20 0.25 0.30

1

2

No coalescence
Droplet coalescence

βca = 1.507

Absolute

Convective
α

S
Figure 4. The absolute and convective (A/C) instability regimes in the parameter plane of α and S predicted
by (4.9) with βca = 1.507 and A = 0. The circle symbols represent experiments that are in RP regime and the
cross symbols represent experiments with downstream bead coalescence.

figure 4 with circles representing the RP flow regime and crosses representing droplet
coalescence dynamics. This analysis suggests that for all the experimental cases in the
present study, the flow dynamics of the uniformly heated isothermal liquid film at the
temperature T∗

IN fall in the absolute instability regime. Therefore, the bead coalescence
observed in our experiments cannot take place without the presence of a temperature
gradient. In particular, for ω = 0, we note that for a spatially-constant temperature field
Θ(x) ≡ Θ0, a direct transformation t → t(1 − κΘ) in (3.14) leads to a PDE without any
temperature-dependent terms. Therefore, for any trains of travelling beads in the absolute
RP regime, we expect the flow to stay in the RP regime when the temperature is uniformly
elevated across the fibre. This indicates that the non-uniform temperature field Θ(x) is
crucial for the bead coalescence observed in our experiments.

4.2. Weakly non-isothermal films
Next, we show that for the weakly non-isothermal case, where the fibre is non-uniformly
heated, both temperature-dependent viscosity and surface tension play an important role
in determining the instability of the film. For simplicity, we consider the temperatureΘ =
O(δ) � 1 that linearly decreases in space in the leading order,

Θ(x) = δΘ̄(x) = δ(1 − θ1x)+ O(δ2), where θ1 = 1/L � 1. (4.10)

This temperature Θ(x) satisfies Θ(0) ≈ δ and Θ(L) ≈ 0. Substituting (4.10) into the
governing equation (3.14), for δ � 1, we obtain the expansion for flux

q = (1 + κδΘ̄)

{
M0(h)

(
1 − ∂

∂x
[(1 − ωδΘ̄) (Z(h)− hxx)]

)
+ δθ1MaM1(h)

}
+ O(δ2),

(4.11)
where

M0(h) = h3φ(αh)
3φ(α)

, M1(h) = h2

2
ψ(αh)
φ(α)

. (4.12a,b)

For δ � 1, the uniform film h̄ = 1 is a quasi-steady state of the system. Similar to the
isothermal case, we apply the perturbation (4.2) to the governing equation and obtain the
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relation
Λ = Λ0(k)+ δΛ1(k, x)+ O(δ2), (4.13)

where the leading-order term is given by

Λ0(k) = k
αφ′(α)+ 3φ(α)
3(1 + α)φ(α)

+ ik2 1
3(1 + α)

[
−k2 + α2

η(1 + α)2
− 3A

]
, (4.14)

which is consistent with the dispersion relation (4.3) for the isothermal case for
κ = ω = 0. The O(δ) term Λ1 depends on both the wavenumber k and the spatial
variable x,

Λ1(k, x) = k
3(α + 1)

(k2 + Z ′(1))[i(−κ + ω)Θ̄(x)k + θ1 (κ − 2ω)]

+ 1
α + 1

[(−θ1 ωZ(1)k + (Θ̄(x)k + iθ1)κ)M′
0(1)+ Ma θ1 kM′

1(1)]. (4.15)

This analysis reveals the combined effects of the temperature-dependent liquid properties
on the film stability in the non-isothermal scenario through parameters κ , ω and Ma.

