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By a tubular three-dimensional Cauchy–Riemann (CR) structure we will mean a CR
structure defined in an open subset of R

3, together with a coordinate system (x, y, t) ∈ R
3,

together with a CR operator of the form

∂̄b = ∂x + i(∂y − φ′(x)∂t), (1)

where φ ∈ C∞(R) is real-valued. Such CR structures may be realized as the boundaries
of tube domains {z : Im z2 > φ(Re z1)} in C

2. The Levi form may be identified with
the function φ′′(x). We always assume that φ is convex, so that the structure is pseudo-
convex. By ∂̄∗

b we mean the adjoint of ∂̄b with respect to L2(R3, dx dy dt); thus ∂̄∗
b =

−∂x + i(∂y − φ′(x)∂t).
The purpose of this note is to characterize hypoellipticity of the Kohn Laplacian ∂̄b ∂̄∗

b

for this class of CR structures.

Main Theorem. For any C∞ pseudoconvex tubular three-dimensional CR structure,
the following four conditions are equivalent in any open set.

(α) ∂̄b is C∞ hypoelliptic, modulo its nullspace.

(β) The CR structure is not exponentially degenerate.

(γ) The pair {∂̄b , ∂̄∗
b } satisfies a superlogarithmic estimate.
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(δ) There exists s > 0 such that ∂̄b is Hs hypoelliptic, modulo its nullspace.

The main new result here is the implication

[exponential degeneracy] ⇒ [non-hypoellipticity].

The implication

[not exponentially degenerate] ⇒ [hypoelliptic]

is a sharpening of the known sufficient condition x log φ′′(x) → 0 as |x| → 0.
This work is part of a broader investigation of related problems, concerning both

hypoellipticity and global regularity in C∞, Cω, and Gevrey classes. See [3] and [15]
for speculation on some of these matters in a wider context. The essential novelty in
this paper is a characterization for a natural, though restricted, class of structures, as
opposed to isolated examples; tube domains have long served as prototypical examples.
The author had not anticipated obtaining such a characterization, because the behaviour
of smooth functions vanishing to infinite order can be so wild.

For arbitrary smooth, pseudoconvex three-dimensional CR structures, a superloga-
rithmic estimate for {∂̄b , ∂̄∗

b } implies hypoellipticity [4], but the converse is false in general
[5].

The notions appearing in this characterization are defined as follows.

Definition 1. ∂̄b is C∞ hypoelliptic modulo its nullspace in an open set U if for any open
subset V ⊂ U and every function u ∈ L2(V ) such that ∂̄∗

b u ∈ L2(V ) and ∂̄b ∂̄∗
b u ∈ C∞(V ),

necessarily ∂̄∗
b u ∈ C∞(V ).

For any parameter s > 0, ∂̄b is Hs hypoelliptic modulo its nullspace in an open set U

if for any open subsets V � Ṽ ⊂ U and every function u ∈ L2(Ṽ ) such that ∂̄∗
b u ∈ L2(Ṽ )

and ∂̄b ∂̄∗
b u ∈ C∞(Ṽ ), necessarily ∂̄∗

b u ∈ Hs(V ).

Here Hs denotes the usual Sobolev space of functions having s derivatives in L2; in
the second part of the definition, V may be taken to be a ball, and Hs(V ) is then the
space of all functions in L2(V ) extendible to functions in Hs(R3).

As is well known, C∞ hypoellipticity, modulo the nullspace, holds whenever the struc-
ture is strictly pseudoconvex, or more generally of finite type, at every point of U , so the
only issue here is the possible appearance of singularities at points where φ′′ vanishes to
infinite order. It is explained in [10,11] why this notion of hypoellipticity is natural.

A variant would be merely to require u, ∂̄∗
b u to belong to D′(V ); our results apply

equally well to that variant, but we focus on the first formulation since it arises most
directly in complex analysis.

