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Integrals evaluated in terms of Catalan's constant

GRAHAM JAMESON and NICK LORD

Catalan's constant, named after E. C. Catalan (1814-1894) and usually
denoted by , is defined byG

G = ∑
∞

n = 0

(−1)n

(2n + 1)2
= 1 −

1
32

+
1
52 −  … .

It is, of course, a close relative of

∑
∞

n = 0

1
(2n + 1)2

= 3
4 ζ (2) =

π2

8
.

The numerical value is .  It is not known whether  is
irrational: this remains a stubbornly unsolved problem.  The best hope for a
solution might appear to be the method of Beukers [1] to prove the
irrationality of  directly from the series, but it is not clear how to adapt
this method to .

G ≈ 0.9159656 G

ζ (2)
G

A remarkable assortment of seemingly very different definite integrals
equate to , or are evaluated in terms of .  A compilation of no fewer than
eighty integral and series representations for , with proofs, is given by
Bradley [2].  Another compilation, based on Mathematica, is [3].  Here we
will present a selection of some of the simpler integrals and double integrals
that are evaluated in terms of , including a few that are actually not to be
found in [2] or [3]. 

G G
G

G

The most basic one is

∫
 1

0

tan−1 x
x

 dx = G, (1)

obtained at once by termwise integration of the series

tan−1 x
x

= ∑
∞

n = 0

(−1)n x2n

2n + 1
.

Termwise integration (for those who care) is easily justified.  Write

s2n (x) = ∑
n

r = 0

(−1)r x2r

2r + 1
.

Since the series is alternating, with terms decreasing in magnitude, we have

, where , so that

as .

tan−1x
x

= s2n(x) + r2n(x) |r2n (x)| ≤
x2n + 2

2n + 3
∫
 1
0 r2n (x) dx → 0

n → ∞
We now embark on a round trip of integrals derived directly from (1).

Most of them can be seen in [4], but we repeat them here for completeness.
First, the substitution  givesx = tan θ
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G = ∫
 π/4

0

θ
tan θ

 sec2 θ dθ = ∫
 π/4

0

θ
sin θ cos θ

 dθ. (2)

Since , (2) can be rewrittentan θ + cot θ =
1

sin θ cos θ

∫
 π/4

0
θ (tan θ + cot θ) dθ = G. (3)

The substitution  gives one of the most important equivalent forms:θ = 2φ

∫
 π/2

0

θ
sin θ

 dθ = ∫
 π/4

0

4φ
sin 2φ

 dφ = ∫
 π/4

0

2φ
sin φ cos φ

 dφ = 2G. (4)

We mention in passing that (4) can be rewritten in terms of the gamma
function.  Recall that by Euler's reflection formula, 

Γ (1 + x) Γ (1 − x) =
πx

sin πx
.

Substituting  in (4), we deduceθ = πx

∫
 1/2

0
Γ (1 + x) Γ (1 − x) dx =

2G
π

.

The substitution  in (1) gives at once x = e−t

G = ∫
 ∞

0
tan−1 (e−t) dt.

Next, we integrate by parts in (1), obtaining

G = [tan−1 x log x]1

0 − ∫
 1

0

log x
1 + x2

 dx.

The first term is zero, since  as , hencetan−1 x log x ∼ x log x → 0 x → 0+

∫
 1

0

log x
1 + x2

 dx = −G. (5)

Now substituting  in (5), we deducex = 1
y

∫
 ∞

1

log x
1 + x2

 dx = G. (6)

Substituting  in (6), we obtainx = ey

G = ∫
 ∞

0

y
1 + e2ye

y dy = ∫
 ∞

0

y
2 cosh y

 dy,

hence

∫
 ∞

0

x
cosh x

 dx = 2G.

Now substituting  in (6), we obtainx = tan θ

−G = ∫
 π/4

0

log tan θ
sec2 θ

 sec2 θ dθ = ∫
 π/4

0
log tan θ dθ. (7)
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Since , we can deduce
1 + cos θ
1 − cos θ

= cot2 θ
2

∫
 π/2

0
log

1 + cosθ
1 − cosθ

 dθ = −2 ∫
π/2

0
log tan

θ
2

 dθ = −4 ∫
π/4

0
log tanφ dφ = 4G.

