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This study aims to shed light on hypersonic attachment-line instabilities with large sweep
Mach numbers. Highly swept flows over a cold cylinder that give rise to large sweep Mach
numbers are studied. High-fidelity basic flows are obtained by solving full Navier–Stokes
equations with a high-order shock-fitting method. Using local and global stability theories,
an attachment-line mode is found to be dominant for the laminar–turbulent transition along
the leading edge that agrees qualitatively with the experimental observations (Gaillard
et al., Exp. Fluids, vol. 26, 1999, pp. 169–176). The behaviour of this mode explains
the reason for the transition occurring earlier as the sweep Mach number is above 5. In
addition, this attachment-line mode is absent if the basic flow is calculated with boundary
layer assumptions, indicating that the influence of inviscid flow outside the boundary
layer cannot be ignored as is normally done. It is clearly demonstrated that the global
modes display the features of both attachment-line modes, as in sweep Hiemenz flow,
and the second Mack modes further downstream along the surface. In the large sweep
Mach number regime, the attachment-line mode is inviscid in nature and its growth rate
increases with the sweep angle. In contrast, in the lower sweep Mach number regime, the
attachment-line instability exhibits the features of viscous Tollmien–Schlichting waves,
and the sweep angle first increases but then decreases the maximum growth rate.
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1. Introduction

The mechanism of boundary layer transition is one of the most active research fields
in contemporary fluid dynamics, not only because of its complexity in mathematics
and physics, but also for the enormous potential applications in practical engineering.
Over the years, linear stability theory (LST) has played an essential role in revealing
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the mechanisms of flow instability. Moreover, by using LST, some of the fundamental
mechanisms are now well understood. Representative examples are Tollmien–Schlichting
(TS) waves (Schlichting & Gersten 2017), Mack modes (Mack 1975) and cross-flow modes
(Saric, Reed & White 2003) in two- and three-dimensional boundary layers. More detailed
works in this field could be found in reviews by Reed & Saric (1989), Reed, Saric & Arnal
(1996), Fedorov (2011) and Zhong & Wang (2012). However, owing to the richness of flow
physics in high-speed flows, flow instability is still far from fully understood, even in terms
of fundamental modal instability.

In particular, the leading edge of a wing plays a very important role in boundary
layer transition. One noticeable phenomenon in experiments (Pfenninger 1965) is
the leading-edge contamination: if the Reynolds number is sufficiently high, initial
turbulent flow could persist along the attachment line. In real flight vehicles,
owing to significant geometric variation in wing–body junctions, initial laminar flow
could easily become turbulent, contaminating the flow state of the attachment line.
Such phenomenon motivated the discovery of the mechanism of the attachment-line
transition.

The steady laminar flow in the leading-edge region of a swept wing was often
studied using the Hiemenz model (Rosenhead 1963). Unlike the similarity solution for
conventional boundary layer flows, the Hiemenz model provides an exact solution of
incompressible Navier–Stokes (NS) equations in the leading edge. The agreement with the
experimentally measured basic flow (Gaster 1967) further popularized the Hiemenz model.
Poll (1979) performed experiments over a swept cylinder, the preliminary measurements of
the velocity profile along the attachment-line was in good agreement with those predicted
by the Hiemenz model. In addition, he was the first to establish a distinction between the
transition induced by cross-flow and transition initiated by attachment-line instabilities.

The first theoretical stability study of the attachment-line boundary layer was given
by Hall, Malik & Poll (1984) in the temporal framework. Under the assumption made
by Görtler (1955) and Hämmerlin, Görtler & Tollmien (1955) for Hiemenz flow (the
linear instability in the attachment-line acquires the symmetry of the basic flow, in which
chordwise velocity is a linear function of the chordwise coordinate), they demonstrated
that this flow is linearly unstable to travelling wave disturbances that propagate along
the attachment line. Later, Theofilis (1995) performed linear stability analysis of
incompressible attachment-line flow in the spatial framework and the continuous spectrum
was analysed with asymptotic theory. A more comprehensive stability study was later
given by Theofilis (1998) and, in this paper, all linear approaches (local temporal/spatial
linear analyses) utilized to that time are used, together with the nonlinear numerical
simulations, to cover the linear and nonlinear features. Subsequently, Lin & Malik
(1996) discarded the Görtler–Hämmerlin (G–H) assumption and directly solved partial
differential eigenvalue problems based on the Hiemenz model. They uncovered a series of
symmetric and antisymmetric discrete modes and found the symmetric modes always have
larger growth rate. They also found a stabilizing effect of the leading-edge curvature (Lin
& Malik 1997). An extension of the G–H model for an attachment-line boundary layer is
given by Theofilis et al. (2003): this extension permits recasting the partial differential
eigenvalue problem as a sequence of ordinary differential eigenvalue problems which
govern the two families of symmetric and antisymmetric instabilities. At the same time,
Obrist & Schmid (2003a) provided a complete analysis of the temporal spectrum using
Hermite expansions along the chordwise direction. Then, they performed the analysis of
non-model effects and receptivity of this problem (Obrist & Schmid 2003b). On the aspect
of direct numerical simulations (DNS), Spalart (1988) confirmed that the leading unstable
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mode satisfied the G–H assumption for Hiemenz flows. Joslin (1995) also performed DNS
and found the stabilizing effect of surface suction on attachment-line modes.

In compressible flows, early stability properties of subsonic leading-edge boundary layer
flow were discussed by Theofilis, Fedorov & Collis (2006). In their work, the problem was
solved both numerically and theoretically. They demonstrated that the three-dimensional
polynomial eigenmodes of an incompressible flow (Theofilis et al. 2003) persisted in the
subsonic flow regime. Later, a more accurate analogy analysis based on sparse techniques
was performed by Gennaro et al. (2013). Their results perfectly matched those from
theoretical analysis over a large parameter range in the subsonic region. They found that
when the sweep Mach number decreased, the range of the unstable region and the growth
rates became larger, but the critical Reynolds numbers increased.

As the free-stream Mach number further increases from subsonic to supersonic,
the compressibility effects become more significant. The investigation of supersonic
attachment-line flow was initially focused on the influence of sweep angles and the
heat flux along the attachment line (Gallagher & Beckwith 1959). The transition of the
attachment-line flow was also detected by Gallagher & Beckwith (1959). In their Mach
4.15 experimental study, the effect of sweep angles was studied in a relatively large range.
Later, Creel, Beckwith & Chen (1986) performed experiments with a free-stream Mach
number of 3.5 and several sweep angles. They detected transition along the attachment
line and found the transition Reynolds numbers to be around 650 (based on boundary
layer length scale at the leading edge). Skuratov & Fedorov (1991) performed a similar
test to validate the results of Creel et al. (1986). Murakami, Stanewsky & Krogmann
(1996) conducted experiments on hypersonic attachment-line flow in a Ludwieg-tube
wind tunnel. They found that the critical Reynolds number increased slightly as the
sweep Mach number increased. Gaillard, Benard & Alziary de Roquefort (1999) presented
extensive experimental results for hypersonic attachment-line flow with various sweep
Mach numbers. It is interesting to note that the critical Reynolds number decreased as the
sweep Mach number was above 5.