Definition 2. A collection of (complex) vector fields {Xj} is said to satisfy a superloga-
rithmic estimate in an open set U ⊂ R

d if for every relatively compact subset V ⊂ U and
every ε > 0 there exists Cε < ∞ such that for every function u ∈ C1 supported in V ,∫

Rd

(log |ξ|)2|û(ξ)|2 dξ � ε
∑

j

‖Xju‖2
L2 + Cε‖u‖2

L2 , (2)

where û denotes the Fourier transform of u.
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An equivalent condition is that for each V there exists a function w that satisies
w(r)/ log r → +∞ as r → +∞, such that∫

Rd

w2(|ξ|)|û(ξ)|2 dξ � C
∑

j

‖Xju‖2
L2 + C‖u‖2

L2 (3)

for all u ∈ C1 supported in V . This formulation explains the terminology ‘superloga-
rithmic’.

For a proof that the superlogarithmic estimate for the pair {∂̄b , ∂̄∗
b } implies hypo-

ellipticity modulo the nullspace for arbitrary smooth, pseudoconvex three-dimensional
CR structures, see the proofs of Corollaries 3.2 and 3.3 of [4]. Hypoellipticity modulo
the nullspace is not explicitly discussed in that reference, but follows from the arguments
there together with a simple microlocalization as in [9,11].

|I| denotes the length of an interval I ⊂ R. We denote the endpoints of a closed interval
by x±; thus I = [x−, x+].

Definition 3. Let J be an open subinterval of R
1. A CR structure satisfying the

above conditions is said to be exponentially degenerate in J × R
2 if there exist δ > 0

and a sequence of intervals Iν ⊂ R, all contained in some compact subset of J , such
that

|Iν | → 0 as ν → ∞ (4)

and ∫
Iν

φ′′(x) dx � e−δ/|Iν |. (5)

For example, if φ′′(x) � exp(−c/|x|) as x → 0 for some c > 0 then the structure is
exponentially degenerate; but the converse does not hold. Note that exponential degen-
eracy is defined only for tubular CR structures, whereas the other two notions appearing
in the Main Theorem are defined in general.

For simplicity, we assume henceforth that φ is defined on all of R, and that φ′′ has
a strictly positive lower bound outside some bounded interval. This can of course be
arranged by restricting and then extending a given φ.

By separation of variables, everything reduces to an analysis of properties of certain
ordinary differential operators.

Definition 4. For η ∈ C and τ ∈ R,

Lη,τ = (−∂x + (η − τφ′(x))) ◦ (∂x + (η − τφ′(x))). (6)

Our first lemma is rather routine.

Lemma 5. The following conditions are equivalent.

(i) The pair {∂̄b , ∂̄∗
b } satisfies a superlogarithmic estimate.
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(ii) The lowest eigenvalue λ(τ, η)2 of Lη,τ satisfies λ(τ, η)/ log τ → ∞ as τ → +∞,
uniformly in η ∈ R.

(iii) The CR structure is not exponentially degenerate.

Here λ(τ, η)2 is defined to be the infimum of 〈Lη,τf, f〉 over all compactly supported
C2 functions f satisfying ‖f‖L2 = 1.

Proof. If the operators Lη,τ satisfy the stated lower bounds, then the superlogarithmic
estimate follows directly by application of a partial Fourier transform with respect to the
coordinates (y, t).

To show that exponential degeneracy implies failure of the eigenvalue estimate, fix
δ, {Iν} as in the definition of degeneracy. Set τν = exp(α/|Iν |), where α > 0 is a constant
to be specified below; thus |Iν | = α/ log τν . Fix g ∈ C∞(R), supported in (−1, 1), not
vanishing identically. Set f = g◦ν , where ν is the unique linear transformation mapping
the left endpoint of Iν to −1, and the right endpoint to +1. Specify ην by

[τνφ′(x−) − ην ] = −[τνφ′(x+) − ην ]. (7)

