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Abstract
In the group testing problem the aim is to identify a small set of k∼ nθ infected individuals out of a pop-
ulation size n, 0< θ < 1. We avail ourselves of a test procedure capable of testing groups of individuals,
with the test returning a positive result if and only if at least one individual in the group is infected. The
aim is to devise a test design with as few tests as possible so that the set of infected individuals can be iden-
tified correctly with high probability. We establish an explicit sharp information-theoretic/algorithmic
phase transition minf for non-adaptive group testing, where all tests are conducted in parallel. Thus with
more than minf tests the infected individuals can be identified in polynomial time with high probability,
while learning the set of infected individuals is information-theoretically impossible with fewer tests. In
addition, we develop an optimal adaptive scheme where the tests are conducted in two stages.

2020 MSC Codes: 05C80, 60B20, 68P30

1. Introduction
1.1 Background andmotivation
Various intriguing combinatorial problems come as inference tasks where we are to learn a hid-
den ground truth by means of indirect queries. The goal is to get by with as small a number of
queries as possible. The ultimate solution to such a problem should consist of a positive algorith-
mic result showing that a certain number of queries suffice to learn the ground truth efficiently,
complemented by a matching information-theoretic lower bound showing that with fewer queries
the problem is insoluble, regardless of computational resources. Group testing is a prime exam-
ple of such an inference problem [6]. The objective is to identify within a large population of
size n a subset of k individuals infected with a rare disease. We presume that the number of
infected individuals scales as a power k= �nθ� of the population size with an exponent θ ∈ (0, 1),
a parametrization suited to modelling the pivotal early stages of an epidemic [39]. Indeed, since
early on in an epidemic test kits might be in short supply, it is vital to get themost diagnostic power
out of the least number of tests. To this end we assume that the test gear is capable of not merely
testing a single individual but an entire group. The test comes back positive if any one individual in
the group is infected and negative otherwise. While in non-adaptive group testing all tests are con-
ducted in parallel, in adaptive group testing test are conducted in several stages. In either case we
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are free to allocate individuals to test groups as we please. Randomization is allowed. What is the
least number of tests required so that the set of infected individuals can be inferred from the test
results with high probability? Furthermore, in adaptive group testing, what is the smallest depth of
test stages required? Closing the considerable gaps that the best prior bounds left, the main results
of this paper furnish matching algorithmic and information-theoretic bounds for both adaptive
and non-adaptive group testing. Specifically, the best prior information-theoretic lower bound
derives from the following folklore observation. Suppose that we conductm tests that each return
either ‘positive’ or ‘negative’. Then, to correctly identify the set of infected individuals, we need
the total number 2m of conceivable test results to asymptotically exceed the number

(n
k
)
of possi-

ble sets of infected individuals. Hence 2m � (1+ o(1))
(n
k
)
. Thus Stirling’s formula yields the lower

bound

mad = 1− θ

ln 2
nθ ln n, (1.1)

which applies to both adaptive and non-adaptive testing. On the positive side, a randomized non-
adaptive test design with

mDD ∼ max{θ , 1− θ}
ln2 2

nθ ln n (1.2)

tests exists from which a greedy algorithm called DD correctly infers the set of infected individuals
with high probability [24]. Clearly mad <mDD for all infection densities θ and mDD/mad → ∞ as
θ → 1. In addition, there is an efficient adaptive three-stage group testing scheme that asymp-
totically matches the lower bound mad [35]. We proceed to state the main results of the paper.
First, improving both the information-theoretic and the algorithmic bounds, we present optimal
results for non-adaptive group testing. Subsequently we show how the non-adaptive result can be
harnessed to perform adaptive group testing with the least possible number (1+ o(1))mad of tests
in only two stages.

1.2 Non-adaptive group testing
A non-adaptive test design is a bipartite graph G= (V ∪ F, E) with one vertex class V =Vn =
{x1, . . . , xn} representing individuals and the other class F = Fm = {a1, . . . , am} representing tests.
For a vertex v of G, let ∂v= ∂Gv denote the set of neighbours of v. Thus an individual xj takes part
in a test ai if and only if xj ∈ ∂ai. Since we can shuffle the individuals randomly, we may safely
assume that the vector σ ∈ {0, 1}V whose 1-entries mark the infected individuals is a uniformly
random vector of Hamming weight k. Furthermore, the test results induced by σ read

σ̂ ai = σ̂G,ai = max
x∈∂ai

σ x.

Hence, given σ̂ = σ̂G = (σ̂G,a)a∈F and G, we aim to infer σ . Thus we can represent an inference
procedure by a functionAG : {0, 1}m → {0, 1}n. The following theorem improves the lower bound
on the number of tests required for successful inference. Let

minf =minf(n, θ)=max
{

θ

ln2 2
,
1− θ

ln 2

}
nθ ln n. (1.3)

Theorem 1.1. For any 0< θ < 1, ε > 0 there exists n0 = n0(θ , ε) such that for all n> n0, all test
designs G with m� (1− ε)minf tests and for every functionAG : {0, 1}m → {0, 1}n, we have

P[AG(σ̂G)= σ ]< ε. (1.4)

Theorem 1.1 rules out both deterministic and randomized test designs and inference proce-
dures because (1.4) holds uniformly for all G and allAG. Thus no test design, randomized or not,
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with fewer than minf tests allows us to infer the set of infected individuals with a non-vanishing
probability. Since minf matches mDD from (1.2) for θ � 1/2, Theorem 1.1 shows that the positive
result from [24] is optimal in this regime. The following theorem closes the remaining gap by
furnishing an optimal positive result for all θ .

Theorem 1.2. For any 0< θ < 1, ε > 0 there is n0 = n0(θ , ε) such that for every n> n0 there exist a
randomized test design G comprising m� (1+ ε)minf tests and a polynomial-time algorithm SPIV
that, given G and the test results σ̂G outputs σ with high probability.

An obvious candidate for an optimal test design appears be a plain random bipartite graph.
In fact, prior to the present work the best known test design consisted of a uniformly random
bipartite graph where all vertices in Vn have the same degree �. In other words, every individ-
ual independently joins � random test groups. Applied to this random �-out test design the DD
algorithm correctly recovers the set of infected individuals in polynomial time provided that the
number of tests exceeds mDD from (1.2). However, mDD strictly exceeds minf for θ < 1/2. While
the random �-out test design with (1+ o(1))minf tests is known to admit an exponential-time
algorithm that successfully infers the set of infected individuals with high probability [12], we do
not know of a polynomial-time algorithm that solves this inference problem. Instead, to facilitate
the new efficient inference algorithm SPIV, the test design for Theorem 1.2 relies on a blend of a
geometric and a random construction that is inspired by recent advances in coding theory known
as spatially coupled low-density parity-check codes [19, 28]. Finally, for

θ � ln 2
1+ ln 2

≈ 0.41 (1.5)

the number minf of tests required by Theorem 1.2 matches the folklore lower bound mad from
(1.2) that applies to both adaptive and non-adaptive group testing. Hence in this regime adaptiv-
ity confers no advantage. By contrast, for θ > ln(2)/(1+ ln 2) the adaptive bound mad is strictly
smaller than minf. Consequently, in this regime at least two test stages are necessary to match the
lower bound. Indeed, the next theorem shows that two stages suffice.

1.3 Adaptive group testing
A two-stage test design consists of a bipartite graph G= (V , F) along with a second bipartite graph
G′ =G′(G, σ̂G)= (V ′, F′) with V ′ ⊂V that may depend on the test results σ̂G of the first test
design G. Hence the task is to learn σ correctly with high probability from G, σ̂G,G′ and the
test results σ̂G′ from the second stage while minimizing the total number |F| + |F′| of tests. The
following theorem shows that a two-stage test design and an efficient inference algorithm exist
that meet the multi-stage adaptive lower bound (1.1).

Theorem 1.3. For any 0< θ < 1, ε > 0 there is n0 = n0(θ , ε) such that for every n> n0 there exist
a two-stage test design with no more than (1+ ε)mad tests in total and a polynomial-time inference
algorithm that outputs σ with high probability.

Theorem 1.3 improves over [35] by reducing the number of stages from three to two, thus
potentially significantly reducing the overall time required to complete the test procedure [11, 30].
The proof of Theorem 1.3 combines the test design and efficient algorithm from Theorem 1.2
with ideas from [34]. The question of whether an ‘adaptivity gap’ exists for group testing, i.e.
if the number of tests can be reduced by allowing multiple stages, has been raised prominently
[6]. Theorems 1.1–1.3 answer this question comprehensively. While for θ � ln (2)/(1+ ln (2))≈
0.41 adaptivity confers no advantage, Theorem 1.1 shows that for θ > ln (2)/(1+ ln (2)) there is
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Figure 1. The phase transitions in group testing. The best previously known algorithm DD succeeds in the green region
but not in the blue region. The new algorithm SPIV succeeds in both the green and blue regions. The black line indi-
cates the non-adaptive information-theoretic thresholdminf, below which non-adaptive group testing is impossible. In the
red area even (multi-stage) adaptive inference is impossible. Finally, the two-stage adaptive group testing algorithm from
Theorem 1.3 succeeds in the purple region.

a widening gap between mad and the number minf of tests required by the optimal non-adaptive
test design. Further, Theorem 1.3 demonstrates that this gap can be closed by allowing merely two
stages. Figure 1 illustrates the thresholds from Theorems 1.1–1.3.

1.4 Discussion
The group testing problem was first raised in 1943, when Dorfman [16] proposed a two-stage
adaptive test design to test the US Army for syphilis. In a first stage disjoint groups of equal size
are tested. All members of negative test groups are definitely uninfected. Then in the second stage
the members of positive test groups get tested individually. Of course, this test design is far from
optimal for low infection rates, but Dorfman’s contribution triggered attempts to devise improved
test schemes. An initial combinatorial group testing, where the aim is to construct a test design
that is guaranteed to succeed on all vectors σ , attracted significant attention. This version of the
problem was studied, among others, by Erdős and Rényi [18], D’yachkov and Rykov [17] and
Kautz and Singleton [25]. Hwang [22] was the first to propose an adaptive test design that asymp-
totically meets the information-theoretic lower bound mad from (1.1) for all θ ∈ [0, 1]. However,
this test design requires an unbounded number of stages. Conversely, D’yachkov and Rykov [17]
showed that mad tests do not suffice for non-adaptive group testing. Indeed, m�min{�(k2), n}
tests are required non-adaptively, making individual testing optimal for θ > 1/2. For an excellent
survey of combinatorial group testing, see [6].

Since the early 2000s attention has shifted to probabilistic group testing, which we study here
as well. Thus, instead of asking for test designs and algorithms that are guaranteed to work for
all σ , we are content to recover σ with high probability. Berger and Levenshtein [9] presented a
two-stage probabilistic group testing design and algorithm requiring

mBL,ad ∼ 4nθ ln n

tests in expectation. Their test design, known as the Bernoulli design, is based on a random
bipartite graph where each individual joins every test independently with a carefully chosen
edge probability. For a fixed θ the number mBL,ad of tests is within a bounded factor of the
information-theoretic lower bound mad from (1.1), although the gap mad/mBL,ad diverges as
θ → 1. Unsurprisingly, the work of Berger and Levenshtein spurred efforts at closing the gap.
Mézard, Tarzia and Toninelli proposed a different two-stage test design whose first stage consists
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of a random bipartite graph called the constant weight design [31]. Here each individual inde-
pendently joins an equal number of random tests. For their two-stage design they obtained an
inference algorithm that gets by with about

mMTT,ad ∼ 1− θ

ln2 2
nθ ln n (1.6)

tests, a factor of 1/ ln 2 above the elementary boundmad. Conversely,Mézard, Tarzia and Toninelli
showed by means of the FKG inequality and positive correlation arguments that two-stage test
algorithms from a certain restricted class cannot beat the bound (1.6). Furthermore, Aldridge,
Johnson and Scarlett analysed non-adaptive test designs and inference algorithms [5, 24]. For the
Bernoulli test design their best efficient algorithm DD requires

mDD,Be ∼ e ·max{θ , 1− θ}nθ ln n

tests. For the constant weight design they obtained the bound mDD from (1.2). In addition, in
a previous article [12] we showed that on the constant weight design an exponential-time algo-
rithm correctly identifies the set of infected individuals with high probability if the number of tests
exceedsminf from (1.3). Furthermore, Scarlett [35] discovered the aforementioned three-stage test
design and polynomial-time algorithm that matches the universal lower bound mad from (1.1).
Finally, concerning lower bounds, in the case of a linear number k= �(n) of infected individuals,
Aldridge [4] showed via arguments similar to [31] that individual testing is optimal in the non-
adaptive case, while Ungar [38] proved that individual testing is optimal, even adaptively, once
k� (3− √

5)n/2.
A further variant of group testing is known as quantitative group testing or the coin weighing

problem. In this problem tests are assumed to not merely indicate the presence of at least one
infected individual but to return the number of infected individuals. Thus the tests are signifi-
cantly more powerful. For quantitative group testing with k infected individuals, Alaoui, Ramdas,
Krzakala, Zdeborová and Jordan [3] presented a test design with

mQGT ∼ 2
(
1+ (n− k) ln(1− k/n)

k ln(k/n)

)
k ln(n/k)
ln(k)

for k= �(n)

tests from which the set of infected individuals can be inferred in exponential time; the paper
actually deals with the slightly more general pooled data problem. However, no efficient algorithm
is known to come within a constant factor of mQGT. Indeed, the best efficient algorithm, due to
the same authors [2], requires �(k ln(n/k)) tests.