5. Results

5.1. Numerical simulations
We first perform numerical simulations of the PDE (3.14) to explore the influence of
the thermal effects on the flow patterns. The dynamics near the nozzle are of interest
because that is where the steepest temperature gradient occurs. To capture the near-nozzle
dynamics, we set the initial conditions for the model (3.14) based on the nozzle geometry
using a piece-wise linear profile for the film thickness h,

h(x, 0) =
{

1, x > xL

hIN + (1 − hIN)x/xL, 0 ≤ x ≤ xL
, (5.1)

where hIN = (1
2 OD − R∗)/H is determined by the difference between the nozzle outer

diameter OD and the fibre radius R∗, and xL = 10 is used for all simulations. We impose
the following Dirichlet boundary conditions at the inlet x = 0 and the Neumann boundary
conditions at the outlet x = L,

h(0, t) = hIN, q(0, t) = 1/3 at x = 0,

hx(L, t) = 0, hxx(L, t) = 0 at x = L.

}
(5.2)

To numerically solve the model (3.14), we use a Keller-box-based centred finite difference
method where the fourth-order differential equation is decomposed into a system of
first-order differential equations:

k = hx, p = α

η(1 + αh)
− kx,

(
h + α

2
h2

)
t
+ qx = 0,

q = M(h)(1 − [(1 − ωΘ)( p +Π(h))]x)− h2

2
ΘxMa

1 − κΘ

ψ(αh)
φ(α)

.

⎫⎪⎪⎬⎪⎪⎭ (5.3)

For most numerical simulations shown in this subsection, the boundary conditions
(5.2) with hIN = 1.46 is used, which corresponds to the dimensional nozzle diameter
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Figure 5. A comparison of the dynamic solutions of (3.14) starting from identical initial conditions (5.1). (a,b)
Transient profiles at time t∗ = 32.8 s. In (a) without thermal effects (T∗

IN = T∗
0 , κ = Ma = ω = 0), the RP

regime is reached. In (b) with thermal effects (T∗
IN = 65 ◦C), the dynamics involve compressed droplets near

the inlet, bead coalescence and irregular bead patterns downstream. The average bead spacing Sb and bead
velocity Vb are plotted against x∗ in (c,d). System parameters are given by χ = 0.0085, κ = 0.543, Ma =
0.838, ω = 0.111, α = 1.054 and η = 0.132. We set εp = 0.05 mm for the T∗

IN = T∗
0 case and εp = 0.1 mm

for the T∗
IN = 65 ◦C case.

OD = 1.55 mm. Moreover, we set α = 1.054 and η = 0.132, which correspond to the
dimensional fibre radius R∗ = 0.305 mm and the flow rate Qm = 8 × 10−6 kg s−1 for
silicone oil v50.

Starting from identical initial conditions (5.1), a comparison of the long-time dynamics
of the model (3.14) with and without thermal effects is shown in figure 5. Figure 5(a)
shows that without thermal effects (T∗

IN = T∗
0 ), the downstream dynamics (x∗ > 60 mm)

stabilizes into a sequence of equally-spaced travelling beads, which is a signature that
the RP regime is attained. Figure 5(b) shows the response of the bead dynamics to the
imposed temperature distribution Θ = ΘI in (3.3) with the inlet temperature T∗

IN = 65 ◦C
and χ = 0.0085. Close to the nozzle, the bead size and spacing are significantly smaller
than those in figure 5(a), which shows droplet compression in the high-temperature region.
In the downstream region of 80 mm < x∗ < 160 mm in figure 5(b), where the temperature
is lower, the bead distribution becomes more irregular and the bead spacing is larger and
more comparable to the bead spacing shown in figure 5(a).

At x∗ ∼ 73 mm, we observe that two droplets collide and deform into a larger droplet.
This type of bead coalescence happens repeatedly when a higher thermal gradient
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Figure 6. Average bead spacing and velocity for T∗
IN = 65 ◦C with a varying stabilization parameter A in

(4.5) for εp = 0, 0.05 mm and 0.1 mm, which shows that a larger value of εp can lead to the onset of droplet
coalescence closer to the inlet and a higher upstream bead velocity. Other system parameters are identical to
those used in figure 5.

is present. Owing to the temperature difference between the upstream and downstream
droplets, the upstream droplets move faster down the fibre, repeatedly running into
slower-moving beads in the downstream and initiating a coalescence cascade of droplets
further downstream.