Since ην − τνφ′ vanishes at some point of Iν ,

|ην − τνφ′(x)| � τν

∫
Iν

φ′′ (8)

for every x ∈ Iν .
Now dropping the subscripts ν to simplify notation,

〈Lη,τf, f〉 = ‖f ′‖2 +
∫

R

|f(x)|2|η − τφ′(x)|2 dx + τ

∫
R

|f(x)|2φ′′(x) dx

� C|I|−1 + C max
I

|η − τφ′|2|I| + Cτ

∫
I

φ′′

� C|I|−1 + C|I|τ2
(∫

I

φ′′
)2

+ Cτ

∫
I

φ′′.

Hence by Cauchy–Schwarz,

〈Lη,τf, f〉
‖f‖2 � C|I|−2 + Cτ2

(∫
I

φ′′
)2

� C(log τ)−2 + Cτ2τ−2δ/α. (9)

Choosing any α < δ, the last term is bounded by a negative power of τ , so all together,
the ratio is � C(log τ)−2, and the eigenvalue estimate fails.

Suppose next that the structure is not exponentially degenerate. To prove that the
estimate for {Lη,τ} does hold, let η, τ ∈ R be given, with τ large and positive. Let A

be a large parameter, and let I = {x : |η − τφ′(x)| � A log τ}. Then τ
∫

I
φ′′ = 2A log τ ,

whence |I| � δ/(A log τ). Now

〈Lη,τf, f〉 � A2 log2 τ

∫
R\I

|f |2 + ‖f ′‖2. (10)
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By a Poincaré-type inequality,∫
I

|f |2 � C|I|2‖f ′‖2 + C

∫
R\I

|f |2,

so
〈Lη,τf, f〉 � A2 log2 τ

∫
R\I

|f |2 + c|I|−2
∫

I

|f |2 − C‖f‖2. (11)

Since |I| � δ/A log τ , min(A log τ, |I|−1) � A min(1, δ−1) log τ . Choosing A sufficiently
large completes the proof of the eigenvalue bound.

It remains to show that exponential degeneracy precludes the superlogarithmic esti-
mate. Fix an auxiliary function h ∈ C∞(R), supported in a small neighbourhood of the
origin. For each interval I, let cI be the centre of I, and set hI(x) = h((x − cI)/|I|).
Consider functions uI,τ,η(x, y, t) = h(y)h(t)eiτt+iηyhI(x). For such functions u, the super-
logarithmic estimate is equivalent to

|I|(log(2 + τ + |η| + |I|−1))2 � ε‖∂̄b u‖2 + ε‖∂̄∗
b u‖2 + Cε|I| (12)

for arbitrarily small ε > 0. We have

‖∂̄b u‖2 + ‖∂̄∗
b u‖2 � C|I|−1 + C|I| max

x∈I
|η − τφ′(x)|2, (13)

so the superlogarithmic estimate becomes

log(τ + |η|) � ε|I|−1 + ε max
x∈I

|η − τφ′(x)| + Cε, (14)

which is to hold uniformly in I, τ, η. Fixing I, τ , there exists η such that

max
x∈I

|η − τφ′(x)| = τ

∫
I

φ′′;

moreover, considering only intervals I of bounded length and located in a fixed neigh-
bourhood of the origin, we have |η| < τ and hence the superlogarithmic estimate becomes

log τ � ε

(
|I|−1 + τ

∫
I

φ′′
)

+ Cε. (15)

Suppose now that
∫

I
φ′′ � exp(−δ/|I|), and set τ = |I|−1

∫
I
φ′′. Then log τ � c log |I|−1,

so the superlogarithmic estimate implies that c log |I|−1 � ε log |I|−1 + Cε for arbitrarily
small ε > 0, a contradiction. �

We now begin the main step of the analysis, the proof that exponential degeneracy
implies nonhypoellipticity. To each bounded closed interval I = [x−, x+] associate

θI = 1
2 (φ′(x−) + φ′(x+)). (16)

An equivalent characterization of θ is that [φ′(x−) − θI ] = −[φ′(x+) − θI ].

