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The high-speed impingement of droplets on a wall occurs widely in nature and
industry. However, there is limited research available on the physical mechanism
of the complicated flow phenomena during impact. In this study, a simplified
multi-component compressible two-phase fluid model, coupled with the phase-
transition procedure, is employed to solve the two-phase hydrodynamics system
for high-speed cylindrical droplet impaction on a solid wall. The threshold conditions
of the thermodynamic parameters of the fluid are established to numerically model
the initiation of phase transition. The inception of cavitation inside the high-speed
cylindrical droplets impacting on the solid wall can thus be captured. The morphology
and dynamic characteristics of the high-speed droplet impingement process are
analysed qualitatively and quantitatively, after the mathematical models and numerical
procedures are carefully verified and validated. It was found that a confined curved
shock wave is generated when the high-speed cylindrical droplet impacts the wall
and this shock wave is reflected by the curved droplet surface. A series of rarefaction
waves focus at a position at a distance of one third of the droplet diameter away from
the top pole due to the curved surface reflection. This focusing zone is identified as
the cavity because the local liquid state satisfies the condition for the inception of
cavitation. Moreover, the subsequent evolution of the cavitation zone is demonstrated
and the effects of the impact speed, ranging from 50 to 200 m s−1, on the deformation
of the cylindrical droplet and the further evolution of the cavitation were studied. The
focusing position, where the cavitation core is located, is independent of the initial
impaction speed. However, the cavity zone is enlarged and the stronger collapsing
wave is induced as the impaction speed increases.

Key words: cavitation, drops, shock waves

1. Introduction
The phenomenon of droplet impaction on solid walls occurs widely in nature

and industry such as in raindrops, fuel atomization, ink-jet printing, spray cooling,
cutting and cleaning (Yarin 2005; Josserand & Thoroddsen 2016). Understanding
the dynamical evolution of droplet impaction has captured the interest of many
researchers in the past decades. Up to now, investigations of droplet impaction
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problems mainly focused on relatively low speeds, where different droplet sizes, fluid
properties and impaction velocities are considered (Mundo, Sommerfeld & Tropea
1995; Pasandideh-Fard et al. 1996; Thoroddsen et al. 2005; Thoroddsen, Takehara
& Etoh 2010, 2012; Eggers et al. 2010; Soto et al. 2014). However, the erosion or
corrosion of pipe walls and steam turbine blades (Ahmad, Casey & Sürken 2009;
Xiong, Koshizuka & Sakai 2010, 2011; Okada et al. 2011; Xiong et al. 2012), is
mainly related to high-speed droplet impaction (Sanada, Ando & Colonius 2011; Han,
Xie & Zhang 2012; Momber 2016).

To study the flow characteristics in high-speed impingement, theoretical analysis,
experimental investigations and numerical simulations were carried out. Cook (1928)
derived the theoretical formulation of transient impaction pressure, based on the
one-dimensional water hammer theory, which was further improved by Heymann
(1969). Due to the high-speed impingement, shockwaves may occur inside the droplet
(Bowden & Field 1964). The complex multiple wave structures and an analytical
expression of the shock velocity were studied by Haller et al. (2003). When the
impaction pressure reaches the order of 100 MPa, it is comparable to the material
parameters of the defined reference pressure for liquid water and the problem can be
regarded as one involving high-speed impingement (Haller et al. 2002). Lesser (1981)
demonstrated the formation and propagation of the shock wave based on wavelet
analysis. The early stage evolution of high-speed droplet impaction was presented by
Rein (1993) who also proposed that the focusing of the reflected waves may cause
cavitation of the liquid.

Experimental investigations have been conducted to understand the complicated flow
characteristics of the high-speed impaction process of the droplet. Hansson & Mørch
(1980) tested the effects of cavitation erosion on a metal wall under the collapse
of cavity clusters. Furthermore, the impact pressure can be obtained through the
examination of the wall damage (Momber 2006; Oka, Mihara & Miyata 2007; Sanada
et al. 2008; Oka & Miyata 2009; Momber 2016). Sanada et al. (2008) proposed that
cavitation may occur inside the droplet when it impacts upon a wall with high speed.
Using high-speed photography technology, Camus (1971) and Field, Dear & Ogren
(1989), Field et al. (2012) studied the wave structures inside a cylindrical water
column during the impingement, where different column diameters and impaction
velocities were examined. Field et al. (1989) pointed out that cavitation occurs inside
a cylindrical droplet, based on their observations from experimental schlieren images,
in which the impaction speed is 110 m s−1. In the case of water cylindrical droplets
impacted by a high intensity shock wave, cavitation was observed by Sembian et al.
(2016) and further numerically verified by Xiang & Wang (2017). However, the
above experimental studies have only presented qualitative visualizations of the flow
characteristics inside an impacted droplet without any quantitative analysis.

Due to the rapid development of computer technology and the improvement
of numerical methods, numerical simulations have become an effective tool to
study compressible multiphase flow problems. In 1986, Baer & Nunziato (1986)
proposed the seven-equation model for compressible granular flows, known as the
Bear–Nunziato model. Saurel & Abgrall (1999) extended the Bear–Nunziato model
and developed the Saurel–Abgrall model for compressible gas–liquid two-phase flows.
The Saurel–Abgrall model was further developed into different forms, including the
full non-equilibrium seven-equation model (Saurel & Abgrall 1999), the reduced
six-equation model (Pelanti & Shyue 2014) and the simplified five-equation model
(Johnsen & Colonius 2006; Coralic & Colonius 2014). However, these models were
not applicable to cavitation inception and cavity collapse, since the effect of phase
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transition is not considered in them. Kondo & Ando (2016) and Niu & Wang
(2016) conducted numerical simulations for the problem of high-speed impaction
and indicated the existence of cavitation. Unfortunately, the phase transition was not
included in their numerical models, and thus, they could not account for a detailed
evolution process of cavitation. Therefore, numerical models that consider the effects
of phase transition, especially in the cavitation process, are required to study the flow
dynamics of high-speed droplet impaction on a solid wall.