Figures 5(c) and 5(d) present the average bead spacing Sb and the bead velocity Vb over
time as functions of the spatial variable x∗, respectively. For the Θ = Θ∗

0 case in the RP
regime, the travelling beads have nearly constant spacing and velocity for x∗ > 60 mm. For
the T∗

IN = 65 ◦C case, the average spacing and velocity have a high spatial dependence; for
x∗ < 60 mm, both the average spacing and velocity slightly decrease as x∗ increases. After
the onset of bead coalescence at approximately x∗ = 65 mm, large variations are observed
in spacing and velocity as the downstream flow becomes irregular.

Figure 6 shows the influence of the film stabilization term in the droplet coalescence.
For a higher value of the dimensional coating thickness εp, which corresponds to a
larger parameter A in (4.5) and stronger film stabilization effect, we observe that the
onset location of coalescence can move towards the inlet as εp increases (see figure 6a).
Moreover, figure 6(b) shows that the film stabilization term enhances the upstream bead
velocity, which is consistent with the observation for travelling wave solutions reported in
Ji et al. (2019).

5.2. Experimental comparisons
To compare the numerical results against experimental observations and better describe
the flow characteristics of liquid films, we constructed spatiotemporal diagrams from a
sequence of numerical simulations. By tracing the peaks of the liquid beads, we plot
the position of the peaks over time in figure 7 to reveal spatiotemporal trajectories of
the travelling beads. The slope of each trajectory indicates the travelling speed of each
droplet, and the vertical distance between the trajectories represents the spacing between
adjacent droplets. In figure 7(ad) where no thermal effects (T∗

IN = T∗
0 ) are included,

parallel trajectories are observed in both the experiment and simulation. This indicates
that no droplet coalescence takes place and the RP instability regime is attained. In the
case where the inlet temperature T∗

IN = 51 ◦C, the inter-bead spacings shown in both the
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Figure 7. Spatiotemporal diagrams for silicone oil v50 with the same liquid flow rate and fibre radius but
different inlet temperatures from (a–c) experiments and (d–f ) numerical simulations of (3.14). The fibre radius
is R∗ = 0.305 mm and the flow rate is Qm = 8 × 10−6 kg s−1. For the film stabilization term, εp = 0.05 mm
is used for the T∗

IN = T∗
0 case, and εp = 0.1 mm is used for the T∗

IN = 51 ◦C and T∗
IN = 65 ◦C cases.

experimental and numerical results are noticeably smaller than those in the T∗
IN = T∗

0
case. Moreover, the experiment with T∗

IN = 51 ◦C shows that the coalescence of liquid
beads starts to take place at x∗ ∼ 90 mm, which is reflected by two droplet trajectories
coming together. A qualitatively similar pattern is also captured in the simulation where
the bead coalescence occurs at x∗ ∼ 92 mm. When a higher inlet temperature is present,
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20 mm

(a)

(b)

(c)

Figure 8. The RP flow regime: profile comparison between (a) experiment, (b) full Navier–Stokes simulation
and (c) numerical simulation of the model (3.14) without thermal effects, T∗

IN = T∗
0 , for silicone oil v50 starting

from x∗ = 53 mm away from the inlet.

20 mm

(a)

(b)

(c)

Figure 9. Bead compression and coalescence: profile comparison between (a) experiment, (b) full
Navier–Stokes simulation and (c) numerical simulation of the model (3.14) for silicone oil v50 where the
inlet temperature T∗

IN = 70 ◦C. The figures are shifted to align the locations to where two droplets collide.

the thermally-driven droplet coalescence occurs further upstream. In the T∗
IN = 65 ◦C case,

the experimental spatiotemporal diagram shows that two droplets collide at approximately
x∗ ∼ 80 mm, and in the simulation, cascades of droplet coalescence appear starting from
x∗ ∼ 72 mm.