Lemma 6. For each I, there exists a unique interval I∗ = [x∗
−, x∗

+] such that I∗ ⊃ I,
|I∗| = 2|I|, and [φ′(x∗

−) − θI ] = −[φ′(x∗
+) − θI ].
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Proof. Consider F (t) = φ′(t) + φ′(t + 2|I|) for x− − |I| � t � x−. F is strictly increas-
ing, and F (x− −|I|) = φ′(x− −|I|)+φ′(x+) < φ′(x−)+φ′(x+) < φ′(x−)+φ′(x+ + |I|) =
F (x−), so there exists a unique t ∈ R with the desired property, and t ∈ [x− − |I|, x−].
Set I∗ = [t, t + 2|I|]. �

Definition 7. For any interval I ⊂ R,

ρ(I) =

∫
I∗ φ′′∫
I

φ′′ . (17)

ρ(I) is bounded above, uniformly for all intervals, if and only if φ′′ vanishes only to
finite order at any point; that is, if and only if the CR structure is of finite type. Later,
the key step of our analysis, Lemma 10, will exploit the unboundedness of ρ. The purpose
of the next lemma is to show that there exist intervals for which

∫
I
φ′′ is small and ρ(I)

is large, simultaneously.

Lemma 8. Suppose the CR structure is exponentially degenerate. Then there exist a
positive constant δ and a sequence of intervals Iν ⊂ R such that |Iν | → 0,∫

Iν

φ′′ � e−δ/|Iν | (18)

and

ρ(Iν) → ∞ as ν → ∞. (19)

Proof. The hypothesis gives a sequence of intervals whose lengths tend to zero, satisfying
the first inequality. All such intervals necessarily lie in a bounded region, since φ′′ is
bounded below outside a compact set. Consider any large constant A, let 0 < ε be a
sufficiently small parameter to be chosen below, and consider the non-empty collection
of all bounded closed intervals J ⊂ R such that

∫
J

φ′′ � exp(−δ/|J |) and |J | � ε.
We argue by contradiction; suppose that for all such intervals J , ρ(J) � A. Then for

any such J , consider the tower defined by Jn+1 = J∗
n, with J0 = J . Denote by N the

smallest integer such that ρ(JN ) > A.
To see that such an N exists and that |JN | must itself be smaller than any preassigned

quantity if ε is chosen to be sufficiently small, suppose instead that |JN | � 1. Denote by
M the unique integer such that 1 � |JM | < 2. Then∫

JM

φ′′ � AM

∫
J0

φ′′ � AMe−δ/|J| � e−C log A log |J|e−δ/|J|; (20)

since |J | � ε, the right-hand side can be made arbitrarily small by choosing ε sufficiently
small. But since φ′′ is uniformly bounded below outside a compact set and |JM | � 1,∫

JM
φ′′ is bounded below by a strictly positive constant. Thus we have a contradiction;

hence N must exist.
The same reasoning shows that if ε is sufficiently small, then |JN | must be smaller than

any preassigned quantity α; just change the condition 1 � |JM | < 2 to α � |JM | < 2α.
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Now by the same reasoning,∫
JN

φ′′ � ANe−δ/|J| � e−δ/|JN |CeC log A[F (|J|)−F (|JN |)], (21)

where F (t) = log(1/t) − δ/t. For any δ, F ′(t) > 0 for all sufficiently small t; and we have
already ensured that |J | and |JN | are as small as may be desired. Thus

∫
JN

φ′′ � e−δ/|JN |,
JN was chosen so that ρ(JN ) > A, and A is arbitrarily large. �

Definition 9.

