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Abstract

Assume that Ω and D are two domains with compact smooth boundaries in the extended complex plane
C. We prove that every quasiconformal mapping between Ω and D mapping∞ onto itself is bi-Lipschitz
continuous with respect to both the Euclidean and Riemannian metrics.
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1. Introduction

Let U and V be two open domains in the complex plane C. We say that a twice-
differentiable mapping f = u + iv : U → V is harmonic if ∆ f := ∆u + i∆v = 0 in U. By
the Lewy theorem, any harmonic homeomorphism is a diffeomorphism. If its Jacobian
J f is positive, then it is sense-preserving. In that case J f = | fz|2 − | fz̄|2 > 0.

We say that a harmonic mapping f is quasiconformal (abbreviated q.c.) if there
is a constant k with 0 ≤ k < 1 so that | fz̄(z)| ≤ k| fz(z)| for z ∈ U. The family of
quasiconformal harmonic mappings was first considered by Martio in [17]. The class
of q.c. harmonic mappings contains the conformal mappings and this explains its
importance in geometric function theory.

Pavlović [19] showed that a harmonic quasiconformal mapping of the unit disk U
onto itself is bi-Lipschitz continuous. To see the importance of his result, consider
the following two separate results. If we assume that the mapping f : U→ U is
merely quasiconformal, then it is only Hölder continuous with the Hölder coefficient
α = (1 − k)/(1 + k). This is a celebrated theorem of Mori. On the other hand, if
f : U→ U is merely a harmonic diffeomorphism, then by a result of Hengartner and
Schober it has a continuous extension up to the boundary (see [6, Theorem 4.3] or
[3, Section 3.3]). However, in view of the well-known Radó–Kneser–Choquet
theorem, this is the best regularity that such a mapping can have at the boundary.

c© 2020 Australian Mathematical Publishing Association Inc.

109

https://doi.org/10.1017/S0004972719001278 Published online by Cambridge University Press

http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0004972719001278&domain=pdf
https://doi.org/10.1017/S0004972719001278


110 D. Kalaj [2]

We can formulate the result of Pavlović precisely and give some extensions of it in
terms of the Poisson integral. Define the Poisson kernel by

P(z, θ) =
1

2π
1 − |z|2

|z − eiθ|2
, |z| < 1, θ ∈ [0, 2π).

The function z 7→ P(z, θ) is harmonic. For a mapping f ∈ L1(T), where T is the unit
circle, we define the Poisson integral by

w(z) = P[ f ](z) =

∫ 2π

0
P(z, θ) f (eiθ) dθ.

The Radó–Kneser–Choquet theorem states that, if f is a homeomorphism of the
unit circle onto a convex Jordan curve γ, then its Poisson integral is a harmonic
diffeomorphism of the unit disk U onto the Jordan domain Ω bounded by γ. If
f = u + iv is a harmonic function defined in a smooth Jordan domain D, then its
harmonic conjugate is the harmonic function f̃ = ũ + iṽ if u + iũ and v + iṽ are analytic
functions. Notice that f̃ is uniquely determined up to an additive constant.

Let χ be the boundary value of f and assume that χ̃ is the boundary value of f̃ .
Then χ̃ is called the Hilbert transform of χ and we denote it by χ̃ = H(χ). We assume
that χ̃ ∈ L1(∂D). In particular, the Hilbert transform of a function χ ∈ L1(T) is defined
by

χ̃(τ) = H(χ)(τ) = −
1
π

∫ π

0+

χ(τ + t) − χ(τ − t)
2 tan(t/2)

dt.