Apart from experimental studies, researchers also tried to understand the Mach number
effect theoretically. An early theoretical attempt to study the stability of compressible
attachment line was made by Malik & Beckwith (1988) with perturbations of TS type.
However, this assumption neglected the chordwise dependence of the basic flow. A
more proper assumption was made later by Lin & Malik (1995), where two-dimensional
eigenvalue problems were solved directly, allowing two-dimensional dependence of the
mean flow in the solution. It was found that the attachment-line flow was subject to
three-dimensional instability. In addition, the critical Reynolds number based on the
momentum thickness was found to be around 125. Semisynov et al. (2003) performed
a combined theoretical and experimental study and found the critical transition Reynolds
numbers were higher in supersonic than in subsonic flows. More recently, Mack et al.
published a series of studies (Mack, Schmid & Sesterhenn 2008; Mack & Schmid 2010a,
2011a,b) focusing on hypersonic flows around a yawed parabolic body of infinite span with
their innovative Jacobi-free global stability solver (Mack & Schmid 2010b). The global
spectrum that contained both attachment-line and cross-flow instabilities was presented
for a sweep Mach number of 1.25. Some modes were found to reflect features of both
attachment-line and cross-flow instabilities. They also observed that the unstable acoustic
mode could coexist with the unstable boundary mode. The relative critical Reynolds
number of the most unstable acoustic mode was smaller than the unstable boundary mode.

In recent years, a series of studies around the Hypersonic International Flight Research
Experimentation (HIFiRE) program have been performed over two models to cover a
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relative complete hypersonic transition behaviour (see Kimmel et al. 2019 for more
details). The HIFiRE-5 model is a 2 : 1 elliptic cone with a rounded nose tip and the
cone edge along the major axis constitutes the attachment line. Choudhari et al. (2009)
reported unstable attachment-line instabilities over HIFiRE-5 model and found that their
frequencies are in the region of second Mack mode. The findings indicate a similar
hierarchy of the attachment-line modes as that in low-speed boundary layers. Furthermore,
Paredes et al. (2016) performed spatial linear bi-global model stability analyses over
HIFiRE-5 geometry. At the attachment line along the major axis of the cone, both
symmetric and antisymmetric instabilities were discovered and identified as boundary
layer second Mack modes.

As this review demonstrates, the attachment-line instability is still not clearly
understood, most prominently in the hypersonic region where the sweep Mach number
is relatively large, as highlighted in the series of experiments from Gaillard et al. (1999).
In this region, no theoretical explanation is present to explain why the critical Reynolds
number decreased when the sweep Mach number was above 5. In addition, the curvature
effect, the nature of unstable modes and the variations of the modes to sweep angles are
not studied under this condition. This study provides a comprehensive analysis using both
local and global stability theory in an attempt to uncover the transition mechanisms related
to large sweep Mach numbers.

In § 2, the methodologies for basic flow and stability analysis are introduced. The basic
flow is discussed in § 3. In § 4, the local analysis and global analysis are discussed. The
paper is concluded in § 5.

2. Methodology and problem formulation

2.1. Description of the problem
The hypersonic flow around a swept cylinder is studied here based on relevant
experimental conditions (Gaillard et al. 1999). As shown in figure 1, a cylinder of radius
R = 33 mm is assumed to be of infinite length in the spanwise direction. The incoming
flow impinges onto the surface of the cylinder with a sweep angle Λ. Flow parameters
before and after the shock wave, denoted with subscripts ∞ and 2, respectively, satisfy the
Rankine–Hugoniot (R–H) relations. Velocity components U, V and W are defined along
the x, y and spanwise z axis of the Cartesian coordinates. The subscripts s and n are used
to represent the surface and wall-normal directions, along which the velocities are denoted
with Vt and Vn, respectively.

Following the previous studies by Mack et al. (2008) and Mack & Schmid (2011a), we
define a free-stream Reynolds number Re∞, a sweep Reynolds number Res, a free-stream
Mach number M∞, a sweep Mach number Ms and a recovery temperature Tr as,

Re∞ = |V ∞|δ
ν∞

, Res = W2δ

νr
, M∞ = |V ∞|

c∞
, Ms = W2

c2
,

Tr = T∞ + σ(T0 − T∞), where σ = 1 − (1 − ξw) sin2 Λ.

⎫⎪⎬
⎪⎭ (2.1)

In (2.1), ξw is a constant for specific free-stream conditions (M∞ and Λ) and determined
based on the study of Reshotko & Beckwith (1958). The parameter c is the speed of sound,
νr represents the kinematic viscosity at the recovery temperature Tr. The viscosity lengths
scale δ is determined as

δ =
√

νrR
2U2

. (2.2)
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Figure 1. Schematic of hypersonic flow around an inclined cylinder. The velocity vector ahead of the shock
is V ∞ = (U∞, V∞, W∞) and V 2 = (U2, V2, W2) is the velocity vector behind the shock, Vt and Vn represent
the velocity along the surface tangential direction s and wall-normal direction n, and Λ and Λ2 represent the
sweep angles in the free stream and behind the shock.

Case M∞ Λ (◦) T∞ (K) δ (m) Tr/T∞ Tw/T∞ ρr/ρ∞ Re∞ Res Ms R/δ

C3376a 7.14 76.5 69.84 1.4937 × 10−4 9.89 3.95 2.62 2704.73 986.04 5.8 220.93
C3375 7.14 75 69.84 1.4400 × 10−4 9.89 3.95 2.91 2601.36 1043.68 5.51 229.17
C3374 7.14 74 69.84 1.4000 × 10−4 9.90 3.95 3.09 2537.43 1075.44 5.32 235.71
C3373 7.14 73 69.84 1.3600 × 10−4 9.90 3.96 3.26 2477.43 1102.14 5.15 242.65
C3370 7.14 70 69.84 1.2800 × 10−4 9.94 3.98 3.72 2319.10 1155.19 4.65 257.81
C3365 7.14 65 69.84 1.1700 × 10−4 10.01 4.00 4.32 2113.39 1174.21 3.94 282.05

Table 1. Parameters of the flow cases in the current study. The names of cases are the same as in the experiment
of Gaillard et al. (1999). The ‘C’ represents the cylinder. The first two number represent the radius and the last
two numbers stand for the sweep angle. Here ρr is the density of the fluid at the recovery temperature Tr and
ρ∞ represents the density of the free stream.

The free-stream Mach number M∞ = 7.14 and temperature T∞ = 69.84 K are fixed for
all cases. A cold wall temperature is specified as Tw = 0.4Tr according to experimental
conditions. The Prandtl number Pr = 0.72 and the specific heat ratio γ = 1.4 is defined
following the ideal gas assumption of air. The defined six cases are listed in table 1. These
cases differ in sweep angles, leading to different length scales δ and different sweep Mach
numbers Ms. Other parameters are listed in table 1. As most high-order finite difference
methods (Lele 1992; Zhong 1998; Mack & Schmid 2010a) for solving NS/Euler equations
need to reduce the scheme order at boundary regions to satisfy the dissipation-error and
stability conditions, the full-size model is used to maintain the scheme order around the
attachment line, even though the flow is symmetric to the x–z plane at y = 0 at zero
angle of attack. Note that there are generally two choices when solving the laminar basic
flow. The most appropriate is the DNS which solves the NS equation with high-order
shock fitting methods (Moretti 1987; Zhong 1998; Kopriva 1999), therefore, taking all
the information into account. The other is the combination of solving inviscid Euler
equation and boundary layer equations (see Theofilis et al. 2006 and Wang et al. 2018
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for more details), which is much cheaper but overlooks the influence of the inviscid flow
outside the boundary layer. Both methods (DNS and boundary layer assumption) are used
and compared in the present study.

