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Abstract  The algebra S, of one-sided inverses of a polynomial algebra P, in n variables is obtained
from P, by adding commuting left (but not two-sided) inverses of the canonical generators of the
algebra P,. The algebra S,, is isomorphic to the algebra

K<i7"'7i7/7"'7/>
ox1 O0rn J1 n

of scalar integro-differential operators provided that char(K) = 0. Ignoring the non-Noetherian prop-
erty, the algebra S,, belongs to a family of algebras like the nth Weyl algebra A, and the polynomial
algebra Pa,. Explicit generators are found for the group G, of automorphisms of the algebra S,, and
for the group S} of units of S,, (both groups are huge). An analogue of the Jacobian homomorphism
Autg 15 (Pn) — K* is introduced for the group G, (notice that the algebra S, is non-commutative and
neither left nor right Noetherian). The polynomial Jacobian homomorphism is unique. Its analogue is
also unique for n > 2 but for n = 1,2 there are exactly two of them. The proof is based on the following
theorem that is proved in the paper:

K* x K* ifn=1,
Gn/|Gn,Gn] ~{ /27 x K* X /27 ifn =2,
7.)27 x K* if n > 2.

Keywords: group of automorphisms; group generators; inner automorphisms; Fredholm operators;
index of an operator; semi-direct and exact products of groups
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1. Introduction

Throughout, ring means an associative ring with 1; module means a left module; N :=
{0,1,...} is the set of natural numbers; K is a field and K* is its group of units; P, :=

K[zq,...,x,] is a polynomial algebra over K;
0 0
01 = — e 0, = —
1 a.’El ’ ’ n 81’77,

are the partial derivatives (K-linear derivations) of P,; Endg (P,) is the algebra of all
K-linear maps from P, to P, and Autg (P, ) is its group of units (i.e. the group of all the
invertible linear maps from P, to P,); the subalgebra A, := K{(x1,...,2,,01,...,0,) of
Endg (P,) is called the nth Weyl algebra provided that char(K) = 0.
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Definition 1.1 (Bavula [4]). The algebra S,, of one-sided inverses of P, is an algebra
generated over a field K of characteristic zero by 2n elements x1,...,Zn, Yn,- - ., Y, that
satisfy the defining relations

yizr =1 ynmn =1, wiys] = [z 2] = [y y] =0 foralli # 5,
where [a,b] := ab — ba is the algebra commutator of elements a and b.

By the very definition, the algebra S,, is obtained from the polynomial algebra P,
by adding commuting, left (but not two-sided) inverses of its canonical generators. The
algebra S is a well-known primitive algebra [10, Example 2, p. 35]. Over the field C of
complex numbers, the completion of the algebra S is the Toeplitz algebra, which is the
C*-algebra generated by a unilateral shift on the Hilbert space I2(N) (note that y; = 7).
The Toeplitz algebra is the universal C*-algebra generated by a proper isometry.

Example 1.2 (Bavula [4]). Consider a vector space V = @, Ke; and two shift
operators on V', X:e; — e;41 and Y: e; — e;—1 for all ¢ > 0, where e_; := 0. The
subalgebra of End (V') generated by the operators X and Y is isomorphic to the algebra
S1(X = x,Y — y). By taking the nth tensor power V" = @ . Keq of V we see
that the algebra S, ~ S?" is isomorphic to the subalgebra of Endg (V®") generated
by the 2n shifts X1, Y7,...,X,,Y, that act in different directions. In particular, when
the field K has characteristic zero, V. = Py = @,.yKe;, ¢; := z'/il, Y = d/dz and
X = [:P — P, 2" — z'"'/i + 1 (the integration), the algebra S; is isomorphic
to the algebra K(d/dz, [) of scalar integro-differential operators. By taking the nth
tensor power PP" = P, = DocnnKea, ea = [T 25 /!, and setting Y; = §/0z; and
fi : P, — P, 2% — z;2%/(a; +1), we see that the algebra S,, is isomorphic to the algebra
K(0/0x1,...,0/0n, [|,..., [ ) of scalar integro-differential operators.

