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Abstract

A new homological dimension, called rigidity dimension, is introduced to measure the
quality of resolutions of finite dimensional algebras (especially of infinite global dimension)
by algebras of finite global dimension and big dominant dimension. Upper bounds of the
dimension are established in terms of extensions and of Hochschild cohomology, and finite-
ness in general is derived from homological conjectures. In particular, the rigidity dimension
of a non-semisimple group algebra is finite and bounded by the order of the group. Then
invariance under stable equivalences is shown to hold, with some exceptions when there
are nodes in case of additive equivalences, and without exceptions in case of triangulated
equivalences. Stable equivalences of Morita type and derived equivalences, both between
self-injective algebras, are shown to preserve rigidity dimension as well.
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418 HONGXING CHEN ET AL.

1. Introduction

A resolution of a mathematical object relates this object as closely as possible with another
object that has better properties. In this sense, an algebra E of finite global (cohomological)
dimension may be a resolution of an arbitrary algebra A. The rigidity dimension of A, to be
introduced in this article, is intended to measure in homological terms the quality of a best
possible resolution of A.

A classical correspondence, often named after Morita and Tachikawa and indepen-
dently proved by Müller (Section 2·2), suggests to proceed in resolving a given finite
dimensional algebra A by first choosing an A-module M that is a finitely generated
generator-cogenerator, and then choose for E the endomorphism ring EndA(M). When E
has finite global dimension, we call E a resolution algebra of A, and M a resolving module.
Then A and E are closely related by a double centraliser property on the balanced A-E-
bimodule M : there are equalities E = EndA(M) and A = EndE(M). A construction due to
Iyama ensures the existence of at least one resolution algebra of A.

How to measure the quality of a resolution and what means ‘best possible’? Increasing
multiplicities of summands of M and thus replacing E by a Morita equivalent algebra
if necessary, we may assume that there is an idempotent e = e2 ∈ E such that A = eEe.
Multiplication e · − by the idempotent e defines an exact functor e · − : E -mod → A -mod.
The right E-module M is faithful and projective-injective and as E-module determined by
these properties, up to multiplicities of direct summands. Morita-Tachikawa correspondence
implies that E has dominant dimension at least two. Informally, the dominant dimension of
E controls how strongly the exact functor e · − relates the module categories and in partic-
ular the cohomology over E and over A. Larger dominant dimension of E signifies a better
resolution.

The importance of dominant dimension in this context is suggested not only by Morita–
Tachikawa correspondence, but also by the role of dominant dimension in Auslander’s
representation dimension and Iyama’s higher representation dimension [24], by Rouquier’s
theory of quasi-hereditary covers [33] and, closest to the current context, by results
[12, 13, 14, 16] on Schur algebras and more generally on endomorphism algebras of gener-
ators over symmetric algebras, making precise how the dominant dimension of E controls
which cohomology groups over E and over A are identified by the functor e · − : E -mod →
A -mod .

Equivalently, the dominant dimension of E measures the vanishing of self-extensions of
the resolving A-module M . This explains the term rigidity in the main definition of this
article and provides another reason why large dominant dimension of E indicates that the
resolving module M over A has been chosen particularly well. This moreover relates M to
Iyama’s cluster tilting modules [25], which are also known as maximal orthogonal modules.
The rigidity dimension is defined to be the supremum of dominant dimensions taken over all
resolution algebras E . It always will be at least two, but it is open if it always takes a finite
value.

A representation theoretic example to keep in mind is Schur–Weyl duality between Schur
algebras of general linear groups, or their quantised versions, and group algebras of sym-
metric groups, or their Hecke algebras. As Schur algebras always do have finite global
dimension, they are non-commutative resolution algebras of the group algebras or Hecke
algebras. Their dominant dimensions have been computed, which gives a lower bound for
the rigidity dimension of group algebras of symmetric groups. In a subsequent article dealing
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Rigidity dimension of algebras 419

with methods and examples, we will show that in some cases at least this bound is optimal
and thus some Schur algebras are best possible resolution algebras of group algebras of
symmetric groups.

The main concept introduced in this article is a new homological dimension, which
provides information on the ‘best possible’ resolution algebra of a fixed algebra A:

rigdim(A) := sup
{

domdim(E)

∣∣∣ E is a resolution algebra of A
}
.

As we know already, rigdim(A) ≥ 2 for any A. By Theorem 2·7 (Müller), when M is
a generator-cogenerator in A -mod, the dominant dimension of its endomorphism ring is
determined by the rigidity degree of M (Definition 2·5), which measures vanishing of self-
extensions of M . Therefore, the new dimension is called rigidity dimension of A. Note that
non-semisimple algebras of finite global dimension always have finite dominant dimension,
so the supremum is taken over a set of natural numbers, unless A is semisimple and thus has
infinite rigidity dimension. When A has infinite global dimension, rigdim(A) measures how
close A can come to a resolution algebra E .

A combination of global and dominant dimension also occurs in the definitions of
Auslander’s representation dimension, which is always finite, and Iyama’s higher representa-
tion dimension, which is often infinite. It turns out that rigidity dimension controls finiteness
of higher representation dimension: repdimn(A) is finite if and only if rigdim(A) ≥ n + 1.
Thus, rigidity dimension can be viewed as a companion of higher representation dimension.

We will address two basic questions about this new dimension: finiteness and invariance
under equivalences.

Three approaches are developed to establish finiteness. The first approach provides an
upper bound for rigdim(A) in terms of the smallest degree n ≥ 1, if existent, for which
Extn

A(D(A), A) does not vanish (Theorem 3·1). Here D is the usual k-duality over the ground
field k. This can be applied for instance to Schur algebras of algebraic groups and to blocks
of the Bernstein–Gelfand–Gelfand category O of semisimple complex Lie algebras.

The second approach provides an upper bound in terms of the smallest positive degree
of a non-nilpotent homogenous generator of Hochschild cohomology (Theorem 3·5). This
implies finiteness of rigidity dimension for all non-semisimple group algebras (Theorem
3·6). Symonds’ proof of Benson’s regularity conjecture then implies that the order of the
group is an explicit, but weak, upper bound for rigdim(kG).

The third approach derives finiteness of rigidity dimension for all non-semisimple alge-
bras from homological conjectures (Theorem 3·7): assuming Tachikawa’s first conjecture
(Section 3·3 (TC1)) yields finiteness for algebras that are not self-injective, as an application
of the first approach. Finiteness in general is shown to follow from Yamagata’s conjecture
(Section 3·3 (YC)). These conjectures are in general open; for finite-dimensional algebras,
no counterexamples are known. Tachikawa’s first conjecture is part of a reformulation of
Nakayama’s conjecture, which states that an algebra is self-injective if and only if it has
infinite dominant dimension.

Which equivalences of categories do preserve rigidity dimension? Morita equivalences
are easily seen to preserve rigidity dimension in general. For stable or derived equivalences
the problem is much more subtle. In fact, in the presence of nodes (which at least for self-
injective algebras does not happen frequently), rigidity dimension can change under stable
equivalence, as we show by examples. However, algebras without nodes always have min-
imal rigidity dimension in their stable equivalence class (Theorem 4·4 and Corollary 4·5).
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This implies that rigidity dimension is invariant under stable equivalences between alge-
bras without nodes. In general, invariance is guaranteed when the equivalence preserves the
triangulated structure which stable categories of self-injective algebras are known to have
(Corollary 4·9).

Stable equivalences of Morita type, and thus also derived equivalences, between self-
injective algebras do leave rigidity dimension invariant. More precisely, stable equivalences
of adjoint type always preserve rigidity dimension for all finite dimensional algebras
(Theorem 5·2).

In the subsequent paper [7], rigidity dimensions of classes of examples will be determined.

Notation. Throughout this paper, k is an arbitrary but fixed field. Unless stated otherwise,
all algebras are finite-dimensional associative k-algebras with units, and all modules are
finite-dimensional left modules. The set of positive integers is denoted by N; the set of
non-negative integers is denoted by N0.

Let A be an algebra. A -mod denotes the category of all left A-modules. The syzygy
and cosyzygy operators of A -mod are denoted by �A and �−

A , respectively. Let Aop be the
opposite algebra of A. Then D := Homk(−, k) is a duality between A -mod and Aop -mod.

Let X be a class of A-modules. By add(X ), we denote the smallest full subcategory
of A -mod which contains X and is closed under finite direct sums and direct summands.
When X consists of only one object X , we write add(X) for add(X ). In particular, add(A A)

is exactly the category of projective A-modules and also denoted by A-proj. Let PA and
IA stand for the set of isomorphism classes of indecomposable projective and injective
A-modules, respectively.

An A-module M is called basic if it is a direct sum of pairwise non-isomorphic inde-
composable submodules. Moreover, the head, radical and socle of M are denoted by
hd(M), rad(M) and soc(M), respectively. The composition of two morphisms f : X → Y
and g : Y → Z in A -mod is denoted by f g : X → Z . In this sense, HomA(X, Y ) is an
EndA(X)-EndA(Y )-bimodule. Particularly, M is a right EndA(M)-module.

2. Rigidity dimension

The main object of study in this paper, rigidity dimension, will be introduced in the second
subsection. Before, we recall the definitions of global and dominant dimension and define
the rigidity degree of a module. The third subsection then provides basic properties and
examples. This includes the connection with Iyama’s higher representation dimension, the
relation with cluster tilting modules, which can be used to provide lower bounds for rigidity
dimension, and finally a result on rigidity dimension of weakly Calabi-Yau self-injective
algebras, which implies that preprojective algebras of Dynkin type have rigidity dimension
exactly three.