An extension of the Saurel–Abgrall model that takes into account the phase
transition and contains source terms related to the phase transition has been studied
by Saurel, Petitpas & Abgrall (2008), Zein, Hantke & Warnecke (2010), Saurel &
Petitpas (2013). Different relaxation approaches were proposed to solve the phase
transition source terms (Saurel et al. 2008; Han, Hantke & Müller 2017). The basic
requirement was to derive an equilibrium state through the relaxation process. Saurel
et al. (2008) proposed a relaxation approach using Gibbs free energy, in which the
equilibrium state was achieved when the Gibbs free energy of the vapour and liquid
phase are equivalent. This method was used to simulate problems involving phase
transition, such as boiling flows, evaporating liquid jets, cavitating flow in a Venturi
nozzle (Saurel, Boivin & Le Métayer 2016) and laser-induced cavitation bubble
collapse (Zein, Hantke & Warnecke 2013), but it was not compatible for simulating
the bubbly flow, in which the wave dispersion caused by bubble dynamics could
not be captured by the barotropic relations (Brennen 2013). For multi-components
systems, Han et al. (2017) utilized the chemical potential relaxation approach to
study the shock bubble interaction problem, in which the effect of partial pressure
was considered. The more advanced mixture-averaged models were proposed by Ando,
Colonius & Brennen (2011), Fuster & Colonius (2011), which could describe bubbly
cavitating flow with bubble dynamics being accounted for. In this study Saurel’s
model will be employed to capture the phase change in the bulk flow without any
existing cavities.

For the transient cavitation process, a specific criterion is essential to trigger the
phase transition process in numerical simulations. A liquid can sustain stretched
tension before transforming into its vapour phase (Herbert & Caupin 2005). For a
certain stretching tension, phase transition will occur if the local pressure exceeds
this threshold value, which is called the cavitation pressure (Fisher 1948). Sufficiently
pure liquid water is able to withstand pressures lower than −100 MPa (Azouzi et al.
2013). Furthermore, the threshold pressure for phase transition varies significantly
with the liquid purity (Trevena 1984). The relation between the threshold pressure
and temperature, for pure water, was provided by Caupin & Herbert (2006). In this
study, we aim to investigate the flow characteristics in high-speed cylindrical droplet
impingement on a solid wall through numerical methods.

This paper is organized as follows. In § 2, the physical model of high-speed
cylindrical droplet impingement is described, and the governing equations, phase-
transition modelling and its numerical treatments are presented. In § 3, the grid
sensitivity study is conducted, and the present numerical method is validated. In § 4,
the morphology and dynamical evolutions of cylindrical droplet impingement are
analysed qualitatively and quantitatively. In § 5, different initial impaction speeds are
compared. Finally, the conclusions are presented in § 6.

2. Physical model and numerical procedure
2.1. Physical model

In the present numerical study, the high-speed droplet impingement problem will be
simulated in two dimensions, as shown in figure 1. There may exist a difference
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FIGURE 1. (Colour online) Schematic diagram of the high-speed liquid column
impingement problem.

between the two-dimensional and three-dimensional simulations. However, it is
a challenge to experimentally observe the three-dimensional high-speed droplet
during impaction and to obtain the detailed flow field inside the droplet. With the
consideration of computational cost, a two-dimensional simulation is carried out in
the present study, following the experiment work conducted by Field et al. (1989).

The droplet is regarded as a cylindrical liquid column and the water column centre
(C), top pole (TP) and bottom pole (BP) are shown in figure 1. The liquid column
moves vertically towards the solid wall, at an initial impaction speed of V0 and initial
diameter D0 (which is equal to 2R0) and is taken as 10 mm. The Reynolds number Re,
the Weber number We and the Froude number Fr, which characterize the importance
of viscous force, capillary force and gravity, respectively, can be computed as follows:

Re=
ρ0D0V0

µ
, (2.1)

We=
ρ0D0V0

2

σ
, (2.2)

Fr=
V0

2

gD0
, (2.3)

where ρ0, µ, σ and g represent the initial density of the liquid, liquid dynamic
viscosity, surface tension coefficient and gravitational acceleration, respectively. Re
is 5.8 × 105, We is 3.4 × 105 and Fr is 2.5 × 104, when V0 is 50 m s−1. Therefore,
similar to Kondo & Ando (2016), the effects of viscosity, surface tension and gravity
can be neglected in the present study.

2.2. Governing equations and equations of state (EOSs)
For highly compressible multi-component two-phase flow that involves phase
transition, the governing equations consist of the Euler and scalar transportation
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equations for the volume of fraction. The governing equations are as follows (Saurel
et al. 2008):

∂αkρk

∂t
+∇ · (αkρku)= Ṡρ,k, k= 1, . . . ,K, (2.4a)

∂(ρu)
∂t
+∇ · (ρu⊗ u+ pI)= 0, (2.4b)

∂E
∂t
+∇ · [(E+ p)u] = 0, (2.4c)

∂αk

∂t
+ u · ∇αk = Ṡα,k, k= 1, . . . ,K − 1, (2.4d)

where, αk, ρk and αkρk represent the volume fraction, the density and the value of
volume mass of components k, respectively. ρ, u, p, I , E=ρe+ (1/2)ρu2 and e are the
density, velocity, pressure, unit tensor, total energy and internal specific energy of the
mixture, respectively. Three components are included, indicated by the subscripts k can
be 1, 2 or 3, which represent the vapour, liquid and air, respectively. The saturation
constraint of the volume of fraction yields:

αK = 1−
K−1∑
k=1

αk. (2.5)

Ṡρ,k and Ṡα,k are the source terms for the volume mass and volume fraction related to
the phase transition, which can be respectively expressed as:

Ṡρ,1 = ṁ= ν(g2 −µ1), Ṡρ,2 =−ṁ= ν(µ1 − g2), Ṡρ,3 = 0, (2.6a−c)

Ṡα,k =
ṁ
%k
=
ν

%k
(g2 −µ1), k= 1, 2, (2.7)

where ν (> 0) is the relaxation parameter for the chemical potential, g2 is the Gibbs
free energy of the liquid phase and µ1 is the chemical potential of the vapour phase,
respectively. In the present study, the parameter ν is taken as infinite if the phase-
transition condition is satisfied, otherwise it is zero. Therefore, the model is free of
parameters. Formulas for the parameters %k can be found in Zein et al. (2010, 2013).
For details, please refer to the book of Müller & Müller (2009).

The thermodynamic state of the fluid is described by the stiffened gas equation of
state (SG-EOS) (Saurel et al. 2008):

ek(p, ρk)=
p+ γkp∞,k
ρk(γk − 1)

+ qk, (2.8)

ρk(p, T)=
p+ p∞,k

Cv,kT(γk − 1)
, (2.9)

hk(T)= γkCv,kT + qk, (2.10)

gk(p, T)= (Cv,kγk − q′k)T −Cv,kT log
Tγk

(p+ p∞,k)γk−1 + qk, (2.11)

µ1(T, g1, α1, α2)= g1 + (γ1 − 1)Cv,1T log
α1

1− α2
, (2.12)
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Components γk p∞,k (Pa) Cv,k (J kg−1 K−1) qk (J kg−1) q′k (J kg−1 K−1)

Water (vapour) 1.327 0 1200 1.995× 106 2.410× 103

Water (liquid) 2.057 1.066× 109 3449 −1.995× 106 3.578× 104

Air 1.4 0 717 0 0

TABLE 1. The parameters involved in the SG-EOS (Han et al. 2017).

where, ek, hk, gk and µk are respectively internal energy, enthalpy, Gibbs free energy
and chemical potential of the considered component; γk, p∞,k, Cv,k, qk and q′k are
the specific heat ratio, material reference parameter with the dimension of pressure,
specific heat capacity at constant volume, heat of formation and entropy constant. The
corresponding values of these parameters are listed in table 1. The associated sound
speed in each component fluid is given by ck =

√
(pk + p∞,k)γk/ρk.

