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Abstract

A perturbation method in which only the most secular terms are retained gives simple results for the weakly nonlinear
growth of a single-mode shock-accelerated interfa@denboomgaerdet al., 2002. This result can be written as a

series in integer powers of time. It can be considered as the Taylor expansion of an analytic function. We believe that an
approximation of such a function has been identified; it described the evolution of the instability from linear to
intermediate nonlinear regime. Furthermore, this function has no singularity. The relevance of this analytic formula is
checked against two-dimensional simulations and experimental data.
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1. INTRODUCTION 2. PERTURBATION EXPANSION FOR THE
GROWTH RATE OF A SINGLE MODE
The Richtmyer—MeshkotRM) instability occurs at the per- RM INSTABILITY

turbe_d |_nterfac¢_a betyveen two fluids of different de_n5|t_|es.|.he full perturbation method derived by Zhang and Sohn
after its interaction with a shock wave. The perturbation first 1997) has been drastically simplified by Vandenboom-
grows linearly and then goes into an intermediate nonlinea‘ ally P y

regime. When harmonics appear, the interface can eve%aerdeet ?"- (2002. Keefp”?g at each order only thv_a terms
cease being single valued as it evolves into mushroomlik(\a’\"thzthe highest powerin time transforms the s_olut|on from
structures. To study the weakly nonlinear regime of inter2" " FO ann algor_|thm at thenth _order. Approx!m_ate per-
facial instability, perturbation methods are commonly useaummt'c.)n expansions are obtained. The Va.“d'ty Of. sur_:h

(Holyer, 1979. It has been applied to the RM instabilities approximations has been checkeq by comparisons with sim-
by Zhang and Soh(1997 and Vandenboomgaerd al u_Iat|onsfor single mode and mult|que configurations. Eor

(2002). As Cartesiarix, z) coordinates are used to describe single-mode ones, the shape of the interface can be written
the interfacez = n(x, t), only a single-valued shape can be

computed. The perturbation expansions have a finite range " N

of validity in timet,; numerical simulations show that it can kn(x,t) = > (akat)" > a'™ cosjkx, (1)

be estimated bygkot, = 1, whereagk is the initial wave n=1 =t

steepness and the initial growth rate. ) ) .

In Section 2, we present the principle of analytic contin-Wherea;™ are real functions that are functions of the At-
uation of the perturbation expansion for single mode RMWood number. This number is defined &s= (p" — p)/
instability. In Setion 3, some hypothesis are made to build ah?’ + p), Wherep is the density of the first shocked fluid.
analytic function for the amplitude of the perturbation. In From expressiol) the half crest-to-crest amplitudat),
Setion 4, this function is compared with numerical resultsOf the interface can be derived:

and experimental data. We conclude with some remarks.

ka(T) = 2 P2p+l[A]T2p+1v (2
p=0
Address correspondence and reprint requests to: Marc Vanden-
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Boite Postale 12, 91680 Bruyéres-Le-Chatel, France. E-mail: marcWhereT = aokot, and P2|J+l are polynomlals of the [ﬁh

vandenboomgaerde @¢éa degree. Numerical studies have shown that the truncated
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serieq2) diverge afl ~ 1. On the other hand, the full series Eq. (5) has no singularity and is valid beyorid= 1. In
(2) can be considered as the Taylor expansion of an unFigure 2, the 9th- and 11th-order Taylor expansi#)sare
known analytic functior=(A, T). This function allows an- plotted for three different values of the Atwood numffeil

alytic continuation of the serid®) beyondT = 1. line). These curves are compared with the approximate an-
alytic continuation(5; dashed linegs For T < 1, analytic

3. HYPOTHESIS FOR THE ANALYTIC function and Taylor series cannot be distinguished. After
CONTINUATION that time, whereas expansions diverge, E5). still de-

scribes a nonlinear growth.
TheP,,., 1 polynomials have peculiar shapes. By inspection

among the orthogonal polynomial classes, we have found

that they fit quite well modified Jacobi’s polynomialthe 4. COMPARISONS WITH EXPERIMENTS