More broadly, the idea of harnessing random graphs to tackle inference problems has been
gaining momentum. One important success has been the development of capacity achieving lin-
ear codes called spatially coupled low-density parity-check (‘LDPC’) codes [28, 29]. The Tanner
graphs of these codes, which represent their check matrices, consist of a linear sequence of sparse
random bipartite graphs with one class of vertices corresponding to the bits of the codeword and
the other class corresponding to the parity checks. The bits and the checks are divided equitably
into a number of compartments, which are arranged along a line. Each bit of the codeword takes
part in random checks in a small number of preceding and subsequent compartments of checks
along the line. This combination of a spatial arrangement and randomness facilitates efficient
decoding by means of the belief propagationmessage passing algorithm. Furthermore, the general
design idea of combining a linear spatial structure with a random graph has been extended to other
inference problems. Perhaps the most prominent example is compressed sensing, that is, solving
an underdetermined linear system subject to a sparsity constraint [14, 15, 26, 27], where a variant
of belief propagation called approximate message passing matches an information-theoretic lower
bound from [40].

While in some inference problems, such as LDPC decoding or compressed sensing, the number
of queries required to enable an efficient inference algorithm matches the information-theoretic
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lower bound, in many other problems gaps remain. A prominent example is the stochastic block
model [1, 13, 32], an extreme case of which is the notorious planted clique problem [7]. For both
these models the existence of a genuine computationally intractable phase where the problem
can be solved in exponential but not in polynomial time appears to be an intriguing possibil-
ity. Further examples include code division multiple access [37, 41], quantitative group testing
[2], sparse principal component analysis [10] and sparse high-dimensional regression [33]. The
problem of solving the group testing inference problem on the test design from [24] could be
added to the list. Indeed, while an exponential-time algorithm (that reduces the problem to min-
imum hypergraph vertex cover) infers the set of infected individuals with high probability with
only (1+ ε)minf tests, the best known polynomial algorithm requires (1+ ε)mDD tests. Instead of
developing a better algorithm for the test design from [24], here we exercise the discretion of con-
structing a different test design that the group testing problem affords. The new design is tailored
to enable an efficient algorithm SPIV for Theorem 1.2 that gets by with (1+ ε)minf tests. While
prior applications of the idea of spatial coupling such as coding and compressed sensing required
sophisticated message passing algorithms [19, 28, 29], the SPIV algorithm is purely combinatorial
and extremely transparent. The main step of the algorithm merely computes a weighted sum to
discriminate between infected individuals and ‘disguised’ healthy individuals. Furthermore, the
analysis of the algorithm is based on a technically subtle but conceptually clean large deviations
analysis. This technique of blending combinatorial ideas and large deviationsmethods with spatial
coupling promises to be an exciting route for future research. Applications might include noisy
versions of group testing, quantitative group testing or the coin weighing problem [2]. Beyond
these immediate extensions, it would be most interesting to see if the SPIV strategy extends to
other inference problems for sparse data. Clearly our algorithm is not currently practical for typi-
cally small problem sizes. But experience shows that such theoretical results often havemeaningful
practical bearing. A prominent case is that of spatially coupled LDPC and polar codes [8]. After
being theoretically studied in the coding community, they today underlie the mobile communica-
tion standards 4G and 5G [36]. Another example is the ellipsoid method [20]. The opportunity to
solve linear programs in polynomial time caused a lot of excitement within theoretical and prac-
tical research. We view the experimental study of group testing algorithms as an interesting next
research step and are optimistic that (a variant of) the SPIV algorithm can lead to a corresponding
success story for efficient and practical decoding in group testing.

1.5 Organization
After collecting some preliminaries and introducing notation in Section 2, we prove Theorem 1.1
in Section 3. Section 4 then deals with the test design and the inference algorithm for Theorem 1.2.
Finally, in Section 5 we prove Theorem 1.3.

2. Preliminaries
As we saw in Section 1.2, a non-adaptive test design can be represented by a bipartite graph G=
(V ∪ F, E), with one vertex class V representing the individuals and the other class F representing
the tests. We refer to the number |V| of individuals as the order of the test design and to the
number |F| of tests as its size. For a vertex v of G we let ∂Gv denote the set of neighbours. Where G
is apparent from the notation we just write ∂v. Furthermore, for an integer k� |V| we let σG,k =
(σG,k,x)x∈V ∈ {0, 1}V denote a random vector of Hamming weight k. Additionally, we let

σ̂G,k = (σ̂G,k,a)a∈F ∈ {0, 1}F with σ̂G,k,a = max
x∈∂Ga

σG,k,x (2.1)

be the associated vector of test results. Where G and/or k are apparent from the context, we drop
them from the notation. More generally, for a given vector τ ∈ {0, 1}V we introduce a vector τ̂G =
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(τ̂G,a)a∈F by letting τ̂G,a =maxx∈∂Ga τx, just as in (2.1). Furthermore, for a given τ ∈ {0, 1}V we let
V0(G, τ )= {x ∈V : τx = 0}, V1(G, τ )= {x ∈V : τx = 1},
F0(G, τ )= {a ∈ F : τ̂G,a = 0}, F1(G, τ )= {a ∈ F : τ̂G,a = 1}

be the set of healthy and infected individuals, respectively the set of negative and positive tests.
The Kullback–Leibler divergence of p, q ∈ (0, 1) is denoted by

DKL(q‖p)= q ln
(
q
p

)
+ (1− q) ln

(
1− q
1− p

)
.

We will occasionally apply the following Chernoff bound.

Lemma 2.1 (Theorem 2.1 of [23]). Let X be a binomial random variable with parameters N, p.
Then

P[X � qN]� exp(−NDKL(q‖p)) for p< q< 1, (2.2)

P[X � qN]� exp(−NDKL(q‖p)) for 0< q< p. (2.3)

In addition, we recall that the hypergeometric distributionHyp(L,M,N) is defined by

P[Hyp(L,M,N)= k]=
(
M
k

)(
L−M
N − k

)(
L
N

)−1
(k ∈ {0, 1, . . . ,M ∧N}).

Hence, out of a total of L items of which M are special, we draw N items without replacement
and count the number of special items in the draw. The mean of the hypergeometric distri-
bution equals MN/L. It is well known that the Chernoff bound extends to the hypergeometric
distribution.

Lemma 2.2 ([21]). For a hypergeometric variable X∼Hyp(L,M,N), the bounds (2.2)–(2.3) hold
with p=M/L.

Throughout the paper we use asymptotic notation o( · ),ω( · ),O( · ),�( · ),�( · ) to refer
to limit n→ ∞. It is understood that the constants hidden in, for example, a O( · )-term may
depend on the density parameter θ or other parameters. Furthermore, we say that a statement
holds with high probability if it holds with probability 1− o(1). Moreover, for two numbers a, b
we abbreviate min{a, b} = a∧ b, whereas for two events A, B we let A∧ B denote the event of A
and B occurring.

3. The information-theoretic lower bound
In this section we prove Theorem 1.1. Section 3.1 contains a proof outline stating the main steps
towards the proof of Theorem 1.1. Subsequently, we proceed with the proofs of these steps in
Sections 3.2 and 3.3. The proof combines techniques based on the FKG inequality and positive
correlation that were developed in [6] and [31] with new combinatorial ideas. Throughout this
section we fix a number θ ∈ (0, 1) and we let k= �nθ�.

3.1 Outline
The starting point is a simple and well-known observation. Namely, for a test design G=Gn,m =
(Vn, Fm) and a vector τ ∈ {0, 1}Fm of test results, let

Sk(G, τ )=
{
σ ∈ {0, 1}Vn :

∑
x∈Vn

σx = k, σ̂G = τ

}
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be the set of all possible vectors σ of Hamming weight k that give rise to the test results τ , i.e. the
satisfying set [6]. Further, let Zk(G, τ )= |Sk(G, τ )| be the number of such vectors σ . Also recall
that σ = σG,k ∈ {0, 1}Vn is a random vector of Hamming weight k and that σ̂ = σ̂G,k comprises
the test results that σ renders under the test design G. We observe that the posterior of σ given σ̂

is the uniform distribution on Sk(G, σ̂ ).

Fact 3.1. For any G, σ ∈ {0, 1}Vn we have

P[σ = σ | σ̂ ]= 1{σ ∈ Sk(G, σ̂ )}/Zk(G, σ̂ ).

As an immediate consequence of Fact 3.1, the success probability of any inference scheme
AG : {0, 1}Fm → {0, 1}Vn is bounded by 1/Zk(G, σ̂ ). Indeed, an optimal inference algorithm is to
simply return a uniform sample from Sk(G, σ̂ ).

Fact 3.2. For any test design G and for anyAG : {0, 1}Fm → {0, 1}Vn , we have

P[AG(σ̂ )= σ | σ̂ ]� 1/Zk(G, σ̂ ).

Hence, in order to prove Theorem 1.1, we just need to show that Zk(G, σ̂ ) is large for any test
design G with m< (1− ε)minf tests. In other words, we need to show that with high probability
there are many vectors σ ∈ Sk(G, σ̂ ) that give rise to the test results σ̂ .

We obtain these σ by making diligent local changes to σ . More precisely, we identify two sets
V0+ =V0+(G, σ ), V1+ =V1+(G, σ ) of individuals whose infection status can be flipped without
altering the test results. Specifically, following [4] we call an individual x ∈Vn disguised if every
test a ∈ ∂Gx contains another individual y ∈ ∂Ga \ {x} with σ y = 1. Let V+ =V+(G, σ ) be the set
of all disguised individuals. Moreover, let

V0+ =V0+(G, σ )= {x ∈V+ : σ x = 0}, V1+ =V1+(G, σ )= {x ∈V+ : σ x = 1}. (3.1)

Hence V0+ is the set of all healthy disguised individuals while V1+ contains all infected disguised
individuals.

Fact 3.3. We have Zk(G, σ̂ )� |V0+(G, σ )| · |V1+(G, σ )|.

Proof. For a pair (x, y) ∈V0+(G, σ )×V1+(G, σ ), obtain τ from σ by letting τ x = 1, τ y = 0 and
τ z = σ z for all z �= x, y. Then τ has Hamming weight k and τ̂G = σ̂ . Thus τ ∈ Sk(G, σ̂ ). �

Hence an obvious proof strategy for Theorem 1.1 is to exhibit a large number of disguised
individuals. A similar strategy has been pursued in the proof of the conditional lower bound of
Mézard, Tarzia and Toninelli [31] and the proof of Aldridge’s lower bound for the linear case
k= �(n) [4]. Both [4] and [31] exhibit disguised individuals via positive correlation and the FKG
inequality. However, while in [4] it sufficed to find one disguised individual to yield a constant
error probability for any algorithm, the polynomially small prior in the sublinear regime requires
us to find an enormous number of disguised individuals, ω(n/k) to be precise. We do not see how
to stretch the arguments in [4] and [31] to obtain the desired lower bound for all θ ∈ (0, 1). Yet
for θ extremely close to one it is possible to combine the positive correlation argument with new
combinatorial ideas to obtain the following.

Proposition 3.1. For any ε > 0 there exists θ0 = θ0(ε)< 1 such that for every θ ∈ (θ0, 1) there exists
n0 = n0(θ , ε) such that, for all n> n0 and all test designs G=Gn,m with m� (1− ε)minf, we have

P[|V0+(G, σ )| ∧ |V1+(G, σ )|� ln n]> 1− ε.
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The proof of Proposition 3.1 can be found in Section 3.2. The second step towards Theorem 1.1
is a reduction from larger to smaller values of θ . Suppose we wish to apply a test scheme designed
for an infection density θ ∈ (0, 1) to a larger infection density θ ′ ∈ (θ , 1). Then we could dilute
the larger infection density by adding a large number of healthy ‘dummy’ individuals. A careful
analysis of this dilution process yields the following result. As the elementary lower bound (1.1)
coincides withminf for θ � ln(2)/(1+ ln 2), we need not worry about this regime.

Proposition 3.2. For any ln(2)/(1+ ln(2))< θ < θ ′ < 1, t > 0 there exists n0 = n0(θ , θ ′, t)> 0
such that, for every n> n0 and for every test design G of order n, there exist an integer n′ such
that

k= �nθ� = �n′ θ ′ �
and a test design G′ of order n′ with the same number of tests as G such that the following is true. Let
τ ∈ {0, 1}Vn′ be a random vector of Hamming weight k and let τ̂ a =maxx∈∂G′a τ x comprise the test
results of G′. Then

P[Zk(G, σ̂ )� t]� P[Zk(G′, τ̂ )� t].

Hence, if a test design exists for θ < θ ′ that beats minf(n, θ), then there is a test design for
infection density θ ′ that beats minf(n′, θ ′). We prove Proposition 3.1 in Section 3.2. Theorem 1.1
is an easy consequence of Propositions 3.1 and 3.2.

Proof of Theorem 1.1. For θ � ln(2)/(1+ ln(2)) the assertion follows from the elementary lower
bound (1.1). Hence, fix ε > 0 and assume for contradiction that some θ ∈ ( ln(2)/(1+ ln(2)), 1)
for infinitely many n admits a test design G of order n and size m� (1− ε)minf(n, θ) such that
P[Zk(G, σ̂G)� 1/ε]� ε. Then Proposition 3.2 shows that, for θ ′ > θ arbitrarily close to one for
an integer n′ with k= �n′ θ ′ �, a test design G′ =Gn′,m exists such that

P[Zk(G′, τ̂ )� 1/ε]� ε. (3.2)
Furthermore, (1.3) shows that for large n

minf(n′, θ ′)= θ ′

ln2 2
n′ θ ′

ln n′ = θ + o(1)
ln2 2

nθ ln n= (1+ o(1))minf(n, θ).