Here
∫ π

0+ Φ(t) dt := limε→0+

∫ π

ε
Φ(t) dt. This integral is improper and converges for

almost all τ ∈ [0, 2π]; this and other facts concerning the operator H used in this paper
can be found in Zygmund [21, Ch. VII]. Assume that χ, χ̃ = H(χ) ∈ L1(T). Then

P[χ̃] = P̃[χ],

where k̃(z) denotes the harmonic conjugate of k(z) (see [20, Theorem 6.1.3]).
A special situation is γ = T. Heinz [5] proved that, if f is a harmonic diffeomor-

phism of the unit disk onto itself, then the Hilbert–Schmidt norm of its derivative is
given by

‖D f ‖2 = | fx|
2 + | fy|2 ≥ c, (1.1)

where c > 0 depends only on f (0). It follows from (1.1) that the inverse of a
quasiconformal harmonic mapping of the unit disk onto itself is Lipschitz continuous.
So, the main achievement of Pavlović in [19] was to prove that a harmonic
quasiconformal mapping of the unit disk onto itself is Lipschitz continuous on the
closure of the domain. Another form of his result can be formulated as the following
proposition.

Proposition 1.1. The harmonic diffeomorphism f = P[eiϕ(t)](z) is quasiconformal if
and only if the function ϕ is bi-Lipschitz and the Hilbert transform of ϕ′ is essentially
bounded on R.
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In [8], the author proved that every quasiconformal harmonic mapping between
Jordan domains with C1,α boundaries is Lipschitz continuous on the closure of the
domain. Later this result was extended to Jordan domains with only Dini-smooth
boundaries [11] (see the rest of this section for the precise statement of the result). A
Dini-smooth boundary is the weakest assumption that we have to impose to get the
Lipschitz continuity of such mappings. In fact, Lesley and Warschawski [15] gave an
example of a conformal mapping f of the unit disk onto a domain with merely C1

Jordan boundary, so that f is not Lipschitz continuous. Let Ω be a Jordan domain with
rectifiable boundary and let γ be an arc-length parametrisation of ∂Ω. We say that ∂Ω

is C1 if γ ∈ C1. Then arg γ′ is continuous and we let ω be its modulus of continuity. If
ω satisfies ∫ δ

0

ω(t)
t

dt <∞ (δ > 0),

we say that ∂Ω is Dini-smooth. Denote by C1,$ the class of all Dini-smooth Jordan
curves. This leads to the following proposition.

Proposition 1.2 [11]. Let Ω be Jordan domain such that ∂Ω ∈ C1,$ and let f : U→ Ω

be a harmonic homeomorphism.

(a) If f is quasiconformal, then f is Lipschitz.
(b) If Ω is convex and f is q.c., then f is bi-Lipschitz.
(c) If Ω is convex, then f is q.c. if and only log |F′|,H(F′) ∈ L∞(∂D).

Remark 1.3. If Ω is the unit disk, then Proposition 1.2 coincides with the main result
of Pavlović [19].

A bi-Lipschitz characterisation for harmonic quasiconformal mappings of the half-
plane onto itself has been established by the author and Pavlović in [12]. Further, it
has been shown in [10] that a quasiconformal harmonic mapping between C1,1 (not
necessarily convex) Jordan domains is bi-Lipschitz continuous. The same conclusion
was obtained in [2] by Božin and Mateljević for merely C1,α domains. Further results
in the two-dimensional case can be found in [13] and for several dimensions in [1]
and [14]. For a different setting for the class of quasiconformal harmonic mappings,
we refer to the papers [16, 18]. For example, [16] deals with the following problem
for the class of quasiconformal harmonic mappings. The quasihyperbolic metric kD in
a domain D of the complex plane is defined as follows. For points z1, z2 ∈ D, set
dkD (z1, z2) = inf

∫
γ

d(z, ∂D)−1|dz|, where the infimum is taken over all rectifiable
arcs γ joining x1 and x2 in D. Manojlović in [16] proved that, if f : D → D′

is a quasiconformal and harmonic mapping, then it is bi-Lipschitz with respect to
quasihyperbolic metrics on D and D′.

In this note we prove that a harmonic quasiconformal mapping between two
domains with C1,α compact boundary in the extended complex plane containing
infinity is bi-Lipschitz continuous, provided that it maps infinity to infinity. On the
other hand, we prove that every harmonic quasiconformal mapping between two
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domains with C1,α compact boundary in the extended complex plane containing
infinity is a quasi-isometry with respect to the Riemannian metric. The proofs are
given in the next section.