2·1. Global and dominant dimension, and rigidity degree

An A-module M is called a generator if A ∈ add(M); a cogenerator if D(AA) ∈ add(M).
M is called a generator-cogenerator if it is both a generator and a cogenerator.

The global dimension of an algebra A, denoted by gldim A, is defined to be the maximal
number t or ∞ such that Extt

A(M, N ) �= 0 for some M, N ∈ A -mod. To compute the global
dimension of endomorphism algebras, the following result due to Auslander [1, Chapter III,
Section 3] is very useful.
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PROPOSITION 2·1. Let A M be a generator-cogenerator and let n ≥ 2. Then
gldim EndA(M) ≤ n if and only if for each indecomposable A-module X, there exists
an exact sequence of A-modules

ξ : 0 −→ Mn−2 −→ Mn−1 −→ · · · −→ M1 −→ M0 −→ X −→ 0

such that Mi ∈ add(M) for all i and the sequence HomA(M, ξ) is exact.

The following example is an illustration. It will be continued in Example 4·6.

Example 2·2. Let B be the k-algebra given by the quiver

1
α

�� 2
β

��

and relations {αβ, βα}. Our composition of arrows in the quiver is taken from right to left.
In total, there are up to isomorphism four indecomposable B-modules, the projective B-
modules P1 and P2 and their simple heads S1 and S2 respectively. Let M = B ⊕ S1. Since B
is self-injective, M is a generator-cogenerator. Moreover, the following sequences are exact
and remain exact after applying HomB(M, −):

0 −→ S1 −→ S1 −→ 0, 0 −→ P1 −→ P1 −→ 0, 0−→P2−→P2−→0,

0−→S1−→P2−→S2−→0.

By Proposition 2·1, gldim EndB(M) ≤ 3.

The following is the key ingredient in our main definition (Definition 2·8) in this article.

Definition 2·3. An A-module M is called a resolving module if:

(1) M is a generator-cogenerator;
(2) gldim EndA(M) < ∞.

Dominant dimension was introduced by Nakayama and later systematically studied by
Tachikawa, Morita, Müller, Yamagata and many others, see [31, 36, 38]. See also [9, 12, 14,
15, 16, 26, 39] for some recent developments on dominant dimension partly motivating this
paper.

Definition 2·4. The dominant dimension of A, denoted by domdim A, is the largest t ∈N0,
or ∞, such that in a minimal injective resolution

0 −→ A A −→ I 0 −→ I 1 −→ · · · −→ I t−1 −→ I t −→ · · ·
all I i are projective for 0 ≤ i < t .

Note that domdim A = domdim Aop (see [31, theorem 4]). If domdim A ≥ 1, then the
injective envelope of A A is faithful and projective. If domdim A ≥ 2, then any faithful
projective-injective A-module P has the double centralizer property, that is, with � =
EndA(P) there is an isomorphism A ∼= End�op(P)op. In this case, also A ∼= End�(D(P)), and
D(P) is a generator-cogenerator in � -mod. In general, for calculating dominant dimensions
of endomorphism algebras, the following definition is useful.
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Definition 2·5. Let M be an A-module. The rigidity degree of M , denoted by rd(A M), is
the maximal n ∈N0, or ∞, such that Exti

A(M, M) vanishes for all 1 ≤ i ≤ n. In other words,
rd(A M) ≥ n if and only if Exti

A(M, M) = 0 for all 1 ≤ i ≤ n.

LEMMA 2·6. Let M = M1 ⊕ · · · ⊕ Ms be a decomposition of the A-module M into inde-
composable direct summands. Then

rd(M) = min{rd(Mi ⊕ M j ) | 1 ≤ i, j ≤ s}.
Proof. For 1 ≤ i, j ≤ s, set Mi, j = Mi ⊕ M j . Since Mi, j ∈ add(M), we have rd(M) ≤
rd(Mi, j ). If rd(M) is infinite, then there is nothing to prove. Suppose rd(M) = t < ∞. Then
Extp

A(M, M) = 0 for 1 ≤ p ≤ t and Extt+1
A (M, M) �= 0. In particular, there is a pair (u, v)

of integers with 1 ≤ u, v ≤ s such that Extt+1
A (Mu, Mv) �= 0. This implies rd(Mu,v) ≤ t , and

thus rd(Mu,v) = t .

In this paper, rigidity degrees of modules, measuring the vanishing of self-extensions,
are of particular interest, due to their connections with both dominant dimensions and
Hochschild cohomology rings. The connection with dominant dimension is provided by
a result due to Müller:

THEOREM 2·7 (Müller [31, lemma 3]). Let A be an algebra and M a generator-
cogenerator in A -mod. Then domdim EndA(M) = rd(A M) + 2.

Indeed, applying HomA(M, −) to the minimal injective resolution of 0 → M → I0 →
I1 → · · · → In → · · · of M , yields a complex in EndA(M) -mod (by our convention on
composition of maps):

0 → EndA(M) → HomA(M, I0) → · · · → HomA(M, In) → · · ·
Now HomA(M, Ii ) ∈ add(D(M)), and D(M) is a projective-injective EndA(M)-module
since M is a generator-cogenerator. Theorem 2·7 then says that the exactness of the above
complex characterises the dominant dimension of EndA(M).

2·2. Definition of rigidity dimension

Both Rouquier’s theory of quasi-hereditary covers [33] and the theory of non-
commutative crepant resolutions due to van den Bergh, Iyama and Wemyss, see for instance
[24], ‘resolve’ algebras of infinite global dimension by algebras of finite global dimension.
The quality of such a resolution can be measured by the dominant dimension of the reso-
lution algebra or by the rigidity degree of the generator-cogenerator over the algebra being
resolved. The homological dimension to be defined now, aims to measure the quality of such
resolutions.

Definition 2·8. The rigidity dimension of an algebra A is defined to be

rigdim(A) = sup
{

domdim EndA(M) | M is a resolving A-module
}
.

The construction in the proof of Iyama’s finiteness theorem on representation dimension,
[23, lemma 2·2], ensures the existence of at least one resolving module (Definition 2·3) for
any finite dimensional algebra. Thus, the supremum is taken over a non-empty set.
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The rigidity dimension of a semisimple algebra is always ∞, as the dominant dimension
of semisimple algebras is ∞. In Section 3, we will give criteria to check finiteness of rigidity
dimension for many non-semisimple algebras. In particular, we will prove finiteness for
all non-selfinjective algebras after assuming Tachikawa’s first conjecture, and for all non-
semisimple algebras after assuming Yamagata’s conjecture.

It was shown by Morita and Tachikawa in an unpublished but circulating paper, and inde-
pendently by Müller [31], that finite dimensional algebras E with dominant dimension at
least 2 are exactly the endomorphism rings EndA(M), where A is an algebra and M is a
generator-cogenerator in A -mod. This result is frequently cited as Morita-Tachikawa cor-
respondence, see also [38, theorem 3·3·1] for more details. A consequence is a lower bound
for rigidity dimension.

COROLLARY 2·9. For any algebra A, rigdim A ≥ 2.

This also follows from a reformulation of the definition, using Müller’s Theorem 2·7:

rigdim(A) = sup
{

rd(A M) | M is a resolving A-module
}

+ 2.

As a consequence of this reformulation, we have the following result:
Let M be a generator-cogenerator in A -mod. If A M is not projective and rd(M) ≥

rigdim(A) − 1, then gldim EndA(M) = ∞.

2·3. Basic properties, examples and connections

PROPOSITION 2·10. Let A and B be algebras. Then:

(1) rigdim(A) = rigdim(Aop) and rigdim(A × B) = min{rigdim(A), rigdim(B)};
(2) If A and B are Morita equivalent, then rigdim(A) = rigdim(B);
(3) If k is perfect, then rigdim(A ⊗k B) ≥ min{rigdim(A), rigdim(B)}.

Proof. (1) and (2) are consequences of well-known facts: both global dimension and domi-
nant dimension are invariant under taking opposite algebras or passing to Morita equivalent
algebras; the dominant dimension (resp. global dimension) of the product of two algebras is
the minimum (resp. the maximum) of their dominant dimensions (resp. global dimensions).

(3) Let X and Y be generator-cogenerators in A -mod and B -mod, respectively.
Then X ⊗k Y is a generator-cogenerator in (A ⊗k B) -mod. Now EndA⊗k B(X ⊗k Y ) ∼=
EndA(X) ⊗k EndB(Y ) as k-algebras, and domdim(EndA(X) ⊗k EndB(Y )) = min{domdim
EndA(X), domdim EndB(Y )} by [31, lemma 6], and gldim(EndA(X) ⊗k EndB(Y )) =
gldim EndA(X) + gldim EndB(Y ) whenever k is a perfect field. Therefore, rigdim(A ⊗k

B) ≥ min{rigdim(A), rigdim(B)}.

2·3·1. Relation with higher representation dimension
The following result exhibits rigidity dimension as a counterpart of the higher representa-

tion dimension introduced by Iyama [24, definition 5·4]. Recall that for a natural number n,
the nth representation dimension repdimn(A) of an algebra A is defined to be

repdimn(A) = inf
{

gldim EndA(M)

∣∣∣M is a generator-cogenerator in A -mod
and domdim EndA(M) ≥ n + 1.