To compare the computational effort needed for the flow simulation and partially
validate our modelling work, we also implement the volume of fluid (VOF) method using a
commercial computational fluid dynamics package to model the two-phase flow and track
the liquid–air interface. We consider a two-dimensional and axisymmetric flow domain
for solving full Navier–Stokes equations for the unsteady problem. Details of the full
Navier–Stokes simulation are included in the Appendix.

Figures 8 and 9 present the downstream droplet dynamics obtained by numerically
solving the model (3.14) and the full Navier–Stokes equations, and comparison with
the experimental results. In figure 8 where thermal effects are excluded (T∗

IN = T∗
0 ), the

profile and inter-bead spacing of the steady train of beads obtained by both the model
(3.14) and full Navier–Stokes simulations are in good agreement with the experimental
result. In figure 9 where strong thermal effects (T∗

IN = 70 ◦C) are imposed, the experiment
image exhibits upstream bead compression and a more irregular downstream droplet
arrangement owing to the occurrence of bead coalescence. The transient solution profile of
(3.14), as well as the full Navier–Stokes simulation results, qualitatively captures a similar
morphology but with a reduction of two orders of magnitude in computational time.

The location of the onset of bead coalescence is also of interest. Figure 10 shows
a comparison of the predicted locations of bead coalescence, based on numerical
solutions of (3.14), against experimental observations with a varying inlet temperature
for both low-viscosity silicon oil v20 and high-viscosity liquid v50. The onset location of
coalescence is shown to become closer to the inlet as the inlet temperature increases, and
the simulation results show good agreement with the experiments.
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Figure 10. Prediction of the location of droplet coalescence onset by numerically solving model (3.14)
compared with the experimental results for silicone oil v20 at flow rate Q∗

m = 0.016 g s−1 and silicone oil
v50 at flow rate Q∗

m = 0.008 g s−1. The coating thickness εp = 0.1 mm is used for the stabilization term.

5.3. Reduced ODE model
To help interpret the bead coalescence induced by the thermal effects, we also derive a
simplified ODE model for the location of the beads from (3.14). Dropping the higher-order
diffusion terms in the PDE (3.14) and assuming an averaged bead thickness h ≡ 1, we
consider the movement of beads approximately determined by the system of autonomous
ODEs

dxi

dt
= 1

3(1 − κΘ(xi))
− MaΘx

2(1 − κΘ(xi))
, (5.4)

where xi(t) represents the location of the ith droplet at time t. The right-hand side of (5.4)
is obtained by setting h ≡ 1 in the flux (3.14b), which describes the transport in bulk flows
of fluids driven by gravity, Marangoni effects and temperature-dependent viscosity. This
reduced model neglects the curvature of the free surface and assumes that the velocity of
the bead dxi/dt only depends on the temperature distribution Θ along the fibre and the
temperature-dependent material properties.

To simulate a train of moving beads using (5.4), we set the initial condition to be
xi(iΔt) = x̄0, where x̄0 represents the distance between the nozzle inlet and a location
near the nozzle where a regular bead pattern starts to form, and Δt is the averaged
time interval between two consecutive beads passing through x = x̄0. To compare the
predicted downstream dynamics given by the PDE model (3.14) and the ODE system
(5.4), we consider the case without thermal effects where T∗

IN = T∗
0 and the high inlet

temperature case T∗
IN = 65 ◦C discussed in figure 7. For both cases, we set the dimensional

starting position x̄∗
0 = 40 mm. The dimensional time interval Δt∗ is obtained from the

simulation results of the PDE model (3.14), and we use Δt∗ = 0.33 s for the T∗
IN = T∗

0
case and Δt∗ = 0.2 s for the T∗

IN = 65 ◦C case. The other system parameters are identical
to those used in figure 7. Spatiotemporal diagrams generated by solving the ODE (5.4)
are plotted in figure 11 for comparison with the diagrams predicted by the PDE (3.14).
This comparison shows that the reduced model can qualitatively predict the propagation
speed of the moving droplets. In particular, the diagrams for T∗