Hence the number m of tests of G′ satisfies m� (1− ε + o(1))minf(n′, θ ′). Thus (3.2) contradicts
Fact 3.3 and Proposition 3.1.

3.2 Proof of Proposition 3.1
Given a small ε > 0 we choose θ0 = θ0(ε) ∈ (0, 1) sufficiently close to one and fix θ ∈ (θ0, 1).
Additionally, pick ξ = ξ (ε, θ) ∈ (0, 1) such that

2(1− θ)< ξ < θε. (3.3)
We fix ε, θ , ξ throughout this section. To avoid the (mild) stochastic dependences that result from
the total number of infected individuals being fixed, instead of σ we will consider a vector χ ∈
{0, 1}Vn whose entries are stochastically independent. Specifically, every entry of χ equals one
with probability

p= k− √
k ln n
n

(3.4)

independently. Let χ̂G ∈ {0, 1}Fm be the corresponding vector of test results. The following lemma
shows that it suffices to estimate |V0+(G, χ)|, |V1+(G, χ)|, thus the number of disguised unin-
fected and infected individuals. Let G denote an arbitrary test design with individuals Vn =
{x1, . . . , xn} and tests Fm = {a1, . . . , am}.
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Lemma 3.3. There is n0 = n0(θ , ε) such that, for all n> n0 and for all G with m�minf, the
following is true:

if P[|V0+(G, χ)| ∧ |V1+(G, χ)|� 2 ln n]> 1− ε/4,

then P[|V0+(G, σ )| ∧ |V1+(G, σ )|� ln n]> 1− ε.

Proof. Let

X =
{
k− 2

√
k ln n�

∑
x∈Vn

χx � k
}
.

The Chernoff bound shows that for large enough n,

P[X ]> 1− η/4. (3.5)

Further, given X we can couple χ , σ such that the latter is obtained by turning k− ∑
x∈Vn χx

random zero entries of the former into ones. Since turning zero entries into ones can only increase
the number of disguised individuals, on X we have

V1+(G, σ )�V1+(G, χ). (3.6)

Of course, it is possible that |V0+(G, σ )| < |V0+(G, χ)|. But since on X the two vectors σ , χ differ
in no more than 2

√
k ln n entries, we obtain the bound

E[|V0+(G, χ)| − |V0+(G, σ )| |X ]� 2
√
k ln n

n− k
|V0+(G, χ)| < n−1/3|V0+(G, χ)|,

provided n is sufficiently large. Hence Markov’s inequality shows that for large enough n

P[|V0+(G, χ)| − |V0+(G, σ )| > |V0+(G, χ)|/2 |X ]< ε/4. (3.7)

Combining (3.5), (3.6) and (3.7) completes the proof. �

As a next step we show that there is no point in having very big tests a that contain more than,
say,  = (n, θ)= n1−θ ln n individuals. This is because in any case all such tests are positive
with high probability, so there is little point in actually conducting them. Indeed, the following
lemma shows that with high probability all tests of very high degree contain at least two infected
individuals.

Lemma 3.4. There exists n0 = n0(θ , ε)> 0 such that, for all n> n0 and all test designs G with
m�minf tests,

P[∃a ∈ Fm : |∂Ga| >  ∧ |∂Ga∩V1(G, χ)|� 1]< ε/8.

Proof. Consider a test a of degree γ = |∂Ga|� . Because in χ each of the γ individuals that take
part in a is infected with probability p independently, we have

P[|∂Ga∩V1(G, σ )|� 1]= P[Bin(γ , p)� 1]

= (1− p)γ + γ p(1− p)γ−1

� (1+ γ p/(1− p)) exp(− γ p)

= no(1)−1. (3.8)

Since m�minf =O(nθ ) for a fixed θ < 1, the assertion follows from (3.8) and the union
bound. �
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Let G∗ be test design obtained from G=Gn,m by deleting all tests of degree larger than
. If indeed every test of degree at least  contains at least two infected individuals, then
V0+(G∗, χ)=V0+(G, χ) and V1+(G∗, χ)=V1+(G, χ). Hence Lemma 3.4 shows that it suffices
to bound |V0+(G∗, χ)|, |V1+(G∗, χ)|. To this end we observe that G∗ contains few individuals of
very high degree.

Lemma 3.5. There is n0 = n0(θ , ε)> 0 such that, for all n> n0 and all test designs G with m�minf,
we have

|{x ∈Vn : |∂G∗x| > ln3 n}|� n ln ln n
ln n

.

Proof. Since maxa∈Fm |∂G∗a|�  = n1−θ ln n, double counting yields∑
x∈Vn

|∂G∗x| =
∑
a∈Fm

|∂G∗a|�minf =O(n ln2 n).

Consequently there are no more than O(n/ ln n) individuals x ∈Vn with |∂G∗x| > ln3 n. �

Further, obtainG(0) fromG∗ by deleting all individuals of degree greater than ln3 n (but keeping
all tests). Then the degrees of G(0) satisfy

max
a∈F(G(0))

|∂G(0)a|� , max
x∈V(G(0))

|∂G(0)x|� ln3 n. (3.9)

Let χ (0) = (χx)x∈V(G(0)) signify the restriction of χ to the individuals that remain in G(0).
With these preparations in place we are ready to commence the main step of the proof of
Proposition 3.1. Given a test design G withm� (1− ε)minf, we are going to construct a sequence
y1, y2, . . . , yN , N = �n1−ξ�, of individuals of G(0) such that each yi individually has a moderately
high probability of being disguised. Of course, to conclude that in the end a large number of dis-
guised yi actually materialize, we need to cope with stochastic dependences. To this end we will
pick individuals yi that have pairwise distance at least five inG(0). The degree bounds (3.9) guaran-
tee a sufficient supply of such far apart individuals. To be precise, starting fromG(0) we construct a
sequence of test designs G(1),G(2), . . . ,G(N) inductively as follows. For each i� 1 select a variable
yi−1 ∈V(G(i−1)) whose probability of being disguised is maximum; ties are broken arbitrarily. In
formulas,

P[yi−1 ∈V+(G(i−1), χ (i−1))]= max
y∈V(G(i−1))

P[y ∈V+(G(i−1), χ (i−1))],

where, of course, χ (i−1) is the only random object. Then obtain G(i) from G(i−1) by removing yi−1
along with all vertices (i.e. tests or individuals) at distance at most four from yi−1. Moreover, let
χ (i) denote the restriction (χx)x∈V(G(i)) of χ toG(i). The following lemma estimates the probability
of yi being disguised. Letm∗ = |F(G∗)| be the total number of tests of G of degree at most .

Lemma 3.6. There exists n0 = n0(ε, θ , ξ ) such that, for all n> n0 and all G with m� (1− ε)minf,
we have

min
1�i�N

P[yi ∈V+(G(i))]� exp
(

−m ln2 2
nθ

− 1
)
.

The proof of Lemma 3.6 requires three intermediate steps. First we need a lower bound on the
number of individuals in G(i). Recall that N = �n1−ξ�.

Claim 1. We havemin0�i�N |V(G(i))|� n−N2 ln6 n.
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Proof. Since throughout the construction of the G(i) we only delete vertices, the degree bound
(3.9) implies

max
a∈F(G(i))

|∂G(i)a|�  = n1−θ ln n, max
x∈V(G(i))

|∂G(i)x|� ln3 n for all i�N. (3.10)

We now proceed by induction on i. For i= 0 there is nothing to show. Going from i to i+ 1�N,
we notice that because all individuals x ∈V(G(i)) \V(G(i+1)) have distance at most four from yi+1,
(3.10) ensures that

|V(G(i)) \V(G(i+1))|� 2 ln6 n. (3.11)

Iterating (3.11), we obtain |V(G(0)) \V(G(i+1))|� (i+ 1)2 ln6 n, whence |V(G(i+1))|� n− (i+
1)2 ln6 n. �

The following claim resembles the proof of [4, Theorem 1] (where the case k= �(n) is
considered).

Claim 2. Let D(i)(x)= {x ∈V+(G(i))} and let
L(i) = 1

|V(G(i))|
∑

x∈V(G(i))

ln P[D(i)(x)]. (3.12)

Then

L(i) � |F(G(i))|
|V(G(i))| min

a∈F(G(i))
|∂G(i)a| ln(1− (1− p)|∂G(i)a|−1). (3.13)

Proof. For an individual x ∈V(G(i)) and a test a ∈ ∂G(i)x, let D(i)(x, a) be the event that there is
another individual z ∈ ∂G(i)a \ {x} such that χ z = 1. Then for every x ∈V(G(i)) we have

P[D(i)(x)]= P

[ ⋂
a∈∂G(i)x

D(i)(x, a)
]
. (3.14)

Furthermore, the events D(i)(x, a) are increasing with respect to χ because having more infected
individuals can only increase the probability of being disguised. As the FKG inequality shows that
a family of increasing events are mutually positively correlated, we have

P[D(i)(x)]�
∏

a∈∂G(i)x
P[D(i)(x, a)]. (3.15)

Moreover, because each entry of χ is one with probability p independently, we obtain

P[D(i)(x, a)]= 1− (1− p)|∂G(i)a|−1. (3.16)

Finally, combining (3.14)–(3.16), we obtain

|V(G(i))|L(i) �
∑

x∈V(G(i))

∑
a∈F(G(i))

1{a ∈ ∂G(i)x} ln(1− (1− p)|∂G(i)a|−1)

=
∑

a∈F(G(i))

|∂G(i)a| ln(1− (1− p)|∂G(i)a|−1)

� |F(G(i))| min
a∈F(G(i))

|∂G(i)a| ln(1− (1− p)|∂G(i)a|−1),

as claimed. �
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As a final preparation for the proof of Lemma 3.6 we need the following estimate. Since it is
suboptimal in a group testing scheme to test specific individuals separately (see e.g. the argument
in [6]), we can assume the test size to be of size 2 or larger.

Claim 3. Given p= p(n) as in (3.4), let z∗ = z∗(p, n) be the unique minimum of the function z ∈
[2,∞) �→ z ln(1− (1− p)z−1). Then we find z∗ = (1+O(n−�(1))) ln(2)/p.

Proof. We consider three separate cases.

Case 1: z = o(1/p). We obtain
z ln(1− (1− p)z−1)= z ln(1− exp(−pz +O(p2z)))

= z ln(1− (1− pz +O(p2z2)))

= z
ln
(zp+O(zp)2)

= o(1/p). (3.17)

Case 2: z = ω(1/p). We find
z ln(1− (1− p)z−1)= z ln(1− exp (−pz +O(p2z)))

= −z(exp(− pz)+O(exp(− 2pz)))

= −1
p
pz(exp(−pz)+ exp(−2pz))

= o(1/p). (3.18)

Case 3: z = �(1/p). Letting d = zp, we obtain

z ln(1− (1− p)z−1)= d
p
ln(1− exp(−d +O(p)))

= d
p
ln(1− exp(−d))+O(1). (3.19)

Since the function d ∈ (0,∞) �→ d ln(1− exp(− d)) attains its unique minimum at d = ln 2,
(3.19) dominates (3.17) and (3.18). Thus the minimizer reads z = ln(2)/p+O(p−1/2). �

Proof of Lemma 3.6. Combining Claims 2 and 3, we see that for all test designs G with m�
(1− ε)minf and for all i�N,

L(i) �−(1+O(n−�(1)))
|F(G(i))| ln2 2

|V(G(i))|p �−(1+O(n−�(1)))
m ln2 2

|V(G(i))|p .

Hence Claim 1, (3.3) and the choice p= (k+ √
k ln n)/n imply that for all i�N

L(i) �−(1+O(n−�(1)))
m ln2 2

(n−N�2 ln6 n)p
�−(1+O(n−�(1)))

m ln2 2
nθ

. (3.20)

Further, combining the definition (3.12) of L(i) with (3.20), we conclude that for every i�N there
exists an individual yi ∈V(G(i)) such that

P[yi ∈V+(G(i))]= P[D(i)(yi)]� exp (L(i))� exp
(

−(1+O(n−�(1)))
m ln2 (2)

nθ

)
,

which implies the assertion.
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Lemma 3.6 implies the following bound on |V0+(G∗, χ)|, |V1+(G∗, χ)|.

Corollary 3.7. There exists n0 = n0(ε, θ , ξ ) such that, for all n> n0 and all G=Gn,m with m�
(1− ε)minf, we have

P[|V0+(G∗, χ)| ∧ |V1+(G∗, χ)| < ln4 n]< ε/8.

