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This paper is dedicated to the solidification of a water drop impacting a cold solid
surface. In the first part, we establish a one-dimensional (1-D) solidification model,
derived from the Stefan problem, that aims at predicting the freezing dynamics of a
liquid on a cold substrate, taking into account the thermal properties of this substrate.
This model is then experimentally validated through a 1-D solidification set-up, using
different liquids and substrates. In the second part, we show that during the actual
drop spreading, a thin layer of ice develops between the water and the substrate and
pins the contact line at its edge when the drop reaches its maximal diameter. The
liquid film then remains still on the ice and keeps freezing. This configuration lasts
until the contact line eventually unpins and the liquid film retracts on the ice. We
measure and interpret this crucial time of freezing during which the main ice layer
is built. Finally, we compare our 1-D model prediction to the thickness of this ice
pancake and we find a very good agreement. This allows us to provide a general
expression for the frozen drop’s main thickness, using the drop’s impact and liquid
parameters.

Key words: drops, solidification/melting

1. Introduction
When a liquid drop is put in contact with a cold substrate, either by impact

or deposition, the freezing of the liquid can lead to unexpected final shapes.
Understanding the coupling between drop impact hydrodynamics and solidification,
that builds the frozen structure, is crucial in many different contexts: aeroplane
icing (Baumert et al. 2018), ice accretion on wires or roadways due to freezing rain
(Jones 1998), three-dimensional (3-D) printing (Lipson & Kurman 2013), surface
metal coating technology (Pasandideh-Fard et al. 2002; Fauchais et al. 2004), etc.
Indeed, although most of the aeroplane icing configurations concern the impact of ice
crystals (Vidaurre & Hallett 2009; Hauk et al. 2015), the impact of water droplets
on subfreezing substrates can be of great interest in the dynamics of icing formation
(Schremb, Roisman & Tropea 2018). Today, the optimal design and coating of the
surfaces to avoid icing remains an important open problem (Cao et al. 2009; Kreder
et al. 2016). Freezing rain may cause hazardous conditions for pedestrians and cars
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or break tree limbs and power lines, and thus may cause immeasurable economic
losses (Jones 1996). In thermal spray deposition, the thickness and geometry of the
solidified splat is important for the quality of the coating and depends on the melting
of the spray with the substrate (Chandra & Fauchais 2009). Similarly, multiple droplet
impacts, coupling the fluid dynamics with the solidification thermal processes, produce
complex splat patterns that determines the coating quality (Dhiman & Chandra 2005).

In that context, it is important to have a precise characterization of the thickness
of the residual solid layer. It could for instance help to improve the existing ice
accretion models, crucial for aircraft icing or ice load on transmission lines (Schremb
et al. 2018), or increase coating efficiency formed by the impact and solidification
of molten thermal spray particles (Dhiman, McDonald & Chandra 2007). Moreover,
because of thermal contraction when the solid layer becomes cooler, and depending
on the thickness of the frozen impacted drop and the substrate temperature, the frozen
structure can either remain stuck on the substrate or detach through a self-peeling
process (de Ruiter, Soto & Varanasi 2018) or even fragment into a myriad of small
ice pieces (Ghabache, Josserand & Séon 2016).

When the drop is simply deposited on the substrate, the frozen drop shape and
thickness depend on the contact line solidification dynamics (Schiaffino & Sonin 1997;
Tavakoli, Davis & Kavehpour 2014; De Ruiter et al. 2017). In this paper, we aim
at obtaining a prediction of the final ice layer thickness resulting from the impact
and solidification of a drop on cold surfaces. This forces us to consider the complex
coupling between freezing and hydrodynamics. Indeed, right after impact, while the
drop spreads on the substrate (Josserand & Thoroddsen 2016), a thin solid crust layer
forms between the liquid and the substrate (de Ruiter et al. 2018). Afterwards, as the
solid layer keeps growing from the substrate (Gao & Sonin 1994; Marin et al. 2014),
the remaining liquid can retract on its solid layer (Bartolo, Josserand & Bonn 2005),
preventing the final solid layer reaching a uniform thickness. For the sake of clarity,
this paper will be therefore divided into two parts: in the first part, the solidification
dynamics of a liquid suddenly put in contact with a cold substrate will be tackled
from a general point of view and, in the second part, the results obtained will be
applied to the particular case of a water drop impacting such a cold substrate.

The paper is organized as follows: in the first part, after introducing the problem
of a melt freezing on a substrate (§ 2.1), we develop and interpret the associated
theoretical model (§ 2.2), and we compare it to a dedicated model experiment
(§ 2.3). In the second part, the drop impact experimental set-up and the measurement
techniques involved are first described (§ 3.1), then, we depict and interpret the
hydrodynamic behaviour of the water layer pinned at the edge of the growing ice
(§ 3.2), and finally, we present our experimental results relating to the formation
of the residual ice layer, in the light of the thermal and hydrodynamic behaviours
presented before (§ 3.3).

2. Solidification dynamics of a liquid on a substrate
In this section, we introduce a simplified one-dimensional (1-D) solidification

model that aims at describing the temperature distribution and the solidification front
dynamics in the problem of a liquid film on a cold solid substrate.