2.2. Mathematical formulation

2.2.1. Flow governing equations
The problem solution starts from the unsteady three-dimensional NS equations:

∂Q
∂t

+ ∂Fj

∂xj
+ ∂Fvj

∂xj
= 0, (2.3)

Q =

⎡
⎢⎢⎢⎣

ρ

ρu1
ρu2
ρu3
Et

⎤
⎥⎥⎥⎦ , Fj =

⎡
⎢⎢⎢⎢⎢⎣

ρuj

ρu1uj + pδ1j

ρu2uj + pδ2j

ρu3uj + pδ3j

(Et + p) uj

⎤
⎥⎥⎥⎥⎥⎦ , Fvj =

⎡
⎢⎢⎢⎣

0
τ1j
τ2j
τ3j

τjkuk − qj

⎤
⎥⎥⎥⎦. (2.4)

The total energy Et and the viscous stress τij are given as, respectively,

Et = ρ

(
T

γ (γ − 1)M2∞
+ ukuk

2

)
, τij = μ

Re∞

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
δij

∂uk

∂xk

)
. (2.5a,b)

The pressure p and heat flux qi are obtained from

p = ρT
γ M2∞

, qi = − μ

(γ − 1)M2∞RePr
∂T
∂xi

. (2.6a,b)

The viscosity is calculated using the Sutherland law

μ = T3/2 T∞ + C
TT∞ + C

, (2.7)

with C = 110.4 K. The fifth-order upwind scheme (for inviscid flux Fj) of Zhong (1998)
together with the sixth-order centre scheme (for viscous flux Fvj) is used to compute
the flow field. Here, the non-conservative characteristic relation is adapted at the shock
surface for more convenient stability analysis, because we perform the stability analysis
based on primitive variables. A fourth-order Runge–Kutta method is applied for the time
integration. By treating the shock wave as a sharp interface, high accuracy can be achieved
in the whole flow field, which is an essential prerequisite for the stability analysis. The
Euler equation is solved by the same method by ignoring the viscous flux Fvj.

Once the basic flow is obtained, the linear Navier–Stokes (LNS) equation of the
perturbations are solved. The LNS equations are derived from the NS equations by
introducing small perturbations, subtracting the basic flow equations and ignoring the
nonlinear terms. A frequently employed form is commonly written as

Γ
∂Φ

∂t
+ A

∂Φ

∂x
+ B

∂Φ

∂y
+ C

∂Φ

∂z
+ DΦ

= H xx
∂2Φ

∂x2 + H xy
∂2Φ

∂x∂y
+ H xz

∂2Φ

∂x∂z
+ H yy

∂2Φ

∂y2 + H yz
∂2Φ

∂y∂z
+ H zz

∂2Φ

∂z2 , (2.8)

where the coefficient matrix Γ , A, B, C, D, H xx, H xy, H xz, H yy, H yz, H zz can be found
in (Ren & Fu 2014, 2015; Wang, Wang & Fu 2017).
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2.2.2. Linear local stability approach
For local analysis, the perturbations along the attachment-line can be written in a wave-like
form as

Φ(x, y, z, t) = φ(x) exp (iαy + iβz − iωt) + c.c., (2.9)

where φ = (ρ′, u′, v′, w′, T ′) is the shape function, α and β are the wave numbers along y
and z directions, ω is the frequency and c.c. represents the complex conjugate. As α is not
known a priori for local calculations, a two-dimensional perturbation wave assumption
is used here as α = 0. Substituting (2.9) into (2.8), the LNS reduces to a generalized
eigenvalue problem as

𝔏lφ = ωℜlφ, (2.10)

where 𝔏l and ℜl are matrix operators:

𝔏l = (D + iβC + β2H zz) + (A − iβH xz)
∂

∂x
− H xx

∂2

∂x2 , (2.11)

ℜl = iΓ . (2.12)

A temporal stability analysis is performed considering the homogeneous nature in the
spanwise direction. In the wall-normal direction, grids cluster near the wall surface in the
following manner

y = a
1 + η

b − η
, with a = yiymax

ymax − 2yi
, b = 1 + 2a

ymax
, η ∈ [−1, 1] , (2.13)

where ymax represents the far-field and yi is the control point. This grid distribution allows
for clustering of half of the grid points in the region

[
0, yi

]
, as first used by Malik (1990).

The spectral method is used for approximation of the derivatives and a standard QZ solver
(Golub & Van Loan 2013) is used for solving the eigenvalue problems.

2.2.3. Global stability approach
From the global point of view, perturbations can be written in a more general form:

Φ(x, y, z, t) = φ(x, y) exp (iβz − iωt) + c.c. (2.14)

Substituting (2.14) into (2.8), one again arrives at a generalized eigenvalue problem,

𝔏φ = ωℜφ, (2.15)

where 𝔏 and ℜ are matrix operators:

𝔏 =
(

D + iβC + β2H zz

)
+ (A − iβH xz)

∂

∂x
+ (

B − iβH yz
) ∂

∂y

−H yy
∂2

∂y2 − H xy
∂2

∂x∂y
− H xx

∂2

∂x2 , (2.16)

ℜ = iΓ . (2.17)

Considering the length scale of instability of the previous study (Mack et al. 2008;
Mack & Schmid 2010a, 2011a,b), the basic non-dimensional spanwise wave number
β is chosen to be 0.3. Because the matrices discretizing the global stability problem
have leading dimensions of O(105–106), instead of classical QZ method, a Krylov–Shur
method (Stewart 2002a,b), based on PETSc (http://www.mcs.anl.gov/petsc) and SLEPc
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(http://slepc.upv.es) with various spectral transformation techniques have been used to
recover a window (100–400) of the eigenvalues of interest. The Krylov–Shur method,
which is another kind of implicitly restarted Arnoldi algorithm, can achieve very high
precision for specific part of the spectrum with proper spectral transformations. Sparse
linear algebra packages, MUMPS (http://mumps.enseeiht.fr) and SuperLU (https://portal.
nersc.gov/project/sparse/superlu/) are used to undertake the inverse of a matrix during the
spectral transformations. In both directions, special mesh distribution (FD-q grids) based
on Hermanns & Hernandez (2008) is implemented according to the order of the scheme
as first discussed by Paredes et al. (2013). Again, FD-q grids cluster near the wall surface
using (2.12) and an eighth-order FD-q scheme is used.

2.2.4. Boundary conditions
In the basic flow, a no-slip boundary condition together with the isothermal wall on the
cylinder surface are employed. At the end of chordwise or surface tangential direction for
the computational domain, characteristic non-reflect boundary conditions are imposed.
In the calculation of perturbations, no-slip and Dirichlet conditions for temperature are
specified at the wall ((u′, v′, w′, T ′) = 0). At the far field (on the shock surface) all
perturbations except density are forced to zeros. Along the s direction, at the exit, a
high-order extrapolation is performed from interior for all perturbation quantities.

3. Basic flow

The present analysis covers sweep Mach number Ms roughly from 4 to 6 as listed in
table 1. Owing to the discrepancy in shock shapes, computation domains are therefore
different among cases. For all cases, a mesh is generated with: 641 grid points in the
surface direction (clustered around the leading edge), 221 grid points in the wall-normal
direction (at least 35 points clustered inside the boundary layer) and 8 grid points in the
spanwise direction due to the homogeneous nature in this flow. Compared with previous
DNS study (Speer et al. 2004; Mack et al. 2008), the basic flow can be adequately resolved
under this grid resolution.