This, in turn, leads to an interesting series representation.  Given the series

1
2

log
1 + x
1 − x

= ∑
∞

n = 0

x2n + 1

2n + 1

and the well-known identity

∫
 π/2

0
cos2n + 1 θ dθ = ∫

 π/2

0
sin2n + 1 θ dθ =

2.4. … . (2n)
1.3. … . (2n + 1)

, (8)

we deduce

2G = ∑
∞

n= 0

2.4. … .(2n)
1.3. … .(2n − 1)(2n + 1)2

= ∑
∞

n= 0

22n(n!)2

(2n)!(2n + 1)2
= ∑

∞

n= 0

22n

( )(2n + 1)2

.
2n
n

Using (8) again (but none of the earlier integrals), we now establish

∫
 π/2

0
sinh−1 (sin θ) dθ = G.

Write

an =
1.3. … . (2n − 1)

2.4. … . (2n)
.

By the binomial series,

1
(1 + x2)1/2 = ∑

∞

n = 0

(−1)n anx
2n.

Hence

sinh−1 x = ∫
 x

0

1
(1 + t2)1/2  dt = ∑

∞

n = 0

(−1)n an

2n + 1
 x2n + 1.

As above, 

∫
 π/2

0
sin2n + 1 θ dθ =

1
an (2n + 1)

,

so, by a neat cancellation of ,an

∫
 π/2

0
sinh−1 (sin θ) dθ = ∑

∞

n = 0

(−1)n

(2n + 1)2
= G.

We remark that the same method, applied to  delivers
the series 

sin−1 (sin θ) (= θ)

∑
∞

n = 0

1
(2n + 1)2

= ∫
 π/2

0
θ dθ =

π2

8
.
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Integrals of logsine type and applications
A further application of (7) is to integrals of the logsine type, of which

there are a rich variety.  We start by stating the most basic such integral,
which does not involve :G

∫
 π/2

0
log sin θ dθ = ∫

 π/2

0
log cos θ dθ = −

π
2

log 2. (9)

Our proof follows [5, p. 246].  The substitution  shows that the
two integrals are equal: denote them both by .  Also, the substitution

 gives .  Hence .
Now substituting  and using , we have

θ = π
2 − φ

I
θ = π − φ ∫

 π
π/2 log sin θ dθ = I 2I = ∫

 π
0 log sin θ dθ

θ = 2φ sin 2φ = 2 sin φ cos φ

2I = 2 ∫
 π/2

0
log sin 2φ dφ

= 2 ∫
 π/2

0
(log sin φ + log cos φ + log 2)  dφ

= 4I + π log 2,
hence (9).

Note that the equality of the two integrals in (9) (without knowing their
value) implies that .  Also, (9) can be restated neatly
as follows:

∫
 π/2
0 log tan θ dθ = 0

∫
 π/2

0
log (2 sin θ) dθ = ∫

 π/2

0
log (2 cos θ) dθ = 0.

The integral (9) has numerous equivalent forms.  For example, first
substituting  and then integrating by parts, we findx = sin θ

∫
 1

0

sin−1 x
x

 dx = ∫
 π/2

0
θ cot θ dθ = − ∫

 π/2

0
log sin θ dθ =

π
2

log 2.

Further equivalents, and a survey of Euler's work in this area, are given in
[6].

Catalan's constant enters the scene when we integrate from 0 to
instead of .  Let

π
4

π
2

IS = ∫
 π/4

0
log sin θ dθ,  IC = ∫

 π/4

0
log cos θ dθ.

Substituting , we have .  So by (9),
.  Meanwhile by (7), 

θ = π
2 − φ IC = ∫

 π/2
π/4 log sin θ dθ

IS + IC = ∫
 π/2
0 log sinθ dθ = −π

2 log2

IS − IC = ∫
 π/4

0
log tan θ dθ = −G.

So we conclude 

IS = −
1
2

G −
π
4

log 2,  IC =
1
2

G −
π
4

log 2. (10)
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Again there is a neat restatement:

∫
 π/4
0 log (2 sin θ) dθ = −1

2G,  ∫
 π/4
0 log (2 cos θ) dθ = 1

2G.
However, (10) will be more useful in the ensuing applications.

Alternatively, (9) and (10) can be derived from the series 

log(2 sinθ) = − ∑
∞

n= 1

1
n

cos2nθ,  log(2 cosθ) = ∑
∞

n= 1

(−1)n

n
cos2nθ

(for example see [7]); however, justification of termwise convergence is
more delicate in this case.

The substitution  delivers the following reformulation of (10)
in terms of the log function:

x = tan θ

∫
 1

0

log(1 + x2)
1 + x2

 dx = ∫
 π/4

0
log sec2θ dθ = −2 ∫

 π/4

0
log cosθ dθ =

π
2

log2 − G.