}

Auslander’s classical representation dimension is repdim1. As Iyama has shown [23],
repdim1 is always finite. For n ≥ 2, infinite values do occur.
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PROPOSITION 2·11. Let A be an algebra and n a positive integer. Then repdimn(A) < ∞ if
and only if rigdim(A) ≥ n + 1.

Proof. If repdimn(A) < ∞, then rigdim(A) ≥ n + 1 by definition. Conversely, if
rigdim(A) ≥ n + 1, then there exists a resolving A-module M such that domdim EndA(M) ≥
n + 1. Hence repdimn(A) < ∞.

When n = 1, the statement rigdim(A) ≥ 2 for all A in Corollary 2·9 is a reformulation of
Iyama’s finiteness result, which has been used in the definition of rigidity dimension.

Example 2·12. Let A be a finite dimensional non-simple self-injective local k-algebra
with rad3(A) = 0. Then rigdim(A) = 2, since by [20, theorem 3·4] every non-projective
A-module has non-trivial self-extensions.

2·3·2. Relation with cluster tilting modules, and a lower bound for rigidity dimension
Recall that a module M is said to be (n + 1)-cluster tilting (also known as maximal n-

orthogonal) for some n ≥ 1 if it satisfies M⊥n = ⊥n M = add(M) [25, definition 1·1], where

M⊥n = {X ∈ A -mod | Exti
A(M, X) = 0, 1 ≤ i ≤ n},

⊥n M = {X ∈ A -mod | Exti
A(X, M) = 0, 1 ≤ i ≤ n}.

Note that an (n + 1)-cluster tilting module M automatically is a generator-cogenerator and
its endomorphism algebra always has finite global dimension (see [24, 25]).

PROPOSITION 2·13. Let A be a non-semisimple algebra and n a natural number. If there
exists an (n + 1)-cluster tilting A-module, then rigdim(A) ≥ n + 2.

Proof. Let A M be an (n + 1)-cluster tilting A-module. By [24, theorem 0·2], M is a
resolving module with rd(M) = n. Therefore, rigdim(A) ≥ n + 2.

Remark. In Proposition 2·13, if furthermore either 1 ≤ injdim(A A) ≤ n + 1 or 1 ≤
injdim(AA) ≤ n + 1, then rigdim(A) = n + 2. Indeed, under this assumption rigdim(A) ≤
n + 2 by Theorem 3·1(2) below, and therefore rigdim(A) = n + 2.

2·3·3. Weakly Calabi–Yau self-injective algebras
Let A be a self-injective algebra. The stable module category A -mod of A is a k-linear

Hom-finite triangulated category, and its shift functor � is the cosyzygy functor �−1
A [19,

section 2·6]. Recall that A -mod is said to be weakly n-Calabi–Yau for a natural number n if
there are natural k-linear isomorphisms

HomA(Y, �n(X)) ∼= D HomA(X, Y )

for any X, Y ∈ A -mod. Since A -mod has a Serre duality �AνA [11, proposition 1·2], A
is weakly n-Calabi-Yau if and only if �−n

A and �AνA are naturally isomorphic as auto-
equivalences of A -mod. Equivalently, �n+1

A νA is naturally isomorphic to the identity functor
of A -mod. If A is symmetric, then it is weakly n-Calabi-Yau if and only if �n+1

A is naturally
isomorphic to the identity functor of A -mod.
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PROPOSITION 2·14. Let A be a non-semisimple self-injective algebra. If A -mod is weakly
n-Calabi–Yau with n ≥ 1, then rigdim(A) ≤ n + 1.

Proof. Since A is self-injective and n ≥ 1, we have Extn
A(X, X) ∼= HomA(X, �−n

A (X)) for
any A-module X . Recall that the shift functor � of A -mod is given by the cosyzygy
functor �−1

A . Since A -mod is weakly n-Calabi-Yau, it follows that HomA(X, �−n
A (X)) ∼=

HomA(X, �n(X)) ∼= D HomA(X, X). Thus Extn
A(X, X) ∼= D HomA(X, X). This implies

that if X is non-projective, then Extn
A(X, X) does not vanish. In this case, rd(A X) ≤ n − 1.

Now, it is clear that rigdim(A) ≤ n + 1.

COROLLARY 2·15. Let A be a preprojective algebra of Dynkin type over an algebraically
closed field. Then rigdim(A) = 3.

Proof. By [10, lemma 1], A -mod is weakly 2-Calabi–Yau. Proposition 2·14 implies
rigdim(A) ≤ 3. Further, by [17, theorem 2·2 and corollary 2·3] there exists a 2-cluster tilting
A-module. It follows from Proposition 2·13 that rigdim(A) ≥ 3. Thus rigdim(A) = 3.

3. Finiteness

Defining a homological dimension, a basic question is: On which algebras does it take
finite values? Semisimple algebras have infinite rigidity dimension, for trivial reasons, which
distinguish them from all other algebras. In the first two subsections we provide two methods
to prove finiteness. The first one is using extension groups between injective and projective
modules; this works for algebras of finite global dimension and for gendo-symmetric alge-
bras. The second one is using Hochschild cohomology; this works for group algebras of
finite groups. The third subsection then derives finiteness in general from (still unproven)
homological conjectures due to Tachikawa and Yamagata.

3·1. Finiteness I: relation with the extension groups Ext∗A(D(A), A)

Since D(A) ⊕ A appears as a direct summand of every generator-cogenerator M (up to
multiplicities), the groups Ext∗A(D(A), A) naturally occur in the computation of the Yoneda
algebra Ext∗A(M, M), and therefore in the computation of the rigidity dimension of A.

THEOREM 3·1. Let A be a non-selfinjective k-algebra. Then:

(1) rigdim(A) ≤ sup{n ∈N0 | Ext j
A(D(A), A) = 0 for 1 ≤ j ≤ n} + 2. Equality holds if

the endomorphism algebra of A ⊕ D(A) has finite global dimension;
(2) rigdim(A) ≤ injdim(A A) + 1 ≤ gldim(A) + 1.

Proof. (1) Let d = sup{n ∈N0 | Ext j
A(D(A), A) = 0 for 1 ≤ j ≤ n}. Then d = rd(A A ⊕

D(A)) since Exti
A(D(A), A) ∼= Exti

A(A ⊕ D(A), A ⊕ D(A)) for any i ≥ 1. Now let M be
a generator-cogenerator in A -mod. Since A ⊕ D(A) ∈ add(A M), it follows that rd(A M) ≤
rd(A A ⊕ D(A)) and therefore rigdim(A) ≤ d + 2. If furthermore gldim EndA(A ⊕ D(A)) <

∞, then rigdim(A) = rd(A A ⊕ D(A)) + 2 = d + 2.
(2) Let m = injdim(A A). Then m ≥ 1 since otherwise, A is self-injective. When m is infi-

nite, there is nothing to show. Suppose m is finite. Then Extm
A(D(A), A) �= 0 and (1) implies

rigdim(A) ≤ m − 1 + 2 = m + 1.
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Example 3·2. Let A be a non-semisimple hereditary algebra. Then Corollary 2·9 and
Theorem 3·1 imply that rigdim(A) = 2.

Recall that an algebra is called gendo-symmetric if it is the endomorphism algebra of a
generator over a symmetric algebra, see [15, 16] and also [39]. Such algebras arise exten-
sively in algebraic Lie theory. Hecke algebras, quantized Schur algebras, and blocks of
the Bernstein-Gelfand-Gelfand category O of semisimple complex Lie algebras are typical
examples.

COROLLARY 3·3. If A is a gendo-symmetric algebra, then rigdim(A) ≤ domdim(A).

Proof. By [15, proposition 3·3], the dominant dimension of A is at least two, and equals

sup{n ∈N0 | Exti
A(D(A), A) = 0, 1 ≤ i ≤ n} + 2.

If A is self-injective, then domdim(A) = ∞. Otherwise, Theorem 3·1(1) implies
rigdim(A) ≤ domdim(A).

An application of this corollary is that any gendo-symmetric algebra A with
domdim(A) = 2 has rigidity dimension 2. Examples of such algebras are the non-simple
blocks of the Bernstein-Gelfand-Gelfand category O of semisimple complex Lie algebras.
The global dimension of these algebras always is an even number, which can be arbitrarily
large.

3·2. Finiteness II: relation with Hochschild cohomology

Let A be a k-algebra and Aop its opposite algebra. The Hochschild cohomology ring
HH∗(A) is the Yoneda extension algebra Ext∗Aev(A, A) where Aev = A ⊗k Aop, the envelop-
ing algebra of A. So, HH∗(A) is the direct sum of HHi(A) := Exti

Aev(A, A) for i ∈N0.
This is an N0-graded k-algebra. In general, it is not commutative, but graded commutative.
Moreover, it may be infinite-dimensional as a vector space over k. However, if Aev has finite
global dimension, then HH∗(A) is finite-dimensional. The reduced Hochschild cohomology
ring HH

∗
(A) is the quotient HH∗(A)/N where N is the ideal of HH∗(A) generated by

homogeneous nilpotent elements. Although the problem whether the (reduced) Hochschild
cohomology ring is finitely generated has been widely studied, very little seems to be known
about the degrees of the homogeneous generators. We will show that rigidity dimension
of A is closely related to the minimal degree of non-nilpotent homogeneous generators of
positive degree.

We will use the following result, which is essentially combining [5, theorems 2·13
and 5·9] in our situation. Note that a main tool in [5] is the grade defined by Auslander
and Bridger, which is closely related to dominant dimension.

