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Abstract

In this paper we deal with an optimal stopping problem whose objective is to maximize
the probability of selecting k out of the last � successes, given a sequence of independent
Bernoulli trials of length N , where k and � are predetermined integers satisfying 1 ≤ k ≤
� < N . This problem includes some odds problems as special cases, e.g. Bruss’ odds
problem, Bruss and Paindaveine’s problem of selecting the last � successes, and Tamaki’s
multiplicative odds problem for stopping at any of the last m successes. We show that
an optimal stopping rule is obtained by a threshold strategy. We also present the tight
lower bound and an asymptotic lower bound for the probability of a win. Interestingly,
our asymptotic lower bound is attained by using a variation of the well-known secretary
problem, which is a special case of the odds problem. Our approach is based on the
application of Newton’s inequalities and optimization technique, which gives a unified
view to the previous works.
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1. Introduction

In this paper we discuss a variation of the odds problem, which is an extension of Bruss’odds
problem first discussed in [3]. Let X1, X2, . . . , XN denote a sequence of independent Bernoulli
random variables. If Xj = 1, we say that the outcome of random variable Xj is a success.
Otherwise (Xj = 0), we say that the outcome of Xj is a failure. These random variables can be
regarded as results of an underlying discrete stochastic process. For example, we can assume
that they constitute the record process. This paper deals with an optimal stopping problem of
maximizing the probability of selecting k out of the last � successes, where 1 ≤ k ≤ � < N .
More precisely, the problem may be stated as follows.

We consider a game in which a player is given the digits (realization of random variables)
one by one and allowed to select the index of the variable when he/she observes a success. The
number of selected indices of variables must be less than or equal to k. The player wins if he/she
selected exactly k indices of variables contained in the set of the last � successes. For example,
consider the case with N = 8, k = 3, and � = 4. When (X1, X2, . . . , X8) has a vector of
realized values (0, 1, 1, 0, 0, 1, 1, 1), the player wins if he/she selected exactly three indices of
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Compare the ratio of symmetric polynomials of odds to one and stop 13

variables in the set {X3, X6, X7, X8}. We deal with a problem of maximizing a probability of a
win. It is easy to see that the player wins if and only if the first selected variable is in {X3, X6}
by simply enumerating following k = 3 successes. Under this strategy, the player wins if the
set of selected indices corresponds to either {X3, X6, X7} or {X6, X7, X8}. Thus, the player
need only observe the sequence with an objective to correctly predict the occurrence of the mth
last success satisfying k ≤ m ≤ �. From the above, the problem becomes a ‘single’ stopping
problem of maximizing the probability of stopping on a random variable Xm satisfying Xm = 1
and � ≥ Xm + Xm+1 + · · · + XN ≥ k. We present an optimal stopping rule and an asymptotic
lower bound for the probability of a ‘win’ (i.e. obtaining the mth last success with k ≤ m ≤ �).

When P[Xi = 1] = 1/i, our problem becomes a variation of the secretary problem [9].
In particular, in the case that � = k = 1, the problem is equivalent to the classical secretary
problem. One of the reasons why the odds problems are popular in the optimal stopping theory
is that it includes the secretary problem as a special case.

Although our problem setting looks artificial, it includes some odds problems as special
cases (see Table 1). When � = k = 1, the problem is equivalent to the well-known Bruss’
odds problem [3], which has an elegant and simple optimal stopping rule known as the odds
theorem or sum-the-odds theorem. A typical lower bound for an asymptotic optimal value (the
probability of a win), when N approaches ∞, has been shown to be e−1 by Bruss [4], which
is equal to that for the classical secretary problem. If � = k ≥ 1, Bruss and Paindaveine [5]
showed that an optimal stopping rule is obtained by a threshold strategy. When � ≥ k = 1,
Tamaki [13] demonstrated the sum-the-multiplicative-odds theorem, which gives an optimal
stopping rule obtained using a threshold strategy. Recently, we discussed his model and gave a
lower bound for the probability of a win [10]. Bruss and Paindaveine [5] and Tamaki [13] also
discussed the corresponding secretary problem and derived asymptotic optimal values. The
related problem of the distribution of the rank of the accepted candidate has been studied by
Bartoszyński [1] and of the last record rank before the last acceptance by Bruss [2].

Table 1: Previous results and our results (•). (�) An optimal stopping rule is attained by the threshold
strategy defined by the minimum index i satisfying the key inequality in the last column (see (2) for

details), where r = (ri , ri+1, . . . , rN ) and other notations are defined by (1).