Jacobi's polynomials will be hereafter noted J Figure 1 The code CADMEH Miigleret al., 1996; Miigler & Gauth-

are plotted the first six od®;,., polynomials and the cor- jer, 2000 has been used to estimate the growth of a per-

responding modified Jacobi’s polynomiaisoted Q,,1)  turbed H¢air interface subjected to a 1.09 Mach number

defined as shock wave. The wave number and the amplitudekare
224.855 m* anday = 0.35X 103 m, respectively. The low

1
Qapi1 = m JP[2p,a,a, BA] with @ = 0.1 andB = 0.79.
kaT) A=0.1
As can be seen, th®@,,,, polynomial seems to be a good >
approximation of thé,, ; polynomial. They have the same 1.7 5‘

parity, same number of roots, and very close values for all 1 5 )
Atwood numbers. The main hypothesis of this study isto 4 g e -
assume that the discrepancies betwegn, andQ,,, are 1
negligible in the computation of seri¢®). We shall now 0.75
write 0.5
0.25 T
Ka(T) ~ S Qupra [AIT27L ©) 05 gl T %
p=0
The generating functio@ for the Jacobi’s polynomial® is k a(T) A=05
G[BAT] = 22U Y 1-T+u) *1+T+u) @ 2\
1.75
withu=N1-2XBAT+T2. (4 1.5 e
.25y J T
Combining Egs(3) and(4), an approximation for the non- 1
linear growth rate of a single-mode RM instability can be 0.75
built: 0.5
0.25 T
1 1 T 3
k(@a(T) —ag) ~ ST+ = —{G(A )+ G(A—7)}dr. (5 0.5 1 1.5 =
kaT) A=09
2
1. 75‘
1.y ) T
1.25 g
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Fig. 2. Growth rates obtained by the perturbation series and the analytic
Fig. 1. P andQ polynomials as defined by Eq&) and(3), respectively.  continuation for three values of the Atwood number, in full and dashed
First ones are in full lines and the others are in dashed lines. lines, respectively.
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value of the Mach number was chosen to keep the flow in a e L R
guasi-incompressible and irrotational regime. The values of : P !
k and ag were chosen to start the instability in the linear PR
regime(agk = 0.08 and reach easily the weakly nonlinear o O
regime. The choice of such parameters has been motivated (a-ay)
by the framework of the theoretical model. In Figure 3a, the .1 0/_9@
results of the simulations, the 9th and 11th Taylor expan- b A‘?H,
sions and the analytic continuation are plotted in full, dashed, &
and dash-dotted lines, respectively. 1L e 4
Equation(5) gives a good estimate even for times beyond [
the divergence of the perturbation series. This good agree- P
ment still holds when the interface becomes multivalued S S
(see Fig. 3
Another comparison has been made with an experiment
done by Jacobs and Krivet8001). Figure 4 shows experi- Fig. 4. GrOV\_/th of the Jacobs and Krive(t’&_‘OO:I) e?(perimen(circles) ver-
mental results(circles and the theoretical resuldash- sus scaled time. Growth from the analytic continuatidash-dotted ling
dotted ling. For this experiment, the wave steepnesgis=

0.23, the Mach number is equal to 1.3 and the two gases are | ) ) .
air and SE. that time, the nonlinear growth rate obtained by this model

Once again, analytic continuation of the nonlinear growth@S been compared successfully with both numerical and
rates obtained by the approximate perturbation method givegXPerimental data up @(t)k = 5.5. o _
a very good estimate of the experimental results. This good H_owever, it shqul_d _be npt|ced t_hat the limit of this model
agreement still holds in the intermediate nonlinear regiméaS timet tends to infinity gives a linear growth:
for values ofa(t)k larger than one.

kot

lim k(a(T) —ag) =T/2

5. CONCLUDING REMARKS This behavior at large time disagrees with th& or InT

We have derived an approximate analytic continuation otime dependence often found for highly nonlinear RM in-
the perturbation series for the single-mode RM instability.stabilities(see Prasadt al, 2000, and references within
We emphasize that no parameter is needed to build thi$his discrepancy comes either from the approximation and
model. For all values of the Atwood number, the results ofhypothesis leading to the model or from the fact that we
this model cannot be distinguished from those of the fullstudy only a single-mode perturbation.

perturbation method before their time of divergence. After
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