THEOREM 3·4 (Buchweitz). Let M be a generator-cogenerator in A -mod and let E =
EndA(M). Then there is an N0-graded algebra homomorphism ϕ : HH∗(E) → HH∗(A) such
that HHi (E) → HHi (A) is an isomorphism for each 0 ≤ i ≤ rd(A M).

The connection with rigidity dimension is as follows:

THEOREM 3·5. Let A be an algebra over a perfect field k. Suppose that HH
∗
(A) is not

concentrated in degree zero. Then rigdim(A) is finite.
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More precisely, let δ(A) = inf{i ≥ 1 | HH
i
(A) �= 0}. Then rigdim(A) ≤ δ(A) + 1. If k has

characteristic different from 2 and rigdim(A) is even, then rigdim(A) ≤ δ(A).

Proof. Let M be a generator-cogenerator in A -mod and let E = EndA(M). By Theorem 3·4,
there is a graded algebra homomorphism ϕ : HH∗(E) → HH∗(A) such that ϕi : HHi (E) →
HHi (A) is an isomorphism for 0 ≤ i ≤ rd(A M) = domdim E − 2, where the final equality
follows from Müller’s Theorem 2·7.

If gldim E < ∞, then k being a perfect field yields gldim E ev < ∞, and thus HH∗(E) is a
finite dimensional k-algebra, and therefore all homogeneous elements in HH∗(E) of positive
degrees are nilpotent. Using ϕ and ϕm , all homogenous elements in HH∗(A) of degree m with
1 ≤ m ≤ domdim E − 2 are seen to be nilpotent. Hence, domdim E − 1 ≤ δ(A) since δ(A)

detects the minimal degree of homogeneous generators of positive degrees in HH
∗
(A). Thus

rigdim(A) ≤ δ(A) + 1.
If k has characteristic different from 2, then homogeneous elements in HH∗(A) of odd

degrees are nilpotent, and therefore δ(A) must be an even number or ∞. When rigdim(A) is
an even number, then rigdim(A) ≤ δ(A) as claimed.

Remark. (1) Theorem 3·5 provides an upper bound for the rigidity dimension of A as long
as some information on its Hochschild cohomology ring is known. Conversely, a lower
bound for rigidity dimension is a lower bound for the degree of homogeneous generators
in the reduced Hochschild cohomology ring. Examples in [7] will show that the bound in
Theorem 3·5 is optimal.

(2) The reduced Hochschild cohomology ring HH
∗
(A) is not finitely generated in gen-

eral. The first example has been a seven dimensional k-algebra A found by Xu [37]. If
k has characteristic two, then δ(A) = 1 [37], see also [34, theorem 4·5], and therefore
rigdim(A) = 2.

(3) Even when A has infinite global dimension, the reduced Hochschild cohomology ring
HH

∗
(A) can be concentrated in degree zero, see [6] for examples.

Theorem 3·5 can be applied to group algebras, for which we obtain finiteness in all non-
semisimple cases.

THEOREM 3·6. Let G be a finite group and k a perfect field of characteristic p ≥ 0. Then
rigdim(kG) is finite if and only if p divides the order |G| of G (if and only if kG is not
semisimple). In this case, rigdim(kG) ≤ |G|.
Proof. By [27, proposition 4·5], there is an injective k-algebra homomorphism which is
graded by construction

θ : H∗(G, k) −→ HH∗(kG),

where H∗(G, k) = Ext∗kG(k, k) is the cohomology ring of the group algebra kG. Let H
∗
(G, k)

be the cohomology ring H∗(G, k) modulo nilpotent elements. Then θ induces an injective
morphism H

∗
(G, k) → HH

∗
(kG).

If p does not divide |G|, then kG is semisimple and hence rigdim(kG) = ∞. If p
divides |G|, then k is not a projective kG-module, and by Chouinard’s theorem in group
cohomology, see [4, lemma 5·2·3 and theorem 5·2·4],

γ (kG) := inf{i ≥ 1 | H
i
(G, k) �= 0} < ∞.
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The embedding H
∗
(G, k) → HH

∗
(kG) gives γ (kG) ≥ δ(kG), the minimal degree of homo-

geneous generators of HH
∗
(kG) of positive degrees. Using Theorem 3·5, it follows

that

rigdim(kG) ≤ δ(kG) + 1 ≤ γ (kG) + 1 < ∞.

The explicit upper bound follows from a major result by Symonds, who proved Benson’s
regularity conjecture. According to [35, proposition 0·3], which is a consequence of the
main result in [35], for a finite group G with more than one element, group cohomology
H∗(G, k) has a set of homogeneous generators of degree at most |G| − 1. As a consequence,
the reduced group cohomology ring has a set of generators in degrees smaller than |G|, and
thus γ (kG) ≤ |G| − 1.

Remark. (1) Symonds’ result [35] provides an upper bound for the degrees of homogeneous
generators of H∗(G, k). The proof of Theorem 3·6 shows that the rigidity dimension of the
group algebra kG may be used to provide a lower bound for the degrees of homogeneous
generators of the Hochschild cohomology ring modulo nilpotents.

(2) In [7], the rigidity dimensions of defect one blocks of group algebras will be
determined.

3·3. Finiteness III: using homological conjectures

Can it be expected that rigidity dimension is always finite, except for semisimple alge-
bras? Some evidence is provided here by deriving this statement from some homological
conjectures.

(TC1) Tachikawa’s first conjecture [36, p.115] Let A be a finite dimensional k-algebra.
Suppose Exti

A(D(A), A) = 0 for all i ≥ 1. Then A is self-injective.
(TC2) Tachikawa’s second conjecture [36, p. 116] Let A be a finite dimensional self-

injective k-algebra and M a finitely generated A-module. Suppose Exti
A(M, M) = 0

for all i ≥ 1. Then M is a projective A-module.
(YC) Yamagata’s conjecture [38, p.876] There exists a function ϕ :N→N such that for

any finite dimensional k-algebra A with finite dominant dimension, domdim A ≤
ϕ(n) where n is the number of isomorphism classes of simple A-modules.

(TC1) and (TC2) together are equivalent to Nakayama’s conjecture.

THEOREM 3·7. Let A be a finite dimensional non-semisimple k-algebra.

(1) If A is not self-injective, then (TC1) implies rigdim(A) < ∞.
(2) If (YC) holds, then rigdim(A) < ∞.

Proof. (1) If A is not self-injective, then by (TC1), Extn
A(D(A), A) �= 0 for some natural

number n ≥ 1. Therefore, by Theorem 3·1, rigdim(A) ≤ n + 2.
(2) Let M be a generator-cogenerator in A -mod. Up to multiplicities of direct summands,

suppose A M = A ⊕ D(A) ⊕ ⊕m
i=1 Mi , where m ≥ 1, and Mi is either zero or indecompos-

able, non-projective and non-injective. Then by Lemma 2·6, rd(M) = rd(A ⊕ D(A) ⊕ Mu ⊕
Mv) for some 1 ≤ u, v ≤ m. Now, we set Nu,v = A ⊕ D(A) ⊕ Mu ⊕ Mv and assume that
E := EndA(M) has finite global dimension.
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By assumption, A is not semisimple, hence E is not semisimple either. It fol-
lows that domdim E ≤ gldim E < ∞. Moreover, by Theorem 2·7, domdim E = rd(M) + 2
and domdim EndA(Nu,v) = rd(Nu,v) + 2. Then the equality rd(Nu,v) = rd(M) implies that
domdim EndA(Nu,v) = domdim E < ∞. Denote by d the number of isomorphism classes
of indecomposable objects in add(A ⊕ D(A)). Then Nu,v has at least d and at most
d + 2 non-isomorphic indecomposable direct summands. Applying (YC) to EndA(Nu,v)

yields the inequality domdim EndA(Nu,v) ≤ max{ϕ(d), ϕ(d + 1), ϕ(d + 2)}. Consequently,
domdim E has a uniform upper bound, which only depends on the function ϕ and d. Thus
rigdim(A) < ∞.

4. Stable equivalences and invariance I

In this and the next section, the invariance of rigidity dimension under stable or derived
equivalences is discussed. As examples show, this fails in general. However, the first main
result (Theorem 4·4) in this section implies that algebras without nodes have minimal rigid-
ity dimension in their stable equivalence class. In particular, two stably equivalent algebras
without nodes have the same rigidity dimension. The result shows that more generally only
certain nodes matter, depending on the functor providing the equivalence. The second main
result (Theorem 4·8) provides stronger information for stable equivalences between self-
injective algebras. In particular, stable equivalences preserving the triangulated structure are
shown to preserve rigidity dimension.

4·1. Notation and definitions

Let A be an algebra. By A -mod we denote the stable category of A modulo projectives.
It has the same objects as A -mod, but the morphism set between two A-modules X and Y
is given by Hom(X, Y ) := HomA(X, Y )/P(X, Y ) where P(X, Y ) consists of homomor-
phisms factoring through projective A-modules. This category is usually called the stable
module category of A. Dually, one can define the stable category A-mod of A modulo injec-
tives, which is the quotient category of A -mod modulo injective modules. As usual, we
denote by τA := D TrA the Auslander-Reiten translation of A. Then τA : A -mod → A-mod
is an additive equivalence, see [3, IV].

Definition 4·1. Two algebras A and B are stably equivalent if A -mod and B -mod are
equivalent as additive categories.