Model Condition Lower bound Key inequality (�)

[3] � = k = 1 e−1 [4]
ri + ri+1 + · · · + rN

1

= e1(r)

e0(r)
< 1 [3]

[5] � = k ≥ 1
��

(�!)e�
(•)

e�(r)

e�−1(r)
< 1 [5]

[13] � ≥ k = 1 exp

(
−(�!)1/�

) �∑
m=1

(�!)m/�

m! [10]
e�(r)

e0(r)
< 1 [13]

This paper � ≥ k ≥ 1 (‡) See below (•)
e�(r)

ek−1(r)
< 1 (•)

‡exp

(
−

(
�!

(k − 1)!
)1/(�−k+1)) �∑

m=k

(
1

m!
(

�!
(k − 1)!

)m/(�−k+1))
.
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14 T. MATSUI AND K. ANO

In this paper we describe an optimal stopping rule and derive the greatest lower bound for the
probability of a win for the problem of selecting k out of the last � successes. The asymptotic
value of our lower bound is equivalent to the asymptotic optimal value for the corresponding
secretary problem appearing in [4], [5], and [13]. A special feature of our proof is the application
of Newton’s inequalities [11] and optimization technique to obtain our bound.

2. Elementary symmetric polynomials

For any pair of positive integers m and N satisfying 1 ≤ m ≤ N and a vector r ∈ R
N , em(r)

denotes the mth elementary symmetric polynomial (function) of r = (r1, r2, . . . , rN ) defined
by

em(r) =
∑

1≤i1<i2<···<im≤N

ri1ri2 · · · rim =
∑

B⊆{1,2,...,N} and |B|=m

∏
i∈B

ri, (1)

which is the sum of the
(
N
m

)
terms. We also define e0(r) = 1. The mth elementary symmetric

mean of r is defined by

Sm(r) = em(r)

/(
N

m

)
for all m ∈ {1, 2, . . . , N} and S0(r) = 1.

We abbreviate Sm(r) to Sm when there is no ambiguity. The elementary symmetric polynomials
satisfy the following inequalities shown by Newton.

Theorem 1. (Newton’s inequalities [11].) For every nonnegative vector r ∈ R
N+ and a positive

integer 1 ≤ m < N ,
Sm(r)2 ≥ Sm−1(r)Sm+1(r),

with equality exactly when all the ri are equal.

Newton’s inequalities directly imply the following.

Lemma 1. For any positive vector r̃ = (̃r1, r̃2, . . . , r̃N ) > 0 and integers (m, �) satisfying
1 ≤ m ≤ � ≤ N , the inequality e�−1(̃r)/em−1(̃r) ≥ e�(̃r)/em(̃r) holds.

Proof. The positivity of r̃ implies that Sm′ (̃r) > 0 (for all m′, 0 ≤ m′ ≤ N ). Newton’s ineq-
ualities are equivalent to the midpoint log-concavity log(Sm′) ≥ 1

2 (log(Sm′−1) + log(Sm′+1)),
which directly yields the concavity of the sequence (log(S0), log(S1), log(S2), . . . , log(SN))

and the following inequalities:

1
2 (log(Sm) + log(S�−1)) ≥ 1

2 (log(Sm−1) + log(S�)),

SmS�−1 ≥ Sm−1S�,(
N

m − 1

)
e�−1(̃r)

/(
N

� − 1

)
em−1(̃r) = S�−1

Sm−1
≥ S�

Sm

=
(

N

m

)
e�(̃r)

/(
N

�

)
em(̃r),

e�−1(̃r)

em−1(̃r)
≥

(
N − m + 1

N − � + 1

)(
�

m

)
e�(̃r)

em(̃r)
≥ e�(̃r)

em(̃r)
. �

Lemma 2. For any positive vector r̃ = (̃r1, r̃2, . . . , r̃N ) > 0 and integers (m, �, N) satisfying
0 ≤ m ≤ � < N and N ≥ 2, the inequality e�(̃r)/em(̃r) ≥ e�(̃r−1)/em(̃r−1) holds, where
r̃−1 = (̃r2, . . . , r̃N ).
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Compare the ratio of symmetric polynomials of odds to one and stop 15