N (ζ, τ) =
∫

R

e2(ζx−τφ(x)) dx. (22)

The following lemma is the core of our analysis. We write

τν =
1

|Iν |
∫

Iν
φ′′ . (23)

Lemma 10. Suppose there exist a constant δ and sequence of intervals {Iν} such that∫
Iν

φ′′ � exp(−δ/|Iν |) for all ν, |Iν | → 0, and ρ(Iν) → ∞ as ν → ∞. Then there exist
C < ∞ and a sequence {νk} → ∞ such that for each k there exists ζk ∈ C, satisfying
|ζk| � τνk

, such that
N (ζk, τνk

) = 0 (24)

and
|Im ζk| � C log τνk

. (25)

Here ‘Im’ denotes the imaginary part.
We have recently [5] given an example of a cylindrically symmetric CR structure,

strictly pseudoconvex except on a single real curve transverse to the complex tangent
spaces, for which hypoellipticity fails to hold. This was done by building in detail a CR
structure for which analogues of N (·, τν), for a sequence τν → ∞, are small perturbations
of an explicit function, which manifestly has zeros. In the present article we take a
different route, showing that the existence of appropriate zeros is inevitable. It may well
be possible to apply this technique to the cylindrically symmetric case, as well, to obtain
a necessary and sufficient condition for hypoellipticity.

Before beginning the proof, we point out that unlike the real analytic case [2], there is
no scaling symmetry which reduces matters to the case τ = 1 modulo small perturbations.
Perhaps paradoxically, the following argument actually exploits this lack of symmetry.

Proof. To simplify notation we drop the subscript ν for the first part of the proof. Let
I = [x−, x+] be one of the intervals Iν . Set η = τθ where θ = θ(I) was defined by the
relation (16). Let  be the unique linear endomorphism of R satisfying (±1) = x±. Let
s∗

± = −1(x∗
±); then s∗

− � −1 < +1 � s∗
+, and s∗

+ − s∗
− = 4.

Set γ = minx∈I(τφ(x) − ηx), and set

ψ = (τφ − ηx − γ) ◦ . (26)
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Then ψ is non-negative, smooth and convex, and assumes its minimum value 0 at some
point of [−1, 1].

Crucial properties of ψ are

0 � ψ(±1) � 1, (27)

|ψ′(s∗
±)| � 1

2ρ(I). (28)

Indeed, the maximum over [−1, 1] of ψ equals the maximum over I of τφ(x) − ηx − γ.
The derivative of the latter function is τφ′ − η, which vanishes at some point of I by
the Intermediate Value Theorem, since the choice of η means that [τφ′(x−) − ηx−] =
−[τφ′(x+) − ηx+]. Hence since γ was chosen to make the minimum value equal 0, the
maximum value is �

∫
I
|τφ′ − η| � |I|τ

∫
I
φ′′ = 1, by the definition of τ .

The lower bounds for |ψ′(s∗
±)| are obtained similarly. I∗ = [x∗

−, x∗
+] was constructed

so that [τφ′(x∗
−) − η] = −[τφ′(x∗

+) − η]. Therefore

τφ′(x∗
+) = 1

2 (τφ′(x∗
+ − η) − τφ′(x∗

− − η)) = 1
2τ

∫
I∗

φ′′ = 1
2τρ(I)

∫
I

φ′′. (29)

Thus
|ψ′(s∗

±)| = |I| 12ρ(I)τ
∫

I

φ′′ = 1
2ρ(I). (30)

Now by writing (s) = 1
2 (x+ + x−) + 1

2 |I|s, we obtain

N (η + ζ, τ) = |I|
∫

R

e2[ζ
(s)−(ψ(s)+γ)] ds

= |I|e−2γ

∫
R

eζ(x++x−)+ζ|I|se−2ψ(s) ds = |I|e−2γeζ(x++x−)MI(z),

where
MI(z) =

∫
R

ezs−2ψ(s) ds (31)

and
z = |I|ζ. (32)