The interface spreads over a few cells due to numerical diffusion in the interface
capturing scheme. In this diffuse region, the mixture fluid variables are given as
follows (Petitpas et al. 2007; Saurel et al. 2008; Zein et al. 2010):

ρ =

K∑
k=1

αkρk, (2.13)

ρe=
K∑

k=1

αkρkek, (2.14)

p=

ρe−
K∑

k=1

αkρkqk −

K∑
k=1

αkγkp∞,k
γk − 1

K∑
k=1

αk

γk − 1

, (2.15)

c=

√√√√ K∑
k=1

αkρk

ρ
c2

k . (2.16)

2.3. Numerical method
The finite volume method is used to discretize the governing equations, equation (2.4).
A hybrid scheme (Titarev & Toro 2004), which combines the component-wise
fifth-order weighted essentially non-oscillatory (WENO) scheme and a second-order
monotone upstream centred scheme for conservation laws (MUSCL) scheme, is
applied for the spatial reconstructions to the primitive variables. A Godunov-type
Harten–Lax–van Leer contact (HLLC) approximate Riemann solver (Toro 2013) is
employed to solve the numerical flux at the edges of the cells. In order to adopt
the HLLC Riemann solver, referring to the work of Johnsen & Colonius (2006),
the advection equation (2.4d) is rewritten in a mathematically equivalent form with
the chain rule. A third-order total variation diminishing (TVD) Runge–Kutta scheme
(Gottlieb & Shu 1998) is utilized for time marching. The source terms, related to the
phase transition, are decoupled from the hyperbolic operator, which will be explained
in detail in the following section.
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Vapour LiquidBefore the phase transition procedure
is implemented, supposed at tn

Update the state variables to complete
the phase transition procedure at tn

Chemical potential
relaxation process

(iteration)

Yes Yes

Yes

p < pthreshold

|µ√ - gl| ≤ Ó

|µ√ - gl| > Ó

No No No

FIGURE 2. The treatment of the phase-transition procedure in the present numerical study.

2.3.1. Numerical treatment for phase-transition source terms
For the present compressible two-phase problem, two different phase-transition

patterns are involved, the vapour phase transforming into its liquid phase, and the
liquid phase transforming into its vapour phase. The physical conditions that trigger
the two different phase-transition patterns are introduced separately in this section.

For the vapour phase transforming into its liquid phase, the condition that triggers
the phase transition is determined by p > psat(T), where psat(T) is the saturated
pressure at temperature T . The equivalent condition is that the chemical potential µv
of the vapour phase is larger than the Gibbs free energy gl of the liquid phase (Han
et al. 2017). This is useful for the numerical treatment of the phase-transition source
terms. For the liquid phase transforming into its vapour phase, a threshold pressure,
pthreshold, is used to determine when the phase-transition process is triggered. In the
present numerical study, with the assumption of pure water, only the homogeneous
cavitation process is considered. The value of pthreshold is obtained by a linear
approximation of the curve of the cavitation pressure of water over the temperature,
as per Caupin & Herbert (2006). The mathematical expression is described as follows:

pthreshold = pref ,1 + (pref ,0 − pref ,1)
(T − Tref ,1)

(Tref ,0 − Tref ,1)
, (2.17)

where, T is the fluid temperature (K), Tref ,0 and Tref ,1 are the reference temperatures,
taken as 273.15 K and 288.15 K, respectively, and pref ,0 and pref ,1 are the reference
pressures, taken as −115.0 MPa and −100.0 MPa, respectively (Caupin & Herbert
2006). When the local pressure is lower than pthreshold, the phase transition process is
triggered.

Figure 2 shows the flow chart of the numerical treatment of the phase-transition
source terms. When the phase-transition condition is satisfied, an instantaneous
relaxation process is employed to find the variables in a thermodynamic equilibrium
state. Referring to Han et al. (2017), relaxation based on the chemical potential is
employed for the present numerical study, in which local thermodynamic equilibrium
is achieved when µv = gl. According to the conservation of total mass and total
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(a) (b) (c)
Confined shock

Grid-level I Grid-level II Grid-level III

-1000 -500 0
p/pi

500 1000

FIGURE 3. (Colour online) Pressure contours under three different grid resolutions,
t= 4.0 µs.

momentum, the Gibbs free energy of the liquid phase, gl, and the chemical potential
of the vapour phase, µv, can both be expressed as a function of phasic density
α1ρ1. The only unknown variable in the equation µv(α1ρ1) = gl(α1ρ1) is α1ρ1 and
an iteration procedure is applied to find its value. Then, the other variables can be
obtained via their relationship with α1ρ1. A small value ε, chosen as 10−6, is used
to determine whether the iteration convergence is achieved, which is regarded as
the thermodynamic equilibrium state from the numerical aspect. Consequently, the
other variables at equilibrium state, including p, T and αkρk(k 6= 1) are obtained. For
detailed derivations, readers can refer to Han et al. (2017).

2.3.2. Boundary conditions and initialization
Figure 1 shows the configuration of the computational domain. The slip wall

condition is employed for the bottom boundary of the computational domain, while
the Thompson-type non-reflecting boundary condition (Thompson 1987) is employed
for the remaining boundaries where only the outgoing waves are evaluated. The liquid
and surrounding gas phase are initially in equilibrium with a temperature of 300 K
(Ti) and pressure of 1 atm (pi). The initial velocity of the liquid column is changed
for each case; however, the initial condition of the surrounding gas phase remains
unchanged for all computation cases. Uniform grids are used for all computations,
and the Courant–Friedrich–Lewis (CFL) number is taken as 0.4 for all cases.

3. Numerical verification
3.1. Grid sensitivity analysis

The grid sensitivity is analysed by choosing three different grid resolutions: 1.2 (grid-
level I), 4.8 (grid-level II) and 10.8 million cells (grid-level III). The grid cells per
column diameter correspond to 500, 1000 and 1500, respectively.

The pressure contours for the three different mesh levels at the same instant are
shown in figure 3. The extracted pressure profiles along the vertical central axis
(y-axis) under three different grid resolutions are shown in figure 4, where pressure
is normalized by the initial ambient pressure pi, and the y coordinate by the initial
droplet diameter D0.