2.1. Presentation of the problem
We consider a material existing in two phase states: liquid and solid. Then, an infinite
flat solid substrate, filling the half-space z<0, with a temperature Ts below the melting
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(™T/™t) = Di(™2T/™z2)

(™T/™t) = Ds(™2T/™z2)

T(z, t) = Ts

T(h(t)-, t) = Tm

T(0-, t) = T(0+, t)

lim
z → -∞

T(z ≥ h(t), t) = Tm

¬i(™T/™z)(h(t)-, t) = ®iL(dh/dt)

¬i(™T/™z)(0-, t) = ¬i(™T/™z)(0+, t)

FIGURE 1. (Colour online) Summary of the model hypotheses: a finite layer of solid
lies between the semi-infinite melt (z> h(t)) and the semi-infinite substrate (z< 0). The
temperature of the whole melt is set constant at the melting point (T = Tm), while the
temperature of the substrate tends to TS when z goes to −∞. The temperature in the
solid phases is given by a set of two heat equations, with a specific diffusion coefficient
Dk for each phase, coupled by the temperature and heat flux continuity at z= 0. At the
solidification front (z= h(t)), the Stefan condition imposes the downward thermal flux be
equal to the latent heat liberated by the freezing.

temperature Tm, is in contact with the solid layer of the material (for 0 < z < h(t)),
that is growing in its melt (z > h(t)). Here h(t) is the position of the solidification
front (see schematic figure 1). This configuration belongs to the large class of Stefan
problems, a particular kind of boundary value problem where a phase boundary can
move with time. It is named after Josef Stefan who first, in 1889, solved the original
configuration in which a solidification front propagates between two phases (liquid
and solid) of the same material, without substrate (Stefan 1891; Brillouin 1930). In
figure 1, this original Stefan problem amounts to replacing the substrate by the solid
phase.

Configurations belonging to Stefan problems, even restricted to the solidification–
melting phase change, are abundant, with an impressively wide range of applications.
We can cite as examples, the solidification of the earth, supposed to be molten
at the origin, which triggered the first work of interest in this area, by Lamé &
Clapeyron (1831). The formation of ice crystals, like snowflakes, that grow out
from seeds in an environment of supersaturated water vapour. In this problem the
ingredients of the original Stefan problem are not sufficient, Gibbs–Thomson equation
and three-dimensional (3-D) effects need to be added (Langer 1980). The modelling
of the dynamics of sea ice on the surface of the polar oceans (Worster 2000) or the
shape of an icicle (Neufeld, Goldstein & Worster 2010), where the liquid motions and
the associated convective heat transfer have to be considered. Likewise for various
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lava flows that cool and gradually solidify until they come to rest (Griffiths 2000).
Cooling can occur from the surrounding atmosphere (or water) or from the underlying
solid (Huppert 1989), and in ancient times, some of the lavas were hotter than today
and were even capable of melting the underlying rock and shaping their own thermal
erosion bed (Huppert 1986). In industry, Stefan problems are frequently studied in
the context of melting or solidification of metals or metal alloys (Viskanta 1988),
where the properties of the solid (in particular, its mechanical and thermal properties)
are functions of the kinetics of solidification, such as Czochralski crystal growth,
used for example in the fabrication of semi-conductor wafers (Nishinaga 2014), laser
welding (Cline & Anthony 1977; von Allmen & Blatter 2013), or the synthesis of
nanoparticles from melting metal films (Font, Afkhami & Kondic 2017). Finally, this
class of problems is also a fantastic playground for mathematicians (Rubinstein 1971;
Gupta 2003); but to the best of our knowledge, we are not aware of a system of
equations modelling solid growth by a sudden contact between a liquid and a cold
solid substrate.

In the following, we assume the melt stays at rest, at constant temperature
everywhere (Tm). We neglect the variation of heat capacity and of thermal conductivity
with temperature. We also neglect the thermal expansion, and more generally the
variation of density. In other words, the thermal parameters of the media are the
following: the latent heat of solidification L, the heat capacity Cpk, the thermal
conductivity λk, the heat diffusion coefficient Dk = λk/(ρkCpk) and therefore the
density ρk, are taken as constant. The subscript k stands for l in the liquid phase, i
in the solid phase and s for the substrate (see figure 1).

The choice of a one-dimensional model will be discussed in § 2.3 and is supported
by the geometry of the impacted drop that will be considered later. We assume that
the liquid is at the melting temperature Tm; this approximation will also be discussed
in § 2.3. It can be justified a priori by both, the small thickness of the liquid layer
and the little energy needed to cool the water down to its melting temperature,
Cpl(Td − Tm)∼ 4000× 20∼ 8× 104 J kg−1, where Td is the initial temperature of the
liquid drop, compared to the latent heat for solidification (L∼ 3× 105 J kg−1).

Under these assumptions, the mathematical problem that needs to be solved is the
following (see figure 1): a constant temperature Tm in the liquid, two heat equations
for the temperature field T(z, t)

∂T
∂t
=Ds

∂2T
∂z2

for z 6 0;
∂T
∂t
=Di

∂2T
∂z2

for 0 6 z 6 h(t), (2.1a,b)

and four boundary conditions at the two interfaces

T(0−, t)= T(0+, t); λs
∂T
∂z
(0−, t)= λi

∂T
∂z
(0+, t), (2.2a,b)

which impose both the continuity of the temperature and of the heat flux at the
substrate/solid interface (z= 0), and

T(h(t)−, t)= Tm; λi
∂T
∂z
(h(t)−, t)= ρiL

dh
dt
, (2.3a,b)

which impose both the continuity of the temperature, and the law of motion of the
solidification front (z = h(t)). This energy conservation law under liquid–solid phase
change is called the Stefan condition. Here, it dictates that the solidification front
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velocity is proportional to the rate at which latent heat can be transported in the solid
phase. The solidification front is thus controlled by the diffusion in the solid and the
substrate through the Stefan condition. Finally, we impose a constant temperature Ts

deep in the substrate
lim

z→−∞
T(z, t)= Ts, (2.4)

and we complement this set of equations by the initial conditions taken at t= 0

T(z, 0)= Ts for z 6 0 and h(0)= 0, (2.5a,b)

indicating that at t= 0 the liquid is suddenly put in contact with the substrate.