IN = T∗
0 that depict the

steady train of beads in the RP regime obtained by the two models are very similar (see
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Figure 11. Spatiotemporal diagrams obtained by solving the ODE (5.4) starting from x∗
i (iΔt∗) = 40 mm using

identical parameters as those in figure 7 with (a) T∗
IN = T∗

0 ,Θ ≡ 0 (no thermal effects) and (b) T∗
IN = 65 ◦C,

compared with diagrams obtained by directly solving the PDE (3.14).

figure 11a). For the T∗
IN = 65 ◦C case (see figure 11b), the ODE diagram shows that the

droplets slow down as they flow down the fibre and bead compression occurs. However, the
bead coalescence cascade, which is characterized by the PDE (3.14) for the T∗

IN = 65 ◦C
case (see figure 11b), is not captured by the ODE model.

A collision between two adjacent beads is expected to occur when the distance between
two droplets Li = xi − xi+1 becomes less than their width. However, to properly predict
the bead coalescence, one needs additional information about the bead characteristics.
Although the simplified ODE model (5.4) partially captures the thermal effects on the bead
dynamics, this model does not provide complete information about the full dynamics. For
example, the reduced model does not take into account variations in the bead mass that
are known to affect the velocity of the bead as it moves along the fibre. Moreover, the
bulk surface tension effects, which typically play an important role in free-surface flows,
are neglected in the reduced model. This simplification leads to a train of independently
moving beads along the fibre that does not reflect more complex inter-bead behaviours.

We expect that a more sophisticated reduced ODE model can be derived to further
explore the interesting bead dynamics with thermal effects, but this is beyond the scope of
this study.
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Figure 12. Full Navier–Stokes numerical simulation domain and boundary conditions.

6. Conclusions

This study has focused on the investigation of the onset of thermally-driven droplet
coalescence in the fibre coating dynamics. Through a set of experiments, we have
demonstrated that droplet coalescence and irregular wavy patterns can be triggered by
imposing a temperature gradient along the fibre. We have presented a new lubrication
model that incorporates spatially-dependent viscosity and surface tension gradients arising
from the imposed temperature field in the streamwise direction. This model addresses the
roles of surface tension and viscosity gradients that cause bead coalescence cascades.
Numerical simulations of our model show excellent agreement with experimental
observations in terms of both droplet profiles and spatiotemporal diagrams. In addition,
we have also derived a reduced ODE model to help predict the bead characteristics.
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Appendix. Full Navier–Stokes simulations

Figure 12 shows the numerical simulation domain and the boundary conditions we use for
our full Navier–Stokes numerical simulation. We use the pressure implicit with splitting
of operators (PISO) algorithm to handle the pressure-velocity coupling (Issa, Gosman &
Watkins 1986). We use the pressure staggering scheme (PRESTO) to calculate the pressure
on the faces (rather than the nodes), and the second-order upwind scheme to discretize the
momentum equations. We adopt the continuum surface force (CSF) model proposed by
Brackbill, Kothe & Zemach (1992), where the effect of surface tension is represented as a
source term in the momentum equations. We do not introduce any artificial perturbation
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in our simulation but rely instead on noise inherent in the numerical simulation to initiate
instability.

We include the effect of a temperature gradient using user-defined functions for surface
tension and viscosity from figure 3. The computational domain (150 mm × 8 mm) is
discretized using an unstructured quadrilateral mesh with a minimum element size of
approximately 0.02 mm. The mesh was refined locally near the nozzle wall and the string
and was coarsened far away from the string. The total number of mesh elements was
approximately 200 000 and the time step size was 10−4 s. We use a workstation with a
CPU with 24 cores, each running at 3 GHz, and 64 GB of RAM.
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