Similar distributions are noticed for the pressure contours of the three different mesh
levels, figure 3. It can be found that an obvious pressure jump exists due to the
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500

400

300

200

100

0 0.2 0.4 0.6 0.8 1.0

Grid-level I
Grid-level II
Grid-level III

1.2
y/D0

p/
p i

FIGURE 4. (Colour online) Dimensionless pressure along the axial line under three grid
resolutions, t= 4.0 µs.

confined shock wave (its generation mechanism will be discussed in the following
section) for all three grid resolutions at the same position. Slight deviations from the
pressure profile are observed behind the shock wave in grid-level I due to the low
mesh resolution, while the pressure profiles overlap well for the other two higher grid
resolutions. In order to balance the computational efficiency and mesh resolution, the
grid level II is finally chosen in the present study.

3.2. Two-dimensional validation case
The two-dimensional cylindrical liquid column impaction is simulated. The parameters
have the same values as in Field et al. (1989). The initial impinging velocity V0 is
110 m s−1. Figure 5 shows the comparison between the present simulation results
and the experimental results from Field et al. (1989). For the visualization of the
numerical simulations, both the numerical schlieren and pressure contours are shown.

The analysis begins when the column just impacts on the solid wall, figure 5(a).
Subsequently, the confined shock wave (denoted by S in the experimental image) is
generated due to the rapid pressure rising from the impaction region and it propagates
downstream away from the initial bottom pole of the column, figure 5(b). From then
on, the ending points of the confined shock wave propagate along the column surface
and the shock wave passes through the water column. The confined shock wave finally
touches the top pole of column (TP) until the time shown in figure 5(g). Meanwhile,
the confined shock wave is reflected by the column surface as it propagates and a
series of reflected rarefaction waves are generated. The rarefaction waves interact
(denoted by R in the experimental image) and tend to be focused inside the water
column due to the curved surface. As the rarefaction waves focus, the pressure of
the local fluid becomes very low, figure 5( j). Once the local fluid pressure is lower
than pthreshold, a violent phase transition occurs. This phenomenon has been observed
both in the experiments and simulations. The last figure obtained by the experiment,
figure 5( j), shows that a cavitation zone is generated (denoted by the arrow F).
For the numerical simulation results, a similar cavitation zone is recognized by the
volume fraction of vapour, marked by the solid line shown on the left-hand side
of figure 5( j). The detailed analysis of the convergence of the reflected rarefaction
waves and the generation of cavitation will be presented in the next section.
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FIGURE 5. (Colour online) Numerical results of the pressure contours (left) and schlieren
image (right) of a 10 mm water column impingement with initial speed of 110 m s−1 at
t = (a) 0.0 µs, (b) 1.0 µs, (c) 2.0 µs, (d) 3.0 µs, (e) 4.0 µs, ( f ) 5.1 µs, (g) 6.2 µs,
(h) 6.7 µs, (i) 7.5 µs, ( j) 8.7 µs, (k) 10.0 µs, (l) 10.3 µs, (m) 10.6 µs (the cavitation
zone extracted from the vapour volume fraction is marked with the solid line). Also
shows the experimental schlieren images (a–j) with time interval of 1 µs along the impact
procedure of Field et al. (1989).
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FIGURE 6. (Colour online) The dimensionless pressure profile along the y-axis at different
instants of time: (a) related to the time instants of figure 5(b–h), (b) related to the time
instants of figure 5(i–m).

Furthermore, the simulation can predict the successive flow process after cavitation
occurs. As the droplet continually moves towards the wall, the cavitation collapses as
shown from figure 5(k) to figure 5(m). Figure 5(k) corresponds to the time when the
cavitation zone has completely collapsed, while figure 5(l) and figure 5(m) show the
induced circular shock wave due to the collapse of the cavity. Overall, the simulation
results, demonstrating the droplet impinging process, show a good agreement with the
experimental flow visualization. The dynamical process of the cavity collapse will be
analysed in detail in the next section.

The above comparison shows that the present mathematical models and numerical
procedures are able to solve the problem of a cylindrical droplet impinging upon a
solid wall. Moreover, the cavitation inception and subsequent collapse that occurs in
the impaction process can be well captured by current computation capabilities.

4. Analysis of high-speed impingement of a water column

In this section, a detailed analysis is performed for the water column impingement.
The analysis is based on the simulated results obtained when the initial impaction
velocity of the cylindrical droplet is 110 m s−1, see § 3.2. In order to understand the
physical mechanisms of the flow phenomena, the whole impaction process is divided
into two stages, mainly according to the flow characteristics. The propagation and
status of the confined shock wave inside the droplet is the main reason for the division
of the flow process. In the first stage, the confined shock wave is generated and
propagates inside the column (figure 5b–g). The first stage ends when the confined
shock wave touches the top pole of the column. The second stage (figure 5h–m) begins
and the cavitation inception and collapsing process take place.

The dimensionless time t∗ is used, which is the ratio of the physical time over the
characteristic time τ (τ =D0/c0, D0 is the initial droplet diameter and c0 is the sound
speed of the droplet liquid under the initial condition), namely, t∗= t/τ . The pressure
is non-dimensionalized by the initial ambient pressure pi. Figure 6 shows the pressure
distributions along the vertical central axis inside the water column for the different
stages respectively. Figure 6(a) corresponds to the time instants of figure 5(b–h) in
the first stage. Figure 6(b) corresponds to the following series in the second stage.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

75
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.753


862 W. Wu, G. Xiang and B. Wang

Column surface

C C

C

Stc
(shock envelope 

at tc)
St1 

(shock envelope 
at t1)

St1 (shock envelope at t1)

l = Vs(t1-tc)

œc

œc
Ac

å

Pe

Pe

œcœc
Vs

VA

Solid wall

Solid wall

Solid wallFig. 7cA�

Column surface

A(Pe)

Compression wavelets Compression wavelets

The head of the first
reflected rarefaction wave

The rays with one-time reflection

The rays without reflection

Column surface
Compression wavelets

(a) (b)

(c)

FIGURE 7. (Colour online) Schematic diagram of the generation of confined shock and
the ray analysis: (a) the schematic diagram at critical time tc; (b) the schematic diagram at
the time instant, t1, which is selected at the instant after the critical time; (c) the enlarged
view of the schematic diagram at t1 (CAc is the line between the critical contact point Ac
and the water column centre C).