2.2. Solution of our unidimensional solidification model
Similarity analysis shows that this diffusive problem exhibits a self-similar structure,
with the usual self-similar variables involved in diffusion problems, namely z/

√
Dit in

the ice and z/
√

Dst in the substrate, even in the presence of the moving solidification
front. In this case, the solidification front location also follows a square-root in time
law, showing the diffusive property of the dynamics

h(t)=
√

Deff t, (2.6)

where Deff is the effective diffusion coefficient that determines the growth of the solid
layer. It is really the quantity of interest that we need to compute and thus relates to
the different thermal properties of our problem.

Introducing the self-similar variable in the set of equations (2.1)–(2.5), we obtain
the following solutions for the temperature field

T(z, t)= T0 + (T0 − Ts) · Erf
(

z
2
√

Dst

)
for z 6 0 and (2.7)

T(z, t)= T0 +
es

ei
(T0 − Ts) · Erf

(
z

2
√

Dit

)
for 0 6 z 6 h(t), (2.8)

where es,i =
√
λs,iρs,iCps,i are the effusivities of the substrate and the solid, and T0

the contact temperature at the solid–substrate interface (a constant in time in this self-
similar framework). The effusivity of a material is the physical quantity that shows
both its heat capacity and its ability to diffuse it. T0 is an integration constant to be
determined by the boundary conditions. It corresponds to the temperature at the solid–
substrate interface and the self-similar behaviour indicates that this temperature is a
constant in time. The error function, Erf is defined here by

Erf(x)=
2
√

π

∫ x

0
e−ξ

2
dξ . (2.9)

Then, by imposing the Stefan condition at z = h(t) (2.3), we obtain the following
transcendental equation

St=
√

πβ

2
eβ/4

(
ei

es
+ Erf

(√
β

2

))
(2.10)
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that links the Stefan number, St, with the ratio of the diffusion coefficients, β, defined,
respectively, by

St=
Cpi(Tm − Ts)

L
and β =

Deff

Di
. (2.11a,b)

This implicit relation (2.10) has to be solved numerically and the values of Deff used
further on are those obtained numerically. From the relation (2.10) it is easy to deduce
the asymptotic behaviours for small and large Stefan numbers

β ∼
4e2

s

πe2
i
St2 for St� 1, and β ∼ 4 ln(St) for St� 1. (2.12a,b)

An interesting physical quantity to compute is the dimensionless solid–substrate
interface temperature T̄0 yielding

T0 =
T0 − Ts

Tm − Ts
=

1

1+
es

ei
Erf
(√

β

2

) (2.13)

such that T0 varies between 0 and 1 with T0 = 0 for T0 = Ts and T0 = 1 for T0 = Tm
(see figure 1). Then from the asymptotic relations between β and St (2.12), we find
that T0→ Tm for St� 1, while for St� 1 it converges to an intermediate temperature

lim
St→∞

T0 = Ts + (Tm − Ts)
1

1+
es

ei

, (2.14)

which corresponds to the interface temperature when two infinite media are suddenly
put in contact (de Ruiter et al. 2018).

In order to understand the thermal fields in the substrate and the solid layer, we plot
the vertical position normalized by the thickness of the growing ice layer (z/

√
Deff t)

as a function of the normalized temperature profiles

T(z, t)=
T(z, t)− Ts

Tm − Ts
(2.15)

for two specific values of the Stefan number: a large value, St= 250� 1 (figure 2a)
and a value of order one, St= 0.25∼ 1 (figure 2b); and for four pairs of melt/substrate.
The melt is water as it is the most common in our experiments and the four substrates
have been chosen: copper, steel and marble in order to have a large range of thermal
conductivities, and ice in order to compare our result with the classical Stefan
problem with no substrate. We observe that the temperature profiles evolve from
the substrate temperature Ts (T(z→−∞, t)= 0) up to the solidification temperature
Tm (T(h(t), t) = 1). In the high Stefan numbers regime (figure 2a), the temperature
profiles exhibit the shape of the error function within both the solid and the substrate
domains. The temperature gradient is discontinuous at the contact between the ice
and the substrate (z = 0), because of the discontinuity of the thermal conductivities.
For St = 0.25 (figure 2b), the temperature profile tends to be linear in the ice while
it still exhibits an error function profile in the substrate.