Proof. We observe that V+(G(i), χ)⊂V+(G∗, χ) for all i�N because, by construction, for
any individual x ∈V(G(i)) every test a ∈ ∂G∗x of G∗ that x belongs to is still present in G(i).
Consequently we obtain the bound

P[x ∈V+(G∗)]� P[x ∈V(G(i))] for all i ∈ [N], x ∈V(G∗). (3.21)
Combining (3.21) with Lemma 3.6, we obtain

P[y(i) ∈V+(G∗)]� exp(− ln2 (2)n−θm− 1)� exp(−(1− ε) ln2 (2)n−θminf − 1) for all i ∈ [N].
Hence, recalling the definition ofminf from (1.3), we obtain

P[y(i) ∈V+(G∗)]� exp(−(1− ε)θ ln(n)− 1)= n(ε−1)θ /e for all i ∈ [N]. (3.22)

Since the entryχy(i) is independent of the event {y(i) ∈V+(G∗)}, the definitions (3.1) ofV0+(G∗, χ)
and V1+(G∗, χ) and (3.22) yield

P[y(i) ∈V0+(G∗, χ)]� (1− p) · n
(ε−1)θ

e
� nεθ−1

3
,

P[y(i) ∈V1+(G∗, χ)]� p · n
(ε−1)θ

e
� nεθ−1

3
for all i ∈ [N],

provided n is sufficiently large. Therefore, recalling N = �n1−ξ�, we obtain for large enough n,

E|{y(1), . . . , y(N)} ∩V0+(G∗, χ)|� nεθ−ξ /3, E|{y(1), . . . , y(N)} ∩V1+(G∗, χ)|� nεθ−ξ /3.
(3.23)

Further, because the pairwise distances of y(1), . . . , y(N) in G∗ exceed four, the events {y(i) ∈
V0+(G∗, χ)}i�N aremutually independent. So are the events {y(i) ∈V1+(G∗, χ)}i�N . Finally, since
(3.3) ensures that εθ − ξ > 0, where the assumption of θ being close to 1 comes in, (3.23) and the
Chernoff bound yield

P[|{y(1), . . . , y(N)} ∩V0+(G∗, χ)|� ln2 n]� P[Bin(N, nεθ−1/3)� ln2 n]� exp(− n�(1)),

P[|{y(1), . . . , y(N)} ∩V1+(G∗, χ)|� ln2 n]� P[Bin(N, nεθ−1/3)� ln2 n]� exp(− n�(1)),
whence the assertion is immediate. �

Proof of Proposition 3.1. Suppose that n> n0(ε, θ , ξ ) is large enough and let G=Gn,m be a
test design with m� (1− ε)minf tests. If for every test a ∈ Fm of degree |∂Ga| >  we have
|∂Ga∩V1(G, χ)|� 2, then V0+(G, χ)=V0+(G∗, χ) and V1+(G, χ)=V1+(G∗, χ). Therefore the
assertion is an immediate consequence of Lemma 3.3, Lemma 3.4 and Corollary 3.7.

3.3 Proof of Proposition 3.2
Given ε > 0 and ln (2)/(1+ ln (2))� θ < θ ′ < 1, we choose a large enough n0 = n0(ε, θ , θ ′) and
assume that n> n0. Furthermore, letG be a test design withm� (1− ε)minf(n, θ) for the purpose
of identifying k= �nθ� infected individuals. Starting from the test design G infection for density
θ , we are going to construct a random test designG′ for infection density θ ′ with the same number
m of tests as G. The following lemma fixes the order of G′.
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Lemma 3.8. There exists an integer nθ/θ ′
/2� n′ � 2nθ/θ ′ ∧ n such that k′ = �n′ θ ′ � = k.

Proof. Let n′′ = �nθ/θ ′
/2�. Then (4n′′)θ ′

> k but n′′ θ ′
< k because the function z ∈ (1,∞) �→

zθ ′ has derivative less than one. For the same reason, for any integer n′′ <N < 4n′′ we have
(N + 1)θ ′ −Nθ ′ � 1 and thus

�(N + 1)θ
′ � − �Nθ ′ �� 1.

Consequently there exists an integer n′ ∈ (n′′, 4n′′) such that �n′ θ ′ � = k. �

Given the test designGwith individualsVn = {x1, . . . , xn} and tests Fm = {a1, . . . , am}, we now
construct the test design G′ as follows. Choose a subset V(G′)⊂Vn of n′ individuals uniformly at
random. Then G′ is the subgraph that G induces on V(G′)∪ Fm. Thus G′ has the same tests as G
but we simply leave out from every test the individuals that do not belong to the random subset
V(G′). Let τ ∈ {0, 1}V(G′) be a random vector of Hamming weight k and let τ̂ ∈ {0, 1}Fm be the
induced vector of test results

τ̂ a = max
x∈∂G′a

τ x (a ∈ Fm).

Lemma 3.9. For any integer t > 0 we have

P[Zk(G, σ̂ )� t]� P[Zk(G′, τ̂ )� t].

Proof. The choice of n′ ensures that k′ = �n′ θ ′ � = k. Therefore the random sets {x ∈V : σ x = 1}
and {x ∈V(G′) : τ x = 1} are identically distributed. Indeed, we obtain the latter by first choosing
the random subset V(G′) of Vn and then choosing a random subset of V(G′) size k. Clearly this
two-step procedure is equivalent to just choosing a random subset of size k out of Vn. Hence
we can couple σ , τ such that the sets {x ∈V : σ x = 1}, {x ∈V : τ x = 1} are identical. Then the
construction of G′ ensures that the vectors σ̂ , τ̂ coincide as well.

Now consider a vector σ ′ ∈ Sk(G′, τ̂ ) that explains the test results. Extend σ ′ to a vec-
tor σ ∈ {0, 1}Vn by setting σx = 0 for all x ∈Vn \V(G′). Then σ ∈ Sk(G, σ̂ ). Hence Zk(G, σ̂ )�
Zk(G′, τ̂ ). �

Proof of Proposition 3.2. Lemma 3.9 shows that for any t > 0

P[Zk(G, σ̂ )� t]� P[Zk(G′, τ̂ )� t]=E[P[Zk(G′, τ̂ )� t |G′]].

Consequently there exists an outcome G′ of G′ such that P[Zk(G, σ̂ )� t]� P[Zk(G′, τ̂ )� t].

4. The non-adaptive group testing algorithm SPIV
In this section we describe the new test design and the associated inference algorithm SPIV for
Theorem 1.2. Section 4.1 recaps the random bipartite testing scheme and state-of-the-art decoding
algorithms using this scheme, while Section 4.2 introduces the new spatially coupled test design
which comes with a polynomial-time decoding algorithm matching the information-theoretic
lower bound. Subsequently, Section 4.3 introduces the decoding algorithm and gives an outline
for proving its performance guarantees. Finally, Sections 4.4–4.10 contain the proofs of the asser-
tions stated in the outline. Throughout we fix θ ∈ (0, 1) and ε > 0, and we tacitly assume that
n> n0(ε, θ) is large enough for the various estimates to hold.

https://doi.org/10.1017/S096354832100002X Published online by Cambridge University Press

https://doi.org/10.1017/S096354832100002X


826 A. Coja-Oghlan, O. Gebhard, M. Hahn-Klimroth and P. Loick

4.1 The random bipartite graph and the DD algorithm
To motivate the new test design we begin with a brief discussion of the plain random design
used in prior work and the best previously known inference algorithm DD [12, 24]. At first glance
a promising candidate test design appears to be a random bipartite graph with one vertex class
Vn = {x1, . . . , xn} representing individuals and the other class Fm = {a1, . . . , am} representing
tests. Indeed, two slightly different random graph models have been proposed [6]. First, in the
Bernoulli model each Vn–Fm edge is present with a certain probability (the same for every pair)
independently of all others. However, due to the relatively heavy lower tail of the degrees of the
individuals, this test design turns out to be inferior to a second model where the degrees of the
individuals are fixed. Specifically, in the �-out model every individual independently joins an
equal number of� tests drawn uniformly at randomwithout replacement [31]. Clearly, in order to
extract the maximum amount of information, � should be chosen so as to maximize the entropy
of the vector of test results. Specifically, since the average test degree equals �n/m and a total of
k individuals are infected, the average number of infected individuals per test comes to �k/m.
Indeed, since k∼ nθ for a fixed θ < 1, the number of infected individuals in test ai can be well
approximated by a Poisson variable. Therefore, setting

� ∼ m
k
ln 2 (4.1)

ensures that about half the tests are positive with high probability. With respect to the perfor-
mance of the �-out model, [12, Theorem 1.1] implies together with Theorem 1.1 that this simple
construction is information-theoretically optimal. Indeed, m= (1+ ε + o(1))minf tests suffice so
that an exponential-time algorithm correctly infers the set of infected individuals. Specifically, the
algorithm solves a minimum hypergraph vertex cover problem with the individuals as the vertex
set and the positive test groups as the hyperedges. Form= (1+ ε + o(1))minf the unique optimal
solution is precisely the correct set of infected individuals with high probability. While the worst-
case NP-hardness of hypergraph vertex cover does not, of course, preclude the existence of an
algorithm that is efficient on random hypergraphs, despite considerable efforts no such algorithm
has been found. In fact, as we saw in Section 1.4, for a good number of broadly similar inference
and optimization problems on random graphs no efficient information-theoretically optimal algo-
rithms are known. But form exceeding the thresholdmDD from (1.2), an efficient greedy algorithm
DD correctly recovers σ with high probability. The algorithm proceeds in three steps.

DD1 Declare every individual that appears in a negative test uninfected and subsequently
remove all negative tests and all individuals that they contain.

DD2 For every remaining (positive) test of degree one, declare the individual that appears in
the test infected.

DD3 Declare all other individuals as uninfected.

The decisions made by the first two steps DD1–DD2 are clearly correct, but DD3might produce
false negatives. Prior to the present work DD was the best known polynomial-time group testing
algorithm. While DD correctly identifies the set of infected individuals with high probability if
m> (1+ ε)mDD [24], the algorithm fails ifm< (1− ε)mDD with high probability [12].

4.2 Spatial coupling
The new efficient algorithm SPIV for Theorem 1.2 that gets by with the optimal number (1+ ε +
o(1))minf of tests comes with a tailor-made test design that, inspired by spatially coupled codes
[19, 28, 29], combines randomization with a superimposed geometric structure. Specifically, we
divide both the individuals and the tests into

� = �ln1/2 n� (4.2)
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V [7] V [8] V [9] V [1] V [2] V [3] V [4] V [5] V [6]

F [7] F [8] F [9] F [1] F [2] F [3] F [4] F [5] F [6]
F [0] F [0] F [0]

· · · · · ·

Figure 2. The spatially coupled test design with n= 36, � = 9, s= 3. The individuals in the seed groups V[1]∪ · · · ∪ V[s]
(green) are equipped with additional test F[0] (green rectangles). The black rectangles represent the tests F[1]∪ · · · ∪ F[�].

compartments of equal size. The compartments are arranged along a ring, and each individual
joins an equal number of random tests in the

s= �ln ln n� = o(�) (4.3)

topologically subsequent compartments. Additionally, to get the algorithm started we equip the
first s compartments with extra tests so that they can be easily diagnosed via the DD algorithm.
Then, having diagnosed the initial compartments correctly, SPIV will work its way along the ring,
diagnosing one compartment after the other.

To implement this idea precisely we partition the set V =Vn = {x1, . . . , xn} of individuals into
pairwise disjoint subsets V[1], . . . ,V[�] of sizes |V[j]| ∈ {�n/��, �n/��}. With each compartment
V[i] of individuals we associate a compartment F[i] of tests of size |F[i]| =m/� for an integer m
that is divisible by �. Additionally, we introduce a set F[0] of 10�(ks/�) ln n� extra tests to facili-
tate the greedy algorithm for diagnosing the first s compartments. Thus the total number of tests
comes to

|F[0]| +
�∑

i=1
|F[i]| = (1+O(s/�))m= (1+ o(1))m. (4.4)

Finally, for notational convenience we define V[� + i]=V[i] and F[� + i]= F[i] for i= 1, . . . , s.
The test groups are composed as follows: let

k= �nθ� and let � = m ln 2
k

+O(s) (4.5)

be an integer divisible by s; see (4.1). Then we construct a random bipartite graph as follows.

SC1 For i= 1, . . . , � and j= 1, . . . , s every individual x ∈V[i] joins �/s tests from F[i+
j− 1] chosen uniformly at random without replacement. The choices are mutually
independent for all individuals x and all j.

SC2 Additionally, each individual from V[1]∪ · · · ∪V[s] independently joins �10 ln(2) ln n�
random tests from F[0], drawn uniformly without replacement.

Thus SC1 provides that the individuals in compartment V[i] take part in the next s compart-
ments F[i], . . . , F[i+ s− 1] of tests along the ring. Furthermore, SC2 supplies the tests required
by the DD algorithm to diagnose the first s compartments. Figure 2 provides an illustration of the
resulting random test design. From here on the test design produced by SC1–SC2 is denoted by
G. Furthermore σ ∈ {0, 1}V denotes a uniformly random vector of Hamming weight k, drawn
independently of G, and σ̂ = (σ̂ a)a∈F[0]∪···∪F[�] signifies the vector of test results

σ̂ a =max
x∈∂a

σ x.
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In addition, let V1 = {x ∈V : σ x = 1} be the set of infected individuals and let V0 =V \V1 be
the set of healthy individuals. Moreover, let F = F[0]∪ F[1]∪ · · · ∪ F[�] be the set of all tests, let
F1 = {a ∈ F : σ̂ a = 1} be the set of all positive tests and let F0 = F \ F1 be the set of all negative
tests. Finally, let

V0[i]=V[i]∩V0, V1[i]=V[i]∩V1, F0[i]= F[i]∩ F0, F1[i]= F[i]∩ F1.
The following proposition summarizes a few basic properties of the test design G.

Proposition 4.1. If m= �(nθ ln n), then G enjoys the following properties with probability
1− o(n−2).