4.1. The first stage
The first stage begins at t0 when the water column just impacts the solid wall. There
is a contact line segment AA′ between the water column and the solid wall and A
coincides with A′ at t0. Furthermore, we only considered the left contact point A for
the following analysis because flow is symmetric. It is obvious that A is moving with
velocity VA along the x-axis during the impaction of the column. The contact angle
θ is defined as the angle between the solid wall and the tangent line of the liquid
column at A. The value of θ is zero when the water column just impacts the solid wall,
and VA is much higher than the local liquid sound speed at this time. By the Huygens
principle (Haller et al. 2003), at each time instant, an individual compression wavelet
will be emitted at A that will propagate with the local sound speed. Accounting for
the acoustic limit (Lesser 1981) of the compression wavelet, VA is higher than the
propagation speed of the wavelet at the early stage of the impaction, which means
that the emitted compression wavelets cannot exceed the contact point A.

These compression wavelets form a shock envelope, denoted as St, figure 7(a). As
the shock wave is constrained inside the column, this shock envelope St is also called
a confined shock (Obreschkow et al. 2011). Initially, the ending point of the confined
shock (denoted as Pe) remains attached to the solid wall and overlaps with A. Since
VA decreases gradually, the x-component velocity of Pe will catch up with VA and the
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confined shock will detach itself from the solid wall. We define the time when the
confined shock just detaches itself from the solid wall as the critical time tc. If t< tc,
the end points of the shock envelope are attached to the solid wall and Pe overlaps
with A. If t> tc, the shock envelope will detach itself from the solid wall and Pe will
propagate along the column surface above the solid wall. At the critical time tc, the
critical contact angle θc at the critical contact point Ac is derived from the following
expression (Rein 1993):

tan θc =
V0

VA,c
=

V0√
Vs

2
− V2

0

, (4.1)

where VA,c is the velocity of Ac and Vs is the velocity of Pe, obtained from Heymann
(1969), which yields:

Vs = c0 + χV0, (4.2)

where c0 is the sound speed of the liquid in the unshocked region and χ is a
constant that depends on the liquid property. For water, χ is taken as 2.0 according
to Heymann (1969) and 1.921 according to Haller et al. (2002). Both values of χ are
very close to each other in these two references, however, in this study we assume
the value suggested by Heymann (1969). Subsequently, the critical angle θc calculated
from (4.1) is 3.6◦ (V0= 110 m s−1). Referring to Heymann (1969), the water hammer
pressure, the maximum pressure at the initial impact point (O), is defined as:

ph = ρ0V0Vs, (4.3)

where Vs is the velocity of the initial confined shock wave, calculated by (4.2).
It is inferred from figure 6(a) that the confined shock propagates upward, and its

strength gradually decreases as it detaches from the solid wall. The confined shock can
be equivalent to an explosion wave with a certain arc length whose strength gradually
decreases as it propagates outwards.

As the ending points of the confined shock wave detach from the solid wall, the
shock wave propagates inside the water column and moves towards the top pole, as
shown in figure 7(b). The reflected and transmitted waves are generated on the curved
column surface. Since the acoustic impedance ρlcl in water is much larger than that in
air, the reflected waves should be rarefaction waves and the transmitted waves should
be shock waves. The transmitted shock wave is so weak that it is almost invisible in
the numerical schlieren images.

The path of the rays tracing the compression wavelets is demonstrated to understand
the evolution of different types of waves. In figure 7(a), a series of rays pointed in
different specified directions is used to demonstrate the evolution of each compression
wavelet emitted from the contact point. From one contact point, the rays represent
the paths of the compression wavelet and the length of the rays is equal to the
propagation distance of the compression wavelet. Meanwhile, the rays will be reflected
symmetrically on the curved column surface. In this stage, the situation at the critical
time tc is chosen to analyse the rays emitted from the contact point Ac, figure 7(a),
which emits the last compression wavelet that can catch up with the confined shock.
This wavelet propagates upwards for a certain time, for example at time instant t1,
and the wave structures and the emitted rays are shown in figure 7(b).

In figure 7(c), which is the intersection angle, the emitting angle of each ray is the
angle between any arbitrarily chosen ray and the line segment CAc. We can use the
dimension of such an angle to analyse the reflection behaviour of the traced wavelet.
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The emitting angle α lies in [0, π/2]. At a specific instant, t1, the range of the ray
l is computed by l= c(t1 − tc), where c is the local sound speed. If the compression
wavelet is reflected from the column surface, l will represent the total range of the ray
before and after reflection. The compression wavelet will be reflected more than once
from the column surface. The reflection times are related to the angular dimension of
α and the present time, which are elaborated as follows:

If the emitted rays are not reflected at an instant t, the emitting angle α will satisfy:

α 6 arccos
l

2R
= arccos

c(t− tc)

2R
. (4.4)

If the rays are reflected N times (N = 1, 2, 3, . . .), angle α will satisfy:

arccos
c(t− tc)

2RN
= arccos

l/N
2R

<α 6 arccos
l/(N + 1)

2R
= arccos

c(t− tc)

2R(N + 1)
. (4.5)

Thus, different intervals of the angle α, according to the reflection times of a ray,
exist.

The shock envelope is formed by the infinite emitted compression wavelets before
the critical time tc. The compression wavelet emitted from the critical contact point
Ac is part of the confined shock envelope and it is the nearest wavelet to the column
surface. The reflection of this compression wavelet also represents the reflection
of the confined shock on the column surface. The discussion about the evolution
of this compression wavelet is helpful to understand the character of the confined
shock wave close to the column surface. The rays that belong to this compression
wavelet start to be reflected on the column surface once they are emitted from
the critical contact point Ac. For α ∈ (arccos(c(t1 − tc)/2R), arccos(c(t1 − tc)/4R)],
the rays will be reflected once, and their ending points represent the head of
the first reflection waves (the rarefaction waves), figure 7(c). Similarly, for α ∈

(arccos(c(t1 − tc)/4R), arccos(c(t1 − tc)/6R)], the rays will be reflected twice, and
their ending points represent the head of the second reflection waves (the compression
waves). Thus, the position of the head of the Nth reflection waves are known.

Meanwhile, as the water column continues to impact on the solid wall later than
the critical time tc, compression wavelets are continuously generated, however, they
never catch up with the confined shock envelope, figure 7(c). The behaviour of these
compression wavelets is similar and their strength becomes very weak. Nonetheless,
we will not elaborate further on this in the present study.

As the confined shock wave propagates upwards, the reflected rarefaction waves are
observed behind the confined shock and a certain time, t∗ = 0.81(t2), is chosen for
the following analysis. The numerical schlieren, the pressure contour together with
the schematic of the emitted rays belonging to the compression wavelet, are shown in
figure 8. The position and shape of the reflected rarefaction waves are obtained from
the analysis of the emitted rays.