The main complication when studying invariance of homological dimensions under sta-
ble equivalences, comes from a particular class of modules called nodes. These are rather
exceptional, and do not occur much in nature. In particular, by [3, proposition X·1·8], an
indecomposable self-injective algebra has a node if and only if it is a Nakayama algebra
with radical square zero. In such a case, the only non-projective indecomposable modules
are simple modules which are all nodes.

Definition 4·2. An indecomposable A-module S is called a node if it is neither projective nor
injective, and there is an almost split sequence 0 → S → P → T → 0 with P a projective
A-module.

A node S must be simple, see, for example, [3, theorem V·3·3]. A node does not occur as
a composition factor of rad(A)/ soc(A).
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Two stably equivalent algebras without nodes and without semi-simple summands share
many homological invariants, such as stable Grothendieck groups, global dimensions and
dominant dimensions (see [30]). Such stable equivalences do preserve projective dimen-
sions. However, if one algebra has a node, simple examples of stable equivalences already
show that projective and global dimensions are not preserved.

We will use various correspondences between objects in two equivalent stable categories
and in related categories.

Let F : A -mod → B -mod be a stable equivalence. Then the following functor

F ′ := τB ◦ F ◦ τ−1
A : A-mod −→ B-mod

is also an additive equivalence. Denote by A -modP (resp. A -modI ) the full subcategory
of A -mod consisting of all modules without projective (resp. injective) direct summands.
Then F (resp. F ′) induces a bijection A -modP → B -modP (resp. A -modI → B -modI )
on isomorphism classes of objects. Formally, we set F(P) = 0 and F ′(I ) = 0 when A P is
projective and A I is injective.

Throughout this section, we also regard F and F ′ as correspondences (not functors) from
A -mod to B -mod. If X is indecomposable, not projective, not injective and not a node, then
F(X) ∼= F ′(X) (see [2, lemma 3·4] or [3, corollary X·1·7]).

A particular set of nodes will turn out to play a crucial role (compare [18, section 3]):

Definition 4·3. A node S in A -mod is called an F-exceptional node if F(S)� F ′(S). Let
nF(A) be the set of isomorphism classes of F-exceptional nodes of A.

In general, nF(A) is a proper subset of the set of isomorphism classes of nodes. It can be
empty even though there are nodes (see Example 4·6).

Let F−1 : B -mod → A -mod be a quasi-inverse of F . Then nF−1(B) denotes the set of
isomorphism classes of F−1-exceptional nodes of B.

4·2. Invariance under general stable equivalences and under triangulated stable
equivalences

The main results are stated and a brief outline is given of the proofs, which will occupy
the rest of this section. Moreover, examples are provided to show that the assumptions are
necessary and algebras with nodes really behave differently.

THEOREM 4·4. Let F : A -mod → B -mod be a stable equivalence between algebras A
and B. Suppose A has no F-exceptional nodes. Then rigdim(A) ≤ rigdim(B). If additionally
B has no F−1-exceptional nodes, then rigdim(A) = rigdim(B).

The above theorem implies the following result, which may be easier to apply, since it
uses a property of the algebra, not of the given equivalence.

COROLLARY 4·5. Let A and B be stably equivalent algebras.
(a) If A has no nodes, then rigdim(A) ≤ rigdim(B).
(b) If neither A nor B has nodes, then rigdim(A) = rigdim(B).

Remark. In Corollary 4·5, the assertion (a) implies that the rigidity dimension of an alge-
bra without nodes is minimal in its stable equivalence class; (b) follows from (a), which
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may also be obtained by combining classical results of Auslander and Reiten and of
Martinez-Villa with the work of Guo, see [2, theorem 3·6], [30, proposition 2·2] and [18,
lemma 3·5].

In general, in the presence of nodes, stable equivalences do not preserve rigidity
dimensions, as the following example illustrates.

Example 4·6. Let A1 be the path algebra of the quiver 1 → 2 over a field k, and let B
be the k-algebra in Example 2·2. Then A := A1 × A1 is stably equivalent to B, since both
stable categories have just two indecomposable objects (up to isomorphism) - the two simple
modules - and no nonzero morphisms between them. Moreover, A has no nodes, but B has
two nodes, and rigdim(A) = 2, rigdim(B) = 3.

Since A1 is hereditary, Proposition 2·10 (1) and Example 3·2 imply rigdim(A) =
rigdim(A1) = 2. To calculate rigdim(B), let S1 and S2 denote the simple B-modules cor-
responding to the vertices 1 and 2, respectively. Note that B is self-injective with radical
square zero and has only four basic generators (up to isomorphism): B, B ⊕ S1, B ⊕ S2

and B ⊕ S1 ⊕ S2. Their endomorphism algebras, except for B itself, have finite global
dimension (see Example 2·2 for an illustration). In other words, the last three modules
are all resolving modules. Moreover, domdim EndB(B ⊕ S1) = 3 = domdim EndB(B ⊕ S2),
but domdim EndB(B ⊕ S1 ⊕ S2) = 2. Thus rigdim(B) = 3 > rigdim(A). This illustrates that
the inequality in Corollary 4·5 (a) (and thus also Theorem 4·4) cannot be improved. In
this example, no matter what the equivalence F is, the set nF(A) is empty and nF−1(B) =
{S1, S2}.

Let C be the k-algebra given by the quiver 1
α→ 2

β→ 3 with the relation βα. Denote by Ti

the simple C-module corresponding to the vertex i for i = 1, 2. Then there is a stable equiva-
lence G : B -mod → C -mod which sends Si to Ti . In this situation, nG(B) = {S1}� {S1, S2}
and nG−1(C) is empty, though C has a unique node T2. Since gldim(C) = 2, we have
rigdim(C) ≤ 3 by Theorem 3·1. Moreover, both the global dimension and the dominant
dimension of EndC(C ⊕ D(C)) are equal to 3. Thus rigdim(C) = 3. So, two stably equiv-
alent algebras, one of them having no exceptional nodes and the other having exceptional
nodes, may have the same rigidity dimension.

The stable module category of a self-injective algebra carries an additional structure; it
is a triangulated category (see [3, 19]). A stable equivalence between self-injective algebras
may be a triangulated equivalence or just an additive equivalence. However, the follow-
ing example shows that stably equivalent self-injective algebras may have different rigidity
dimensions.

Example 4·7. Let B be as in Example 4·6 and let D := k[x]/(x2) × k[x]/(x2). Then D is
self-injective, with the stable category just the same as that for B according to Example 4·6.
Moreover, D has nodes and rigdim(D) = 2 �= rigdim(B). Note that B -mod and D -mod are
triangulated categories, the shift functor of B -mod permutes simple modules and the shift
functor of D -mod is the identity. This means that B -mod and D -mod are equivalent as
additive categories, but not as triangulated categories.

Self-injective algebras with nodes are quite well-known. The non-projective indecom-
posable A-modules are all simple, and each simple A-module S is a node satisfying
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τA(S) ∼= �A(S) and �m
A(S) ∼= S, where m equals the number of isomorphism classes of

simple A-modules (see [3, Chapter X]).
For a self-injective algebra A with nodes, we denote by ρ(A) the smallest positive integer

d such that there is a node A S and an isomorphism S ∼= �d
A(S). Clearly, ρ(A) equals the

minimum of the numbers of isomorphism classes of simple modules over all blocks of A
with nodes.

The second main result of this section provides sufficient conditions for stably equivalent
self-injective algebras to have the same rigidity dimension.

THEOREM 4·8. Let A and B be stably equivalent self-injective algebras.

(1) If A has no nodes, then rigdim(A) = rigdim(B).
(2) If A and B have nodes, then both rigdim(A) and rigdim(B) are finite and

| rigdim(A) − rigdim(B)| ≤ |ρ(A) − ρ(B)|.
If additionally ρ(A) = ρ(B), then rigdim(A) = rigdim(B).

A consequence of Theorem 4·8 is the following result.

COROLLARY 4·9. Let A and B be stably equivalent self-injective algebras. Then
rigdim(A) = rigdim(B) in the following cases:

(i) A and B are symmetric;
(ii) A -mod and B -mod are equivalent as triangulated categories.

In the proof of the two theorems, it will be important to control what happens to generator-
cogenerators and their endomorphism algebras, under stable equivalences. In every step,
nodes will cause problems. Therefore, in the first part of the proof, we will have to use
various correspondences between objects in the stable categories. These correspondences are
compatible with Guo’s results [18], which thus can be used to compare global dimensions of
endomorphism algebras. The core of the proof then is to compare also dominant dimensions,
which needs another technically involved subsection. Finally, everything can be put together
to derive Theorem 4·4. To prove Theorem 4·8 we will in addition use the description of
self-injective algebras with nodes in [3].

4·3. Further preparations for the proofs

Throughout this subsection, A and B are stably equivalent algebras, possibly with nodes.
We continue setting up correspondences between objects in the two stable categories and in
related categories.

Let F : A -mod → B -mod be a fixed equivalence of additive categories throughout this
section. To analyse the behavior of the functors F and F ′ on indecomposable A-modules,
and the interaction with syzygy operators, consider the following subsets of indecomposable
A-modules (see also [18]):

�A := nF(A)∪̇(PA \ IA) and �A := nF(A)∪̇(IA \ PA).

Let �c
A be the class of indecomposable, non-injective A-modules which do not belong to

�A. Then each module Y ∈ A -modI admits a unique decomposition (up to isomorphism)

Y ∼= Y� ⊕ Y ′
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with Y� ∈ add(�A) and Y ′ ∈ add(�c
A). The module Y� is called the �A-component of Y .