One can easily check that by substituting  and combining with (6) one
obtains

x = 1
y

∫
 ∞

1

log (1 + x2)
1 + x2

 dx = G +
π
2

log 2.

Now integrate by parts in (10): we find

∫
 π/4

0
log cos θ dθ = [θ log cos θ]π/4

0 + ∫
 π/4

0
θ

sin θ
cos θ

 dθ

= −
π
8

log 2 + ∫
 π/4

0
θ tan θ dθ,

so that

∫
 π/4

0
θ tan θ dθ =

1
2

G −
π
8

log 2, (11)

an identity not given in [2] or [3].  Similarly, or by (11) combined with (3),
we have .∫

 π/4
0 θ cot θ dθ = 1

2G + π
8 log 2

Next, write

I = ∫
 π/2

0
log (1 + sin θ) dθ = ∫

 π/2

0
log (1 + cos θ) dθ.

By (10) and the identity , we obtain1 + cos θ = 2 cos2 1
2θ

I = ∫
 π/2

0
(log 2 + 2 log cos 1

2θ) dθ

=
π
2

log 2 + 4 ∫
 π/4

0
log cos φ dφ

=
π
2

log 2 + 2G − π log 2

= 2G −
π
2

log 2, (12)
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another integral not given in [2] or [3].  Combining (12) and (9), we have
the pleasingly simple result

∫
 π/2

0
log(1 + cosecθ)dθ = ∫

 π/2

0
(log(1 + sinθ) − log sin θ)dθ = 2G, (13)

and of course the same applies with  replaced by .cosec θ sec θ
Writing , we deduce further(1 + sin θ) (1 − sin θ) = cos2 θ

∫
 π/2

0
log (1 − sin θ) dθ = 2 ∫

 π/2

0
log cos θ dθ − ∫

 π/2

0
log (1 + sin θ) dθ

= −2G −
π
2

log 2.

Integrating by parts in (12), we have

∫
 π/2

0
log (1 + sin θ) dθ = [θ log (1 + sin θ)]π/2

0 − J =
π
2

log 2 − J,

where

J = ∫
 π/2

0

θ cos θ
1 + sin θ

dθ,

hence

J = π log 2 − 2G.
Furthermore, the substitution  givesx = sin θ

∫
 1

0

sin−1 x
1 + x

 dx = J.

A further deduction from (10) is derived using the identity
:cos θ + sin θ = 2 cos (θ − π

4)

∫
 π/2

0
log (cos θ + sin θ) dθ = ∫

 π/2

0
(1
2

log 2 + log cos (θ −
π
4 )) dθ

=
π
4

log 2 + ∫
 π/4

−π/4
log cos φ dφ

=
π
4

log 2 + G −
π
2

log 2

= G −
π
4

log 2. (14)

Alternatively, (14) can be deduced from (12) and the identity
.  By (14) and (9), we have(cos θ + sin θ)2 = 1 + sin 2θ

∫
 π/2

0
log (1 + tan θ) dθ = ∫

 π/2

0
(log (cos θ + sin θ) − log cos θ) dθ

= G −
π
4

log 2 +
π
2

log 2

= G +
π
4

log 2, (15)
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and hence also, with the substitution ,x = tan θ

∫
 ∞

0

log (1 + x)
1 + x2

 dx = G +
π
4

log 2,

which is proved by a rather longer method in [2].
Of course,  can be replaced by  in (15).  With (12) and (13),

this means that we have found the values of , where
 can be any one of the six trigonometric functions.

tan θ cot θ
∫
π/2
0 log [1 + f (θ)] dθ

f (θ)
Yet further integrals can be derived by integrating by parts in (14) and

(15) (rather better with ):  we leave it to the reader to explore this.cot θ

Double integrals
An obvious double-integral representation of , not involving any

trigonometric or logarithmic functions, follows at once from the geometric

series.  For , we have .  Since

G

x, y ∈ [0,  1)
1

1 + x2y2
= ∑

∞

n = 0
(−1)n x2ny2n

∫
 1

0 ∫
 1

0
x2ny2ndx dy =

1
(2n + 1)2

,

termwise integration gives

∫
 1

0 ∫
 1

0

1
1 + x2y2

 dx dy = ∑
∞

n = 0

(−1)n

(2n + 1)2
= G. (16)

Termwise integration is justified as for (1).  (Alternatively, one stage of
integration immediately equates the double integral to (1).)