MI depends on I through ψ.
A simple normal families argument demonstrates that for all sufficiently large ν, there

exists a zero z ∈ C of MIν satisfying |z| � C, uniformly in ν. Indeed, since −2 � s∗
− <

s∗
+ � +2, exp(−2ψν(s)) � exp(−ρ(Iν)|s − 2|) for every |s| � 2. Since ρ(Iν) → ∞, and

the functions exp(−2ψν) are everywhere � 1, it follows that on any compact subset of C,
all but finitely many of the functions MIν (z) extend holomorphically, and the collection
of all of these extensions forms a normal family.∗ Moreover, there exists a subsequence
{νk} such that exp(−2ψνk

) converges weakly to a bounded function f that is supported
on [−2, 2]. For any such subsequence, f(s) � e−2 for all |s| � 1, since 0 � ψ(s) � 1. The
limiting holomorphic function is the Fourier transform of f . Since f has compact sup-
port, |f̂(z)| � C exp(C|z|) for some C < ∞, for all z ∈ C. Consequently, f̂ must have (an

∗ It is here that the unboundedness of the numbers ρ(Iν) is exploited.
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infinite discrete set of) zeros, since the measure f(s)ds is not a Dirac mass. Fixing one
zero of f , any holomorphic function sufficiently close to f̂ must have a nearby zero, so
there exist a constant C < ∞, a subsequence {νk}, and a sequence {zk} such that for
each k, MIνk

has a zero satisfying |zk| � C.
Consequently, N (η + ζ, τ) = 0 and |Im(η + ζ)| = |Im(ζ)| = |I|−1|Im(z)| � C|I|−1. To

conclude the proof, it suffices to show that

|Iν | � c/ log τν . (33)

Now the basic degeneracy condition
∫

I
φ′′ � exp(−δ/|I|), combined with the definition

of τ , give |I| � −δ/ log
∫

I
φ′′ = δ/ log(τ |I|) = δ(log τ − log(|I|−1))−1 ∼ δ/ log τ , since the

definition τ = |I|−1
∫

I
φ′′ implies that τ � |I|−1 for all intervals I in a fixed compact set,

and since only such intervals are among the degenerate intervals Iν . �

Rather than constructing singular solutions, we will show that ∂̄b fails to be hypoelliptic
by exhibiting functions that disprove certain a priori inequalities which are a consequence
of hypoellipticity. Those functions could alternatively be used as building blocks in an
infinite series whose sum is a singular solution.

If ∂̄b is C∞ hypoelliptic modulo its nullspace, then for any open subset V , any relatively
compact subset V ′, and any α, there must exist M, C < ∞ such that for any u ∈ C∞(V ),

‖∂α
x,y,t∂̄

∗
b u‖C0(V ′) � C‖u‖C0(V ) + C‖∂̄∗

b u‖C0(V ) + C‖∂̄b ∂̄∗
b u‖CM (V ); (34)

this is a consequence of the Baire Category Theorem. Restricting attention to functions
u(x, y, t) = exp(iτt+iζy)f(x), where τ ∈ R

+ and ζ ∈ C and f satisfies Lζ,τf ≡ 0, setting
dζ,τ = ∂x−(ζ−τφ′(x)), and taking V = {|x|+|y|+|t| < ε} and V ′ = {|x|+|y|+|t| < ε/2},
a consequence would be that for any ε > 0,

τ sup
|x|<ε/2

|dζ,τf(x)| � Cεeε|Im(ζ)| sup
|x|<ε

(|f(x)| + |dζ,τf(x)|), (35)

uniformly for all f , ζ, τ ; the crucial factor of τ on the left arises from taking one derivative
of exp(iτt). In the same way, Hs hypoellipticity modulo the nullspace would imply that
for any ε, ε′ > 0,

τ s‖dζ,τf‖L2{|x|<ε′} � Cε,ε′eε|Im(ζ)|(‖f‖L2{|x|<2ε′} + ‖dζ,τf‖L2{|x|<2ε′}). (36)

Lemma 11. Suppose there exist sequences of positive real numbers τν → +∞, and
complex numbers ζν , such that N (ζν , τν) = 0 for every ν, |ζν |/τν → 0, and |Im ζν | �
C log τν . Then for any s > 0, ∂̄b fails to be Hs hypoelliptic, modulo its nullspace.