(i) The infected individual counts in the various compartments satisfy

k
�

−
√
k
�
ln n�min

i∈[�]
|V1[i]|�max

i∈[�]
|V1[i]|� k

�
+

√
k
�
ln n.

(ii) For all i ∈ [�] and all j ∈ [s], the test degrees satisfy

�n
ms

−
√

�n
ms

ln n� min
a∈F[i+j−1]

|V[i]∩ ∂a|� max
a∈F[i+j−1]

|V[i]∩ ∂a|� �n
ms

+
√

�n
ms

ln n.

(iii) For all i ∈ [�], the number of negative tests in compartment F[i] satisfies
m
2�

− √
m ln3 n� |F0[i]|� m

2�
+ √

m ln3 n.

We prove Proposition 4.1 in Section 4.4. Finally, as a preparation for things to come, we point
out that, for any specific individual x ∈V[i] and any particular test a ∈ F[i+ j], j= 0, . . . , s− 1,
we have

P[x ∈ ∂a]= 1− P[x �∈ ∂a]= 1−
(|F[i+ j]| − 1

�/s

)(|F[i+ j]|
�/s

)−1
= ��

ms
+O

((
��

ms

)2)
. (4.6)

4.3 The spatial inference vertex cover (‘SPIV’) algorithm
The SPIV algorithm for Theorem 1.2 proceeds in three phases. The plan of attack is for the algo-
rithm to work its way along the ring, diagnosing one compartment after the other aided by what
has been learned about the preceding compartments. Of course, we need to start somewhere.
Hence in its first phase SPIV diagnoses the seed compartments V[1], . . . ,V[s].

4.3.1 Phase 1: the seed

Specifically, the first phase of SPIV applies the DD greedy algorithm from Section 4.1 to the sub-
graph ofG induced on the individualsV[1]∪ · · · ∪V[s] and the tests F[0]. Throughout the vector
τ ∈ {0, 1}V signifies the algorithm’s current estimate of the ground truth σ .

Algorithm 1: SPIV, phase 1.
1 Input: G, σ̂
2 Output: an estimate of σ
3 Let (τx)x∈V[1]∪···∪V[s] ∈ {0, 1}V[1]∪···∪V[s] be the result of applying DD to the tests F[0];
4 Set τx = 0 for all individuals x ∈V \ (V[1]∪ · · · ∪V[s]);

The following proposition, whose proof can be found in Section 4.5, summarizes the analysis
of phase 1.
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Proposition 4.2. With high probability the output of DD satisfies τx = σ x for all x ∈V[1]∪ · · ·
∪V[s].

4.3.2 Phase 2: enter the ring

This is the main phase of the algorithm. Thanks to Proposition 4.2 we may assume that the
seed has been diagnosed correctly. Now, the program is to diagnose one compartment after the
other, based on what the algorithm learned previously. Hence, assume that we managed to diag-
nose compartments V[1], . . . ,V[i] correctly. How do we proceed to compartment V[i+ 1]? For
a start, we can safely mark as uninfected all individuals in V[i+ 1] that appear in a negative
test. But a simple calculation reveals that this will still leave us with many more than k undiag-
nosed individuals with high probability. To be precise, consider the set of uninfected disguised
individuals

V0+[i+ 1]= {x ∈V0[i+ 1] : σ̂ a = 1 for all a ∈ ∂x},
that is, uninfected individuals that fail to appear in a negative test. In Section 4.6 we prove the
following.

Lemma 4.3. Suppose that (1+ ε)mad �m=O(nθ ln n). Then with high probability for all s� i< �

we have

|V0+[i+ 1]| = (1+O(n−�(1)))
n

�2�
.

Hence by the definition (4.5) of � for m close to minf the set V0+[i+ 1] has size k1+�(1) � k
with high probability. Thus the challenge is to discriminate between V0+[i+ 1] and the set
V1[i+ 1] of actual infected individuals in compartment i+ 1. The key observation is that we can
tell these sets apart by counting currently ‘unexplained’ positive tests. To be precise, for an individ-
ual x ∈V[i+ 1] and 1� j� s, letWx,j be the number of tests in compartment F[i+ j] that contain
x but do not contain an infected individual from the preceding compartments V[1]∪ · · · ∪V[i].
In formulas,

Wx,j = |{a ∈ ∂x ∩ F[i+ j] : ∂a∩ (V1[1]∪ · · · ∪V1[i])= ∅}|. (4.7)

Crucially, the following back-of-the-envelope calculation shows that the mean of this random
variable depends on whether x is infected or healthy but disguised.

Infected individuals (x ∈V1[i+ 1]). Consider a test a ∈ ∂x ∩ F[i+ j], j= 1, . . . , s. Because the indi-
viduals join tests independently, conditioning on x being infected does not skew the distribution
of the individuals from the s− j prior compartments V[i+ j− s+ 1], . . . ,V[i] that appear in a.
Furthermore, we chose � so that for each of these compartments V[h] the expected number of
infected individuals that join a has mean ( ln 2)/s. Indeed, due to independence it is not difficult
to see that |V1[h]∩ ∂a| is approximately a Poisson variable. Consequently

P[(V1[i+ j− s+ 1]∪ · · · ∪V1[i])∩ ∂a= ∅]∼ 2−(s−j)/s. (4.8)

Hence, because x appears in �/s tests a ∈ F[i+ j], the linearity of expectation yields

E[Wx,j | x ∈V1[i+ 1]]∼ 2j/s−1�

s
. (4.9)

Disguised healthy individual (x ∈V0+[i+ 1]). As above, for any individual x ∈V[i+ 1] and any a ∈
∂x ∩ F[i+ j], the unconditional number of infected individuals in a is asymptotically Po(ln 2).
But given x ∈V0+[i+ 1] we know that a is positive. Thus ∂a \ {x} contains at least one infected
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individual. In effect, the number of positives in a approximately turns into a conditional Poisson
Po�1(ln 2). Consequently, for test a not to include any infected individual from one of the known
compartments V[h], h= i+ j− s+ 1, . . . , i, every infected individual in test a must stem from
the j yet undiagnosed compartments. Summing up the conditional Poisson and recalling that x
appears in �/s tests a ∈ F[j], we thus obtain

E[Wx,j | x ∈V0+[i+ 1]]∼ �

s
∑
t�1

P[Po�1(ln 2)= t](j/s)t = (2j/s − 1)
�

s
. (4.10)

An initial idea to tell V0+[i+ 1] and V1[i+ 1] apart might thus be to simply calculate

Wx =
s−1∑
j=1

Wx,j (x ∈V[i+ 1]). (4.11)

Indeed, (4.9) and (4.10) yield

E[Wx | x ∈V1[i+ 1]]∼ �

2 ln 2
= 0.721 . . . �

whereas

E[Wx | x ∈V0+[i+ 1]]∼ �(1− ln 2)
ln 2

= 0.442 . . . �.

But unfortunately a careful large deviations analysis reveals that Wx is not sufficiently concen-
trated. More precisely, even for m= (1+ ε + o(1))minf there are as many as k1+�(1) ‘outliers’
x ∈V0+[i+ 1] whose Wx grows as large as the mean �/(2 ln 2) of actual infected individuals
with high probability. On consideration, the plain sum (4.11) does seem to leave something to be
desired. WhileWx counts all as yet unexplained positive tests equally, not all of these tests reveal
the same amount of information. In fact, we should really be payingmore attention to ‘early’ unex-
plained tests a ∈ F[i+ 1] than to ‘late’ ones b ∈ F[i+ s], for we have already diagnosed s− 1 out of
the s compartments of individuals that a draws on, whereas only one of the s compartments that
contribute to b has already been diagnosed. Thus the unexplained test a is a much stronger indica-
tion that x might be infected. Consequently, it seems promising to replaceWx with the weighted
sum

W�
x =

s−1∑
j=1

wjWx,j (4.12)

with w1, . . . ,ws−1 � 0 chosen so as to gauge the amount of information carried by the different
compartments.

To find the optimal weights w1, . . . ,ws−1, we need to investigate the rate function of W�
x

given x ∈V0+[i+ 1]. More specifically, we should minimize the probability that W�
x given x ∈

V0+[i+ 1] grows as large as the mean ofW�
x given x ∈V1[i+ 1], which we read off (4.9) easily:

E[W�
x | x ∈V1[i+ 1]]∼ �

s

s−1∑
j=1

2j/s−1wj. (4.13)

A careful large deviations analysis followed by a Lagrangian optimization leads to the optimal
choice

wj = ln
(1− 2ζ )2j/s−1(2− 2j/s)

(1− (1− 2ζ )2j/s−1)(2j/s − 1)
, where ζ = 1/s2. (4.14)
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The following two lemmas show that with these weights the scores W�
x discriminate well

between the potential false positives and the infected individuals. More precisely, thresholding
W�

x we end up misclassifying no more than o(k) individuals x with high probability. Recall that

� = m ln 2
k

+O(s).

Lemma 4.4. Suppose that (1+ ε)mad �m=O(nθ ln n). With high probability we have

∑
s�i<�

∑
x∈V1[i]

1
{
W�

x < (1− ζ/2)
�

s

s−1∑
j=1

2j/s−1wj

}
� k exp

(
− �( ln n)
( ln ln n)4

)
. (4.15)

Lemma 4.5. Suppose that (1+ ε)mad �m=O(nθ ln n). With high probability we have

∑
s�i<�

∑
x∈V0+[i]

1
{
W�

x > (1− 2ζ )
�

s

s−1∑
j=1

2j/s−1wj

}
� k1−�(1). (4.16)

We prove these two lemmas in Sections 4.7 and 4.8. Lemmas 4.4–4.5 leave us with only one
loose end. Namely, calculating the scores W�

x requires knowledge of the correct infection status
σ x of all the individuals x ∈V[1]∪ · · · ∪V[i] from the previous compartments. But since the
right-hand side expressions in (4.15) and (4.16) are non-zero, it is unrealistic to assume that the
algorithm’s estimates τx will consistently match the ground truth σ x beyond the seed compart-
ments. Hoping that the algorithm’s estimate will not stray too far, we thus have to make do with
the approximate scores

W�
x (τ )=

s−1∑
j=1

wjWx,j(τ ), whereWx,j(τ )=
∣∣∣∣{a ∈ ∂x ∩ F[i+ j− 1] : max

y∈∂a∩(V[1]∪···V[i])
τy = 0}

∣∣∣∣.
(4.17)

Hence phase 2 of SPIV reads as follows.

Algorithm 2: SPIV, phase 2.
3 for i= s, . . . , � − 1 do
4 for x ∈V[i+ 1] do
5 if ∃a ∈ ∂x : σ̂ a = 0 then
6 τx = 0 // classify as uninfected
7 else ifW�

x (τ )< (1− ζ )(�/s)
∑s−1

j=1 2j/s−1wj then
8 τx = 0 // tentatively classify as uninfected
9 else

10 τx = 1 // tentatively classify as infected

Since phase 2 of SPIV uses the approximations from (4.17), there seems to be a risk of errors
amplifying as we move along. Fortunately it turns out that errors proliferate only moderately
and the second phase of SPIV will misclassify only o(k) individuals. The following proposition
summarizes the analysis of phase 2.

Proposition 4.6. Suppose that (1+ ε)mad �m=O(k ln n). With high probability the assignment
τ obtained after steps 1–10 satisfies∑

x∈V
1{τx �= σ x}� k exp

(
− ln n
(ln ln n)6

)
.
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The proof of Proposition 4.6 can be found in Section 4.9.

4.3.3 Phase 3: cleaning up

The final phase of the algorithm rectifies the errors incurred during phase 2. The combinatorial
insight that makes this possible is that for m� (1+ ε)minf every infected individual has at least
�(�) positive tests to itself with high probability. Thus these tests do not feature a second infected
individual. Phase 3 of the algorithm exploits this observation by simply thresholding the number
Sx of tests where there is no other infected individual besides potentially x. Thanks to the expan-
sion properties of the graph G, each iteration of the thresholding procedure reduces the number
of misclassified individuals by at least a factor of three. In effect, after ln n iterations all individuals
will be classified correctly with high probability. Of course, due to Proposition 4.2 we do not need
to reconsider the seed V[1]∪ · · · ∪V[s].

Algorithm 3: SPIV, phase 3.
11 Let τ (1) = τ ;
12 for i= 1, . . . , �ln n� do
13 For all x ∈V[s+ 1]∪ · · · ∪V[�] calculate
14 Sx(τ (i))=

∑
a∈∂x : σ̂ a=1

1{∀y ∈ ∂a \ {x} : τ (i)y = 0};

15 Let τ (i+1)
x =

{
τ
(i)
x if x ∈V[1]∪ · · · ∪V[s],
1{Sx(τ (i))> ln1/4 n} otherwise

;

16 return τ (�ln n�)

Proposition 4.7. Suppose that (1+ ε)minf �m=O(nθ ln n). With high probability, for all 1� i�
�ln n� we have ∑

x∈V
1{τ (i+1)

x �= σ x}� 1
3

∑
x∈V

1{τ (i)x �= σ x}.

We prove Proposition 4.7 in Section 4.10.

Proof of Theorem 1.2. The theorem is an immediate consequence of Propositions 4.2, 4.6
and 4.7. While Proposition 4.6 accounts for the second term in the maximum of (1.3), the first
part is due to Proposition 4.7.