Proof. When m = 0, the result is obvious from the positivity of r̃ . Let us consider the cases
when m ≥ 1. If we apply Lemma 1 to the positive vector r̃−1 then we obtain the inequality
e�−1(̃r−1)/em−1(̃r−1) ≥ e�(̃r−1)/em(̃r−1), which directly implies that

e�(̃r)

em(̃r)
= r̃1e�−1(̃r−1) + e�(̃r−1)

r̃1em−1(̃r−1) + em(̃r−1)
≥ e�(̃r−1)

em(̃r−1)
. �

3. Threshold strategy

We deal with a sequence of independent 0/1 random variables X1, X2, . . . , XN , where N is
a given positive integer and the distribution is P[Xi = 1] = pi, P[Xi = 0] = 1 −pi = qi, 0 <

pi < 1 for each i. We define ri = pi/qi for each i. The ri are called odds. Given a pair of
integers (k, �) satisfying 1 ≤ k ≤ � < N , we discuss a problem to predict the mth last success
satisfying k ≤ m ≤ �, if any, with maximum probability at the time of its occurrence.

In the rest of this section we denote the subvector (ri, ri+1, . . . , rN ) by r [i] and introduce
the notation

Wi := P[k ≤ Xi+1 + · · · + XN ≤ �] =
∑�

m=k em(r [i+1])∏N
j=i+1(1 + rj )

,

Vi := P[k ≤ Xi + · · · + XN ≤ � | Xi = 1] =
∑�−1

m=k−1 em(r [i+1])∏N
j=i+1(1 + rj )

.

We define an index i∗ by

i∗ := min

{
i

∣∣∣∣ 1 ≤ i ≤ N − � and
e�(r

[i+1])
ek−1(r [i+1])

< 1

}
. (2)

When the minimum in (2) is taken on the empty set, we set i∗ := N − � + 1.
Now we give an optimal rule.

Theorem 2. Let us consider the problem of stopping at the mth last success with k ≤ m ≤ �

defined on X1, X2, . . . , XN satisfying ri > 0 for all i and 1 ≤ k ≤ � < N . An optimal stopping
rule is obtained by stopping at the first success Xi = 1 with i ≥ i∗, and the corresponding
probability of a win is equal to Wi∗−1.

Proof. First, we show a property of the ratio Wi/Vi . The definition of i∗ and Lemma 2
directly induce the following:

e�(r
[i+1])

ek−1(r [i+1])

{
≥ 1 (for all i, 0 ≤ i ≤ i∗ − 1),

< 1 (for all i, i∗ ≤ i ≤ N − �).
(3)

The definitions of Wi and Vi imply that

Wi

Vi

=
∑�

m=k em(r [i+1])∏N
j=i+1(1 + rj )

∏N
j=i+1(1 + rj )∑�−1

m=k−1 em(r [i+1])
=

∑�−1
m=k em(r [i+1]) + e�(r

[i+1])∑�−1
m=k em(r [i+1]) + ek−1(r [i+1])

(4)

and, thus, we have
Wi

Vi

{
≥ 1 (for all i, 0 ≤ i ≤ i∗ − 1),

< 1 (for all i, i∗ ≤ i ≤ N − �).
(5)
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From property (5), our problem becomes a monotone stopping problem and the one-stage
look-ahead strategy gives an optimal stopping rule (see, for example, [6]–[8], [12]). Thus, an
optimal stopping rule is attained by the threshold strategy with the threshold value

τ := min

{
i

∣∣∣∣ 1 ≤ i ≤ N − � and
Wi

Vi

< 1

}
.

When the minimum in the above definition is taken on the empty set, we set τ := N − �+ 1. If
we employ the optimal threshold strategy defined by τ , it is also known that the corresponding
probability of a win is equal to Wτ−1.

From (4), we have

Wi

Vi

< 1 if and only if
e�(r

[i+1])
ek−1(r [i+1])

< 1

and, thus, i∗ = τ . As a result, an optimal stopping rule is obtained by the threshold strategy with
the threshold value i∗, which does not select any index less than i∗ and selects the first variable
Xi = 1 satisfying i∗ ≤ i. The corresponding probability of a win is equal to Wτ−1 = Wi∗−1.
This completes the proof. �

4. Lower bound

In this section we discuss a lower bound for the probability of a win under the optimal
stopping rule. First, we discuss a lemma which plays an important role in this section.