Figures 2(c) and 2(d) present, respectively, the normalized temperature of the
solid–substrate interface, T0 (2.13), and the normalized effective diffusion coefficient
β =Deff /Di (by solving (2.6)), both plotted as functions of the Stefan number, for the
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FIGURE 2. (Colour online) Results of the model for the different substrates (copper: red,
steel: orange, marble: light blue) and ice (dark blue) that is for comparison with the
Stefan problem with infinite ice and infinite liquid water. (a,b) Dimensionless temperature
profiles T(z, t) = (T(z, t)− Ts)/(Tm − Ts) as functions of the variable z/

√
Deff t, obtained

from (2.8) and (2.7) for two characteristic Stefan numbers St= 250 (a) and St= 0.25 (b).
This rescaling accounts well for the two self-similar variables valid in each domain (ice
and substrate). (c) Dimensionless contact temperature, obtained from (2.13). Regardless
of the substrate, it goes from 1 for St → 0 to the asymptotical values (1 + es/ei)

−1

(indicated on the figure) when St→∞, reminiscent of the contact temperature of two
infinite bodies initially at different temperatures. (d) The effective diffusion coefficient
of the solidification front normalized by the thermal diffusion coefficient of the ice,
β = Deff /Di, as a function of the Stefan number. The differences between substrates are
more important at low Stefan number, and the asymptotic regime at low Stefan number
β ∝ St2 is indicated (dashed line). Here β has been computed by solving numerically the
implicit equation (2.10).

same four pairs of melt/substrate as before. Remember that increasing the Stefan
number corresponds to a decrease of the substrate temperature.

To better understand the different regimes observed in figure 2, we can investigate
the two asymptotic behaviours of our model: the solidification-dominated regime
(St � 1) and the solid-cooling dominated (St � 1). Let us first consider the latter
case of large Stefan numbers (St� 1) that corresponds to Cpi1T � L, meaning that
the latent heat L released by the solidification at the solid–liquid interface z = h(t),
is negligible compared to the heat energy released by cooling the solid (Cpi1T)
from the melting temperature Tm to the substrate temperature Ts. In this case, the
substrate is hardly warmed up by the solidification and does not influence the
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front propagation. As a consequence, the dynamics is dominated by the self-similar
variation of the temperature profiles with time; they exhibit two Erf functions that
join at the solid–substrate interface (figure 2a). If the diffusive coefficients in the solid
and the substrate are the same, which here is the case when the substrate is ice and
almost the case when the substrate is marble, then the Erf shape of the temperature
profile is symmetrical with respect to z = 0. In other cases (steel and copper), this
symmetry of the error function is broken. In this limit (St� 1), the temperature of
the solid–substrate interface is the asymptotic limit given by the (2.14) (figure 2c).
Finally, figure 2(d) confirms that in this limit (St� 1), the front propagation dynamics
is not influenced much by the substrate thermal conductivity as all the substrates tend
to the classical Stefan problem (dark blue curve) with no substrate.

In the opposite limit (St� 1), the latent heat released by the solidification is much
larger than the heat released by cooling the solid down to Ts, indicating that the heat
reaching the substrate comes mainly from the solid–liquid interface. The solid layer
is inert in the sense that it only transfers the heat flux coming from the solidification
to the substrate; the heat flux stays constant through the solid layer. This explains
why the temperature field is linear in the solid (figure 2c). The slope is selected by
the front dynamics and evolves slowly with time, it can be estimated using (2.12) for
St� 1 (β ∼ St2) as follows

λi
∂T
∂z
= ρiL

dh
dt
=

1
2
ρiL

√
Deff

t
∼ StρiL

√
Di

t
. (2.16)

This linear profile in the solid joins an Erf profile in the substrate which goes deeper
(relatively to h(t)) compared to the large Stefan regime. The freezing process is
efficient enough to warm the substrate up. This explains why the interface temperature
T0 increases (figure 2d) and tends toward Tm (T0→ Tm for St→ 0 (2.13)). Finally, the
effective diffusion coefficient is smaller than in the large Stefan regime (figure 2d).
This can be understood easily since decreasing the Stefan number corresponds to
warming the substrate up, so the ice grows slower. In this regime we observe that
all the curves follow Deff ∼ St2Di as shown on (2.12). What is very interesting is
that Deff with metal substrates differs by several orders of magnitude from the one
with no substrate (dark blue curve). Indeed, as the Stefan number decreases, the heat
flux released by cooling the solid down to Ts becomes negligible with respect to the
latent heat. As a consequence, the solidification front propagation becomes more and
more influenced by the substrate’s thermal parameters. In this case, the higher the
substrate’s thermal conductivity, the faster the solidification front propagation (see
(2.12)). This property demonstrates how important it is to take into account the heat
transfer within the substrate.

2.3. Experimental comparison
With the aim of validating our model and its assumptions, we carry out a model
experiment which consists of putting in contact a liquid with a substrate at a
temperature below the liquid solidification temperature (see figure 3a). The liquid
is initially poured into a transparent PMMA tube of 3.4 cm diameter. We use two
different liquids (water and hexadecane) and two different substrates (copper and
steel). We also varied the initial temperature of the water (20 and 0 ◦C) and the
thickness of the initial water layer (between 4 mm and a few centimetres). Finally,
the propagation of the solidification front (h(t)) is recorded using a camera, between
one and ten frames per second depending on the experiment.
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FIGURE 3. (Colour online) (a) Schematic of the experimental set-up: a liquid-filled
cylinder is set upon a cold substrate. The liquid starts freezing into a solid layer of
thickness h(t), which is monitored using a camera. (b) Growth of the solid phase as
a function of time. Here h(t) is plotted in the case of water freezing on a copper
plate at two different temperatures (blue and red squares), the liquid being initially at
room temperature. The same experiments are repeated with water slightly warmer than
0 ◦C (triangles), showing no differences. The dynamics of each experiment is fitted by a
square root function (full lines), in order to get its diffusion coefficient Dexp. Dashed lines
represents the dynamics predicted by the classical Stefan problem (without the substrate),
for the two different temperatures. (c) Comparison of the experimental freezing dynamics
and the theory: the diffusion coefficients Dexp and Deff , respectively, experimental and
theoretical, are compared for a wide range of parameters. The colour refers to the substrate
cooling 1T = Ts− Tm. Circles (respectively squares) represents water at room temperature
freezing on copper (respectively steel). Stars refer to thin thicknesses of water freezing on
copper, triangles to 0 ◦C water freezing on copper. Finally, pentagons are for hexadecane
freezing on both metals. The y= x guideline is shown as a dashed line.