In the following, we denote by GCN F(A) the class of basic A-modules X which
are generator-cogenerators with nF(A) ⊆ add(X). In particular, if A has no nodes, then
GCN F(A) is exactly the class of basic generator-cogenerators for A -mod. In the same
situation, we similarly use the notation GCN F−1(B).

When working with generator-cogenerators, the following correspondences will be used:

� : A -mod −→ B -mod U �→ F(U ) ⊕
⊕

Q∈PB

Q,

� : B -mod −→ A -mod V �→ F−1(V ) ⊕
⊕

P∈PA

P.

Here are some results from [18] for later use.

LEMMA 4·10 (compare [18, lemmas 3·1 and 3·2]).

(1) There are one-to-one correspondences

F : �A −→ �B, F ′ : �A −→ �B, F ′ : �c
A −→ �c

B .

(2) The correspondences � and � restrict to one-to-one correspondences between
GCN F(A) and GCN F−1(B). Moreover, if X ∈ GCN F(A), then �(X) ∼= F ′(X) ⊕⊕

I∈IB
I .

Proof. (1) By [18, lemma 3·1], we only need to show that X ∈ nF(A) implies F ′(X) ∈ �B .
Let X ∈ nF(A). Then X is is not injective. Consequently, F ′(X) is not injective. Recall

that F−1(V ) ∼= (F−1)′(V ) for any V ∈ �c
B . Suppose F ′(X) ∈ �c

B . Then F ′(X) is not projec-
tive and F−1(F ′(X)) ∼= (F−1)′(F ′(X)) ∼= X . It follows that F ′(X) ∼= F F−1(F ′(X)) ∼= F(X).
This is a contradiction since X ∈ nF(A). Thus F ′(X) ∈ �B .

Note that F(U ) ∼= F ′(U ) for any U ∈ �c
A. Now, (2) follows from (1).

Generator-cogenerators in GCN F(A) are better to control under stable equivalences. In
particular, global dimensions of their endomorphism algebras are preserved under stable
equivalences:

LEMMA 4·11 ([18, lemma 3·5]). If X ∈ GCN F(A), then gldim EndA(X) = gldim
EndB(�(X)).

4·4. Stable equivalences and dominant dimension of endomorphism algebras

To compare rigidity dimension under stable equivalences, we need an analogue of Lemma
4·11 for dominant dimensions; this is the main part of the proof of Theorem 4·4.

PROPOSITION 4·12. If X ∈ GNCF(A), then domdim EndA(X) = domdim EndB(�(X)).

The proof of Proposition 4·12 will need three lemmas. The first one extends the first part
of [18, lemma 3·3].

LEMMA 4·13. Assume that A Z is indecomposable and non-projective. Let

0 −→ X ⊕ X ′ −→ Y ⊕ P
g−→ Z −→ 0
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be an exact sequence of A-modules without a split exact sequence as a direct summand,
such that X ∈ add(�c

A), X ′ ∈ add(�A), Y ∈ A -modP and P ∈ add(A A). Then there is an
exact sequence of B-modules

0 −→ F(X) ⊕ F ′(X ′) −→ F(Y ) ⊕ Q
g′−→ F(Z) −→ 0

without a split direct summand such that g′ = F(g) in B -mod with Q ∈ add(B).

Proof. By the proof of the first part of [18, lemma 3·3], the following two statements hold.

(1) There is an exact sequence of B-modules

0 −→ N ⊕ N ′ −→ F(Y ) ⊕ Q
g′−→ F(Z) −→ 0

without a split direct summand such that g′ = F(g) in B -mod, and that N ∈
add(�c

B), N ′ ∈ add(�B) and Q ∈ add(B).
(2) There is an isomorphism F ′(X ⊕ X ′) ∼= N ⊕ N ′ in (B -mod) -mod.

Note that F ′(X) ∼= F(X) since X ∈ add(�c
A). By (2), we have F(X) ⊕ F ′(X ′) ∼= N ⊕ N ′.

Since F(X) ∈ add(�c
B) and F ′(X ′) ∈ �B by Lemma 4·10(1), there are isomorphisms

F(X) ∼= N and F ′(X ′) ∼= N ′. By (1), Lemma 4·13 follows.

The second lemma establishes a connection between different syzygy modules under
stable equivalences.

LEMMA 4·14. Let X ∈ A -mod and n a positive integer. Then

F
(
�n

A(X)
) ⊕

n⊕
j=1

�
n− j
B

(
F ′(� j

A(X)�)
) ∼= �n

B(F(X)) ⊕
n⊕

j=1

�
n− j
B

(
F(�

j
A(X)�)

)
,

where �
j
A(X)� stands for the �A-component of the A-module �

j
A(X).

Proof. We prove Lemma 4·14 by induction on n. If n = 1, then it suffices to check

F
(
�A(X)

) ⊕ F ′(�A(X)�) ∼= �B(F(X)) ⊕ F(�A(X)�). (∗)

If X is projective, then both sides are zero and there is nothing to prove. Now, assume
that X is indecomposable and non-projective. Let 0 → �A(X) → P → X → 0 be an exact
sequence such that P is a projective cover of X . Then this sequence contains no split direct
summand and Y := �A(X) ∈ A -modI . So Y has a decomposition as Y ∼= Y� ⊕ Z , where
Y� ∈ add(�A) and Z ∈ add(�c

A). Applying Lemma 4·13 to the sequence 0 → Z ⊕ Y� →
P → X → 0 yields the exact sequence of B-modules

0 −→ F(Z) ⊕ F ′(Y�) −→ Q −→ F(X) −→ 0

without split direct summands, such that Q ∈ add(B). Thus Q is a projective cover of F(X)

and further, �B(F(X)) ∼= F(Z) ⊕ F ′(Y�). Hence

F(Y ) ⊕ F ′(Y�) ∼= F(Y�) ⊕ F(Z) ⊕ F ′(Y�) ∼= �B(F(X)) ⊕ F(Y�).

This shows the isomorphism (∗).
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Let n ≥ 2. Suppose that for any A-module U , there is an isomorphism of B-modules

F
(
�n−1

A (U )
) ⊕

n−1⊕
j=1

�
n−1− j
B

(
F ′(� j

A(U )�)
) ∼= �n−1

B (F(U )) ⊕
n−1⊕
j=1

�
n−1− j
B

(
F(�

j
A(U )�)

)
.

Choosing U = Y gives rise to

F
(
�n

A(X)
) ⊕

n−1⊕
j=1

�
n−1− j
B

(
F ′(� j+1

A (X)�)
) ∼=

�n−1
B (F(�A(X))) ⊕

n−1⊕
j=1

�
n−1− j
B

(
F(�

j+1
A (X)�)

)
. (∗∗)

Thus

F
(
�n

A(X)
) ⊕

n⊕
j=1

�
n− j
B

(
F ′(� j

A(X)�)
)

∼= F
(
�n

A(X)
) ⊕

n−1⊕
j=1

�
n−1− j
B

(
F ′(� j+1

A (X)�)
) ⊕ �n−1

B (F ′(�A(X)�))

∼= �n−1
B (F(�A(X))) ⊕

n−1⊕
j=1

�
n−1− j
B

(
F(�

j+1
A (X)�)

) ⊕ �n−1
B (F ′(�A(X)�))

(
by (∗∗)

)

∼= �n−1
B

(
F(�A(X)) ⊕ F ′(�A(X)�)

) ⊕
n−1⊕
j=1

�
n−1− j
B

(
F(�

j+1
A (X)�)

)

∼= �n
B(F(X)) ⊕ �n−1

B

(
F(�A(X)�)

) ⊕
n−1⊕
j=1

�
n−( j+1)

B

(
F(�

j+1
A (X)�)

) (
by (∗)

)

∼= �n
B(F(X)) ⊕

n⊕
j=1

�
n− j
B

(
F(�

j
A(X)�)

)
.

This shows the isomorphism in Lemma 4·14.

The third lemma identifies extension groups of modules under stable equivalences.

LEMMA 4·15. Let X ∈ A -mod, Y ∈ GCN F(A) and n a positive integer. Then the following
holds:

(1) Ext1
A(X, Y ) ∼= Ext1

B(�(X), �(Y ));
(2) If Exti

B(N , �(Y )) = 0 for each N ∈ �B and 1 ≤ i ≤ n, then

Extn+1
A (X, Y ) ∼= Extn+1

B (�(X), �(Y )).

Proof. By Auslander–Reiten formula (see [3]), we have the following isomorphisms:

Ext1
A(X, Y ) ∼= D HomA(τ−1

A Y, X) ∼= D HomB(Fτ−1
A (Y ), F(X))

∼= D HomB(τ−1
B F ′(Y ), F(X)) ∼= Ext1

B(F(X), F ′(Y )).
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By Lemma 4·10(2), �(Y ) = F ′(Y ) ⊕ ⊕
I∈IB

I , due to Y ∈ GCN F(A). Also, �(X) =
F(X) ⊕ ⊕

Q∈PB
Q by definition. Consequently, Ext1

A(X, Y ) ∼= Ext1
B(�(X), �(Y )). Thus

(1) holds
The proof of (1) also implies

Extn+1
A (X, Y ) ∼= Ext1

A(�n
A(X), Y ) ∼= Ext1

B(F(�n
A(X)), F ′(Y )) ∼= Ext1

B(F(�n
A(X)), �(Y )).

Define

L =
n⊕

j=1

�
n− j
B

(
F ′(� j

A(X)�)
)

and R =
n⊕

j=1

�
n− j
B

(
F(�

j
A(X)�)

)
.

