Parametric Envelopes

MICHAEL SEWELL

1. Introduction

This note is about the parametric description of curves. It is triggered by a description of curve stitching in a book by Millington [1], who uses what he calls, for ellipses, a 'principle of inverses'. My wife uses the book, as one source among others, in her primary school teaching. I have also taught, and organised, mathematics masterclasses for 25 years, to 13-yearolds and to 10-year-olds [2, 3]. I describe a different proof from that indicated by Millington, using as an example an envelope which is a closed curve. Then I explore to what extent the same type of proof can be applied to the cardioid, which can be viewed as consisting of two opposed open envelopes.

2. Principle of inverses

To describe this 'principle' in an x, y plane using cartesian coordinates, we draw two parallel lines $x = \pm a$ with any fixed a > 0. We mark points on them at y = b on x = a, and at y = 1/b on x = -a, for a sequence of values $b = \dots, \frac{1}{3}, \frac{1}{2}, 1, 2, 3, \dots$ The points are joined in pairs by straight lines, as illustrated for those five central values.

We wish to find the envelope of the family of lines as *b* is varied continuously. The name 'principle of inverses' was evidently used by Millington because the construction consists of joining pairs of points having coordinates x = a, y = b and x = -a, y = 1/b for an eventually continuous sequence of values of *b*, with any fixed $a \neq 0$. The associated pairs of values of *y*, namely *b* and 1/b, are the inverses of each other.

3. Analysis

The equation of the line joining x = a, y = b to x = -a, y = 1/b is $\frac{y-b}{x-a} = \frac{\frac{1}{b}-b}{-a-a}$, which simplifies to $\frac{y-b}{x-a} = \frac{b^2-1}{2ab}$. We have chosen the distance 2a between the vertical starting lines to be fixed. Then we want to calculate the *envelope* of all the lines $y - b = \frac{(b^2-1)(x-a)}{2ab}$ as b varies, with fixed a. This is an equation of the form F(x, y, b) = 0, in which the function $F = y - b - \frac{(b^2-1)(x-a)}{2ab}$.

Siddons, Snell and Morgan [4] tell us that to find such an envelope we have to find the equation $\frac{\partial F}{\partial b} = 0$, and then eliminate the variable parameter *b* between this equation and F = 0. We see that

$$\frac{\partial F}{\partial b} = -1 - \frac{(x-a)}{2a} \left(1 + \frac{1}{b^2}\right). \tag{1}$$

This is zero when $b^2 = \frac{a-x}{a+x}$. Combining this property of $\frac{\partial F}{\partial b} = 0$ with the above F = 0 leads to $b = \frac{a-x}{ay}$ and thence, by eliminating b, to

$$\frac{x^2}{a^2} + y^2 = 1.$$
 (2)

This is a circle if a = 1, an ellipse whose major axis is along the *y*-axis if a < 1, and an ellipse whose major axis is along the *x*-axis if a > 1. (Millington's analysis uses different ideas from those outlined here, and it appears to consider only the case a > 1).

The progress of the parameter *b* round the ellipse monotonically increases anticlockwise from $-\infty$ at the left-hand end of its *x*-axis, continuing through increasing but negative values to -1 at the bottom of its *y*-axis, then on through increasing but still negative values to 0 at the right-hand end of its *x*-axis; and increasing to +1 at the top end of its *y*-axis, and finally reaching $+\infty$ at the left-hand end of its *x*-axis. This progress is indicated in Figure 1.

4. The Cardioid

The construction of the cardioid provides another example of how to devise an envelope, when approached by the same method as that just illustrated for ellipses; but it turns out to have some very different analytical properties. The basic heart shape is well known. We illustrate it by starting with the unit circle $x^2 + y^2 = 1$, using cartesian coordinates, with the origin at the centre, x positive to the right and y positive upwards. We mark a discrete number (n) of points on the circumference at equal angles of every t degrees, so that nt = 360. We choose t = 10 in the diagram so that there are n = 36 points there.