Figure 3(b) presents the growth of the ice layer (h(t)) with respect to time for water
solidifying on a copper substrate. The blue and red squares are for water at 20 ◦C
and two different temperatures of the substrate, respectively, −38 ◦C and −26 ◦C as
indicated on the graph. As expected the freezing front propagates faster when the
substrate is colder. On the same graph, the empty triangles show the front propagation
with water initially at 0 ◦C. Their variations coincide with the preceding ones on the
whole range of time, indicating that solidifying water at 20 ◦C or at 0 ◦C gives rise to
the same solidification dynamics. This important observation justifies a posteriori the
approximation to consider the liquid layer at Tm in the model and to neglect the heat
flux in the liquid. Superimposed on these four experimental curves are lines which are
the best fit using a square root function of the form

h(t)=
√

Dexpt, (2.17)

with Dexp an experimental diffusion coefficient that quantifies the solidification
dynamics. We observe that, as shown in the model, the solidification front follows
a diffusive law. Note that in the experiments shown here, the same diffusive law is
followed up to 6 mm, suggesting that the 1-D approximation seems valid at least up
to an aspect ratio of around one fifth. Finally, we plot on the same graph with dashed
line the variation of h(t) given by the classical Stefan problem associated to the two
substrate temperatures. In these plots, the substrate is treated as if it were ice and
the thermal parameters of the substrate are consequently not taken into account. It
appears that, by promoting the heat transfer, the substrate highly increases the front’s
propagation velocity.
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By fitting the solidification front evolution by (2.17) on each experiment we
obtain Dexp, the experimental diffusion coefficients. On figure 3(c) we compare them
to the effective diffusion coefficient given by our 1-D model Deff , for all of our
experiments: water (0, 20 ◦C and different liquid thicknesses) and hexadecane, on
copper and steel (see the different markers on the graph), and for various substrate
temperatures between 0 and −50 ◦C, indicated by the colour of the markers. All the
data gather along the black dashed line that has a slope of 1, indicating that for each
experiment Dexp ' Deff : our 1-D model provides therefore an excellent estimation of
the dynamics of the upwards solidification when a liquid is placed on the top of a cold
substrate.

3. Solidification dynamics of an impacted drop of water
With the relevant model for the solidification dynamics of a liquid put suddenly in

contact with a cold substrate, let us now consider our experiment of a water drop
impacting a cold surface and see whether it can predict the final thickness for the
frozen impacted drop.

3.1. Experimental set-up and qualitative description
The classical drop impact set-up consists of a syringe pump pushing a liquid through
a capillary tube from which the drop falls. As the pumping is slow enough, the size
of the drop is entirely controlled by the radius of the capillary tube. We used two
different tubes of inner diameter 1600 and 250 µm leading to two drop radii: R= 1.9
and 1.2 mm, yielding, respectively, volumes 30 µL and 7 µL. The impact velocity
U0 is controlled by the height of fall H, which in our case ranges from 15 to 45 cm,
so that U0 ranges from 1.7 to 3 m s−1 (following roughly U0 =

√
2gH).

Our substrates, made of blocks (100 mm× 100 mm× 30 mm) of different materials
(steel, copper and marble), are placed into a bowl and cooled down by pouring a
certain amount of liquid nitrogen. The minimal temperature reached in this work is
around −80 ◦C. Due to the substrate heat capacity and the bowl’s thermal isolation, it
takes several hours for the system to warm up to room temperature. The change in
the substrate temperature is thus much less than 1 ◦C during the time of an experiment
which is roughly 1 s.

In order to minimize frost formation, the whole system is placed inside a regulated
atmosphere chamber which allows us to drastically reduce the humidity (less than 1 %
humidity inside the chamber). The substrate temperature Ts is measured before each
experiment using a surface thermometer. The dynamics of the impact is studied using
a high-speed camera, and the height profile of the frozen drop is extracted with a
polychromatic confocal sensor (CCS OptimaPlus from STIL Optics) moving along a
translation platform.