To conclude this introduction, we mention the existence problem. In view of the
Radó–Kneser–Choquet theorem for convex Jordan domains, a counterpart for domains
in the extended complex plane could be formulated as the following conjecture.

Conjecture 1.4. Let Ũ = {z : |z| > 1} ⊂ C̃ = C ∪ {∞}. Assume that F is a
homeomorphism of the unit circle T onto itself. Then there exists a harmonic
diffeomorphism f = Ex[F] : Ũ → Ũ, possibly having one singularity a such that
f (a) =∞, which has a continuous extension equal to F on T.

2. The main results and their proofs

2.1. Quasiconformal and harmonic mappings and Euclidean quasi-isometry.

Theorem 2.1. Assume that Ω and D are domains in C ∪ {∞} with C1,α boundary so
that∞ ∈ Ω ∩ D. If f is a quasiconformal harmonic mapping between Ω and D so that
f (∞) =∞, then f is bi-Lipschitz continuous.

The theorem gives the following immediate consequence.

Corollary 2.2. Assume that f is a quasiconformal harmonic mapping of the
complement of the unit disk onto the complement of a Jordan domain with C1,α

boundary so that f (∞) =∞. Then f is bi-Lipschitz continuous.

For the sake of completeness, we give here a formal definition of quasiconformal
mappings. The map w : D→ C of the unit disk to the complex plane is quasiconformal
if it is a sense-preserving homeomorphism that has locally L2-integrable weak partial
derivatives and, for almost every z ∈ D, it satisfies the distortion inequality |wz| ≤ k|wz|,
where k < 1. In this situation we say that w is K-quasiconformal, where the constant
K is defined by K := (1 + k)/(1 − k).

To prove our results, we need the following propositions.

Proposition 2.3 [7]. Let Ũ = {z : |z| > 1} and assume that f is a univalent harmonic
mapping of Ũ so that f (∞) =∞. Then

f (z) = a0 + αz + βz +

∞∑
k=1

akz−k +

∞∑
k=1

bk z̄−k + A log |z|. (2.1)

Moreover, 0 ≤ |β| < |α| and a(z) = fz̄/ fz is an analytic function of Ũ onto U.

Proposition 2.4 [2]. Let α ∈ (0, 1] and assume that w = f (z) is a K-quasiconformal
harmonic mapping between planar Jordan domains Ω1 and Ω with C1,α boundaries.
Suppose in addition that a0 ∈ Ω1 and b0 = f (a0). Then w is bi-Lipschitz. Moreover,
there exists a positive constant c = c(K,Ω,Ω1, a0, b0) ≥ 1 such that

|D f (z)| ≤ c and |D f −1( f (z))| ≤ c for z ∈ Ω1.
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Here and in the sequel |D f (z)| = | fz(z)| + | fz̄(z)|. The case α = 1 of Proposition 2.4
has been previously proved in [10].

Proposition 2.5 (Kellogg, see [4]). Let 0 < α < 1. If D and Ω are Jordan domains
having C1,α boundaries and ω is a conformal mapping of D onto Ω, then ω′ ∈ Cα(D)
and (ω−1)′ ∈ Cα(Ω).

Corollary 2.6. Let w = f (z) be a K-quasiconformal harmonic mapping between
planar domains Ω1 and Ω with C1,α compact boundaries. Suppose in addition that
a0 ∈ Ω1 and b0 = f (a0). Then w is bi-Lipschitz. Moreover, there exists a positive
constant c = c(K,Ω,Ω1, a0, b0) ≥ 1 such that

1
c
|z1 − z2| ≤ | f (z1) − f (z2)| ≤ c|z1 − z2| for z1, z2 ∈ Ω1.