Figure 8(b) shows the emitted rays that belong to the non-reflected confined
shock, the first reflected rarefaction, and the second reflected compression wave. Five
regimes of the emitted rays exist, figure 8(b), which are divided based on the value
range of the emitting angle α, including (I), 0 < α 6 α0; (II), α0 < α 6 α1; (III),
α1 < α 6 α2; (IV), α2 < α 6 α3; and (V), α3 < α 6 α4. In regimes (II) and (III) the
emitted rays are reflected once and in regimes (IV) and (V) the emitted rays are
reflected twice. As shown in figure 8(c), in regime (I), α0 = arccos(c(t2 − tc)/2R)
according to (4.4), the propagating head of these continuously emitted rays forms
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FIGURE 8. (Colour online) Computational results and the schematic diagram of ray
analysis in the first stage at the time instant, t∗ = 0.81(t2): (a) the numerical schlieren
contour; (b) the schematic diagram of ray analysis; (c) the partial enlarged view of
the area of the dashed rectangle in figure 8(a,b). The left side presents the comparison
between schematic diagram and numerical schlieren contour, while the right side presents
the corresponding numerical result of pressure isolines.

the confined shock envelope (St). In regime (II), the value of α1 lies between α0

and α2 and the propagating head of the continuously emitted rays forms the upper
branch of the head of the first reflected rarefaction waves (RRWub1). In regime (III),
α2= arccos(c(t2− tc)/4R) according to (4.5), the propagating head of the continuously
emitted rays forms the lower branch of the head of the first reflected rarefaction waves
(RRWlb1). In regime (IV), the value of α3 lies between α2 and α4 and the propagating
head of these continuous emitted rays forms the upper branch of the second reflected
compression waves (RCWub2). In regime (V), α4 = arccos(c(t2 − tc)/6R) according to
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(4.5), the propagating head of the continuously emitted rays forms the lower branch
of the second reflected compression waves (RCWlb2).

The analytical shape and position of the first reflected rarefaction waves (RRWub1
and RRWlb1) overlap well with those visualized by the numerical schlieren results,
figure 8(c). The second reflected compression waves are too weak to be observed from
the numerical schlieren results. From the pressure isolines, figure 8(c), the marked
local maximum pressure region validates the second reflected compression waves and
its location is also consistent with the analytical results. Ideally, the emitted rays can
be reflected infinite number of times, while the other generated reflected waves are
much weaker except for the first and second reflected waves. Therefore, they cannot
be recognized in the numerical schlieren contour or in the pressure isolines.

In addition, due to the superposition of the first reflected rarefaction waves, and
also indicated by the emitted rays, a local minimum-pressure region is observed,
figure 8(c). Meanwhile, the pressure behind the lower branch of the first reflected
rarefaction waves is recovered, because the subsequent emitting compression wavelets
catch up with these rarefaction waves.

4.2. The second stage
The second stage begins when the confined shock St reaches the TP of the water
column at the time instant t∗ = 0.975(t3). The analytical schematic is presented
in figure 9, which demonstrates the first reflected rarefaction wave evolution. The
numerical schlieren contours at t∗ = 0.975(t3) and t∗ = 1.305(t4) are shown in figures
9(b) and 9(d), respectively.

When all the rays initially emitted from BP are drawn, which are reflected once, the
envelope of these first reflected rays is obtained, figure 9(a). The intersection points
of RRWub1 and RRWlb1 always lie on this envelope upon propagation of the reflected
rarefaction wave. From the schematic of RRWub1 and RRWlb1 at four different time
instants, which can be derived from similar analysis in § 4.1, it is observed that the
intersection points of RRWub1 and RRWlb1 move along the envelope from time t2 to t3.
When the uppermost point of the confined shock arrives at TP of the water column,
the confined shock is totally reflected. The two branches of RRWub1, from the left and
right sides, meet at the vertical central axis and an arched RRWub1 is formed with the
two RRWlb1 following on the left and right sides. The propagating directions of the
combined arched RRWub1 and the two separated RRWlb1 from the left and right sides
are shown in figure 9(b). This indicates that the combined arched RRWub1 focuses
inside the water column.

Five different time instants from time t3 to t4 are chosen to schematically
demonstrate the evolution process of RRWub1 and RRWlb1, figure 9(c). The curvature
radius of the arched RRWub1 gradually decreases as the reflected rarefaction waves
propagate. Finally, the combined arched RRWub1 focuses on the vertical central
axis and the focusing point is named Pf , figure 9(c). Meanwhile, the two following
RRWlb1 become wider as they propagate upstream. The intersection point of RRWub1
and RRWlb1 keeps moving along the envelope of the reflected rays with one-time
reflection.

As the one-time reflected rays are related to the propagation of the first reflected
rarefaction wave, we can use these one-time reflected rays to analyse the position
of Pf of the arched RRWub1. As shown in figure 9(c), the envelope of the
one-time reflected rays corresponds to their limiting boundary and the reflected
rays are concentrated on their envelope. The concentrated reflected rays represent
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FIGURE 9. (Colour online) (a) All the first reflected rays emitted from BP with the
original angle of the interval [0, π/2] (a,c), the schematic diagram of the first reflected
rarefaction wave propagation from t2(t∗ = 0.81) to t3(t∗ = 0.975) (b,d). (b) The numerical
schlieren contour at t∗ = 0.975(t3). (c) The schematic diagram of the first reflected
rarefaction wave propagation from t3(t∗ = 0.975) to t4(t∗ = 1.305). (d) The numerical
schlieren contour at t∗ = 1.305(t4).

the superposition of the RRWub1 and RRWlb1, which is related to the local
minimum-pressure region at each time instant, figure 8. The envelopes of the left
and right sides interact on the vertical central axis. The intersection point is also
the downward limiting position of the one-time reflected rays that intersect with the
vertical central axis, and is named the downward limiting intersection point, Pdli,
figure 9(d).

The position of Pdli can be obtained theoretically according to the ray analysis
(Obreschkow et al. 2011). Figure 10 shows a series of rays emitted from the BP
with the emitting angles α holding the interval of [0, π/4], where the one-time
reflected rays can intersect with the vertical central axis. If an arbitrary ray (the black
solid lines with an arrow) is chosen, the distance δ between the intersection point Pi

(the intersection point of the first reflected ray with the vertical central axis) and the
TP of the column can be expressed as follows:

δ = R0 −
sin α · R0

sin γ
, (4.6)
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FIGURE 10. (Colour online) Schematic diagram for the intersection point between the
reflected rays, with one-time reflection, and the vertical central axis.

where R0 is the initial radius of the water column. The intersection angles α and γ
are shown in figure 10. The distance δ can be rewritten as follows:

δ = R0 −
R0

3− 4sin2α
, (4.7)

where α ∈ [0, π/4]. A maximum limiting value of δ exists, thus, the position of Pdli
of the one-time reflected rays is obtained, which has the following expression:

δmax = lim
α→0

(
R0 −

R0

3− 4sin2α

)
=

2
3

R0 =
D0

3
, (4.8)

where D0 is the initial diameter of the water column.
The above expression for determining the position of Pdli corresponds to the rays

initially emitted from one contact point (i.e. from one wavelet). We observed that Pdli
overlaps with Pf , which indicates that RRWub1 finally focuses at a position 1/3 of
the droplet diameter away from TP, figure 9(c). In fact, there are an infinite number
of emitted wavelets forming the shock envelope before the critical time tc. They also
focus on the same limiting intersection point (Pdli) at the same time instant, based on
a similar analysis of the emitted ray, however, they are not shown here. In another
aspect, the arched RRWub1 that corresponds to the infinite reflected rays at each time
instant, the focusing point of these infinite rays and the Pf that corresponds to RRWub1,
are consistent.