Substituting  and , we deducex = e−u y = e−v

G = ∫
 ∞

0 ∫
 ∞

0

e−ue−v

1 + e−2ue−2v
 du dv = ∫

 ∞

0 ∫
 ∞

0

1
2 cosh (u + v)

 du dv.

(This is really a pair of successive single-variable substitutions, not a full-
blooded two-variable one.)

Next we establish a much less transparent double-integral
representation:

∫
 π/2

0 ∫
 π/2

0

1
1 + cos θ cos φ

 dθ dφ = 2G. (17)

This, again, is not in [2] or [3].  It was given in [4], possibly its first
appearance.  Here we present a proof based on (2). We actually show

∫
 π/4

0 ∫
 π/4

0

1
1 + cos 2θ cos 2φ

 dθ dφ =
1
2

 G, (18)

from which (17) follows by substituting  and .  Writeθ = 2θ′ φ = 2φ′

J (θ) = ∫
 π/4

0

1
1 + cos 2θ cos 2φ

 dφ.

https://doi.org/10.1017/mag.2017.4 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2017.4


INTEGRALS EVALUATED IN TERMS OF CATALAN'S CONSTANT 45

Now

1 + cos2θ cos2φ

= (cos2θ + sin2θ)(cos2φ + sin2φ) + (cos2θ − sin2θ)(cos2φ − sin2φ)
= 2(cos2θ cos2φ + sin2θ sin2φ). (19)

The substitution  givest = tan φ

∫
 π/4

0

1
a2 cos2 φ + b2 sin2 φ

 dφ =
1
ab

tan−1 b
a

.

Applied with  and , this givesa = cos θ b = sin θ

J (θ) =
θ

2 sin cos θ
.

By (2), it follows that , which is (18).∫
 π/4
0 J (θ) dθ = 1

2G
Alternatively, substitute  and  in (16).  Again, (18)

is obtained after applying (19).  (This is the method of [4].)
x = tan θ y = tan φ

We now establish two further double integrals:

∫
 1

0 ∫
 1

0

1
2 − x2 − y2

 dx dy = G, (20)

∫
 1

0 ∫
 1

0

1
(x + y) (1 − x)1/2 (1 − y)1/2  dx dy = 4G. (21)

Result (21) is identity (44) in [2], achieved with some effort; we present a
somewhat simpler proof.  The substitution ,
reduces (21) to (20).  Denote the integral in (20) by .  Since the integrand
satisfies , the contributions with  and  are the
same, hence

x = 1 − u2 y = 1 − v2

I
f (y, x) = f (x, y) x ≤ y y ≤ x

I = 2 ∫
 1

0 ∫
 x

0

1
2 − x2 − y2

 dy dx.

Transform to polar coordinates:

I = ∫
 π/4

0 ∫
 sec θ

0

2r
2 − r2

 dr dθ.

Now

∫
 sec θ

0

2r
2 − r2

 dr = [− log (2 − r2)]sec θ
0 = log

2
2 − sec2 θ

and
2

2 − sec2 θ
=

2
1 − tan2 θ

=
tan 2θ
tan θ

,

so 

I = ∫
 π/4

0
(log tan 2θ − log tan θ) dθ.
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As seen in (9), . By (7), we
deduce that .     

∫
 π/4
0 log tan 2θ = 1

2 ∫
 π/2
0 log tan φ dφ = 0

I = G
The discussion site [8] gives the following variant of (20):

∫
 1

0 ∫
 1

0

1
4 − x2 − y2

 dx dy =
1
3

 G.

The method is similar, but the writer resorts to Mathematica for the final

stage, the integral ; with a bit of effort, this can be

deduced from our results above using the identity 

∫
 π/4

0
log( 4

4 − sec2θ )dθ
4

4 − sec2θ
=

2 sin 2θ cosθ
sin 3θ

.

Applications to elliptic integrals
The ‘complete elliptic integral of the first kind’ is defined, for

, by0 ≤ t < 1

K (t) = ∫
 π/2

0

1
(1 − t2 sin2 θ)1/2  dθ.

The value of  is given explicitly by a theorem of Gauss:K (t)

K (t) =
π

2M (1, t∗),

where  is the arithmetic-geometric mean of  and , and
.  Two quite different proofs of this theorem can be seen in

[9] and [10].  However, without any reference to Gauss's theorem, we can
apply (4) to evaluate .  Indeed, reversing the implied double
integral, we have , where

M (a, b) a b
t∗ = (1 − t2)1/2

∫
 1
0 K (t) dt

∫
 1
0 K (t) dt = ∫

 π/2
0 F (θ)

F (θ) = ∫
 1

0

1
(1 − t2 sin2 θ)1/2  dt.

