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Parametric Envelopes

MICHAEL SEWELL

1.  Introduction
This note is about the parametric description of curves.  It is triggered

by a description of curve stitching in a book by Millington [1], who uses
what he calls, for ellipses, a ‘principle of inverses’.  My wife uses the book,
as one source among others, in her primary school teaching.  I have also
taught, and organised, mathematics masterclasses for 25 years, to 13-year-
olds and to 10-year-olds [2, 3].  I describe a different proof from that
indicated by Millington, using as an example an envelope which is a closed
curve.  Then I explore to what extent the same type of proof can be applied
to the cardioid, which can be viewed as consisting of two opposed open
envelopes.

2.  Principle of inverses
To describe this ‘principle’ in an  plane using cartesian coordinates,

we draw two parallel lines  with any fixed .  We mark points
on them at  on , and at  on , for a sequence of
values .  The points are joined in pairs by
straight lines, as illustrated for those five central values.

x, y
x = ±a a > 0

y = b x = a y = 1 / b x = −a
b =  … , 1

3, 1
2,  1,  2,  3, …

We wish to find the envelope of the family of lines as  is varied
continuously.  The name ‘principle of inverses’ was evidently used by
Millington because the construction consists of joining pairs of points
having coordinates ,  and ,  for an eventually
continuous sequence of values of , with any fixed .  The associated
pairs of values of , namely  and , are the inverses of each other.

b

x = a y = b x = −a y = 1 / b
b a ≠ 0

y b 1 / b

3.  Analysis
The equation of the line joining ,  to ,  is

, which simplifies to .  We have chosen

the distance  between the vertical starting lines to be fixed.  Then we want

to calculate the envelope of all the lines  as

varies, with fixed .  This is an equation of the form , in

which the function .

x = a y = b x = −a y = 1 / b
y − b
x − a

=
1
b − b

−a − a
y − b
x − a

=
b2 − 1

2ab
2a

y − b =
(b2 − 1) (x − a)

2ab
b

a F (x, y, b) = 0

F = y − b −
(b2 − 1) (x − a)

2ab
Siddons, Snell and Morgan [4] tell us that to find such an envelope we

have to find the equation , and then eliminate the variable parameter
 between this equation and .  We see that

∂ F
∂ b = 0

b F = 0

∂ F
∂ b

= −1 −
(x − a)

2a (1 +
1
b2) . (1)
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This is zero when .  Combining this property of  with

the above  leads to  and thence, by eliminating , to

b2 =
a − x
a + x

∂ F
∂ b = 0

F = 0 b =
a − x

ay
b

x2

a2
+ y2 = 1. (2)

This is a circle if , an ellipse whose major axis is along the -axis if
, and an ellipse whose major axis is along the -axis if .

(Millington's analysis uses different ideas from those outlined here, and it
appears to consider only the case ).

a = 1 y
a < 1 x a > 1

a > 1
The progress of the parameter  round the ellipse monotonically

increases anticlockwise from  at the left-hand end of its -axis,
continuing through increasing but negative values to  at the bottom of its
-axis, then on through increasing but still negative values to 0 at the right-

hand end of its -axis; and increasing to  at the top end of its -axis, and
finally reaching  at the left-hand end of its -axis.  This progress is
indicated in Figure 1.
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FIGURE 1

4.  The Cardioid
The construction of the cardioid provides another example of how to

devise an envelope, when approached by the same method as that just
illustrated for ellipses; but it turns out to have some very different analytical
properties.  The basic heart shape is well known.  We illustrate it by starting
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with the unit circle , using cartesian coordinates, with the origin
at the centre,  positive to the right and  positive upwards.  We mark a
discrete number  of points on the circumference at equal angles of every

, so that .  We choose  in the diagram so that there
are  points there.

x2 + y2 = 1
x y

(n)
t degrees nt = 360 t = 10

n = 36
We use  to label the points.  The top one is  (or ) at

, .  Moving clockwise from the top, the coordinates of the
point are ,  where we have written  to be the
clockwise angle from the vertical of this particular radius.  This  will
eventually have the role of a continuously varying parameter, as it did for
the ellipse in the previous section, but over a different range.  These ranges
are  for the right-hand semicircle, and  for the
left-hand semicircle.  The equation of the chord joining  to its double  at

,  is

p p = 0 p = 36
x = 0 y = 1 p th

x = sin b y = cos b pt = b
b

0 ≤ b ≤ π π ≤ b ≤ 2π
p 2p

x = sin 2b y = cos 2b
y − cos b
x − sin b

=
cos 2b − cos b
sin 2b − sin b

. (3)

Elementary trigonometric formulae show the right-hand side to be .
Therefore this chord can be written as , where the function
of the coordinates ,  on the chord and the parameter  is

−tan 3b
2

F (x, y, b) = 0 F
x y b

F (x, y, b) = y − cos b + (x − sin b) tan
3b
2

, (4)
which has the property

∂ F
∂ b

= −
1
2

sin b − cos b tan
3b
2

+
3
2

x +
3
2

(x − sin b) tan2 3b
2

. (5)

We now have the ingredients which are required to determine implicitly
the equation of the cardioid, as an envelope of the stated continuous
sequence of chords, by eliminating the parameter  from the pair of
equations  and .  In this calculation  is now to be regarded as
a continuous variable, having a similar role to that which generated the
ellipse in the previous section, but only having a finite range here.  It goes
from 0 to  in generating the right-hand half of the cardioid, and from  to

 to generate the left-hand half which is a mirror image of the right-hand
half.  We can write  as

b
F = 0 ∂ F

∂ b = 0 b

π π
2π

F = 0

tan
3b
2

=
y − cos b
sin b − x

(6)

and then  as∂ F
∂ b = 0

3 (x2 + y2) − 4x sin b − 4y cos b + 1 = 0. (7)
So these two equations together provide a parametric description, via
varying from 0 to , of the cardioid shown in the  plane of the diagram,
where the  origin is at the centre of the circle.  The particular value

 of the parameter will identify the cusp of the cardioid shown in the
diagram, where the last two equations reduce to

b
2π x, y

x, y
b = π

±∞ =
y + 1

−x
,  3 (x2 + y2) + 4y + 1 = 0. (8)
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These require  and .  The conclusion is that the cusp of this
cardioid is at

x = 0 y = −1
3

x = 0, y = −1
3, (9)

i.e. one third of the distance down from the centre of the circle to the cir-
cumference.  Other versions of heart-shaped curves have been known for
three hundred years, as Google (for example) makes clear, but I have not
seen this parametric version before.  When I demonstrated this shape to my
ten-year-old Masterclass pupils as the reflection of an oblique beam of light
off the internal side of a coffee cup onto the liquid surface, they immediately
announced another name: Looks like a bum!
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