The evolution of the maximum density residual as a function of the number of time steps
is shown in figure 2. The small initial residual level is due to the well-converged initial field
from the preliminary calculation using first-order upwind scheme. After several millions
of steps, when the residual reaches the machine accuracy, this ‘steady state’ is considered
as converged. From figure 2, one can find that cases with higher Reynolds number Re∞
converge slower. More time steps are consequently needed by the flow to adjust to the
much thicker boundary layers where viscous effects are stronger.

The flow field of C3365 case is visualized in figure 3 to illustrate key features of the
flow cases. As can be observed, the curved streamlines in the x–y cross-plane around the
cylinder together with the large spanwise velocity, represent a typical three-dimensional
flow, especially at the leading edge. The density distributions of the basic flow for all
cases are shown in figure 4. At the leading edge, as the sweep angle becomes large, the
shock is moving away from the wall surface and the shock standoff distance, the distance
between the shock surface and attachment line, increases from around 0.7R to 2.2R. The
profiles of the main physical components of the attachment-line boundary layer are shown
in figure 5. Two major features should be noticed. First, as sweep Mach numbers increase,
the thickness of the boundary layer increases. Second, interestingly, in the profiles of
the U-velocity component, a distinct contortion is observed near the outer edge of the
boundary layer. Also there, the temperature T and density ρ profiles exhibit variations that
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Figure 2. Converging history of the basic flow calculations with high-order shock-fitting method. The
vertical axis represents the maximum residual ||Rρ ||L1 in density ρ.
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Figure 3. Contours of basic flow density at three spanwise locations together with pressure contour over
cylinder wall surface. Streamlines are also plotted on these contours.

were not found in the solution of the boundary layer equations (see Appendix C). The
basic flow obtained with traditional boundary layer assumptions is given in Appendix C.
It will be seen there that the differences in the basic flows are significant giving rise to
the findings of the attachment-line modes. The profile of ∂/∂h(ρ(∂W/∂h)) at attachment
line from C3376a case is shown in figure 6. By comparing profiles from the boundary layer
approximations and the full NS solution, the major differences between these two solutions
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Figure 4. Density contours over x–y plane for all cases: (a–f ) represent the cases from C3365 with sweep
Mach number Ms = 3.94 to C3376a of Ms = 5.8. Only the upper half plane is shown because of symmetry.

can be easily found and two generalized inflection points, where ∂/∂h(ρ(∂W/∂h)) = 0,
are seen in figure 6 in the NS solution.

Along the surface far from the attachment line, velocity profiles and pressure gradient
at five different locations are shown in figure 7. An inflection point appears along with the
presence of tangential velocity overshoot in figure 7(a), which is a typical phenomenon
of a boundary layer subject to pressure gradient and surface heat transfer (Cohen &
Reshotko 1956). Along the surface, together with the development of the boundary layer,
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Figure 5. Variation of the basic flow profiles with different sweep Mach numbers: (a–d) represent the ρ, T , U
and W profiles, respectively. All reference values are defined at the edge of stagnation boundary layer except
for temperature. The reference temperature takes the recovery temperature. Here δref = δ and h represents the
distance away from the attachment line.

the spanwise profile becomes thicker (figure 7c), and the wall-normal velocity profile
turns from negative to positive (figure 7b). The surface pressure gradient is also shown
in figure 7(d) and over the whole surface the fluid is accelerated continuously.

4. Stability analysis

In the present stability analysis, the behaviours of the perturbations at the attachment line
are obtained both locally and globally. First, the local analysis is performed along the
attachment line based on the profiles from the previous full NS calculation. Two sets
of grids (401 and 801 points in the wall-normal direction, n), together with the spectral
methods, had been employed to achieve the mesh-independent solution and to reveal the
structure of the spectrum. Figure 8 shows the typical eigenspectrum of case C3376a,
for illustration, based on the profiles from DNS calculation and the solution based on
boundary layer approximation is also shown for comparison. Other cases have similar
features. Two discrete modes are identified and marked in this figure and no unstable
discrete mode is found when the basic flow is calculated with boundary layer equations.
The unstable discrete mode is located around the continuous branch of the slow acoustic
wave (the left red line). The stable discrete mode is found at around the fast acoustic
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Figure 6. The profiles of ∂/∂h(ρ(∂W/∂h)) along wall-normal distance h/δ∗ from the attachment line for
C3376a case with Ms = 5.8. The solid red line represents the result from the boundary layer approximation
and the dashed blue line the result from the full NS equation.

wave (the right red line). The distribution of the spectrum is similar to that obtained from
the boundary layer approximation (green points in figure 8). Based on the previous study
of hypersonic flat boundary layers over a cold wall (Fedorov & Tumin 2003, 2011), the
spectra of perturbations are made of continuous spectra, which are smooth branch cuts
over the complex plane, and of discrete spectra which are poles locating around these
branches. However, in the present cases, because of the variations of basic flow outside
the boundary layer, the shape of the continuous spectrum changes significantly when more
grids are used.

The eigenfunctions of this case are shown in figure 9 and the relative eigenvalue
of unstable mode is listed in table 2. Comparing the eigenvalues with local parallel
approximation, we can find that the small velocity component U, in the x–y plane is vital
for this instability, as the growth rate predicted by parallel approximation theory is one
order smaller than others. All perturbations are normalized with their maximum norm.
The perturbations are mainly distributed inside the boundary layer and become significant
near the boundary layer edge. The perturbations of temperature and density have their
peak near the location h/δ = 2.1. Outside of the boundary layer, perturbations decay
as usual. For unstable modes, indicated as blue dashed lines and black lines, the results
from the local calculation and the global calculation agree well. The shape of the unstable
eigenfunctions from the global calculation are similar to those from the local calculation
inside the boundary layer, but decay much faster outside of the boundary layer, which can
be seen in figure 9(b). Following the study of Mack (1984), we further define the locations
of the critical layer (ca

r = Ū) and the sonic line (ca
r = Ū + a) at the attachment line, where

ca
r = ω

β
, Ū = W, a =

√
T

M∞
. (4.1a–c)
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Figure 7. Profiles of velocity components and pressure gradient in the surface direction for case C3365: (a–c)
show the tangential velocity Vt, the normal velocity Vn and the sweep velocity W profiles along the surface from
the attachment line (black lines, s = 0) to the exit (blue lines, s = 443.04), respectively. Red lines, between the
black and the blue, represent the velocity profiles at three increasing locations s = 138.93, 277.86 and 416.79,
respectively. The pressure gradient along the surface is shown in (d). Here h represents the distance away from
surface.

The existence of a relative supersonic region (below the sonic lines) shown in figure 9
and the generalized inflection points of basic flow shown in figure 6 indicate that the
present mode can be seen as a combination of inviscid instability owing to a generalized
inflection point and supersonic relative basic flow.

In reality, physical perturbations consist of waves with various wave numbers. It is thus
meaningful to investigate the reliance of local growth rates to spanwise wave numbers. To
also compare results among different cases, a dimensional spanwise wave number β∗ =
β/δ is used. As shown in figure 10, when the sweep Mach number increases from 3.94 in
C3365 to 5.8 in C3376a, the unstable region is broadened and the local growth becomes
larger. This finding is totally different from low-speed situation. For subsonic flow, as
reported by Gennaro et al. (2013), when the sweep Mach number decreases the growth
rate increases. Moreover, for the cases with low spanwise Mach numbers, 3.94 in C3365
and 4.65 in C3370, the leading discrete modes are absorbed into continuous branches at
small β∗ and cannot be tracked as shown by the blue lines in figure 10.