4.4 Proof of Proposition 4.1
Recall that we need to establish the following three statements.

(i) The infected individual counts in the various compartments satisfy

k
�

−
√
k
�
ln n�min

i∈[�]
|V1[i]|�max

i∈[�]
|V1[i]|� k

�
+

√
k
�
ln n.

(ii) For all i ∈ [�] and all j ∈ [s], the test degrees satisfy

�n
ms

−
√

�n
ms

ln n� min
a∈F[i+j−1]

|V[i]∩ ∂a|� max
a∈F[i+j−1]

|V[i]∩ ∂a|� �n
ms

+
√

�n
ms

ln n.

https://doi.org/10.1017/S096354832100002X Published online by Cambridge University Press

https://doi.org/10.1017/S096354832100002X


Combinatorics, Probability and Computing 833

(iii) For all i ∈ [�], the number of negative tests in compartment F[i] satisfies
m
2�

− √
m ln3 n� |F0[i]|� m

2�
+ √

m ln3 n.

The number |V1[i]| of infected individuals in compartmentV[i] has distributionHyp(n, k, |V[i]|).
Since ||V[i]| − n/�|� 1, (i) is an immediate consequence of the Chernoff bound from Lemma 2.2.
With respect to (ii), we recall from (4.6) that

P[x ∈ ∂a]= ��

ms

(
1+O

(
��

ms

))
.

Hence, because the various individuals x ∈V[i] join tests independently, the number |V[i]∩ ∂a|
of test participants from V[i] has distribution

|V[i]∩ ∂a| ∼ Bin(|V[i]|,��/(ms)+O((��/ms)2)).

Since |V[i]| = n/� +O(1), assertion (ii) follows from (4.5) and the Chernoff bound from
Lemma 2.1.

Coming to (iii), due to part (i) we may condition on

E = {∀i ∈ [�] : |V1[i]| = k/� +O(
√
k/� ln n)}.

Hence, with h ranging over the s compartments whose individuals join tests in F[i], (4.6) implies
that for every test a ∈ F[i] the number of infected individuals |V1 ∩ ∂a| is distributed as a sum of
independent binomial variables

|V1 ∩ ∂a| ∼
∑
h

Xh with Xh ∼ Bin
(
V1[h],

��

ms
+O

((
��

ms

)2))
.

Consequently (4.5) ensures that the event V1 ∩ ∂a= ∅ has conditional probability

P[V1 ∩ ∂a= ∅ | E]=
∏
h

P[Xh = 0 | E]

= exp
[
s
(
k
�

+O
(√

k
�
ln n

))
ln

(
1− ��

ms
+O

((
��

ms

)2))]

= exp
[
− sk

�
· ��

ms
+O

(√
k
�

· ��

m

)
+O

(
sk
�

·
(

��

ms

)2)]

= 1
2

+O(
√

�/k).

Therefore we obtain the estimate

E[|F0[i]| | E]= m
2�

+O(
√
m ln n). (4.18)

Finally, changing the set of tests that a specific infected individual x ∈V1[h] joins shifts |F0[i]|
by at most � (while tinkering with uninfected ones does not change |F0[i]| at all). Therefore the
Azuma–Hoeffding inequality [23, Corollary 2.27] yields

P[||F0[i]| −E[|F0[i]| | E]|� t | E]� 2 exp
(

− t2

2k�2

)
for any t > 0. (4.19)

Thus (iii) follows from (4.5), (4.18) and (4.19) with t = √
m ln3 n.
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4.5 Proof of Proposition 4.2
LetD= �10 ln(2) ln n� and recall that |F[0]| = �10ks ln(n)/��. Since by SC2 every individual from
∈V[1]∪ · · · ∪V[s] joins D random tests from F[0], in analogy to (4.6) for every x ∈V[1]∪ · · · ∪
V[s] and every test a ∈ F[0] we obtain

P[x ∈ ∂a]= 1− P[x �∈ ∂a]

= 1−
(|F[0]| − 1

D

)(|F[0]|
D

)−1

= D
|F[0]|

(
1+O

(
D

|F[0]|
))

= � ln 2
ks

(1+O(n−�(1))). (4.20)

Let F1[0] be the set of tests a ∈ F[0] with σ̂ a = 1.

Lemma 4.8. With high probability the number of positive tests a ∈ F[0] satisfies

|F1[0]| = |F[0]|
(
1
2

+O(n−�(1))
)
.

Proof. By Proposition 4.1 we may condition on the event E that

|V1[1]∪ · · · ∪V1[s]| = ks
�
(1+O(n−�(1))).

Hence (4.20) implies that, given E , the expected number of infected individuals in a test a ∈ F[0]
comes to

E[|∂a∩V1| | E]= ln 2+O(n−�(1)). (4.21)

Moreover, since individuals join tests independently, |∂a∩V1| is a binomial random variable.
Hence (4.21) implies

P[∂a∩V1 = ∅ | E]= 1
2

+O(n−�(1)).

Consequently, since P[E]= 1− o(n−2) by Proposition 4.1,

E|F1 ∩ F[0]| =E|F1[0]| = |F[0]|
2

(1+O(n−�(1))). (4.22)

Finally, changing the set ∂x of neighbours of an infected individual can shift |F1[0]| by at most D.
Therefore the Azuma–Hoeffding inequality implies that

P[||F1[0]| −E|F1[0]|| > t]� 2 exp
(

− t2

2D2k

)
for any t > 0. (4.23)

Since D=O( ln n), combining (4.22) and (4.23) and setting, say, t = k2/3 completes the proof. �

As an application of Lemma 4.8 we show that with high probability every seed individual x
appears in a test a ∈ F[0] whose other individuals are all healthy.

Corollary 4.9. With high probability every individual x ∈V[1]∪ · · · ∪V[s] appears in a test a ∈
F[0]∩ ∂x such that ∂a \ {x} ⊂V0.
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Proof. We expose the random bipartite graph induced on V[1]∪ · · · ∪V[s] and F[0] in two
rounds. In the first round we expose σ and all neighbourhoods (∂y)y∈(V[1]∪···∪V[s])\{x}. In the sec-
ond round we expose ∂x. Let X be the number of negative tests a ∈ F[0] after the first round. Since
x has degree D=O( ln n), Lemma 4.8 implies that X = |F[0]|( 12 +O(n−�(1))) with high probabil-
ity. Furthermore, given X, the number of tests a ∈ ∂x all of whose other individuals are uninfected
has distribution Hyp(|F[0]|, X,D). Hence

P[∀a ∈ ∂x : V1 ∩ ∂a \ {x} �= ∅ | X]=
(|F[0]| − X

D

)(|F[0]|
D

)−1
� exp(−DX/|F[0]|). (4.24)

Assuming

X/|F[0]| = 1
2

+O(n−�(1))

and recalling that D= �10 ln(2) ln n�, we obtain exp(−DX/|F[0]|)= o(1/n). Thus the assertion
follows from (4.24) and the union bound. �

Proof of Proposition 4.2. Due to Corollary 4.9 we may assume that for every x ∈V[1]∪ · · · ∪
V[s] there is a test ax ∈ F[0] such that ∂ax \ {x} ⊂V0. Hence, recalling the DD algorithm from
Section 4.1, we see that the first stepDD1will correctly identify all healthy individuals x ∈V0[1]∪
· · · ∪V0[s]. Moreover, the second step DD2 will correctly classify all remaining individuals
V1[1]∪ · · · ∪V1[s] as infected, and the last step DD3 will be void.

4.6 Proof of Lemma 4.3
Let E be the event that properties (i) and (iii) from Proposition 4.1 hold; then P[E]= 1− o(n−2).
Moreover, letE be the σ -algebra generated by σ and the neighbourhoods (∂x)x∈V1 . Then the event
E is E-measurable while the neighbourhoods (∂x)x∈V0 of the healthy individuals are independent
of E. Recalling from SC1 that the individuals x ∈V0[i] choose �/s random tests in each of the
compartments F[i+ j], 0� j� s− 1 independently, and remembering that x ∈V0+[i] if and only
if none of these tests is negative, on E we obtain

P[x ∈V0+[i] |E]=
(
m/(2�)+O(

√
m ln3 n)

�/s

)s(m/�

�/s

)−s

=
(
1+O(m−1/2� ln3 n)

2

)�

= 2−� +O(m−1/2�� ln3 n)

= 2−�(1+O(n−θ/2 ln4 n)) (due to (4.2) and (4.5)). (4.25)

Because all x ∈V0[i] choose their neighbourhoods independently, (4.25) implies that the con-
ditional random variable |V0+[i]| given E has distribution Bin(|V0[i]|, 2−�(1+O(n−�(1)))).
Therefore, since on E we have |V0[i]| = |V[i]| +O(nθ )= n/� +O(nθ ), the assertion follows from
the Chernoff bound from Lemma 2.1.

4.7 Proof of Lemma 4.4
The aim is to estimate the weighted sum W�

x for infected individuals x ∈V[i+ 1] with s� i< �.
These individuals join tests in the s compartments F[i+ j], j ∈ [s]. Conversely, for each such j the
tests a ∈ F[i+ j] recruit their individuals from the compartments V[i+ j− s+ 1], . . . ,V[i+ j].
Thus the compartments preceding V[i+ 1] that the tests in F[i+ j] draw upon are V[h] with
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i+ j− s< h� i. We begin by investigating the set Wi,j of tests a ∈ F[i+ j] without an infected
individual from these compartments, that is,

Wi,j = {a ∈ F[i+ j] : (V1[1]∪ · · · ∪V1[i])∩ ∂a= ∅}

=
{
a ∈ F[i+ j] :

⋃
i+j−s+1<h�i

V1[h]∩ ∂a= ∅
}
.

Claim 4. With probability 1− o(n−2), for all s� i< �, j ∈ [s] we have

|Wi,j| = 2−(s−j)/s m
�
(1+O(n−�(1))).

Proof. We may condition on the event E that (i) from Proposition 4.1 occurs. To compute the
mean of |Wi,j|, fix a test a ∈ F[i+ j] and an index i+ j− s< h� i. Then (4.6) shows that the
probability that a fixed individual x ∈V[h] joins a equals

P[x ∈ ∂a]= ��

ms

(
1+O

(
��

ms

))
.

Hence the choices (4.2) and (4.5) of � and � and the assumptionm= �(k ln n) ensure that

E[|(V1[i+ j− s+ 1]∪ · · · ∪V1[i])∩ ∂a| | E]= (s− j)
(

��

ms
· k
�

+O
(

�2k
m2s2

)
+O

(
��

√
k ln n

ms

))

= s− j
s

ln 2+O(n−�(1)). (4.26)

Since by SC1 the events {x ∈ ∂a}x are independent, |V1[h]∩ ∂a| is a binomial random variable for
every h and all these random variables (|V1[h]∩ ∂a|)h are mutually independent. Therefore (4.26)
implies that

P[(V1[i+ j− s+ 1]∪ · · ·V1[i])∩ ∂a= ∅ | E]= 2−(s−j)/s +O(n−�(1)). (4.27)

Hence

E[|Wi,j| | E]=
∑

a∈F[i+j]
P[(V1[i+ j− s+ 1]∪ · · · ∪V1[i])∩ ∂a= ∅ | E]

= m
�
2−(s−j)/s(1+O(n−�(1))). (4.28)

Finally, changing the neighbourhood ∂x of one infected individual x ∈V1 can alter |Wi,j| by at
most �. Therefore the Azuma–Hoeffding inequality shows that for any t > 0

P[||Wi,j| −E[|Wi,j| | E]| > t | E]� 2 exp
(

− t2

2k�2

)
. (4.29)

Combining (4.28) and (4.29), applied with t = √
m ln2 n, and taking a union bound on i, j

completes the proof. �

As the next step we use Claim 4 to estimate the as yet unexplained test countsWx,j from (4.7).

Claim 5. For all s� i< �, x ∈V1[i+ 1] and j ∈ [s] we have

P[Wx,j < (1− ε/2)2j/s−1�/s]� exp
(

− �( ln n)
( ln ln n)4

)
.
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Proof. Fix a pair of indices i, j and an individual x ∈V1[i+ 1]. We also condition on the event
E that (i) from Proposition 4.1 occurs. Additionally, thanks to Claim 4 we may condition on the
event

E ′ =
{
|Wi,j| = 2−(s−j)/s m

�
(1+O(n−�(1)))

}
.

Further, let E be the σ -algebra generated by σ and by the neighbourhoods (∂y)y∈V[1]∪···∪V[i].
Recall from SC1 that x simply joins �/s random tests in compartment F[i+ j], independently
of all other individuals, and remember from (4.7) thatWx,j counts tests a ∈Wi+j ∩ ∂x. Therefore,
since the events E , E ′ and the random variable |Wi,j| are E-measurable while ∂x is independent
of E, given E the random variableWx,j has a hypergeometric distribution Hyp(m/�, |Wi,j|,�/s).
Thus the assertion follows from the hypergeometric Chernoff bound from Lemma 2.2 and the
choice (4.14) of ζ . �

Proof of Lemma 4.4. Since W�
x = ∑s

j=1 wjWx,j, the lemma is an immediate consequence of
Markov’s inequality and Claim 5.

4.8 Proof of Lemma 4.5
We need to derive the rate functions of the random variable Wx,j that count as yet unexplained
tests for x ∈V0+[i+ 1]. To this end we first investigate the set of positive tests in compartment
i+ j that do not contain any infected individuals from the first i compartments. In symbols,

Pi+1,j = {a ∈ F1[i+ j] : ∂a∩ (V1[1]∪ · · · ∪V1[i])= ∅} (s� i< �, j ∈ [s]).