At room temperature, as a water drop impacts a solid substrate, it spreads, reaches
a maximal radius (Laan et al. 2014) and immediately starts to retract back to an
equilibrium radius (Bartolo et al. 2005; Josserand & Thoroddsen 2016). Figure 4(a–h)
shows a sequence of snapshots of a water drop impacting a sub-zero substrate. Here
again, the drop spreads rapidly and reaches a maximal spreading diameter (a,b), but
then the drop does not retract, it is stuck at its maximal diameter (c). This pinning
is due to the formation of a thin layer of ice between the substrate and the liquid
during the spreading. On images (c–e) the drop is thus made of a thin layer of ice,
attached to the substrate and growing vertically, beneath a thicker layer of water
where capillary waves are damped. This remaining water layer is not stable due to
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FIGURE 4. Snapshots (a–h) show a sequence at different times (indicated on each image)
of a drop of water of radius 1.9 mm impacting at velocity 2.6 m s−1 on an aluminium
substrate at temperature −9 ◦C. (i) is a height profile of the final frozen splat, measured
using optical profilometry. The aspect ratio is 20, so the real splat is much flatter.

its high aspect ratio, so that it still needs to retract in order to reach its equilibrium,
and we observe on (e) where the liquid layer has actually just started to unpin from
the edge. Then, the liquid retracts on the ice layer ( f ), until it reaches its typical
equilibrium contact angle on ice (Knight 1971) and forms a spherical-cap-shaped
drop (g). Eventually, it completely freezes, yielding a pointy ice drop (Anderson,
Worster & Davis 1996; Snoeijer & Brunet 2012; Marin et al. 2014), on top of an
ice pancake (h).

Figure 4(i) shows the height profile of the frozen drop (h) obtained by scanning
the drop diameter with an optical profilometer. This profile shows clearly two
different parts: a quasi-cylindrical plate (the so-called ice pancake), whose thickness
is denominated as hp, on top of which we find an ice pattern, the consequence of
the water retraction on ice. We thus define clearly hp as the ice layer thickness
of the edge of the structure when it unpins. This structure with an ice pancake in
contact with the impacted solid is found any time a drop impacts a sub-zero cold
surface. The ice pattern that is eventually formed on the top of the ice pancake can
exhibit different shapes that will be the subject of future work. Here we focus on
the ice pancake that is, in fact, crucial in all relevant applications, in particular for
the stability of the frozen drop. Indeed, as the temperature of the ice varies, thermal
expansion/contraction generates elastic stress that can lead to the delamination of the
pancake (de Ruiter et al. 2018) or the formation of cracks (Ghabache et al. 2016),
influenced by the thickness hp. The aim of the present paper is thus dedicated to the
quantification of this thickness hp.
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3.2. The stationary contact line (SCL) regime
As we observe on figure 4, after spreading, the contact line seems steady (b–e), before
a dewetting transition occurs leading to the retraction of the water film on the ice
layer. It is thus expected that the thickness of the ice pancake hp is built by thermal
conduction during this time. Consequently, we need first to characterize the duration
of this regime, that we call SCL regime (Rivetti et al. 2015). Figure 5(a) presents
the variation of the liquid film radius during an impact, plotted as a function of
time, for three different substrate temperatures. The dashed line shows the liquid drop
radius evolution at room temperature and the two solid lines at freezing temperature,
−14 and −30 ◦C. Without freezing (dashed line), the drop spreads rapidly, reaches
its maximal diameter and almost instantaneously retracts. The behaviour is different
when the drop freezes. Indeed, after having reached its maximal diameter (illustrated
on the curve with the inserts), the stationary contact line regime is observed: the
liquid remains attached to the ice layer close to its maximum radius. There, the
liquid radius barely varies with time during approximately 60–70 ms before the
retraction of the liquid film starts. This time between the spreading and the retraction
regimes defines the SCL time, τSCL, as shown on the curves. We note that the two
SCL times, for the two different temperatures, seem to be quite close.

Figure 5(b) shows the dependence of the time τSCL with the temperature, for
different heights of fall and same drop size (1.9 mm) and substrate material (steel).
Instead of the substrate temperature Ts, we use 1T = Tm − Ts, where Tm is the
freezing temperature of the liquid (here for water Tm = 0 ◦C so that 1T =−Ts when
using the Celsius scale), which is the relevant temperature here, because we saw
that the energy needed to cool the drop down to Tm can be neglected. The first
observation is that τSCL always reaches a plateau where it is independent of 1T . The
value of this plateau strongly depends on the drop impact velocity and thus on the
initial spreading of the liquid film: the larger the maximal diameter at impact, the
shorter the liquid layer stays stationary atop the ice pancake before retracting. These
results suggest therefore that τSCL might be independent of the heat transfer and due
solely to the liquid dynamics.

Figure 5(c) presents the variation of τSCL with 1T for our three different substrates,
marble (triangle markers), steel (square) and copper (circle), and for two different drop
radii on steel substrate (full and empty squares). In each case, the plateau regime is
quickly reached confirming this independence of SCL time with 1T . As expected,
the drop size, as the drop impact velocity, seems to play a role in the selection of
the plateau value of τSCL. What is more surprising here is the variation of the plateau
value with the substrate material, τSCL decreases as the substrate thermal conductivity
increases. This appears as a contradiction with the previous result that τSCL does not
depend on the substrate temperature and, thus, seems to be independent of the thermal
parameters. We will come back to these observations in the following.