Further comparison of the maximum growth rates of various sweep Mach numbers
with the transition detections from experiments is shown in figure 11. As reported in
the experiment (Gaillard et al. 1999), when the sweep Mach number increases from
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Figure 8. Spectral distribution based on local analysis for C3376a case (Ms = 5.8). The unstable region is
marked in yellow. Two different grids had been used to cross-validate the results, and the discrete eigenvalues
are marked by red crosses. Two red dashed lines represent the locations of slow acoustic branch (left) and fast
acoustic branch (right). The spectrum from the boundary layer solution is shown by green points.

around 3.5 to 6, the transition Reynolds number defined by Poll (1979) decreases
continuously. The theoretical growth rate increases continuously under similar conditions.
Because the flow is homogeneous in spanwise direction z, the unstable perturbation will
eventually degenerate into transition. Considering the differences between experiments
and theoretical predictions, the tendency of the flow instability to the sweep Mach number
is the same for both experimental and theoretical works. This explains why the critical
transition Reynolds number decreases when the sweep Mach number is above 5. Together
with the analysis of basic flow (see figure 6), this attachment-line mode is different
from incompressible cases (Theofilis 1995, 1998; Lin & Malik 1996, 1997; Obrist &
Schmid 2003a,b; Theofilis et al. 2003). Traditional attachment-line modes for low-speed
compressible flow can be treated as a kind of three-dimensional TS waves that belong to
viscous instability (Lin & Malik 1995). Based on the velocity profiles at attachment line
(figure 5), the major basic flow components along the line are the density, temperature and
spanwise velocity. The velocity components in the x–y plane are a few orders of magnitude
smaller than the spanwise velocity and can be ignored from the leading term analysis
(see Appendix D). Thus, the boundary layer along the attachment line can be seen as a
parallel flow and is similar to the boundary layer along a flat plate. As a result of the
classical inviscid theory (Lees & Lin 1946; Mack 1984), the attachment-line mode found
in this study belongs to the inviscid instability.

The major limitation in local stability theory is the neglection of the multi-dimensional
effect which can be easily identified in the basic flow (figure 3). In particular, in the
vicinity of the attachment line, flow impingement rather than shear is the dominant feature.
In contrast, non-negligible variations of basic flow with respect to the y direction, the
curvature effects around the attachment line and the features of further downstream region
can all be taken into account properly by the global stability analysis.
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Figure 9. Comparisons of normalized perturbation profiles from the attachment line with the solid black
line from global stability analysis and dashed blue/red lines from local stability analysis for the C3376a
case (Ms = 5.8). The dashed blue and red lines represent the eigenfunctions of unstable and stable discrete
modes, respectively. All the eigenfunctions are normalized by the maximum norm with (a) spanwise velocity
perturbation |w′|, (b) wall-normal velocity perturbation |u′| and (c,d) density and temperature perturbations.
The horizontal black dotted lines, located around h/δ = 2.80, represent the edge of the boundary layer. The
two horizontal black dash-dotted lines represent the location of critical layer (located around h/δ = 2.1, top)
and sonic line (located around h/δ = 1.25, bottom).

Ns Nn ωr ωi

Local calculation (parallel) — 801 0.25187 0.0000302576
Local calculation — 801 0.25120 0.00070372
Global calculation 401 401 0.25097 0.00073089
Global calculation 601 401 0.25097 0.00073146

Table 2. Comparison of the local stability with the global results for the case C3376a (Ms = 5.8). Here Ns
and Nn represent the grid points along the surface and wall-normal direction, respectively.

The global instabilities are performed on a very fine FD-q grids with 601 grid points
along the surface tangential direction s and 401 grid points on the wall-normal direction
n over the x–y cross-section plane. Compared with the results from coarser grids (as
listed in table 2), this resolution (601 × 401) can well capture the main feature of the
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Figure 10. Variations of growth rate of leading boundary modes with spanwise wave numbers for all cases.
The blue lines represent regions where the discrete modes are absorbed into continuous branches. Here λ∗
represent the dimensional wavelength of the perturbations along z direction.
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Figure 11. Variation of the leading boundary modes with sweep Mach number. The solid black dots represent
the cases where transition was detected at the attachment line in the experiments (Gaillard et al. 1999) whereas
the solid red dots indicate no transition. The black line with the circles is the result from the local analysis.
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Figure 12. The calculated spectra around the leading attachment-line modes for sweep Mach numbers 5.8
(C3376a), 5.51 (C3375), 5.32 (C3374) and 5.15 (C3373). The leading eigenvalues are marked by black circles.

global instabilities. The calculated eigenspectrum are shown in figure 12 for the four most
dangerous cases at sweep Mach number greater than 5.

The dependence of ωi on the spanwise wave number β is shown in figure 13 for both
local and global calculations. It is seen here that the results from these two analyses
agree reasonably well at wave number roughly greater than 0.2085. Below this value, the
global growth rate drops much faster than local calculations. In fact, the global calculation
indicates that the mode is unstable in the region 0.178 < β < 0.461. The maximum global
growth rate is slightly larger than the local analysis. The major difference of local and
global analysis for this case is the leading-edge effect of the stability equation, flow
impingement and curvature effects of the basic flow are included in the solution of NS
equations. Thus, for small spanwise wave number β the leading-edge curvature has a
stabilizing effect but a destabilizing effect when the wave number is larger in the unstable
region. This finding is different from the results for incompressible flows, where the
leading-edge curvature exhibits a stabilizing effect on the attachment-line boundary layer
(Lin & Malik 1997).

In global analysis, the temporal behaviour is reflected in the eigenvalues ω = ωr + iωi
whose imaginary part shows whether the perturbation grows or decays with time. The
spatial behaviour is represented by the eigenfunctions. Perturbation profiles at different
s-surface locations are shown in figure 14. Among all the perturbations, the temperature
and density have the maximum amplitudes. The velocity perturbations, though having
much smaller amplitudes, are critical for the transport of low- and high-momentum fluid.
Together with the development of the boundary layer, perturbations move away from the
wall. From the attachment-line region to further downstream location, both the amplitude
and the affected area of velocity perturbations grow (figure 14).
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Figure 13. Dependences of ωi on the spanwise wave number β for C3376a case with Ms = 5.8. The black line
with black circles represents the results from global calculations and the red dashed line represents the results
from local calculation. The red and green dots represent two critical values.
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Figure 14. Perturbation profiles along the surface s direction at (from left to right) s =
0, 58.203, 116.406, 174.609, 232.813 for C3376a case. (a) The perturbation profiles of spanwise velocity |w′|,
temperature |T ′| and density |ρ′|. (b) The perturbation profiles of spanwise velocity |w′| surface tangential
velocity |V ′

t | and wall-normal velocity |V ′
n|. The dashed black lines represent the thickness of boundary layer

δ∗
0.99/δ.