Proof. We will often drop the subscript ν in order to simplify notation. Set Φ(x) =
τνφ(x) − ζνx = τφ(x) − ζx and set

fν(x) = f(x) = eΦ(x)
∫ x

−∞
e−2Φ(s) ds. (37)

Then Lζ,τf ≡ 0, and dζ,τf = e−Φ.
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The convex function ReΦ has a unique critical point x0, which tends to zero as ν → ∞
because |ζν |/τν → 0. Moreover, for all but finitely many ν,

‖e−Φ‖L2{|x|>ε′} � C‖e−Φ‖L2{|x|<ε′}. (38)

Indeed, define x+ > x0 so that Re Φ(x+) = 1 + Re Φ(x0). Clearly, x+ → 0 as ν → ∞.
Then Re Φ′(x+) � (x+ − x0)−1, and convexity of ReΦ′ and a simple comparison imply
that ∫ ∞

x+

e−2 Re Φ � (x+ − x0)e−2 Re Φ(x+) � (x+ − x0)e−2 Re Φ(x0). (39)

On the other hand,∫ x+

x0

e−2 Re Φ �
∫ x+

x0

e−2e−2 Re Φ(x0) � e−2(x+ − x0)e−2 Re Φ(x0), (40)

so for large ν, ∫ ∞

ε′
e−2 Re Φ �

∫ ∞

x+

e−2 Re Φ � C

∫ x+

x0

e−2 Re Φ. (41)

The same reasoning applies on (−∞, x0].
Thus (36) would imply that

τ s‖dζ,τf‖L2{|x|<ε′} � Cε,ε′τ ε(‖f‖L2{|x|<ε′} + ‖dζ,τf‖L2{|x|<ε′}), (42)

uniformly as ν → ∞ for all ε, ε′ > 0. Choosing ε < s, the second term on the right
becomes much less than the left-hand side for large ν, so may be neglected. In order to
obtain a contradiction, it suffices to verify that ‖f‖L2{|x|<ε′} � C‖dζ,τf‖L2{|x|<ε′}; in
fact there is a pointwise bound

|f(x)| � C|dζ,τf(x)| for all x. (43)

To prove (43), consider first the case where x � x0. Since −Φ is increasing on (−∞, x0),

|f(x)| �
∫ x

−∞
e− Re Φ(s) ds. (44)

Let
J = Jν = {s : |Re Φ(s)| � Re Φ(x0) + 1} = [x−, x+].

Then by convexity, |Re Φ′(x±) � |J |−1, so

τ

∣∣∣∣
∫ x±

x0

φ′′
∣∣∣∣ � |J |−1.

The contribution of J ∩ (−∞, x) to (44) is � |J |e− Re Φ(x0) � C|J |e− Re Φ(x) if x � x−,
and is zero if x < x−.

Outside J , since Re Φ′ is monotonic, we have as in the proof of (38) that the contri-
bution of (−∞, x]\J is

� C|Re Φ′(x)|−1e− Re Φ(x) � |J |e− Re Φ(x). (45)
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Thus

|f(x)| � C|J | |dζ,τf(x)| (46)

for all x � x0, uniformly in ν. Since |J | → 0 as ν → ∞, this is stronger than (43) except
for the restriction x � x0.