Lemma 3. Every positive vector r̃ = (̃r1, r̃2, . . . , r̃N ) > 0 satisfies

(Sk−1(̃r))�−m ≥ (Sm(̃r))�−k+1(S�(̃r))k−1−m for all m ∈ {0, 1, 2, . . . , k − 1}, (6)

(Sm(̃r))�−k+1 ≥ (Sk−1(̃r))�−m(S�(̃r))m−k+1 for all m ∈ {k, k + 1, . . . , �}, (7)

(S�(̃r))m−k+1 ≥ (Sk−1(̃r))m−�(Sm(̃r))�−k+1 for all m ∈ {� + 1, . . . , N}. (8)

Proof. In the following we abbreviate Sm(̃r) to Sm for simplicity. Newton’s inequalities
directly imply the concavity of the sequence (log(S0), . . . , log(SN)) and, thus, we have the
following inequalities:

log(Sk−1) ≥ (� − k + 1) log(Sm) + (k − 1 − m) log(S�)

� − m
for all m ∈ {0, 1, . . . , k − 1},

log(Sm) ≥ (� − m) log(Sk−1) + (m − k + 1) log(S�)

� − k + 1
for all m ∈ {k, k + 1, . . . , �},

log(S�) ≥ (m − �) log(Sk−1) + (� − k + 1) log(Sm)

m − k + 1
for all m ∈ {� + 1, � + 2, . . . , N}.

Consequently, (6)–(8) follow, completing the proof. �
Theorem 3. Let us consider the problem of stopping at the mth last success with k ≤ m ≤ �

defined on X1, X2, . . . , XN satisfying

(i) ri > 0 for all i,

(ii) 1 ≤ k ≤ � < N ,

(iii) 1 > e�(r̄)/ek−1(r̄), where r̄ = (rN−�+1, rN−�+2, . . . , rN ) ∈ R
�, and

(iv) e�(r)/ek−1(r) ≥ 1.
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Under the optimal stopping rule, the greatest lower bound for the probability of a win is equal to∑�
m=k

(
N
m

)
θm

(1 + θ)N
, where θ =

((
N

k − 1

)/(
N

�

))1/(�−k+1)

.

Proof. Since the optimal stopping rule defined by (2) is a threshold strategy, the truncation
of the subsequence X1, X2, . . . , Xi∗−1 does not affect the probability of a win. Thus, we need
only consider a case where

ek−1(r2, r3, . . . , rN ) − e�(r2, r3, . . . , rN ) > 0, (9)

ek−1(r1, r2, r3 . . . , rN ) − e�(r1, r2, r3 . . . , rN ) ≤ 0. (10)

Under assumptions (9) and (10), the optimal stopping rule is obtained by setting i∗ = 1, and
the probability of a win is equal to

W0 =
∑�

m=k em(r)

(1 + r1)(1 + r2) · · · (1 + rN)
.

Thus, the greatest lower bound for the probability of a win under the optimal stopping rule is
equal to the optimal value of an optimization problem

P1: minimize

Pwin(N) :=
∑�

m=k em(r)

(1 + r1)(1 + r2) · · · (1 + rN)

subject to 0 < ri for all i ∈ {1, 2, . . . , N},
ek−1(r−1) − e�(r−1) > 0,

ek−1(r) − e�(r) ≤ 0, (11)

where r−1 = (r2, r3, . . . , rN ).
We show that we need only consider feasible solutions satisfying constraint (11) by equality.

Let r ′ be a feasible solution of (P1) satisfying ek−1(r
′) − e�(r

′) < 0. We introduce a function
f (r) : [0, r ′

1] → R defined by

f (r) = ek−1(r, r
′
2, r

′
3, . . . , r

′
N) − e�(r, r

′
2, r

′
3, . . . , r

′
N),

which is obtained by fixing N − 1 variables {r ′
2, r

′
3, . . . , r

′
N }. The assumption on r ′ directly

implies that

f (r ′
1) = ek−1(r

′) − e�(r
′) < 0 < ek−1(r

′−1) − e�(r
′−1) = f (0).

From the continuity of f (r), the mean-value theorem implies the existence of a value r ′′ ∈
(0, r ′

1) satisfying f (r ′′) = 0. Obviously, (r ′′, r ′
2, r

′
3, . . . , r

′
N) is feasible to (P1). The objective

function value P
′
win(N) corresponding to r ′ becomes

P
′
win(N) =

∑�
m=k em(r ′)

(1 + r ′
1)(1 + r ′

2) · · · (1 + r ′
N)

=
∑�

m=k(em(r ′−1) + r ′
1em−1(r

′−1))

(1 + r ′
1)(1 + r ′

2) · · · (1 + r ′
N)
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18 T. MATSUI AND K. ANO

=
∑�

m=k(em(r ′−1) − em−1(r
′−1) + (1 + r ′

1)em−1(r
′−1))

(1 + r ′
1)(1 + r ′

2) · · · (1 + r ′
N)

=
[
(−1)

ek−1(r
′−1) − e�(r

′−1)

1 + r ′
1

+
�∑

m=k

em−1(r
′−1)

]
[(1 + r ′

2) · · · (1 + r ′
N)]−1.