To further analyse the spatial behaviour of perturbations, an energy norm E′ at specific s
is defined for the analysis of the leading boundary layer mode. The energy norm is defined
as

E′ =
∫

h
(φ†Mφ) dh, (4.2)
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Figure 15. Variations of the energy norm |E′| with respect to chordwise location s/R for four cases. The energy
norm is normalized with the energy |E′

0| at the attachment line (s/R = 0). The leading-edge region is enlarged
for clarity.

where M is the energy weight matrix, the superscript † represents the conjugate transpose
and h the wall-normal distance. The weight matrix M was originally proposed by Mack
(1984) and later independently derived by Hanifi, Schmid & Henningson (1996). It is
defined as

M = diag
[

T
γρM2∞

, ρ, ρ, ρ,
ρ

γ (γ − 1)TM2∞

]
. (4.3)

According to the norm definition, both kinetic energy and the thermodynamic energy of
the perturbations are taken into account. The energy norms for the four most dangerous
cases are shown in figure 15. Ignoring the influence of the outflow region, this figure
shows that the development of perturbations along the surface can be divided into three
regions. For the leading-edge region s/R ∈ [0, 0.12], as seen more clearly in the subfigure,
the perturbations show, approximately, an exponential decay except for the case C3376a
with Ms = 5.8 which gives a typically algebraic growth at the region s/R ∈ [0, 0.06].
Downstream at s/R ∈ [0.12, 1.3] is a transition region before the third region s/R ∈
[1.3, 1.57] where the perturbations grow exponentially.

A three-dimensional visualization of the perturbation φ from the leading global
eigenfunctions for C3376a case is illustrated in φ3D as

φ3D(x, y, z) = Re[φ(x, y)(cos(βz) + i sin(βz))], (4.4)

where Re(λ) represents the real part of a complex variable λ. The three-dimensional
eigenfunctions φ3D are shown in figure 16(a,b). The typical symmetric and antisymmetric
structures for spanwise and chordwise velocity perturbations (W ′ and V ′

t ) can be observed
by iso-surfaces and contours, as shown in figures 16(a), 16(b) and 16(d). From the
figures, one can identified that from the leading edge (s/R = 0 in figure 16d) to further
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Figure 16. The leading global modes of the eigenvalue ω = (0.25097, 0.00073146) visualized by iso-surfaces
(positive value in red, negative value in blue) of (a) the spanwise velocity perturbation W ′(x, y, z) =
Re(w′(x, y)(cos βz + i sin βz)) at contour level of ±10−5 and (b) the surface tangential velocity perturbations
at contour level of ±10−6, contours of the relative density perturbation are also shown at the background. (c)
Contour of the x–z plane cross-cut at y = 0 for density perturbation ρ′(x, y, z) together with the velocity vector
(unit vector) on this plane. (d) Contour of the spanwise velocity perturbation W ′ on the s–n plane at z = 0.

downstream (|s/R| > 1.2 in figure 16d) the leading global mode shows a transformation
of locally two-dimensional instability to locally three-dimensional instability. At the
leading edge around y = 0, the eigenfunction has a spatial structure similar to the local
attachment-line mode of sweep Hiemenz flow as first described by Lin & Malik (1996).
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Unlike incompressible cases, the counter-rotating vortices are somewhat further away from
the surface as shown in figure 16(c). The vortices generate chordwise velocity streaks and
similar features are identified by Mack et al. (2008) for parabolic leading-edge flow at
relatively low sweep Mach numbers over an adiabatic surface. Further downstream, the
three-dimensional instability is reflected by the obvious distortions of the iso-surface as
enlarged in figure 16(a,b). The contours of n–z planes for the spanwise velocity and density
are also shown in figure 17 and the second Mack-mode-like features of this global mode is
found to become more prominent further downstream.

To have a better understanding of the mechanism behind the mode and the obvious
energy growth as presented in figure 15, we perform the following analyses for the C3376a
case. Following the study of Malik, Li & Chang (1994), we define the cross-flow velocity
Uc related to the inviscid flow direction outside of the boundary layer. The cross-flow
Reynolds number Recf is defined as

Recf = Umax
c δ

νr
. (4.5)

Here Umax
c is the maximum cross-flow velocity inside the boundary layer. Figure 18 shows

the cross-flow velocity profiles along the surface from the attachment line to the exit of the
computational domain. As the boundary develops under the pressure gradient (as shown
in figure 7), the components of cross-flow increase gradually and the relative cross-flow
Reynolds number increases from 0 (at attachment line plane) to 204.13 (at exit plane). At
the same frequency (ω = 0.25097) of the global calculation (in figure 12), we perform
spatial local linear stability analyses over the cylinder surface based on the NS solution. In
contrast to the previous linear stability analyses, we perform locally quasi-parallel analysis,
based on another normal mode ansatz,

Φ(s, n, z, t) = φ(n) exp (iαss + iβz − iωt) + c.c., (4.6)

in which β and ω are the same as previous definitions. We solve the eigenvalue αs,
the wave number and growth rate along the chordwise direction. The stability diagram
of the given frequency is shown in figure 19(a). The small region around the leading
edge (s/R ∈ [0, 0.2]) from this local calculation is non-physical because of non-ignorable
variations of mean flow at s direction. The horizontal dashed line represents the same
spanwise wave numbers as in global calculation, and the growth rate (−αsi) along this
line is shown in figure 19(b). Moreover, the behaviour of the mode calculated from local
calculation agrees well with those from the global calculation as compared with figure 15.
The rapid energy increase started at around s/R = 1.2 in figure 15 is reflected directly as
the unstable downstream region shown in figure 19(b). In addition, figure 19(a) shows that
the unstable region is made up of three parts. To identify the features in those regions, three
eigenfunctions corresponding to circles marked in figure 19(a) are shown in figures 19(c),
19(d) and 19(e). Good agreement of the eigenfunctions, marked in region III, from the
local spatial calculation and global temporal analysis can be observed in figure 19(e). The
physical frequency of the perturbation

f = ω|V ∞|/2πδ, (4.7)

predicted by previous global analyses is 311 kHz and is located in the region of the second
Mack mode. The locations of the critical layer (cr = Ū) and the sonic lines (cr = Ū + a),
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Figure 17. Contours of spanwise perturbation w′, left-hand side column, and density perturbation
ρ′, right-hand side column, of n–z plane along surface s direction at (from the top down)
s = 0, 58.2, 116.4, 174.6, 232.8 and 291.0. Here h0 represents the distance away from surface.

where

cr = ω√
α2

s + β2
, Ū = αsU + βW√

α2
s + β2

, a =
√

T
M∞

, (4.8a–c)
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Figure 18. The cross-flow velocity profiles along the surface s of the cylinder at (from left to right)
s = 43.53, 87.06, 130.59, 174.12, 217.65, 261.18, 304.71 and 347.04 for the C3376a case.

are shown in figures 19(c), 19(d) and 19(e). From figure 19(e), we can find that the majority
of the perturbations lies below the sonic line with only the temperature and density peak
near the critical layer, which is the typical feature of the second mode (Hader & Fasel
2019; Paredes, Choudhari & Li 2020). All these indicate that the instability at region III
and the rapid energy increase started at around s/R = 1.2 in figure 15 is due to the second
Mack mode.