We use p to label the points. The top one is p = 0 (or p = 36) at x = 0, y = 1. Moving clockwise from the top, the coordinates of the p th point are $x = \sin b, y = \cos b$ where we have written pt = b to be the clockwise angle from the vertical of this particular radius. This b will eventually have the role of a continuously varying parameter, as it did for the ellipse in the previous section, but over a different range. These ranges are $0 \le b \le \pi$ for the right-hand semicircle, and $\pi \le b \le 2\pi$ for the left-hand semicircle. The equation of the chord joining p to its double 2p at $x = \sin 2b, y = \cos 2b$ is

$$\frac{y - \cos b}{x - \sin b} = \frac{\cos 2b - \cos b}{\sin 2b - \sin b}.$$
(3)

Elementary trigonometric formulae show the right-hand side to be $-\tan \frac{3b}{2}$. Therefore this chord can be written as F(x, y, b) = 0, where the function F of the coordinates x, y on the chord and the parameter b is

$$F(x, y, b) = y - \cos b + (x - \sin b) \tan \frac{3b}{2},$$
 (4)

which has the property

$$\frac{\partial F}{\partial b} = -\frac{1}{2}\sin b - \cos b \tan \frac{3b}{2} + \frac{3}{2}x + \frac{3}{2}(x - \sin b)\tan^2 \frac{3b}{2}.$$
 (5)

We now have the ingredients which are required to determine implicitly the equation of the cardioid, as an envelope of the stated continuous sequence of chords, by eliminating the parameter *b* from the pair of equations F = 0 and $\frac{\partial F}{\partial b} = 0$. In this calculation *b* is now to be regarded as a continuous variable, having a similar role to that which generated the ellipse in the previous section, but only having a finite range here. It goes from 0 to π in generating the right-hand half of the cardioid, and from π to 2π to generate the left-hand half which is a mirror image of the right-hand half. We can write F = 0 as

$$\tan\frac{3b}{2} = \frac{y - \cos b}{\sin b - x} \tag{6}$$

and then $\frac{\partial F}{\partial h} = 0$ as

$$3(x^{2} + y^{2}) - 4x \sin b - 4y \cos b + 1 = 0.$$
 (7)

So these two equations together provide a parametric description, via *b* varying from 0 to 2π , of the cardioid shown in the *x*, *y* plane of the diagram, where the *x*, *y* origin is at the centre of the circle. The particular value $b = \pi$ of the parameter will identify the cusp of the cardioid shown in the diagram, where the last two equations reduce to

$$\pm \infty = \frac{y+1}{-x}, \qquad 3(x^2+y^2)+4y+1=0.$$
 (8)

These require x = 0 and $y = -\frac{1}{3}$. The conclusion is that the cusp of this cardioid is at

$$x = 0, y = -\frac{1}{3}, \tag{9}$$

i.e. one third of the distance down from the centre of the circle to the circumference. Other versions of heart-shaped curves have been known for three hundred years, as Google (for example) makes clear, but I have not seen this parametric version before. When I demonstrated this shape to my ten-year-old Masterclass pupils as the reflection of an oblique beam of light off the internal side of a coffee cup onto the liquid surface, they immediately announced another name: Looks like a bum!

FIGURE 2

References

- 1. J. Millington, Curve stitching, Tarquin Publications (2001).
- M. J. Sewell, Mathematics masterclasses stretching the imagination, Oxford University Press (1997).
- 3. M. J. Sewell, *Mathematics masterclasses for ten-year-olds*, University of Reading Mathematics Department (2014).
- 4. A. W. Siddons, K. S. Snell and J. B. Morgan, *A new calculus*, Part III, Cambridge University Press (1952) p. 3.15.
- doi:10.1017/mag.2015.30

MICHAEL SEWELL

Department of Applied Mathematics, University of Reading, Whiteknights, Reading, RG6 6AX e-mail: michael@sewells.org