To explain the existence of this delay τSCL between spreading and retraction when
water freezes, we will use an argument of a previous work (Rivetti et al. 2015) on the
relaxation of a contact line pinned at the edge of a polymer film. Similarly, we assume
here that the time τSCL is due to the relaxation dynamics of the contact angle θ formed
by the liquid film and the growing ice pancake, and pinned at its edge. The contact
line relaxation starts at an angle given by the spreading dynamics (influenced by the
drop impact velocity, the substrate wetting angle, and the drop size), and ends when
θ reaches a critical value θ∗ enabling its unpinning, a required prelude to its receding
motion. In the experiment of Rivetti et al. (2015), this angle is θ∗ = 4.5◦ ± 0.5◦ and
surprisingly appears to be independent of the liquid and of the film thickness.
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FIGURE 5. (Colour online) (a) The dynamics of spreading and retraction of the drop. The
radius of the liquid film is plotted as function of time. Inset pictures show the aspect of
the film on the different stages. On all graphs, impact velocities are represented by colours
(light blue for the slowest to dark purple for the fastest), substrates by symbols (circles
for copper, squares for steel and triangles for marble) and drop radii by the filling (full
symbols for R = 1.9 mm, empty symbols for R = 1.2 mm). (b) Here τSCL as a function
of the temperature 1T for different impact velocities. The drop radius is 1.9 mm and
the substrate is steel. (c) Here τSCL as a function of the temperature 1T for different
substrates. The impact velocity is 2.6 m s−1 and the drop radius is 1.9 mm (full symbols).
Results for a drop of R= 1.2 mm impacting on steel at the same velocity are shown with
empty squares. (d) Theoretical prediction for the water film thickness hw as a function of
its experimental estimation hexp

tot . Each point represents a series of experiments with given
impact velocity, substrate and drop radius. The error bars contain the variations within
each series. The dashed line is a linear fit with the slope set to 1.

Because the liquid film is very thin, its dynamics can be taken in the lubrication
regime so that the contact line relaxation is expected to follow a capillaro-viscous
relaxation time tw ∝ (h0η)/γ , with the proportional coefficient being a function of θ∗,
being about 105 in their experiments. Note that, as soon as the contact line retracts,
they showed that θ increases to a receding contact angle which stays roughly constant
during dewetting.

In order to show that the same relaxation dynamics is at play in our experiments,
we compare on figure 5(d) the characteristic thickness hw of the liquid film that
corresponds to the relaxation time τSCL following this capillaro-viscous dynamics, i.e.
hw = γ τSCL/(105η), and the characteristic thickness of the water film hexp

tot formed at
the end of the spreading, neglecting ice formation, hexp

tot =Vtot/πR2
max with Vtot the total

volume of the drop and Rmax the spreading radius. Remarkably, the experimental data
gather along a line of slope 1, suggesting that this relaxation scenario of the contact
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line is correct. Note that, since hexp
tot corresponds to the total height of the spread drop,

it is the sum of the ice pancake and the water film, so that the intersection of the
dotted line with the x-axis gives a consistent estimation of the ice pancake thickness.
We point out the fact that the thicknesses of the ice and liquid layer are varying in
time, so that hexp

tot is just a rough approximation of the liquid film thickness. This
might explain the data scattering around the linear prediction.

We have used for comparison the same value of θ∗ as for the polymer films (leading
to the 105 prefactor for hw), while there is no reason that this value is relevant for
water films. In fact, when trying to fit the best line for the data of figure 5(d), we
found an angle slightly different but with no significant improvement when comparing
with the θ∗ correlation, so that we have kept this value for the sake of simplicity. The
fact that this dewetting angle θ∗ appears to be almost independent on the substrates,
the liquids and the film thicknesses, while our experiments and those of Rivetti et al.
(2015) concern film with totally different thickness is a very interesting and intriguing
result. It might shed light on a universal dewetting mechanism that deserves specific
investigation in the future.

Finally, following these results, the stationary contact line time (τSCL) varies linearly
with the thickness of the liquid pancake at impact (hexp

tot ) and can be roughly expressed
by the unique formula

τSCL = 105 η

γ

(
70+

Vtot

πR2
max

)
. (3.1)

In this relation the quantity Rmax has been evaluated experimentally so far since no
accurate modelling is available that takes into account the solidification.

As the spread drop diameter increases with the impact velocity, the liquid pancake
is thinner and we can understand the decrease of τSCL when the impact velocity
increases, observed on figure 5(b). These results also resolve the contradiction that
we draw concerning the dependence of τSCL with the different substrates. The contact
line relaxation dynamics suggests indeed that the substrate intervenes through its
wetting properties that influences the spreading radius, and therefore the liquid film
thickness pinned on the thin ice layer. In this scenario, the thermal properties of
the substrate plays no direct role, thus explaining the independence of τSCL with the
temperature.

3.3. The ice pancake
At this point, we know the time during which the ice pancake is building (τSCL) and
we have a validated model for the ice growth dynamics (Deff ); we now need the
experimental measurements of the pancake thickness, hp. Figure 6(a–c) shows the ice
thickness hp, deduced from the height profiles of the frozen drops (see figure 4i),
as a function of 1T , respectively, for four different drop impact velocities (a), three
different substrates (b) and two different drop sizes (c). These control parameters, and
their corresponding markers, are the same as those used in figure 5.