Regions I and II, on the other hand, support similar perturbation profiles as presented
in figures 19(c) and 19(d). To recognize the feature of these two parts and the
instability nature, we further show the stability diagram at lower frequencies in figure 20.
For stationary case (f = 0 kHz), shown in figure 20(a), the typical neutral curves
for stationary cross-flow instability is shown. When the frequency goes higher (f =
24.78 kHz, 49.567 kHz), the unstable region moves up covering higher spanwise wave
numbers, as shown in figure 20(b,c). Owing to the continuous change of the stability
diagram, the instability there is identified as travelling cross-flow instability. As the
frequency further increases, not only does the cross-flow region go to a higher spanwise
wave number region, but another unstable region appears in the lower spanwise wave
numbers, as presented in figures 20(d), 20(e) and 20( f ). We term instabilities in this
region as mode II in this study. At higher frequencies, the region of the second mode
appears (figure 20g,h) and forms the final neutral curve shown in figure 19(a), in
which the frequency reaches the value predicted by global calculation. Therefore, based
on the stability features along the dashed line in figure 19 and global analyses, the
dominating perturbations display the features of attachment-line modes at the leading
edge, a combination of the mode II instability and travelling cross-flow instability just
downstream and the features of the second mode instability further downstream.

4.1. Lower sweep Mach number cases
Additional cases are calculated to capture the instability features varying with sweep
Mach numbers over a larger range. In this study, we still alter the sweep angle as we did
previously to cover the regions of relatively lower sweep Mach numbers. The additional
cases are listed in table 3. All the parameters are the same as previous except for the
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cr = Ū + a

cr = Ū
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Figure 19. (a) The stability diagram of the C3376a case based on local stability analysis. The frequency is
such chosen that matches the leading unstable global mode. The horizontal dashed line represents the spanwise
wave number β = 0.3 as in the global calculation. The growth rate −αsi along the dashed line is shown in (b).
The points marked by black, green and blue, in three regions I, II and III, are shown with eigenfunctions in
(c), (d) and (e), respectively. Left parts of these panels show the perturbation profiles for density |ρ′|, spanwise
velocity |w′| and temperature |T ′|, all normalized with maximum spanwise velocity perturbation. The global
eigenfunction (|ρ′

G|, |w′
G|, |T ′

G|) is also shown in (e) for comparison. Right parts of (c), (d) and (e) show the
corresponding chordwise velocity |V ′

t |. The locations of the critical layer cr = Ū and the sonic lines cr = Ū + a
are indicated by horizontal dash-dotted lines.
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Figure 20. Stability diagrams of the C3376a case at different frequencies (a) 0.00 kHz, (b) 24.784 kHz, (c)
49.567 kHz, (d) 74.351 kHz, (e) 99.135 kHz, ( f ) 123.92 kHz, (g) 148.70 kHz and (h) 223.05 kHz.

Case M∞ Λ (◦) T∞ (K) δ (m) Tr/T∞ ρr/ρ∞ Re∞ Res Ms R/δ

C3355 7.14 55 69.84 1.0172 × 10−4 10.21 5.07 1841.93 1070.71 2.85 324.41
C3345 7.14 45 69.84 9.2628 × 10−5 10.45 5.46 1677.22 893.53 2.08 356.27
C3340 7.14 40 69.84 8.9423 × 10−5 10.57 5.58 1619.19 795.94 1.77 369.03
C3335 7.14 35 69.84 8.6859 × 10−5 10.70 5.68 1572.78 696.30 1.49 379.92
C3330 7.14 30 69.84 8.4815 × 10−5 10.81 5.75 1535.76 595.97 1.23 389.08
C3325 7.14 25 69.84 8.3201 × 10−5 10.92 5.80 1506.54 495.67 1.00 396.63

Table 3. Parameters for additional cases.

sweep angle Λ and surface temperature Tw. As there is no experimental data for these
configurations, an adiabatic surface temperature Tw = Tr will be analysed for these cases.
In fact, the cold surface cases Tw < Tr are also calculated for these cases, not only did
not we find the unstable modes, but the leading attachment-line mode is absorbed into the
continuous spectrum and can hardly be identified. For these reasons, the cold wall cases are
not shown here. For this model, as the sweep angle Λ increases from 25 to 55◦, Res rises
from around 500 to 1000, exhibiting a different tendency as compared with high sweep
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Figure 21. (a) The basic flow profiles at the attachment line. The density ρ and spanwise velocity w are
normalized by the reference value at the edge of stagnation boundary layer. The temperature is normalized by
the recovery temperature Tr. The small region of d/dh(ρ(dW/dh)) near the surface is enlarged and presented
on the top left. (b) The perturbations of the leading attachment-line mode. All the perturbations are normalized
with the maximum spanwise velocity. The horizontal dotted lines represent the edge of the boundary layer.

angle cases as presented in table 1. After solving the basic flow with high-order shock
fitting methods, we perform the global stability analyses focusing on the attachment-line
instability.

The basic flow and attachment-line perturbations for C3335 case are shown in figure 21.
The typical feature of an adiabatic boundary layer is presented in figure 21(a). Two
generalized inflection points are also found close to the wall surface. The eigenfunctions
at the attachment line calculated by global stability solver are shown in figure 21(b) and
exhibit characteristics of TS instability, comparing with previous studies (Lin & Malik
1995; Gennaro et al. 2013).

The calculated spectrum for spanwise wave number β = 0.19 is shown in figure 22(a).
The branch of attachment line instability is marked by black, filled dots. Similar
to the incompressible cases (Lin & Malik 1996, 1997), symmetric (S1, S2, . . .) and
antisymmetric (A1, . . .) eigenvalues alternate from the least stable to the most stable.
Typical features are shown in details through the iso-surfaces of spanwise velocity
perturbations for S1 and A1 modes, as presented in figure 22(c,d). Dependences of
eigenvalues ωi on β for the least stable symmetric S1 and antisymmetric A1 modes is
shown in figure 22(b). In this region, it is found that all these modes are stable among
which the symmetric mode S1 always has the highest growth rate.

The dependences of growth rates to the spanwise wavelength of the perturbations for
additional cases are shown in figure 23, except for C3355 case because some of the
attachment-line modes in that cases are so close to the continuous branches and cannot
be identified in global calculations. Obviously, all the attachment-line mode is stable. As
the sweep angle increases from 25 to 45◦, the maximum growth rates show a trend from
rising to decline, reaching the highest points between 35 and 40◦.

5. Concluding remarks

The present work attempts to explain, theoretically, the instabilities of attachment line at
high sweep Mach numbers in accordance with relevant experimental conditions (Gaillard
et al. 1999). The analysis is performed with high-fidelity realistic basic flows which are
obtained with a high-order shock fitting method to fully resolve the basic flow and all
the geometry information. Local and global stability analyses are employed to elucidate
the physics of the attachment-line instability. The theoretical results agree qualitatively
with the experiment. This type of attachment-line mode is found belonging to the inviscid
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Figure 22. (a) Eigenvalues of the C3335 cases for spanwise wave number β = 0.19. The branch of
attachment-line modes is marked by black, filled dots. Symmetric (S1, S2, . . .) and antisymmetric (A1, . . .)
eigenvalues alternate from the least stable to the most stable. Here S1 and A1 modes are visualized by
iso-surface of the spanwise velocity perturbation at contour level of ±10−5 in (c,d), respectively. (b)
Dependences of ωi on β for S1 and A1 modes for C3335 case.

instability and locate in the frequency range of the second Mack mode, in contrast to the
low-speed cases which belong to the viscous instability. From the global stability analysis,
the leading attachment-line mode is found to be connected with the second Mack modes
further away from the attachment line.

An exploration into the lower sweep Mach number regime connects the present findings
to those reported in the smaller Ms regime. When the sweep angle increases from 0,
the attachment-line mode gets promoted until 35–40◦. This is followed by a suppression
until the large Ms regime (with sweep angle from 65 to 76.5◦) where the instability become
substantially enhanced, as shown in figure 24.