In the analysis of the case x � x0, the crucial condition N (ζ, τ) = 0 finally comes into
play. The vanishing of N (ζ, τ) means equivalently that f has the alternative representa-
tion

f(x) = −eΦ(x)
∫ ∞

x

e−2Φ(s) ds. (47)

Hence for x � x0, |f(x)| �
∫ ∞

x
exp(−Φ(s)) ds, and the reasoning of the preceding para-

graph may be repeated to obtain the bound |f(x) � C|dζ,τf(x)|, uniformly in x, ν.
Combining the above steps, we conclude that for any positive s, (36) fails to hold, and

hence that ∂̄b fails to be Hs hypoelliptic, modulo its nullspace. �

Remark 12. It is natural to ask why Lemma 10 is needed. The simple counterexamples
used in the proof of Lemma 5 to demonstrate the failure of the superlogarithmic estimate
do not suffice to disprove hypoellipticity; they are not annihilated by ∂̄b ∂̄∗

b , and the last
term on the right-hand side of (34) turns out to be far larger than the left-hand side, so
that no contradiction is reached.

A second explanation is that the related operators −∂2
x − (φ′(x)∂t)2, in R

2, are hypoel-
liptic so long as φ′ vanishes only at one point; see [6] and the later works [4,12], and for
a more general analogue in the real analytic category see [7]. An argument like that used
above to disprove the superlogarithmic estimate would apply equally to −∂2

x−(φ′(x)∂t)2.
A third explanation is that if one runs the proof of Lemma 11 with ζ = η ∈ R, then

|f(x)| has size roughly c exp(cετ) for x = ε, so the right-hand side of (35) is far larger
than the left-hand side, and no contradiction results.

Remark 13. It is natural to ask about hypoellipticity for two closely related operators
of the sum of squares type. These are

L = −∂2
x − ∂2

y − (φ′(x)∂t)2,

L̃ = −∂2
x − (∂y − φ′(x)∂t)2.

}
(48)

We believe that hypoellipticity is equivalent to the superlogarithmic estimate for both,
under the supplementary hypothesis for L̃ that φ is convex. L is potentially easier to han-
dle, since self-adjointness of the associated ordinary differential operators −∂2

x +τ2φ′(x)2

translates into the existence of a genuine lowest eigenvalue λ(τ)2, and ζ(τ) can be chosen
to be iλ(τ); an eigenfunction of −∂2

x+τ2φ′(x)2 then gives a solution of −∂2
x+η2+τ2φ′(x)2.

Convexity of φ is no longer a natural hypothesis, but it is elementary to show that for
any φ, for large τ ∈ R

+, this lowest eigenvalue has order of magnitude

λ(τ) ∼ inf
I:

∫
I

|φ′|=τ−1
|I|−1, (49)
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where the infimum is taken over all bounded intervals I satisfying the stated equality.∗

If λ(τ)/ log τ → ∞ as τ → +∞, then L satisfies a superlogarithmic estimate, hence is
C∞ hypoelliptic [4,13].

To show that L fails to be hypoelliptic when the superlogarithmic estimate fails to
hold, would require an analogue of Lemma 11; we have not carried out that part of the
analysis.

Remark 14. The second and more delicate cousin is L̃. We believe that for convex φ, the
same criterion should be necessary and sufficient for its hypoellipticity as for ∂̄b ∂̄∗

b . As in
the analytic case [1], the appropriate analogue of N for these operators is the Wronskian
of two properly normalized solutions of the associated ordinary differential equations, and
everything should boil down to its having zeros satisfying |Im(ζ)| � C log τ . However, we
have not carried out the analysis.

Remark 15. The Main Theorem is in accord with the general remarks in [3].

Remark 16. One could argue that this situation is parallel with that of constant-
coefficient differential operators in R

n, which are C∞ hypoelliptic if and only if their
(full) symbols have a sequence of zeros ξν ∈ C

n with |ξν | → ∞ satisfying |Im(ξν)| �
C log |ξν |; see Theorem 11.1.3 of [8]. Of course, in the constant-coefficient setting, the
formally weaker bound |Im(ξν)| → ∞ is equivalent [8] to the formally stronger bound
|Im(ξν)| � c|ξν |δ for some δ > 0, so there is a certain degree of fudging here.
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