Proof of Corollary 2.6. Let b = f (a) ∈ ∂Ω. As ∂Ω ∈ C1,α, it follows that there exists
a C1,α Jordan curve γb ⊂ ∂Ω whose interior Db lies in Ω and such that ∂Ω ∩ γb is
a neighbourhood of b. (See [8, Theorem 2.1] for an explicit construction of such a
Jordan curve.) Let Da = f −1(Db) and take a conformal mapping ga of the unit disk
onto Da. Then fa = f ◦ ga is a q.c. harmonic mapping of the unit disk onto the C1,α

domain Db. According to Proposition 2.4, fa is bi-Lipschitz. According to Kellogg’s
theorem, f = fa ◦ g−1

a and its inverse f −1 are Lipschitz in some small neighbourhoods
of a and b = f (a), respectively. This means that D f is bounded in some neighbourhood
of a. Since ∂Ω1 is compact, it follows that ∇ f is bounded in ∂Ω1. The same holds for
D f −1 with respect to ∂Ω. This implies that f is bi-Lipschitz. �

Proof of Theorem 2.1. Since ∞ ∈ Ω, there is a real number R > 0 such that the set
AR = {z : |z| > R} ⊂ Ω. Then BR = f (AR) is a domain with C1,α boundary containing
∞. Moreover, PR := Ω \ AR+1 is a planar domain whose boundary consists of finitely
many C1,α Jordan curves. Then QR = f (AR+1) is also a planar domain whose boundary
consists of finitely many C1,α Jordan curves.

From (2.1), fz = α + O(1/|z|) and fz̄ = β + O(1/|z|). Therefore, f is Lipschitz in
a neighbourhood of z = ∞, that is, in a domain AR for a big enough R. Moreover,
|α| > |β|. Therefore,

J f (z) = |α|2 − |β2| + O(1/|z|) as z→∞.

From this it follows that f is locally bi-Lipschitz continuous in |z| > R. Thus, there is
a constant C1 so that

|D f (z)| ≤ C1 and |D f −1( f (z)| ≤ C1 for z ∈ AR.

By Proposition 2.4, the mapping f : PR → QR is bi-Lipschitz continuous. Thus, there
is a constant C2 so that

|D f (z)| ≤ C2 and |D f −1( f (z)| ≤ C2 for z ∈ PR.
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Since Ω = PR ∪ AR, we now need to prove that f is bi-Lipschitz in Ω with the bi-
Lipschitz constant C = C(C1,C2,Ω,D), that is, we prove the double inequality

1
C
|z − w| ≤ | f (z) − f (w)| ≤ C|z − w| for z,w ∈ Ω.

First we prove that Ω is a chord-arc domain. We show that there is a positive
constant M so that, if z,w ∈ Ω, then there is a rectifiable curve α joining z and w with
length l(α) ≤ M|z − w|. In order to prove this, let δi = [z,w] ∩ Ωi, where Ωi is the
Jordan domain bounded by γi. If one of the sets δi is not empty, then there are two
points z′ and w′ such that [z, z′) ⊂ Ω, z′ ∈ δi, (w′,w] ⊂ Ω and w′ ∈ δ j for some i and j
from the set {1, . . . , n}, allowing the possibility that i and j are equal.

Now we construct a curve α joining z and w. If δi =
∑mi

k=1[zi
k, z

i
k+1], then we denote

by γi([zi
k, z

i
k+1]) the shorter of the two Jordan arcs of γi that join zi

k and zi
k+1. Then we

define the portion αi =
∑mi

k=1 γi([zi
k, z

i
k+1]). Since γi is smooth, there is a constant Bi

so that l(αi) ≤ Bi
∑mi

k=1 |[z
i
k, z

i
k+1]|. Now we define α = [z, z′] +

∑n
k=1 αi + [w′,w], which

gives l(α) ≤max{1,max{Bi : i ∈ [0,n]}}|z −w|. So, we can choose M to be a little bigger
than the constant max{1,max{Bi : i ∈ [0, n]}} but close enough to it in order to allow
α to be entirely in Ω and to consist of linear segments [zk, zk+1], for k = 0, . . . , n, on
which f is locally C = max{C1,C2} bi-Lipschitz. Therefore,

| f (z) − f (w)| =
∣∣∣∣∣ m∑

k=0

f (zk+1) − f (zk)
∣∣∣∣∣

≤

m∑
k=0

| f (zk+1) − f (zk)| ≤ C
m∑

k=0

|zk+1 − zk| ≤ CM|z − w|.