It is also found that the more realistic basic flow is the key to understanding some
unexplained phenomenon. The traditional boundary layer model fails to take the influence
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Figure 24. The anticipated behaviour of the leading attachment-line mode for a hypersonic blunt sweep body
on different sweep angles Λ and sweep Mach numbers Ms. The dashed line represents the predicted growth rate
for a typical configuration of hypersonic sweep body. The black and blue filled dots represent the maximum
growth rate for the cases calculated in the present analyses.

of inviscid flow into consideration, and this influence sometimes may change the physics of
flow instability significantly as in this case. Based on the inviscid nature of attachment-line
mode found in this study, a mode competition/transformation between inviscid and viscous
attachment-line modes may occur at specific parameter region, especially for lower sweep
Mach number over a cold wall. In addition, the inner relationship between attachment-line
modes and unsteady cross-flow modes in the high-Mach-number region is still unclear.
In some study (Mack et al. 2008), the attachment-line instabilities in the leading-edge
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Figure 25. Dependence of Cp on θ for a flow around cylinder at Mach 5.73. The line represents the solution
calculated with the authors’ code. The circles represent results from Zhong (1998) and experiment (Tewfik &
Giedt 1960).

region connect with cross-flow modes further away from the leading edge. In contrast,
these connections may disappear in some other cases as pointed out by Paredes et al.
(2016). The study on these aspects may be important extensions of the present research.
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Appendix A. Verification and validation of the shock-fitting and boundary
layer solver

Three cases were used to check our code. Two cases (the hypersonic flow over a cylinder
and a parabola) calculated by Zhong (1998) are used for validation and verification of
the present solver. Excellent agreements are achieved as shown in figures 25 and 26 for
pressure coefficient and vorticities. The last one comes from DNS study of Balakumar
& King (2012) (a supersonic flow over a sweep cylinder), we had used an inviscid
shock-fitting Euler solution together with a boundary layer equation to solve the problem.
Again, in figure 27 the density profiles at several stations match perfectly.
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Figure 26. Dependence of vorticity ω behind the shock surface and over the wall surface over a hypersonic
blunt parabola at Mach 15. The lines are from the solution calculated with the authors’ code. The circles marked
as Ref 1 and Ref 2 represent results from Zhong (1998).
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Figure 27. Comparison of the density profile at several station over a sweep cylinder at Mach 3. The lines
represent the solution calculated with the authors’ code. The circles represent the solution calculated by the
weighted essentially non-oscillatory (WENO) scheme from Balakumar & King (2012).
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Figure 28. (a) Dependence of Ci on β for G–H mode at Re = 800. (b) Dependence of Ci on β for G–H mode
at M = 0.9. The data obtained by asymptotic analysis (circle) and results of the present study (solid line). In
this test case, we use 121 × 121 grid points and the problem is discretized with eighth-order finite difference
method.

Balakumar & Malik (1992) Tumin (2007) Present bi-global solver
Case 1 (0.220, −0.003091) (0.220, −0.003091) (0.220199, −0.003098)

Malik (1990) Tumin (2007) Present bi-global solver
Case 2 (0.2534048, −0.0024921) (0.2534420, −0.0027738) (0.253443, −0.002780)

Table 4. High-speed boundary layer validation cases. For case 1, the parameters are as follows: the free-stream
Mach number M = 4.5, the total temperature T0 = 311 K, the Prandtl number Pr = 0.72, the Reynolds number
Re = 1000 and the frequency ω = 0.2. For case 2, the parameters are as follows. The free-stream Mach number
M = 4.5, the total temperature T0 = 611.11 K, the Prandtl number Pr = 0.70, the Reynolds number Re = 1500
and the frequency ω = 0.23. In both cases, 121 × 120 grid points are used with an eighth-order finite difference
method.

Appendix B. Verification and validation of the global stability solver

Two types of cases have been used to validate the global stability solver developed in this
work. First, the linear stability of the incompressible and subsonic sweep attachment-line
flow is addressed here to check the reliability and accuracy of the solver with the results
from the literature (Theofilis et al. 2006; Gennaro et al. 2013). The dependence of the
scaled eigenvalues C = ω/β on β is shown in figure 28 and these eigenvalues represents
the G–H mode of the boundary layer. The boundary conditions in the present simulation
remain the same as in the literature.

Then the solver is also compared with the local stability solver on high-speed
two-dimensional boundary layer cases. The spatial version of this solver is used and
compared with previous studies. Balakumar & Malik (1992) reported an eigenvalue α =
0.220 − 0.003091i for a high-speed boundary layer and the present bi-global solver obtains
α = 0.220199 − 0.003098i. In addition, for a high-speed boundary layer, Tumin (2007)
reported an eigenvalue α = 0.2534420 − 0.0027738i, and the present solver achieved
α = 0.253442 − 0.002780i. These cases are listed and compared in table 4. The matches,
listed in table 4 and shown in figure 28, demonstrate the reliability and numerical accuracy
of the newly developed solver.
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Figure 29. The variable profiles at the attachment line. All the variables are normalized with the free-stream
values. Velocity is normalized with the free-stream velocity |V ∞|. The red line represents the solution from
full NS calculation and the dashed black line is from boundary layer approximation.

Appendix C. Basic flow solution based on boundary layer approximation

First, an Euler system is solved with the shock fitting method to provide the boundary
information for boundary layer equations. Detailed information on boundary conditions
for Euler equations can be found in Brooks & Powers (2004). Then the boundary layer
equations are solved along the surface as in Wang et al. (2018). We take the C3376a
case as a typical example and other cases have similar features. At the attachment
line, the profiles for variables are shown in figure 29 together with the solution from
full NS calculation. Further downstream the profiles are also shown and compared
in figure 30.

Appendix D. O(1) equation along the attachment line

A small parameter ε = 1/Re and slow variables y1 = εy, t1 = εt are introduced. In the
framework of multiple-scale approach, the perturbation is expressed as

Φ(x, y, z, t) = ϕn exp [iβz − iωt] , (D1)
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Figure 30. The variable profiles at two different surface locations: (a) the spanwise velocity and (b) the
density. The lines represent the solution from full NS calculation and the dashed lines are from boundary
layer approximation. The blue line is located at s = 0 and the black line is located at s = 1.18R.

where

ϕn = φ0(x, y1, t1) + εφ1(x, y1, t1) + ε2φ2(x, y1, t1) + O(ε3) + · · · . (D2)

Substituting (D1) into the LNS equations, the equations for O(1) can be expressed as

−iωΓ φ0 + A
∂φ0

∂x
+ iβCφ0 + Dφ0 − H xx

∂2φ0

∂x2 − iβH xz
∂φ0

∂x
+ β2H zzφ0 = 0, (D3)

and O(ε) as

− iωΓ φ1 + A
∂φ1

∂x
+ iβCφ1 + Dφ1 − H xx

∂2φ1

∂x2 − iβH xz
∂φ1

∂x
+ β2H zzφ1

= −Γ
∂φ0

∂t1
+ iβH yz

∂φ0

∂y1
− B

∂φ0

∂y1
+ H xy

∂2φ0

∂x∂y1
. (D4)

Looking at equation (D3), one can find that this form is the same as the form of
local stability equations along a flat plate (z is the main streamwise direction, x is the
wall-normal direction). By using the order analysis, one can find that the basic behaviour
along the attachment line is governed by local theory.
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