Since ek−1(r
′−1) − e�(r

′−1) > 0 and r ′′ ∈ (0, r ′
1), the objective function value of (r ′′, r ′

2, r
′
3,

. . . , r ′
N) is strictly less than that of r ′. As a result, we have shown that if a solution r ′ feasible

to (P1) satisfies ek−1(r
′) − e�(r

′) < 0, then there exists a feasible solution r ′′ satisfying
ek−1(r

′′) − e�(r
′′) = 0 with a strictly smaller objective value. Thus, we need only consider a

set of feasible solutions of (P1) satisfying ek−1(r) − e�(r) = 0.
Let r∗ be a feasible solution of (P1) satisfying ek−1(r

∗) − e�(r
∗) = 0. Next, we derive an

upper bound and/or a lower bound for em(r∗). For simplicity, we introduce the notation

α :=
(

(Sk−1)
�

(S�)k−1

)1/(�−k+1)

and θ :=
(

S�

Sk−1

)1/(�−k+1)

.

The equality ek−1(r
∗) − e�(r

∗) = 0 directly implies that

θ =
(

S�

Sk−1

)1/(�−k+1)

=
((

N

k − 1

)
e�(r

∗)
/(

N

�

)
ek−1(r

∗)
)1/(�−k+1)

=
((

N

k − 1

)/(
N

�

))1/(�−k+1)

.

(i) Inequality (6) implies that, for any m ∈ {0, 1, 2, . . . , k − 1},

em(r∗) =
(

N

m

)
Sm

≤
(

N

m

)(
(Sk−1)

�−m

(S�)k−1−m

)1/(�−k+1)

=
(

N

m

)(
(Sk−1)

�

(S�)k−1

(S�)
m

(Sk−1)m

)1/(�−k+1)

=
(

N

m

)
αθm.

(ii) For each m ∈ {k, k + 1, . . . , �}, inequality (7) gives a lower bound (not upper bound)

em(r∗) =
(

N

m

)
Sm

≥
(

N

m

)
((Sk−1)

�−m(S�)
m−k+1)1/(�−k+1)

=
(

N

m

)(
(Sk−1)

�

(S�)k−1

(S�)
m

(Sk−1)m

)1/(�−k+1)

=
(

N

m

)
αθm.
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(iii) Inequality (8) implies that, for any m ∈ {� + 1, � + 2, . . . , N},

em(r∗) =
(

N

m

)
Sm

≤
(

N

m

)(
(S�)

m−k+1

(Sk−1)m−�

)1/(�−k+1)

=
(

N

m

)(
(Sk−1)

�

(S�)k−1

(S�)
m

(Sk−1)m

)1/(�−k+1)

=
(

N

m

)
αθm.

Then the objective function value P
∗
win(N) corresponding to r∗ satisfies

1

P
∗
win(N)

= (1 + r∗
1 )(1 + r∗

2 ) · · · (1 + r∗
N)∑�

m=k em(r∗)

=
∑N

m=0 em(r∗)∑�
m=k em(r∗)

=
∑k−1

m=0 em(r∗)∑�
m=k em(r∗)

+
∑�

m=k em(r∗)∑�
m=k em(r∗)

+
∑N

m=�+1 em(r∗)∑�
m=k em(r∗)

≤
∑k−1

m=0

(
N
m

)
αθm∑�

m=k

(
N
m

)
αθm

+ 1 +
∑N

m=�+1

(
N
m

)
αθm∑�

m=k

(
N
m

)
αθm

= α
∑N

m=0

(
N
m

)
θm

α
∑�

m=k

(
N
m

)
θm

= (1 + θ)N∑�
m=k

(
N
m

)
θm

and, thus,

P
∗
win(N) ≥

∑�
m=k

(
N
m

)
θm

(1 + θ)N
. (12)

Now we discuss the tightness of the above lower bound. If we consider the case where
r̂1 = r̂2 = · · · = r̂N = θ , then we have

ek−1(̂r) − e�(̂r)

=
(

N

k − 1

)
θk−1 −

(
N

�

)
θ�

=
(

N

k − 1

)((
N

k − 1

)/(
N

�

))(k−1)/(�−k+1)