Similarly, we prove that f −1 is Lipschitz. �

2.2. Quasiconformal and harmonic mappings and Riemannian quasi-isometry.
If, in the notation of Theorem 2.1, f (a) = ∞ instead of f (∞) = ∞, then the Möbius
transformation m(z) = (z + 1/ā)/(1 + z/a) gives a harmonic mapping of Ũ onto itself
defined by F(z) = f (m(z)) so that F(∞) = f (a) =∞ and such that

|DF| = |D f |
|a|2 − 1
|a + z|2

≤ L (2.2)

and

l(DF) = l(D f )
|a|2 − 1
|a + z|2

≥ 1/L (2.3)

for z ∈ Ũ. Here L > 1 is a constant and l(A) = inf |z|=1 |Az|.
Let dR denote the spherical (Riemannian) metric dR = |dz|/(1 + |z|2). The

Riemannian distance between given points z,w ∈ C is given by

dR(z,w) = tan−1 |z − w|
|1 + zw|

. (2.4)
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The relation (2.4) may not be new, but since we could not find a reference we give its
proof here. The conformal Riemannian isometries of the unit sphere are given by

m(ζ) =
aζ + b
ā − b̄ζ

and it is easy to verify that they satisfy the relation

|m′(z)| =
1 + |m(z)|2

1 + |z|2
.

So, for given points z and w, choosing the isometry m(ζ) = e−it(ζ − z)/(1 + ζz)
gives m(z) = 0 and p = m(w) = e−it(w − z)/1 + wz) > 0 for a certain real constant t.
Therefore,

dR(z,w) = dR(0, p) = inf
γ

∫
γ

|dz|
1 + |z|2

,

where the infinum is taken over the whole class of rectifiable arcs γ, so that 0, p ∈ γ.
Now we use the following proposition to deduce (2.4).

Proposition 2.7 [9]. Let l ∈ R. If the metric ρ = ρΣ in the geodesic disk Dρ(0, r) of
a Riemann surface Σ is given by ρΣ(z) = h(|z|2), then the intrinsic distance between
lz, z ∈ Dρ(0, r), with [lz, z] ⊂ Dρ(0, r), is given by

dΣ(lz, z) =

∣∣∣∣∣∫ |z|

l|z|
h(t2) dt

∣∣∣∣∣.
Next we prove that a q.c. harmonic mapping between Ũ and Ω is a quasi-isometry

with respect to this metric. Let γ be a Jordan curve joining two different points z and
w. Let δ = f (γ). We need to show that there exists a constant M > 0 independent of z
and w so that ∫

δ

|dζ |
1 + |ζ |2

≤ M
∫
γ

|dz|
1 + |z|2

. (2.5)

From (2.2), for ζ = f (z),

|dζ | ≤ L
|a + z|2

|a|2 − 1
|dz|. (2.6)

From (2.3),

|ζ − f (a)| ≥
1
L

∫
[a,z]

l(D f )(ζ)|dζ | ≥
1

L(|a|2 − 1)

∫
[z,a]
|a + ζ |2|dζ |.

Thus,

|ζ − f (a)| ≥
1

L(|a|2 − 1)
||z| − |a||3

3
. (2.7)

From (2.6) and (2.7), it is clear that we can find a constant M = M(a, L) so that (2.5)
holds. Moreover, a converse inequality can be proved in a similar way by using the
fact that f is bi-Lipschitz continuous. In other words, if dR is the Riemannian distance
on the extended complex plane, then we have the following statement.
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Theorem 2.8. If f : Ũ→ Ω is a quasiconformal harmonic mapping, where Ω is a
domain with C1,α boundary containing ∞, then there is a constant M > 0 so that for
every z,w ∈ Ũ,

1
M

dR(z,w) ≤ dR( f (z), f (w)) ≤ MdR(z,w).
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