Claim 6. With high probability, for all s� i< �, j ∈ [s] we have

|Pi+1,j| = (1+O(n−�(1)))(2j/s − 1)
m
2�

.

Proof. We may condition on the event E that (i) from Proposition 4.1 occurs. As a first step we
calculate the probability that (V1[i+ 1]∪ · · · ∪V1[i+ j])∩ ∂a �= ∅ for a specific test a ∈ F[i+ j].
To this end we follow the steps of the proof of Claim 4. Since by (4.6) a specific individual x ∈V[h],
i< h� i+ j, joins a with probability P[x ∈ ∂a]= (��/(ms))(1+O(��/(ms))), and since given E
each compartment V[h] contains k/� +O(

√
k/� ln n) infected individuals, we obtain, in perfect

analogy to (4.26),

E[|(V1[i+ 1]∪ · · · ∪V1[i+ j])∩ ∂a| | E]= j
s
ln 2+O(n−�(1)). (4.30)

Since the individuals x ∈V[i+ 1]∪ · · · ∪V[i+ j] join tests independently, (4.30) implies that

P[(V1[i+ 1]∪ · · · ∪V1[i+ j])∩ ∂a �= ∅ | E]= 1− 2−j/s +O(n−�(1)). (4.31)

Furthermore, we already verified in (4.27) that

P[(V1[i+ j− s+ 1]∪ · · ·V1[i])∩ ∂a= ∅ | E]= 2−(s−j)/s +O(n−�(1)). (4.32)

Because the choices for the compartments V[i+ j− s+ 1]∪ · · · ∪V[i+ j] from which a draws
its individuals are mutually independent, we can combine (4.31) with (4.32) to obtain

P

[ ⋃
i+j−s<h�i

V1[h]∩ ∂a= ∅ �=
⋃

i<h�i+j
V1[h]∩ ∂a | E

]
= 2j/s − 1

2
+O(n−�(1)). (4.33)
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Further, (4.33) implies

E[|Pi+1,j| | E]=E

[∣∣∣∣
{
a ∈ F1[i+ j] :

⋃
h�i

V1[h]∩ ∂a= ∅ �=
⋃
i<h

V1[h]∩ ∂a
}∣∣∣∣ | E

]

= (2j/s − 1)
m
2�

(1+O(n−�(1))). (4.34)

Finally, altering the neighbourhood ∂x of any infected individual can shift |Pi+1,j| by at most �.
Therefore the Azuma–Hoeffding inequality implies that

P[||Pi+1,j| −E[|Pi+1,j| | E]| > t | E]� 2 exp
(

− t2

2k�2

)
. (4.35)

Thus the assertion follows from (4.5), (4.34) and (4.35) by setting t = √
m ln2 n. �

Thanks to Proposition 4.1(iii) and Claim 6, in the following we may condition on the event

U =
{
∀s< i� �, j ∈ [s] :

|F1[i+ j]| = (1+O(n−�(1)))
m
2�

∧ |Pi+1,j| = (1+O(n−�(1)))(2j/s − 1)
m
2�

}
. (4.36)

As a next step we will determine the conditional distribution ofWx,j for x ∈V0+[i+ 1] given U .

Claim 7. Let s< i� � and j ∈ [s]. Given U for every x ∈V0+[i+ 1], we have

Wx,j ∼Hyp
(
(1+O(n−�(1)))

m
2�

, (1+O(n−�(1)))(2j/s − 1)
m
2�

,
�

s

)
. (4.37)

Proof. By SC1 each individual x ∈V0+[i+ 1] joins �/s positive test from F[i+ j], drawn uni-
formly without replacement. Moreover, by (4.7) given x ∈V0+[i+ 1] the random variable Wx,j
counts the number of tests a ∈Pi+1,j ∩ ∂x. ThereforeWx,j ∼Hyp(|F1[i+ j], |Pi+1,j|,�/s). Hence,
given U we obtain (4.37). �

The estimate (4.37) enables us to bound the probability thatW�
x gets ‘too large’.

Claim 8. Let

M=min
1
s

s−1∑
j=1

1{zj � 2j/s − 1}DKL(zj‖2j/s − 1)

subject to
s−1∑
j=1

(zj − (1− 2ζ )2j/s−1)wj = 0, z1, . . . , zs−1 ∈ [0, 1].

Then, for all s� i< � and all x ∈V[i+ 1], we have

P

[
W�

x > (1− 2ζ )
�

s

s−1∑
j=1

2j/s−1wj | U , x ∈V0+[i+ 1]
]
� exp(− (1+ o(1))M�).

Proof. Let s� i< � and x ∈V0+[i+ 1]. Step SC1 of the construction ofG ensures that the random
variables (Wx,j)j∈[s] are independent because the tests in the various compartments F[i+ j], j ∈ [s],
that x joins are drawn independently. Therefore the definition (4.12) ofW�

x and Lemma 7 yield
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P

[
W�

x > (1− 2ζ )
�

s

s−1∑
j=1

2j/s−1wj | U , x ∈V0+[i+ 1]
]

= P

[ s−1∑
j=1

wjWx,j �
1− 2ζ

s

s−1∑
j=1

2j/s−1wj | U , x ∈V0+[i+ 1]
]

�
�∑

y1,...,ys=0
1
{ s−1∑
j=1

wjyj �
1− 2ζ

s

s−1∑
j=1

2j/s−1wj

} s−1∏
j=1

P[Wx,j � yj | U , x ∈V0+[i+ 1]]. (4.38)

Further, let

Z =
{
(z1, . . . , zs−1) ∈ [0, 1]s−1 :

s−1∑
j=1

(zj − (1− 2ζ )2j/s−1)wj = 0
}
.

Substituting yj = �zj/s in (4.38) and bounding the total number of summands by (� + 1)s, we
obtain

P

[
W�

x > (1− 2ζ )
�

s

s−1∑
j=1

2j/s−1wj | U , x ∈V0+[i+ 1]
]

� (� + 1)s max
(z1,...,zs)∈Z

s−1∏
j=1

P[Wx,j ��zj/s | U , x ∈V0+[i+ 1]]. (4.39)

Moreover, Claim 7 and the Chernoff bound from Lemma 2.2 yield

P[Wx,j ��zj/s | U , x ∈V0+[i+ 1]]

� exp
(

−1{zj � pj}�s DKL(zj‖pj)
)
, where pj = 2j/s − 1+O(n−�(1)).

Consequently, since (4.5) and the assumptionm= �(k ln n) ensure that � = �( ln n), we obtain

P[Wx,j ��zj/s | U , x ∈V0+[i+ 1]]

� exp
(

−1{zj � 2j/s − 1}�
s
DKL(zj‖2j/s − 1)+O(n−�(1))

)
. (4.40)

Finally, the assertion follows from (4.39) and (4.40). �

As a next step we solve the optimization problemM from Claim 8.

Claim 9. We haveM= 1− ln 2+O( ln(s)/s).

Proof. Fixing an auxiliary parameter δ � 0, we set up the Lagrangian

Lδ(z1, . . . , zs, λ)

=
s−1∑
j=1

(1{zj � 2j/s − 1} + δ1{zj < 2j/s − 1})DKL(zj‖2j/s − 1)

+ λ

s

s−1∑
j=1

wj(zj − (1− 2ζ )2j/s−1).
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The partial derivatives come out as

∂Lδ

∂λ
= −1

s

s−1∑
j=1

((1− 2ζ )2j/s−1 − zj)wj,

∂Lδ

∂zj
= −λwj + (1{zj � 2j/s − 1} + δ1{zj < 2j/s − 1}) ln zj(2− 2j/s)

(1− zj)(2j/s − 1)
.

Set z∗j = (1− 2ζ )2j/s−1 and λ∗ = 1. Then clearly

∂Lδ

∂λ

∣∣∣∣
λ∗,z∗1 ,...,z∗s−1

= 0. (4.41)

Moreover, the choice (4.14) of ζ guarantees that z∗j � 2j/s − 1. Hence, by the choice (4.14) of the
weights wj,

∂Lδ

∂zj

∣∣∣∣
λ∗,z∗1 ,...,z∗s−1

= 0. (4.42)

Since Lδ(y1, . . . , ys, λ) is strictly convex in z1, . . . , zs for every δ > 0, (4.41)–(4.42) imply that
λ∗, z∗1 , . . . , z∗s−1 is a global minimizer. Furthermore, since this is true for any δ > 0 and since
z∗j � 2j/s − 1, we conclude that (z∗1 , . . . , z∗s−1) is an optimal solution to the minimization problem
M. Hence

M= 1
s

s−1∑
j=1

DKL(z∗j ‖2j/s − 1)= 1
s

s−1∑
j=1

DKL((1− 2ζ )2j/s−1‖2j/s − 1). (4.43)

Since
∂

∂α
DKL((1− 2α)2z−1‖2z − 1)

= 2z[−z ln(2)+ ln(1− 2z−1 + α2z)− ln(1− 2z−1)− ln(1− 2α)+ ln(2z − 1)],
we obtain

∂

∂α
DKL((1− 2α)2z−1‖2z − 1)=O( ln s) for all z = 1/s, . . . , (s− 1)/s and α ∈ [0, 2ζ ].

Combining this bound with (4.43), we arrive at the estimate

M=O(ζ ln s)+ 1
s

s−1∑
j=1

DKL(2j/s−1‖2j/s − 1). (4.44)

Additionally, the function f : z ∈ [0, 1] �→DKL(2z−1‖2z − 1) is strictly decreasing and convex.
Indeed,

f ′(z)= 2z−1 ln 2
2z − 1

(
(2z − 1) ln

(
2z

2z − 1

)
− 1

)
,

f ′′(z)= (2z−1 ln2 2)
(
ln

(
2z

2z − 1

)
+ 2− 2z

(2z − 1)2

)
.

The first derivative is negative because 2z−1/(2z − 1)> 0 while (2z − 1) ln(2z/(2z − 1))< 1 for
all z ∈ (0, 1). Moreover, since evidently f ′′(z)> 0 for all z ∈ (0, 1), we obtain convexity. Further,
l’Hôpital’s rule yields

DKL(21/s−1‖21/s − 1)=O( ln s).
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As a consequence, we can approximate the sum (4.44) by an integral and obtain

M=O( ln(s)/s)+
∫ 1

0
DKL(2z−1‖2z − 1)dz

=O( ln(s)/s)+ 2(1− z) ln2 (2)+ 2z ln 2z + (1− 2z) ln(2z − 1)
2 ln 2

∣∣∣∣
z=1

z=0
= 1− ln(2)+O( ln(s)/s),

as claimed. �

Proof of Lemma 4.5. Fix s� i< � and let Xi be the number of x ∈V0+[i] such that

W�
x > (1− 2ζ )

�

s

s−1∑
j=1

2j/s−1wj.

Also recall that Proposition 4.1(iii) and Claim 6 imply that P[U]= 1− o(1). Combining
Lemma 4.3 with Claims 8 and 9, we conclude that

E[Xi | U]� (1+O(n−�(1)))2−�n exp(− (1− ln(2)+ o(1))�)= exp (ln n− (1+ o(1))�).
(4.45)

Recalling the definition (4.5) of� and using the assumption thatm� (1+ ε)mad for a fixed ε > 0,
we obtain �� (1− θ + �(1)) ln n. Combining this estimate with (4.45), we find

E[Xi | U]� nθ−�(1). (4.46)
Finally, the assertion follows from (4.46) and Markov’s inequality.

4.9 Proof of Proposition 4.6
The following lemma establishes an expansion property of G. Specifically, if T is a small set of
individuals, then there are few individuals x that share many tests with another individual from T.

Lemma 4.10. Suppose that m= �(nθ ln n). With high probability, for any set T ⊂V of size at most
exp(− ln7/8 n)k we have∣∣∣∣

{
x ∈V :

∑
a∈∂x\F[0]

1{T ∩ ∂a \ {x} �= ∅}� ln1/4 n
}∣∣∣∣� |T|

3
.

Proof. Fix a set T ⊂V of size t = |T|� exp(− ln7/8 n)k, a set R⊂V of size r = �t/3� and
let γ = �ln1/4 n�. Furthermore, let U ⊂ F[1]∪ · · · ∪ F[�] be a set of tests of size γ r� u��t.
Additionally, let E(R, T,U) be the event that every test a ∈U contains two individuals from R∪ T.
Then

P

[
R⊂

{
x ∈V :

∑
a∈∂x\F[0]

1{T ∩ ∂a \ {x} �= ∅}� γ

}]
� P[E(R, T,U)]. (4.47)

Hence it suffices to estimate P[E(R, T,U)].
Given a test a ∈U, there are at most

(r+t
2

)
ways to choose two individuals xa, x′

a ∈ R∪ T.
Moreover, (4.6) shows that the probability of the event {xa, x′

a ∈ ∂a} is bounded by (1+
o(1))(��/(ms))2. Therefore

P[E(R, T,U)]�
[(

r + t
2

)(
(1+ o(1))��

ms

)2]u
.
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Consequently, the event E(t, u) that there exist sets R, T,U of sizes |R| = r = �t/3�, |T| = t,
|U| = u such that E(R, T,U) occurs has probability

P[E(t, u)]�
(
n
r

)(
n
t

)(
m
u

)[(
r + t
2

)(
(1+ o(1))��

ms

)2]u
.