Then F
(
�n

A(X)
) ⊕ L ∼= �n

B(F(X)) ⊕ R in B -mod by Lemma 4·14. Since

�
j
A(X)� ∈ add(�A) = add

(
nF(A)∪̇(PA \ IA)

)
,

it follows from Lemma 4·10(1) that

F ′(� j
A(X)�) ∈ add(�B) and F(�

j
A(X)�) ∈ add

(
F(nF(A))

) ⊆ add(�B),

where �B = nF−1(B)∪̇(IB \ PB). So, if Exti
B(N , �(Y )) = 0 for each N ∈ �B and 1 ≤ i ≤

n, then Ext1
B(L , �(Y )) = 0 = Ext1

B(R, �(Y )) and thus

Ext1
B(F(�n

A(X)), �(Y )) ∼= Ext1
B(�n

B(F(X)), �(Y ))

∼= Extn+1
B (F(X), �(Y )) ∼= Extn+1

B (�(X), �(Y )).

This shows (2).

Proof of Proposition 4·12. If domdim EndB(�(X)) = n + 2 for some n ≥ 0, then
Exti

B(�(X), �(X)) = 0 for 1 ≤ i ≤ n and Extn+1
B (�(X), �(X)) �= 0 due to Theorem 2·7.

By Lemma 4·10(2), �(X) ∈ GCN F−1(B). Thus, �B ⊆ add(�(X)). Therefore,
Lemma 4·15 implies Ext j

A(X, X) ∼= Ext j
B(�(X), �(X)) for 1 ≤ j ≤ n + 1. Then

domdim EndA(X) = n + 2, again by Theorem 2·7. Similarly, if domdim EndB(�(X)) = ∞,
then domdim EndA(X) = ∞.

Remark. When neither A nor B has nodes, both Lemma 4·14 and Lemma 4·15 can be sim-
plified. In Lemma 4·14, the isomorphism becomes F

(
�n

A(X)
) ⊕ Q ∼= �n

B(F(X)), where Q
is a projective B-module without injective direct summands. This implies a stronger form
of Lemma 4·15: if X ∈ A -mod and Y ∈ GCN F(A), then Extn

A(X, Y ) ∼= Extn
B(�(X), �(Y ))

for any n ≥ 1. These isomorphisms also can be obtained from [2, theorem 3·6] and [30,
section 1, corollary; proposition 2·2].

4·5. Completion of proofs and an application to representation dimension

Proof of Theorem 4·4. Let X ∈ GCN F(A). Then �(X) ∈ GCN F−1(B). By Lemma 4·11,
EndA(X) and EndB(�(X)) have the same global dimension. Moreover, by Proposition 4·12,
they have the same dominant dimension. Since A has no F-exceptional nodes, nF(A) is the
empty set and GCN F(A) is the class of basic generator-cogenerators in A -mod. It fol-
lows that rigdim(A) ≤ rigdim(B). If B has no F−1-exceptional nodes, then rigdim(B) ≤
rigdim(A), and thus rigdim(A) = rigdim(B).
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To prepare for the proof of Theorem 4·8, we describe the rigidity dimensions of Nakayama
self-injective algebras with radical square zero.

LEMMA 4·16. Let A be a non-simple Nakayama self-injective algebra with radical square
zero. Then rigdim(A) = ρ(A) + 1.

Proof. In view of Proposition 2·10 (1), we may assume that A is indecomposable. Let e be
the number of isomorphism classes of simple A-modules. It suffices to show rigdim(A) =
e + 1.

Since the radical square of A is zero, every indecomposable, non-projective A-module
is simple. So, for any generator M in A -mod, if gldim EndA(M) < ∞, then M con-
tains at least one simple module, say S, as a direct summand. By Theorem 2·7, domdim
EndA(M) ≤ domdim EndA(A ⊕ S). Note that �e

A(S) ∼= S and {�i
A(S) | 1 ≤ i ≤ e} is the

complete set of isomorphism classes of indecomposable, non-projective A-modules. The
equalities S⊥(e−1) = add(A ⊕ S) =⊥(e−1) S can be verified by writing down projective and
injective resolutions of S. This implies that A ⊕ S is an e-cluster tilting module. By
[24, theorem 0·2], domdim EndA(A ⊕ S) = e + 1 = gldim EndA(A ⊕ S). Thus rigdim(A) =
domdim EndA(A ⊕ S) = e + 1.

Proof of Theorem 4·8. (1) Let F : A -mod → B -mod be a stable equivalence between alge-
bras A and B. Since A and B are self-injective, it follows from [3, proposition X·1·6] that F
and F−1 restrict to one-to-one correspondences between the sets of isomorphism classes of
nodes of A and of B. If A has no nodes, then so does B. Thus (1) holds by Corollary 4·5.

(2) Suppose that A and B have nodes. Let A = A1 × A2 and B = B1 × B2 be decomposi-
tions of algebras, such that A2 and B2 are the products of all blocks of A and B without
nodes, respectively. In other words, all nodes of A and B only belong to A1 -mod and
B1 -mod, respectively. By [3, proposition X·1·8], A1 and B1 are products of indecompos-
able Nakayama algebras with radical square zero. Then all indecomposable non-projective
A1-modules (and similarly, B1-modules) are nodes. Consequently, F restricts to a stable
equivalence between A1 and B1 and also a stable equivalence between A2 and B2. Note that
rigdim(A1) = ρ(A1) + 1 and rigdim(B1) = ρ(B1) + 1 by Lemma 4·16. Combining this with
Proposition 2·10 (1) yields

rigdim(A) = min{ρ(A1) + 1, rigdim(A2)} ≤ ρ(A1) + 1 < ∞,

rigdim(B) = min{ρ(B1) + 1, rigdim(B2)} ≤ ρ(B1) + 1 < ∞.

Clearly, ρ(A1) = ρ(A) and ρ(B1) = ρ(B) since A2 and B2 have no nodes. Moreover,
rigdim(A2) = rigdim(B2) by (1). Thus | rigdim(A) − rigdim(B)| ≤ |ρ(A) − ρ(B)|.
Proof of Corollary 4·9. By Theorem 4·8 (2), it is enough to show ρ(A) = ρ(B) in the two
cases of Corollary 4·9. A sufficient condition to guarantee ρ(A) = ρ(B) is that F(�A(S)) ∼=
�B(F(S)) in B -modP for any node S of A. In this situation, both S and F(S) are �-periodic
of the same period.

When A and B are symmetric algebras, it follows from [3, proposition X·1·12] that the
correspondence F between objects in A -modP and B -modP commutes with the syzygy
functor �. This shows the case (i). Recall that the shift functor of the triangulated category
A -mod is the cosyzygy functor �−1

A [19, theorem 2·6]. So, in the case (ii), F commutes with
�−1, and thus also with �.
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Finally, we explain how our results can be used to compare higher representation dimen-
sions of stably equivalent algebras. Recall that classical representation dimension repdim1

is preserved under arbitrary stable equivalences of algebras (see [18]).

COROLLARY 4·17. Let F : A -mod → B -mod be a stable equivalence between algebras
A and B, and let n be a positive integer. Suppose that A has no F-exceptional nodes and
n + 1 ≤ rigdim(A). Then repdimn(B) ≤ repdimn(A) < ∞. If additionally B has no F−1-
exceptional nodes, then repdimn(A) = repdimn(B).

Proof. Since n + 1 ≤ rigdim(A), Proposition 2·11 implies repdimn(A) < ∞. By
Theorem 4·4, rigdim(A) ≤ rigdim(B). This forces n + 1 ≤ rigdim(B), and thus
repdimn(B) < ∞. Since A has no F-exceptional nodes, nF(A) is the empty set and
GCN F(A) is exactly the class of basic generator-cogenerators in A -mod. Now, our desired
result follows from Proposition 4·12 and Lemma 4·11.

5. Stable equivalences and invariance II

In this section, invariance of rigidity dimension under stable equivalences of adjoint type
is established. This implies invariance under stable equivalences of Morita type under very
mild assumptions, and thus also invariance under certain derived equivalences.

5·1. Definitions and main result

Definition 5·1. Two algebras A and B are stably equivalent of Morita type if there exist an
(A, B)-bimodule M and a (B, A)-bimodule N such that:

(i) M and N are both projective as one sided modules;
(ii) M ⊗B N ∼= A ⊕ P as A-A-bimodules for some projective A-A–bimodule P;

(iii) N ⊗A M ∼= B ⊕ Q as B-B-bimodules for some projective B-B-bimodule Q.

Further, if (M ⊗B −, N ⊗A −) and (N ⊗A −, M ⊗B −) are adjoint pairs of functors, then
A and B are stably equivalent of adjoint type.

If A and B are stably equivalent of Morita type, then (M ⊗B −, N ⊗A −) induces a stable
equivalence between A and B.

THEOREM 5·2. (a) Let A and B be stably equivalent of adjoint type. Then rigdim(A) =
rigdim(B).

(b) Let A and B be stably equivalent of Morita type. Then rigdim(A) = rigdim(B) in each
of the following three cases:

(1) A and B have no simple blocks;
(2) A and B are algebras over a perfect field k;
(3) A and B are self-injective algebras.