Due to the focusing effect of the reflected rarefaction waves, a local low-pressure
zone is created in the stretched liquid. Therefore, the pressure around Pf is
significantly lowered and reaches a value below the pthreshold, which means that
the transient phase-transition process is triggered, and cavitation occurs. Subsequently,
the cavity will grow to be a visible cavitation zone. The predicted position of Pf fits
well with that of the observations, both in the experimental and numerical results,
figures 5( j) and 9(d).
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FIGURE 11. (Colour online) (a) Schematic diagram of the first reflected rarefaction wave
propagation from t4 (t∗=1.305) to t5 (t∗=1.545). (b) All of the emitted rays from BP with
one-, two- and three-time reflection with the original angle of the interval [0,π/2] (a,c),
and the numerical schlieren contour at time t5 (t∗ = 1.545) (b,d). (c) Numerical schlieren
contour at time t6 (t∗ = 1.59). (d) Schematic diagram of the reflected waves’ propagation
from t5 (t∗ = 1.545) to t6 (t∗ = 1.59).

So far, we have analysed the spatio-temporal evolution of the confined shock and
the first reflected rarefaction wave before RRWub1 focuses on the vertical central axis.
Subsequently, the complicated multi-reflected waves and the cavity collapse inside the
droplet will appear. We will try to elaborate on these further in this section.

Six typical time instants from t4 to t5 are chosen to demonstrate the evolution
of the RRWlb1, figure 11(a). The two branches of symmetrical RRWlb1, from the
left and right sides, will interact with each other and be reflected at the vertical
central axis. After the interaction among the left reflected RRWlb1, the right reflected
RRWlb1 and the re-expanding wave from the focusing point, an expanding re-reflected
rarefaction wave (re-RRW) is formed. The shape and position of the re-RRW at
t∗ = 1.545 (t5) are shown in the numerical schlieren contour, figure 11(b). Two other
waves are also observed, which are the second reflected compression wave and the
third reflected rarefaction wave, respectively. The peak-pressure value induced by the
second reflected waves (compression waves) is 6.31× 107 Pa, which is approximately
33 % of ph. The peak-pressure value induced by the third reflected waves (rarefaction
waves) is −3.0× 107 Pa, whose absolute value is approximately 16 % of the value of
ph. Therefore, the strength of the reflected waves decreases gradually due to multiple
reflections. As shown in figure 11, the repeated reflection waves cannot be clearly
observed since they are much weaker. The RCWub2, RCWlb2, RRWub3 and RRWlb3
propagating from the left and right sides interact with each other and reflect on the
vertical central axis. These reflected waves are denoted as re-RCWub2, re-RCWlb2,
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Initial speed V0 (m s−1) 50 110 150 200
Analytical θc (deg.) 1.8 3.6 4.8 6.0
Numerical θc (deg.) 1.8 3.7 4.9 6.1

TABLE 2. The analytical and numerical θc for different initial impaction speeds.

re-RRWub3 and re-RRWlb3, respectively. The reflected wave structures are clearly
presented in the numerical schlieren contour, figure 11. The upper concave re-RRW
expands towards the bottom wall and is followed by the second and third reflected
waves at the end. The intersection points of the upper and lower branches of the
second and third reflected waves are moving along the envelopes extracted from
the ray analysis, figure 11(d). Three curves related to the envelopes are presented,
including the lower, middle and upper branches, figure 11(b). They represent the
trajectories of the intersection points of the upper and lower branches of the first,
second and third reflected waves, respectively.

As the re-RRW propagates outward, the cavity caused by the focusing of RRWub1

collapses. The peak pressure during the collapsing of the cavity reaches 81 MPa,
which is about 800 times the initial ambient pressure for the present case (initial
impaction speed V0 = 110 m s−1). From the numerical schlieren contours shown in
figure 11(b,c), a circular shock wave, which is known as the collapsing shock, is
found as the cavity collapses and explodes outwards. Finally, the collapsing shock
will reach the bottom wall, the results at this time are not shown, and potentially
damage it.

To summarize, combining numerical simulation with theoretical approximation, the
unsteady wave structures (including the confined shock, the multi-reflected waves and
the cavitation collapsing shock), inside the droplet during the impingement of a high-
speed cylindrical droplet on a solid wall are carefully analysed. The properties of the
waves and their evolution processes inside the droplet are elucidated with the help of
the ray analysis, which, to the authors’ knowledge, are not clarified in the previously
available literatures.

5. Effects of impaction speed

In this section, different initial impaction speeds, 50, 110, 150 and 200 m s−1, are
considered for the water column impaction on a solid wall.

Both the analytical (calculated by (4.1)) and numerical values of the critical angle,
θc, under the different impaction speeds are shown in table 2; θc increases with the
increase of the initial impaction speed. The temporal variations of the characteristic
scales, including the length dl and width dw, of the water column, figure 12, are
normalized by the initial column diameter; dl is defined as the distance from the
wall to TP and dw is defined as the diameter along the centre of the column in the
horizontal direction. It is observed that dl of the column decreases, while dw increases,
with time as the water column impacts on the wall. The decreasing rate of dl is larger
for higher initial impaction speed. At t∗ = 1 the curve has a turning point for each
chosen impaction speed, figure 12(a). This is the exact time when the confined shock
arrives at the TP of the column. The width of the column keeps unchanged until
t∗ = 0.6, then it increases rapidly for all the chosen impaction speeds, as shown in
figure 12(b).
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FIGURE 12. (Colour online) The time evolution of the dimensionless length (a) and width
(b) of the water column.
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FIGURE 13. (Colour online) Dimensionless pressure value along the vertical central line
for the four simulation cases at time instants t∗ = 0.45 (a) and t∗ = 0.9 (b).