−
(

N

�

)((
N

k − 1

)/(
N

�

))�/(�−k+1)

=
(

N

k − 1

)1+(k−1)/(�−k+1)/(
N

�

)(k−1)/(�−k+1)

−
(

N

k − 1

)�/(�−k+1)/(
N

�

)−1+�/(�−k+1)

= 0
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and

ek−1(̂r−1) − e�(̂r−1) =
(

N − 1

k − 1

)
θk−1 −

(
N − 1

�

)
θ�

=
(

N − k + 1

N

)(
N

k − 1

)
θk−1 −

(
N − �

N

)(
N

�

)
θ�

=
(

N − k + 1

N

)
ek−1(̂r) −

(
N − �

N

)
e�(̂r)

=
(

N − k + 1

N

)
ek−1(̂r) −

(
N − �

N

)
ek−1(̂r)

= � − k + 1

N
ek−1(̂r)

> 0.

Thus, r̂ is feasible for (P1) and the corresponding probability of a win (under the optimal
stopping rule) attains the lower bound appearing in the right-hand side of (12). From the
above, r̂ is optimal for (P1), which induces the tightness of our lower bound. �

Finally, we consider an asymptotic lower bound that is independent of N . The greatest
lower bound for the probability of a win (under the optimal stopping rule) is nonincreasing
with respect to N . Thus, we discuss the case that N → ∞ and present a general lower bound.

Corollary 1. Under the assumptions in Theorem 3, the probability of a win is greater than

exp

(
−

(
�!

(k − 1)!
)1/(�−k+1)) �∑

m=k

(
1

m!
(

�!
(k − 1)!

)m/(�−k+1))
.

Proof. It is easy to see that∑�
m=k

(
N
m

)
θm

(1 + θ)N
≥ exp(−Nθ)

�∑
m=k

(
N

m

)
θm = exp

(
−

(
N

1

)
θ

) �∑
m=k

(
N

m

)
θm.

For each m ∈ {0, 1, . . . , N}, we can find an asymptotic value for
(
N
m

)
θm, i.e.(

N

m

)
θm =

(
N

m

)((
N

k − 1

)/(
N

�

))m/(�−k+1)

= N !
(N − m)! m!

(
�! (N − �)!

(k − 1)! (N − k + 1)!
)m/(�−k+1)

= 1

m!
(

�!
(k − 1)!

)m/(�−k+1)
N !

(N − m)! Nm

(
(N − �)! N�−k+1

(N − k + 1)!
)m/(�−k+1)

= 1

m!
(

�!
(k − 1)!

)m/(�−k+1)

× (1 − 0/N)(1 − 1/N) · · · (1 − (m − 1)/N)

((1 − (k − 1)/N)(1 − k/N) · · · (1 − (� − 1)/N))m/(�−k+1)

→ 1

m!
(

�!
(k − 1)!

)m/(�−k+1)

as N → ∞.
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From the above discussion, we obtain the asymptotic lower bound

lim
N→∞

∑�
m=k

(
N
m

)
θm

(1 + θ)N
≥ lim

N→∞ exp

(
−

(
N

1

)
θ

) �∑
m=k

(
N

m

)
θm

= exp

(
−

(
�!

(k − 1)!
)1/(�−k+1)) �∑

m=k

(
1

m!
(

�!
(k − 1)!

)m/(�−k+1))
,

completing the proof. �

5. Conclusion

In this paper we considered an optimal stopping problem of maximizing the probability of
selecting k out of the last � successes, where 1 ≤ k ≤ � < N . Our results thus cover quite a
general class of odds problems which include the original Bruss’ odds problem [3], as well as
the results of Bruss and Paindaveine [5] and Tamaki [13]. We showed that an optimal stopping
rule is given by a threshold strategy. We also gave a lower bound for the probability of a win.
Our proofs are based on Newton’s inequalities and optimization technique.

Our general lower bound for the probability of a win is attained by corresponding odds
problems and/or secretary problems:

• e−1 (if � = k = 1), which is a well-known bound for the classical secretary problem and
a lower bound for Bruss’ odds problem shown by Bruss [4];

• ��/(�!)e� (if � = k ≥ 1) shown by Bruss and Paindaveine [5] for the secretary problem;

• exp(−(�!)1/�)
∑�

m=1(�!)m/�/m! (if � ≥ k = 1) shown by Tamaki [13] for the secretary
problem, and by Matsui and Ano [10] for a variation of the odds problem proposed by
Tamaki.
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