These graphs show that the underlying ice layer becomes thicker when: (i) the
substrate is colder (figure 6a–c); which is expected since more liquid can be
frozen during the solidification time that appeared to be mostly constant with 1T
(figure 5b,c). (ii) The substrate heat conductivity increases (figure 6b); the heat is
indeed transferred to the substrate with higher efficiency, so that the freezing front
can propagate faster during a solidification time that, again, does not vary much

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

45
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.459


770 V. Thiévenaz, T. Séon and C. Josserand

0 20 40 60 80

0 20 40 60 80 0 20 40 60 80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.5

0.4

0.3

0.2

0.1

0.5

0.4

0.3

0.2

0.1

0.5

0.4

0.3

0.2

0.1

1.75
1.50
1.25
1.00
0.75
0.50
0.25

h p
 (m

m
)

h p
 (m

m
)

h p
 (m

m
)

h2 p/
† S

C
L 

(m
m

2 
s-

1 )

ÎT (°C)

ÎT (°C) ÎT (°C)

Deff (mm2 s-1)

(a) (b)

(c) (d)

1
1

3.0 m s-1

2.6 m s-1

1.7 m s-12.2 m s-1

Drop radius:

Impact velocity

Substrate:
Copper
Steel
Marble

1.9 mm
1.2 mm

FIGURE 6. (Colour online) (a) Evolution of the underlying ice plate thickness hp as a
function of the temperature 1T for different impact velocities, on the same substrate
(steel) and with the same drop radius (1.9 mm). The colder the substrate is, the thicker
the ice layer is. For a given temperature the ice layer is thinner for the highest impact
velocities. (b) Evolution of hp along 1T , for different substrates, with the same impact
velocity (2.6 m s−1) and drop radius (1.9 mm). For a given temperature, the more
conductive the substrate, the thicker the ice layer. (c) Evolution of hp with 1T for different
drop radius, on the same substrate (steel) and at the same velocity (2.6 m s−1). The
smaller the drop the less it freezes. (d) Rescaling of the measurements against the model:
the measured diffusivity of the solidification front, h2

p/τSCL is plotted against the effective
diffusion coefficient obtained through the previously described model ((2.6) and (2.10)).
The dashed line has a slope 1.

(figure 5d). (iii) The drop impact velocity is slower (figure 6a), or the drop size is
smaller (figure 6c), because the spread drop stays freezing longer before retracting
(figure 5b,c).

We can now compare our experimental results to our theoretical model. Figure 6(d)
presents the variation of h2

p/τSCL, which represents the experimental diffusion
coefficient of the solidification front, as a function of the theoretical diffusion
coefficient Deff , for all the substrate materials, substrate temperatures, drop sizes
and impact velocities investigated experimentally. The substrate temperature ranges
from −5 ◦C to −80 ◦C, which yields a Stefan number ranging from approximately
10−2 to 1. We observe a nice collapse of all the data into a straight line of slope 1.
We can therefore conclude that the ice pancake thickness is well described by the
expression

h2
p 'Deff τSCL. (3.2)
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Together with the formula obtained for the time τSCL (3.1), it provides the following
expression for the ice pancake thickness

h2
p 'Deff τSCL = 105Deff

η

γ

(
70+

Vtot

πR2
max

)
(3.3)

that accounts quantitatively for almost all of our experiments. This indicates clearly
that our simplified 1-D model describes correctly the dynamics and that the ice
pancake formation is controlled by the thermal diffusion during the unpinning time
of the remaining liquid film.

We observe that some experiments are not collapsing on the line with the
others. They appear particularly for an effective diffusive coefficient greater than
3.10−7 m2 s−1. This limit of our model probably comes from the hypothesis of
semi-infinite water in the freezing model. Indeed, if we estimate the thickness of the
water film at impact hexp

tot with the drop volume Vtot and the spreading radius Rmax,
we find hexp

tot ∼ Vtot/πR2
max ∼ 200 µm, with a drop of volume Vtot = 30 µL spreading

to a radius of Rmax = 7 mm. This thickness is smaller than the highest values of hp,
meaning that almost the whole water drop freezes during τSCL and the hypothesis of
semi-infinite water does not hold anymore.

4. Conclusion

By studying precisely the freezing of a drop impacting a cold substrate, we
have shown that the dynamics could be broken down into four phases. (1) A rapid
spreading of the drop that ends with a very thin ice layer on top of which a liquid
water layer is pinned. (2) A stillness period during which the water layer is almost at
rest, the ice layer growing by thermal exchange, and the contact angle of the liquid
layer relaxing. (3) Then, after the time τSCL, when the contact angle has reached
an unpinning threshold, the water film retracts on the ice layer until it reaches an
equilibrium state. (4) The last phase consists of the freezing of the remaining liquid,
forming the final ice pattern. The paper is devoted to the characterization of the
thermal dynamics during the second phase time τSCL when the contact line is pinned.
Our goal is to determine the subsequent thickness of the ice pancake, hp.

We have firstly developed a unidimensional solidification model that considers
the heat diffusion in the solid and in the ice coupled with the Stefan condition for
the solidification front. A dedicated experiment has been run in order to validate
this model, showing its relevance and checking its hypotheses, in particular the
one-dimensional geometry, the liquid initially taken at Tm, and the semi-infinite liquid
phase. This leads to the characterization of the diffusion front dynamics, that involves
the effective diffusion coefficient Deff .

We have observed that, over a large range of temperatures, τSCL is independent of
the temperature and of the substrate thermal parameters, proving that this phase is
controlled by the contact angle relaxation. We then have shown that hp corresponds
the ice growth during this time τSCL. These results lead to effective relations for τSCL

and hp ((3.1) and (3.3)), deduced both from experimental observations and theoretical
modelling.

This quantity hp has many practical interests since it provides an estimate of the
splat thickness formed by the impact. Controlling this thickness is thus crucial for
coating and 3-D printing technology (Lipson & Kurman 2013) and for predicting
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the further mechanical behaviour of the splat (Ghabache et al. 2016; de Ruiter et al.
2018). Our work provides therefore a general framework to model and study more
complex configurations such as multiple drop impacts for aeroplane icing or spray
coating (Chandra & Fauchais 2009).
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