The pressure distributions along the vertical central line for the different cases that
non-dimensionalized by each corresponding water hammer pressure ph (calculated by
(4.3)) at the dimensionless times of t∗ = 0.45 and t∗ = 0.9 are shown in figure 13.
It is found that the confined shock wave will be strengthened with a higher initial
impaction speed, as the pressure behind the confined shock wave is much larger
for higher impaction speeds. It is shown that the strength of the confined shock
wave gradually decreases along its propagation. Through the comparison of pressure
distributions non-dimensionalized by ph, it is shown that the weaker the intensity
of the shock wave, the more the pressure decays at the same dimensionless instant.
Furthermore, for higher impaction speeds, the stronger confined shock wave will
reflect off the column surface like to the reflected rarefaction waves. Therefore, the
convergence region will be larger for higher impaction speeds.

Consequently, figure 14 shows the pressure contours at the time when the first
reflected waves converge for the different impaction speeds. This also corresponds
to the time when cavitation occurs, in which the cavitation zone is marked by the
isoline of the vapour volume fraction. The impaction speed is equal to, or larger
than, 110 m s−1, among the present four chosen speeds, and the convergence of the
rarefaction waves can induce the cavitation since the local pressure is below pthreshold,
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(a) (b)

(c) (d)
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V0 = 50 m s-1, t* = 1.275 V0 = 110 m s-1, t* = 1.305

V0 = 150 m s-1, t* = 1.305 V0 = 200 m s-1, t* = 1.335

FIGURE 14. (Colour online) Pressure contours when the reflected waves come to focus
for different impaction speeds. The time instant is t∗ = 1.275, 1.305, 1.305 and 1.335,
corresponding to the initial impaction speeds of 50, 110, 150 and 200 m s−1, respectively.
For (b–d) the time also relates to that when the maximum cavitation zone occurs. The
white solid line represents the isoline of the vapour volume fraction.

figure 15(a), which presents the dimensionless pressure distributions. The cavitation
zone becomes larger as the impaction speed increases from 110 to 200 m s−1.

Referring to the distributions of the vapour volume fraction, along the vertical
central lines, for the four chosen impaction speeds, figure 15(b), the vapour volume
fraction rises sharply in the cavitation region and is located between y/D0= 0.45 and
0.7 for V0= 110, 150 and 200 m s−1. The profiles of the vapour volume fraction also
indicate that the cavitation zone becomes larger for higher impaction speeds ranging
from 110 to 200 m s−1.

Figure 16 shows the pressure contours at the moment the cavity (if there is any)
collapses completely and shock waves are emitted. In the case of V0 = 50 m s−1,
no cavitation is observed, and the reflected rarefaction wave propagates upstream,
figure 16(a). As shown in figure 16, stronger collapsing waves can be induced
by stronger impaction and they need a longer time to collapse. Very complicated
structures involving reflected waves, the circular collapsing shock wave and refraction
waves evolve inside the column.

In a later stage, a splash will occur for the impacted high-speed droplet, but this is
beyond the present research. The contact line dynamics is dominated by the inertial
effects of the droplet in the earlier stages of impaction, which occurs irrespective of
the physical properties of the liquid and the surface, and the wettability is also not
influential (Yarin 2005). Therefore, the analysis of contact line dynamics is also not
considered in the present study.
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FIGURE 15. (Colour online) Dimensionless pressure (a) and vapour volume fraction (b)
along the vertical central axis for different initial speeds at the times of t∗= 1.275, 1.305,
1.305 and 1.335, respectively, which refer to the contours in figure 14.
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-1000 -500 0
p/pi

500 1000

V0 = 50 m s-1, t* = 1.425 V0 = 110 m s-1, t* = 1.545
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FIGURE 16. (Colour online) Pressure contours at the time the cavities collapse. The time
instant is t∗= 1.425, 1.545, 1.650 and 1.980, corresponding to the initial impaction speeds
of 50, 110, 150 and 200 m s−1, respectively. The shock waves emitted from the collapsing
bubble are visible for the cases of V0 = 110, 150 and 200 m s−1.

6. Conclusion and remarks
This study involved a numerical investigation of high-speed cylindrical droplet

impingement on a solid wall, and also contributed to the improvement of the
phase-transition model and algorithm for the highly compressible two-phase flows.
More specifically, the promoted two-phase multi-component compressible fluid model,
coupled with a phase-transition model describing the homogeneous cavitation process,
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is used to describe the Eulerian flow system. The phase transition is triggered
in the simulation when the local fluid pressure is lower than the threshold value.
This is justified by the pressure–temperature expression obtained from the linear
approximation of the curve for the cavitation pressure. The numerical chemical
potential relaxation process is employed to decouple the solution of the source
terms with a hyperbolic operator. Thus, the cavitation evolution process inside the
droplet can be captured in detail, which has not been presented in previous work.
The analyses of the physical mechanism, such as the generation and propagation of
complex wave structures, and the inception and collapsing of the cavity, are then
conducted based on the simulation results.

The simulation of the impingement of a 110 m s−1 water column on a solid wall
reproduced the cavitation inception observed in the experiments and the evolution
process of the collapsing of the cavitation zones. A detailed analysis was presented
for the above process showing the evolution and interaction of the complicated waves
inside the column. The confined shock wave is generated immediately after the
impingement of the water column on the wall and it propagates inside the water
column. When the contact angle θ is larger than the critical value, the confined
shock wave will detach from the solid wall and continually propagate towards the
top surface of the column. Meanwhile, the confined shock wave will be reflected
by the surface of the liquid column and generate a series of rarefaction waves. The
convergence of the rarefaction waves can induce low-pressure regions. Those regions
interact and gradually merge at the vertical axis, the position of which is located at
approximately one third of the initial diameter away from the top pole. The local
fluid state reaches the thermodynamic threshold condition for triggering of the phase
transition and cavitation occurs. The capture of the inception of cavitation by the
present numerical simulation is consistent with that observed in the experiments.
Furthermore, the evolution process of the cavitation zone, including the development
and collapse, is further discussed. Once the cavity collapses, a series of shock waves
is emitted, which again increase the pressure of the local fluid.

The effects of different initial impaction speeds on droplet dynamics and cavitation
structures were investigated. The initial impact speed was chosen as 50, 110, 150 and
200 m s−1 respectively. The numerical results showed that the impaction speed has a
significant influence on the strength of the confined shock wave, which increases with
the impaction speed. For a higher initial speed, the critical contact angle θc is larger,
and a larger cavitation zone is induced. Larger cavitation zones and stronger collapsing
waves are recognized for higher initial impaction speeds. The geometrical morphology
of the droplet is abstracted by analysing the two-phase interface structures.

In this study, a conserved Eulerian system was employed. However, even though the
viscosity and surface tension can be both neglected in a high-speed impaction process,
their effect on the cavitation and collapse should be taken into account, separately
or jointly, in the future. Furthermore, the extension studies should be carried out for
droplets of different liquids.
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