Substituting , we havet sin θ = sin φ

F (θ) = ∫
 θ

0

1
cos φ

 
cos φ
sin θ

 dφ =
θ

sin θ
.

Hence, by (4), 

∫
 1

0
K (t) dt = 2G.

Of course, this really amounts to another double-integral representation of
.G

The ‘complete elliptic integral of the second kind’ is 

E (t) = ∫
 π/2

0
(1 − t2 sin2 θ)1/2

dθ.
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In the same way, we have , where∫
 1
0 E (t) = ∫

 π/2
0 G (θ) dθ

G (θ) = ∫
 1

0
(1 − t2 sin2 θ)1/2

dt

= ∫
 θ

0
cos φ 

cos φ
sin θ

 dφ

=
1

2 sin θ ∫
 θ

0
(1 + cos 2φ) dφ

=
θ

2 sin θ
+

1
2

cos θ,

hence

∫
 1

0
E (t) dt = G +

1
2

.

A generalisation: the function Ti2 (x)
Going back to the original integral in (1), we can define a function of

by considering the integral on .  The more or less standard notation is 
x

[0, x]

Ti2 (x) = ∫
 x

0

tan−1 t
t

 dt.

Clearly, .  Integrating termwise as in (1), we have for ,G = Ti2 (1) |x| ≤ 1

Ti2 (x) = x −
x3

32
+

x5

52 −  …  = ∑
∞

n = 0

(−1)n x2n + 1

(2n + 1)2
. (22)

This can be compared with ‘dilogarithm’ function .  We

remark that  appears in the evaluation .

Li2 (x) = ∑
∞

n = 1

xn

n2

G Li2 (i) = −1
8ζ (2) + iG

We can use (22) to calculate values for , for example|x| ≤ 1
Ti2 (1

2) ≈ 0.48722.

Since  for , we have tan (π
2

− θ) =
1

tan θ
 0 < θ < π

2

tan−1 x + tan−1 1
x

=
π
2

for .  This translates into a corresponding functional equation for
:

x > 0
Ti2 (x)

Ti2 (x) − Ti2 (1
x ) =

π
2

log x.

It is sufficient to prove this for .  Write .
Then

x ≥ 1 Ti2 (x) − Ti2 (1
x) = F (x)
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F (x) = ∫
 x

1/x

tan−1 t
t

 dt = ∫
 x

1/x

1
u

 tan−1 1
u

 du

= ∫
 x

1/x

1
u

 (π
2

− tan−1 u) du

= π log x − F (x) .
So for , we have the following series expansion in powers of :x > 1 1

x

Ti2 (x) =
π
2

log x +
1
x

−
1

32x3
+

1
52x5

−  … ,

showing very clearly the nature of  for large .Ti2 (x) x
Of course, the procedures that gave equivalent expressions for  can be

also applied to .  For example, the substitution  leads to
G

Ti2 (x) t = tan θ

Ti2 (x) =
1
2 ∫

 2 tan−1 x

0

θ
sin θ

 dθ.

Integration by parts and then again the substitution  givest = tan θ

Ti2 (x) = tan−1 x log x − ∫
 x

0

log t
1 + t2

 dt

= tan−1 x log x − ∫
 tan−1 x

0
log tan θ dθ.

As with the function , not many other explicit values of  are
known.  One, proved by ingenious methods in [2] (formula (33)), is:

Li2 (x) Ti2 (x)

Ti2 (2 − 3) =
2
3

G −
1
12

π log (2 + 3) .
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The answers to the Nemo page from November on measuring were:

1. Lawrence Binyon Song

2. Henry James The Portrait of a Lady Part II, Chapter 44

3. Emily Dickinson Life, CXVI

4. William Wordsworth The Cave at Staffa

5. Oliver Goldsmith The Good-Natured Man Act 2

6. WB Yeats The Dawn

Congratulations to Ian Anderson, Martin Lukarevski and Henry Ricardo on
tracking all of these down. This month we take another look at proof. The
quotations are to be identified by reference to author and work. Solutions are
invited to the Editor by 31st  May 2017.

1. What is now proved was once only imagined.

2. He proves by algebra that Hamlet's grandson is Shakespeare's
grandfather and that he himself is the ghost of his own father.

3. Life set me larger − problems −
Some I shall keep − to solve
Till Algebra is easier −
Or simpler proved − above −

Continued on page 68.
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