Remark. It seems to be still unknown whether rigidity dimension is invariant under stable
equivalence of Morita type in general, though Theorem 5·2 gives a positive answer in many
cases. Our proof of Theorem 5·2 (b) depends on the relevant functors forming an adjoint
pair, and thus part (a) being applicable. For an arbitrary stable equivalence of Morita type, it
is not clear if tensor functors induced by two bimodules preserve injective modules.
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5·2. Proof of the main result

In the proof of Theorem 5·2, the following result will be used, which is likely to be known
to experts. We thank Yuming Liu for pointing out the present proof.

LEMMA 5·3. Let A = A1 × A2 and B = B1 × B2, where A1 and B1 are separable, and A2

and B2 have no separable blocks. If A and B are stably equivalent of Morita type, then so
are A2 and B2.

Proof. It suffices to verify the following claim:
If � is a non-zero algebra and S is a separable algebra, then � and � × S are stably

equivalent of Morita type.
For checking this, let � = � × S, M = � × (� ⊗k S) and N = � × (S ⊗k �). Then M

can be endowed with a �-�-bimodule structure: For λ, λ1, λ2 ∈ � and s, s ′ ∈ S,

λ(λ1, λ2 ⊗ s) = (λλ1, λλ2 ⊗ s) and (λ1, λ2 ⊗ s)(λ′, s ′) = (λ1λ
′, λ2 ⊗ ss ′).

Similarly, N can be endowed with a �-�-bimodule structure. Moreover, M ⊗� N ∼= � ⊕
(� ⊗k S ⊗k �) as �-�-bimodules and N ⊗� M ∼= � ⊕ � ⊗k S ⊕ S ⊗k � ⊕ S ⊗k � ⊗k S
as �-� bimodules. Then � ⊗k S ⊗k � is a projective �-�-bimodule. As

� ⊗k �op ∼= (� ⊗k �op) × (� ⊗k Sop) × (S ⊗k �op) × (S ⊗k Sop),

S ⊗k S, � ⊗k S and S ⊗k � are projective �-�-bimodules. The S-S-bimodule S is projec-
tive, since S is a separable algebra. Furthermore, the multiplication map S ⊗k S → S is a
homomorphism of S-S-bimodules, and S is a direct summand of S ⊗k S as bimodules. Since
S ⊗k � ⊗k S ∼= (S ⊗k S)n with n := dim(k�) ≥ 1, it follows that S is a direct summand of
the projective bimodule S ⊗k � ⊗k S. Consequently, there is a projective �-�-bimodule
Q such that N ⊗� M ∼= (� ⊕ S) ⊕ Q ∼= � ⊕ Q as �-�-bimodules. So � and � are stably
equivalent of Morita type.

Proof of Theorem 5·2. Let A MB and B NA be bimodules defining a stable equivalence of
Morita type (not necessarily of adjoint type) between A and B. Let A X be a genera-
tor in A -mod. We claim that N ⊗A X is a generator in B -mod and gldim EndA(X) =
gldim EndB(N ⊗A X). Indeed, since N ⊗A M ∼= B ⊕ Q as B-bimodules for some projec-
tive B-bimodule Q, it follows that B B ∈ add(N ⊗A M). Then A M being projective implies
B ∈ add(B N ). In other words, B N is a projective generator, and thus B N ⊗A X is a gener-
ator. By [29, theorem 1·1], EndA(X) and EndB(N ⊗A X) are stably equivalent of Morita
type. Since global dimensions are preserved by stable equivalences of Morita type, we have
gldim EndA(X) = gldim EndB(N ⊗A X).

(a) Now, suppose that the pair (M, N ) defines a stable equivalence of adjoint type. In
other words, the pairs (M ⊗B −, N ⊗A −) and (N ⊗A −, M ⊗B −) are adjoint pairs of
functors. Further, assume X to be a cogenerator in A -mod. We claim that N ⊗A X is a
cogenerator in B -mod and domdim EndA(X) = domdim EndB(N ⊗A X). Since A M ⊗B −
is exact with a right adjoint N ⊗A −, injective A-modules are sent to injective B-modules by
N ⊗A −. Similarly, M ⊗B − sends injective B-modules to injective A-modules. Moreover,
N ⊗A M ⊗B D(B) ∼= D(B) ⊕ Q ⊗B D(B). In particular, N ⊗A D(AA) is a cogenerator in
B -mod, and N ⊗A (A ⊕ D(AA)) is a generator-cogenerator in B -mod. This implies that
N ⊗A X is a generator-cogenerator in B -mod.

https://doi.org/10.1017/S0305004119000513 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000513


440 HONGXING CHEN ET AL.

Since A and B are stably equivalent of adjoint type, it follows from [29, theo-
rem 1·3] that EndA(X) and EndB(N ⊗A X) are stably equivalent of adjoint type, too.
As such stable equivalences preserve dominant dimension by [29, lemma 4·2(2)], we
get domdim EndA(X) = domdim EndB(N ⊗A X). By the definition of rigidity dimension,
rigdim(A) ≤ rigdim(B). Swapping the roles of A and B yields rigdim(B) ≤ rigdim(A).
Thus rigdim(A) = rigdim(B).

(b) Under some mild assumptions, stable equivalences of Morita type are of adjoint type.
Using this, the claims in (b) can be derived from (a) as follows:

(1) If neither A nor B has a simple block, then each stable equivalence of Morita type
between A and B is of adjoint type due to [8, lemma 4·1] and [28, lemma 4·8(1)]. Thus
rigdim(A) = rigdim(B) by (a).

(2) Let A = A1 × A2 and B = B1 × B2 such that A1 and B1 are semi-simple and that
A2 and B2 have no semi-simple blocks. Since k is perfect, the class of finite-dimensional
semisimple k-algebras coincides with that of finite-dimensional separable k-algebras. So
both A1 and B1 are separable. By Lemma 5·3, both A2 and B2 are stably equivalent of Morita
type. It follows from (1) that rigdim(A2) = rigdim(B2). Since rigdim(A1) = rigdim(B1) =
∞, Proposition 2·10 (1) implies rigdim(A) = rigdim(B).

(3) By [28, lemma 4·8(3)], if two self-injective algebras without separable blocks are
stably equivalent of Morita type, then there is a stable equivalence of adjoint type between
them. Separable algebras are semi-simple, hence have infinite rigidity dimension. Now, (3)

follows from Lemma 5·3 and (a) together with Proposition 2·10 (1).

5·3. Applications to derived equivalences

Any derived equivalence between self-injective algebras induces a stable equivalence of
Morita type, see [32, corollary 2·2]. The following result is a consequence of Theorem
5·2(b)(3). Alternatively, it can be derived from Corollary 4·9 (ii), since any derived equiv-
alence between self-injective algebras induces a triangle equivalence between their stable
module categories.

COROLLARY 5·4. Let A and B be self-injective algebras. Suppose A and B are derived
equivalent. Then rigdim(A) = rigdim(B).

This can be extended to algebras that are not necessarily self-injective, by restricting the
class of derived equivalences to certain derived equivalences which induce stable equiva-
lences of Morita type. These are the almost ν-stable derived equivalences introduced in [21].
Every derived equivalence between two self-injective algebras induces an almost ν-stable
derived equivalence (see [21, proposition 3·8]). In general, there are still many examples of
almost ν-stable derived equivalences, for example, between algebras constructed in some
way from self-injective algebras.

LEMMA 5·5 ([22, corollary 1·2]). Let A be a self-injective algebra and X an A-module.
Then EndA(A ⊕ X) and EndA(A ⊕ �A(X)) are almost ν-stable derived equivalent.

Almost ν-stable derived equivalences in many respects have better properties than general
derived equivalences, for instance in the following way.
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LEMMA 5·6 ([21, theorem 1·1]). If A and B are almost ν-stable derived equivalent, then
they are stably equivalent of Morita type. In this case, A and B have the same global
dimension and dominant dimension.

The following result extends Corollary 5·4 to non-selfinjective algebras.

PROPOSITION 5·7. If A and B are almost ν-stable derived equivalent, then rigdim(A) =
rigdim(B).

Proof. Let A = A1 × A2 and B = B1 × B2 such that A1 and B1 are semi-simple and that A2

and B2 have no semi-simple blocks. Since derived equivalences preserve semi-simplicity of
blocks, both Ai and Bi are derived equivalent for i = 1, 2. Moreover, A2 and B2 are almost
ν-stable derived equivalent. By Lemma 5·6, they are stably equivalent of Morita type. It
follows from Theorem 5·2(b)(1) that rigdim(A2) = rigdim(B2). Since a semi-simple algebra
has infinite rigidity dimension, rigdim(A) = rigdim(B) by Proposition 2·10 (1).

Proposition 5·7 and Lemma 5·5 imply the following result.

COROLLARY 5·8. Let A be a self-injective algebra and let X be an A-module. Then
EndA(A ⊕ X) and EndA(A ⊕ �A(X)) have the same rigidity dimension.

Finally, we point that, in general, rigidity dimensions are not preserved under derived
equivalences.

Example 5·9. Let H be the path algebra over k given by the quiver 1 α �� 2
β �� 3 , and

let C be the quotient algebra of H modulo the ideal generated by βα. Then H and C are
derived equivalent via the tilting H -module T = S1 ⊕ S3 ⊕ He1 of projective dimension one,
where S1 and S3 denote the simple H -modules corresponding to the vertices 1 and 3, respec-
tively, while e1 = e2

1 ∈ H corresponds to the vertex 1. Since H is hereditary, rigdim(H) = 2
by Example 3·2. Note that rigdim(C) = 3 by Example 4·6. Thus rigdim(H) �= rigdim(C).
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