Hence the bounds γ t/3� γ r� u��t yield

P[E(t, u)]�
(
n
t

)2(m
u

)[(
2t
2

)(
(1+ o(1))��

ms

)2]u

�
(
en
t

)2t(2e�2�2t2

ms2u

)u

�
[(

en
t

)3/γ 6e�2�2t
γms2

]u

�
[(

en
t

)3/γ
· t ln

4 n
m

]u
(due to (4.2), (4.5)).

Further, since γ = �( ln1/4 n) andm= �(k ln n) while t� exp(− ln7/8 n)k, we obtainP[E(t, u)]�
exp(− u

√
ln n). Thus ∑

1�t�k1−α

γ t/3�u��t

P[E(t, u)]�
∑

1�u��t
u exp(− u

√
ln n)= o(1). (4.48)

Finally, the assertion follows from (4.47) and (4.48). �

Proof of Proposition 4.6. With τ the result of steps 1–10 of SPIV, letM[i]= {x ∈V[i] : τx �= σ x}
be the set of misclassified individuals in compartment V[i]. Proposition 4.2 shows that with high
probability M[i]= ∅ for all i� s. Further, we claim that for every s� i< � and any individual
x ∈M[i+ 1], one of the following three statements is true.

M1 x ∈V1[i+ 1] and

W�
x <

(
1− ζ

2

)
�

s

s−1∑
j=1

2j/s−1wj,

M2 x ∈V0+[i+ 1] and

W�
x > (1− 2ζ )

�

s

s−1∑
j=1

2j/s−1wj,

or
M3 x ∈V[i+ 1] and ∑

a∈∂x
1{∂a∩ (M[1]∪ · · · ∪M[i]) �= ∅}� ln1/4 n.

To see this, assume that x ∈M[i+ 1] whileM3 does not hold. Then, comparing (4.7) and (4.17),
we obtain

|Wx,j(τ )−Wx,j|� ln1/4 n for all 1� j< s. (4.49)
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Moreover, the definition (4.14) of the weights, the choice (4.3) of s and the choices (4.14) of ζ

and the weights wj ensure that 0�wj �O(s)=O(ln ln n). This bound implies together with the
definition (4.12) of the scoresW�

x and (4.49) that

|W�
x −W�

x (τ )| = o(ζ�). (4.50)

Thus, combining (4.50) with the definition of τx in steps 5–10 of SPIV, we conclude that either
M1 orM2 occurs.

Finally, to bound M[i+ 1] let M1[i+ 1], M2[i+ 1] and M3[i+ 1] be the sets of individuals
x ∈V[i+ 1] for which M1, M2 or M3 occurs, respectively. Then Lemmas 4.4 and 4.5 imply that
with high probability

|M1[i+ 1]|, |M2[i+ 1]|� k exp
(

− ln n
(ln ln n)5

)
.

Furthermore, Lemma 4.10 shows that |M3[i+ 1]|�∑i
h=1 |M[h]| with high probability. Hence

we obtain the relation

|M[i+ 1]|� k exp
(

− ln n
(ln ln n)5

)
+

i∑
h=1

|M[h]|. (4.51)

Because (4.2) ensures that the total number of compartments is � =O(ln1/2 n), the bound
(4.51) implies that |M[i+ 1]|�O(�2k exp(− (ln n)/(ln ln n)5) for all i ∈ [�] with high probability.
Summing on i completes the proof.

4.10 Proof of Proposition 4.7
For an infected individual x ∈V let

Sx[j]= |{a ∈ F[j]∩ ∂x : V1 ∩ ∂a= {x}}| and Sx =
�∑

j=1
Sx[j].

Thus Sx[j] is the number of positive sets a ∈ F[j] that x has to itself, i.e. tests that do not contain a
second infected individual, and Sx is the total number of such tests.

Lemma 4.11. Assume that m� (1+ ε)minf. With high probability we haveminx∈V1 Sx �
√

�.

Proof. Due to Proposition 4.1 we may condition on the event

N =
{
∀i ∈ [�] :

m
2�

− √
m ln n� |F0[i]|� m

2�
+ √

m ln n
}
.

We claim that, givenN for each x ∈V1[i], i ∈ [�], the random variable Sx has distribution

Sx[i+ j− 1]∼Hyp
(
m
�
,
m
2�

+O(
√
m ln n),

�

s

)
. (4.52)

To see this, consider the set

Fx[i+ j− 1]= {a ∈ F[i+ j− 1] : ∂a∩V1 \ {x} = ∅}
of all tests in compartment F[i+ j− 1] without an infected individual besides possibly x. Since x
joins �/s=O(ln n) tests in F[i+ j− 1], givenN we have

|F0,x[i+ j]| = |F0[i+ j]| +O(ln n)= m
2�

+O(
√
m ln n). (4.53)
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Furthermore, consider the experiment of first constructing the test design G and then resampling
the set ∂x of neighbours of x; that is, independently of G we have x join �/s random tests in
each compartment F[i+ j]. Then the resulting test design G′ has the same distribution as G, and
hence the random variable S′

x[i+ j− 1] that counts tests a ∈ F[i+ j− 1]∩ ∂x that do not contain
another infected individual has the same distribution as Sx[i+ j− 1]. Moreover, the conditional
distribution of S′

x[i+ j− 1] given G reads

S′
x[i+ j− 1]∼Hyp

(
m
�
, |F0,x[i+ j− 1]|, �

s

)
. (4.54)

Combining (4.53) and (4.54), we obtain (4.52).
To complete the proof we combine (4.52) with Lemma 2.2, which implies that

P[Sx[i+ j− 1]�
√

� | x ∈V1]� exp
(

−�

s
DKL((1+ o(1))s/

√
�‖1/2+ o(1))

)

= exp
(

−(1+ o(1))
� ln 2

s

)
. (4.55)

Since SC1 ensures that the random variables (Sx[i+ j− 1])j∈[s] are mutually independent, (4.55)
yields

P[Sx �
√

� | x ∈V1]� 2−(1+o(1))�. (4.56)

Finally, the assumption m� (1+ ε)minf for a fixed ε > 0 and the choice (4.5) of � ensure
that 2−(1+o(1))� = o(1/k). Thus the assertion follows from (4.56) by taking a union bound on
x ∈V1. �

Proof of Proposition 4.7. For j= 1 . . . �ln n�, let
Mj = {x ∈V : τ

(j)
x �= σ x}

contain all individuals that remain misclassified at the jth iteration of the clean-up step.
Proposition 4.6 shows that with high probability

|M1|� k exp
(

− ln n
( ln ln n)6

)
. (4.57)

Furthermore, in light of Lemma 4.11 we may condition on the eventA= {minx∈V1 Sx �
√

�}.
We now claim that, givenA, for every j� 1

Mj+1 ⊂
{
x ∈V :

∑
a∈∂x\F[0]

|∂a∩Mj \ {x}|� ⌈
ln1/4 n

⌉}
. (4.58)

To see this, suppose that x ∈Mj+1 and recall that the assumption m�minf and (4.5) ensure that
� = �(ln n). Also recall that SPIV’s step 15 thresholds the number

Sx(τ (j))=
∑

a∈∂x : σ̂ a=1

1{∀y ∈ ∂a \ {x} : τ
(j)
y = 0}

of positive tests containing x whose other individuals are deemed uninfected. There are two cases
to consider.

Case 1: x ∈V0. In this case every positive tests a ∈ ∂x contains an individual that is actually
infected. Hence, if τ (j)y = 0 for all y ∈ ∂a \ {x}, then ∂a∩Mj \ {x} �= ∅. Consequently, since step 15
of SPIV applies the threshold of Sx(τ (j))� ln1/4 n, there are at least ln1/4 n tests a ∈ ∂x such that
∂a∩Mj \ {x} �= ∅.
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Case 2: x ∈V1. GivenA, every infected x participates in at least Sx �
√

� = �(ln1/2 n) tests that do
not actually contain another infected individual. Hence, if Sx(τ (j))� ln1/4 n, then at least

√
� −

ln1/4 n� ln1/4 n tests a ∈ ∂x contain an individual fromMj \ {x}.
Thus we obtain (4.58). Finally, (4.57), (4.58) and Lemma 4.10 show that with high probability

|Mj+1|� |Mj|/3 for all j� 1. Consequently,M�ln n� = ∅ with high probability.

5. Optimal adaptive group testing
In this final section we show how the test designG from Section 4 can be extended into an optimal
two-stage adaptive design. The key observation is that Proposition 4.6, which summarizes the
analysis of the first two phases of SPIV (i.e. steps 1–10) only requiresm� (1+ ε)mad tests. In other
words, the excess number (1+ ε)(minf −mad) of tests required for non-adaptive group testing is
necessary only to facilitate the clean-up step, namely phase 3 of SPIV. Replacing phase 3 of SPIV
with a second test stage, we obtain an optimal adaptive test design. To this end we follow Scarlett
[34], who observed that a single-stage group testing scheme that correctly diagnoses all but o(k)
individuals with (1+ o(1))mad tests could be turned into a two-stage design that diagnoses all
individuals correctly with high probability with (1+ o(1))mad tests in total. (Of course, at the time
no such optimal single-stage test design and algorithm were known.) The second test stage works
as follows. Let τ denote the outcome of phases 1 and 2 of SPIV applied to G withm= (1+ ε)mad.

T1 Test every individual from the set V1(τ )= {x ∈V : τx = 1} of individuals that SPIV
diagnosed as infected separately.

T2 To the individuals V0(τ )= {x ∈V : τx = 0} apply the random d-out design and the DD-
algorithm from Section 4.1 with a total ofm= k tests and d = �10 ln n�.

Let τ ′ ∈ {0, 1}V be the result of T1–T2.

Proposition 5.1. With high probability we have τ ′
x = σ x for all x ∈V.

As a matter of course T1 renders correct results, that is, for all individuals x ∈V1(τ ) we have
τ ′
x = σ x. Further, to analyseT2we use an argument similar to the analysis of the first phase of SPIV
in Section 4.5; we include the analysis for the sake of completeness. We begin by investigating the
number of negative tests. Let G′ denote the test design set up by T2, let F′ = {b1, . . . , bk} denote
its set of tests and let σ̂ b1 , . . . , σ̂ bk signify the corresponding test results. Further, let F′

0 = {b ∈
F′ : σ̂ b = 0} and F′

1 = {b ∈ F′ : σ̂ b = 1} be the set of negative and positive tests, respectively.

Lemma 5.2. With high probability we have |F′
1|� k/2.

Proof. Proposition 4.6 implies that with high probability

|V0(τ )∩V1|�
∑
x∈V

1{τx �= σ x}� k exp
(

− ln n
(ln ln n)6

)
. (5.1)

Moreover, since every individual x ∈V0(τ ) joins d random tests, for any specific test b ∈ F′ we
have

P[x ∈ ∂G′b]= 1− P[x �∈ ∂G′b]= 1−
(
k− 1
d

)(
k
d

)−1
= d

k
(1+O(n−�(1))).

Hence, for every test b ∈ F′,

E

[
|∂b∩V1| | |V0(τ )∩V1|� k exp

(
− ln n
(ln ln n)6

)]
=O(1/ ln n).
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Consequently,

E[|F′
1| | |V0(τ )∩V1|� k/ ln n]=O(k/ ln n). (5.2)

Finally, combining (5.1) and (5.2) and applying Markov’s inequality, we conclude that |F′
1|� k/2

with high probability. �

Corollary 5.3. With high probability, for every x ∈V0(τ ) there is a test b ∈ F′ such that
∂b \ {x} ⊂V0.

Proof. We construct the random graph G′ in two rounds. In the first round we first expose the
neighbourhoods (∂G′y)y∈V0(τ )\{x}. Lemma 5.2 implies that after the first round the number X of
tests that do not contain an infected individual y ∈V0(τ )∩V1 exceeds k/2 with high probability.
In the second round we expose ∂G′x. Because ∂G′x is chosen independently of the neighbour-
hoods (∂G′y)y∈V0(τ )\{x}, the number of tests b ∈ ∂G′x that do not contain an infected individual
y ∈V0(τ )∩V1 has distribution Hyp(k, X, d). Therefore, since d� 10 ln n we obtain

P[∀b ∈ ∂x : V1 ∩ ∂b \ {x} �= ∅ | X � k/2]� P[Hyp(k, k/2, d)= 0]� 2−d = o(1/n). (5.3)

Finally, the assertion follows (5.3) and the union bound. �

Proof of Proposition 5.1. Corollary 5.3 shows that we may assume that for every x ∈V0(τ ) there
is a test bx ∈ F′ with ∂bx \ {x} ⊂V0. As a consequence, upon executing the first stepDD1 of the DD
algorithm, T2 will correctly diagnose all individuals x ∈V0(τ )∩V0. Therefore, if x ∈V0(τ )∩V1,
then DD2 will correctly identify x as infected because all other individuals y ∈ ∂bx were already
identified as healthy by DD1. Thus τ ′

x = σ x for all x ∈V .

Proof of Theorem 1.3. Proposition 5.1 already establishes that the output of the two-stage adap-
tive test is correct with high probability. Hence, to complete the proof we just observe that the
total number of tests comes to (1+ ε)mad for the first stage plus |V1(τ )| + k for the second stage.
Furthermore, Proposition 4.6 implies that with high probability

|V1(τ )|� |V1| +
∑
x∈V

1{τx �= σ x}� k
(
1+ exp

(
− ln n
(ln ln n)6

))
= (1+ o(1))k.

Thus the second stage conducts O(k)= o(mad) tests.
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