The algebra S,, is a non-commutative non-Noetherian algebra that is not a domain
either. Moreover, it contains the algebra of infinite-dimensional matrices. The Gelfand—
Kirillov dimension and the classical Krull dimension of the algebra S, is 2n, but the
global dimension and the weak homological dimension of the algebra S, is n [4].

1.1. Explicit generators for the group G,

Let Gy, := Autx_a15(Sy,) be the group of automorphisms of the algebra S,, and let S},
be the group of units of the algebra S,,. The groups G,, and S} are huge, e.g. both of
them contain the group

GLoo(K) X -+ X GLy (K),
27 —1 times
which is a small part of them. A semi-direct product semiHZIHi =HxHyx---x Hy,
of several groups means that Hy X (Hy X (+++ X (Hye1 X Hyp) e o).
Theorem 1.3 (Bavula [7]).

(1) Gp, =S, x T x Inn(S,,).

(2) G1 =T x GLoo(K).
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In the theorem above, S,, = {s € S, | s(x;) = x43:), 5(¥i) = Ys(s)} is the symmetric
group, T" := {t5 | tA(x;) = Niwi, ta(yi) = A\ 'y, A= (\;) € K*"} is the n-dimensional
algebraic torus, Inn(S,,) is the group of inner automorphisms of the algebra S,, (which
is huge) and GL(K) is the group of all the invertible infinite-dimensional matrices
of the type 1 + M (K) where the algebra (without 1) of infinite-dimensional matrices
My (K) := @Md(K) = Ug>1Ma(K) is the injective limit of matrix algebras. Theo-
rem 1.3 is a difficult one (see the introduction of [7], where the structure and the main
ideas of the proof are explained).

The results of the papers [2,4-7] and of the present paper show that (when ignoring
non-Noetherian property) the algebra S,, belongs to a family of algebras like the nth
Weyl algebra A,,, the polynomial algebra P, and the Jacobian algebra A, (see [2,6]).
Moreover, the algebras S,,, A, and A, are generalized Weyl algebras. The structure
of the group G; ~ T! x GLy(K) is another confirmation of the ‘similarity’ of the
algebras Py, A; and S;. The groups of automorphisms of the polynomial algebra P
and the Weyl algebra A; were found by Jung [11], Van der Kulk [15]; and Dixmier [8],
respectively. These two groups have almost identical structure in that they are ‘infinite
GL-groups’ in the sense that they are generated by the algebraic torus T! and by the
obvious automorphisms: x — x4+ Ay, y > y; 2 +— , y > y+Az’, wherei € Nand A € K,
which are sort of ‘elementary infinite-dimensional matrices’ (i.e. ‘infinite-dimensional
transvections’). The same picture holds as for the group G;. In prime characteristic, the
group of automorphism of the Weyl algebra A; was found by Makar-Limanov [12] (see
also [3] for a different approach and for further developments).

A next step in explicitly finding the group G,, and its generators is done in [5], where
explicit generators are found for the group G5 and the following theorem is proved.

Theorem 1.4 (Bavula [5, Theorem 2.12]). Gy ~ Sy x T? x Z x ((K* x
Ew(S1))Mar. () (K* X Ex(S1))), where Eo(S1) is the subgroup of GLo(S1) generated
by the elementary matrices.

The aim of the present paper is to find explicitly the group G,, (see Theorem 4.2) and
its generators for n > 2. We show that these are given explicitly by the following theorem
(Theorem 4.6).

Theorem. Let J, :={1,...,s}, wheres = 1,...,n. The group G,, = S, x T" xInn(S,,)
is generated by the transpositions (ij) where i < j; the elements t(y 1, . 1): ¥1 — Ary,
yi = Ay, Tk = 2k, Yk — Yk, K = 2,...,n; and the inner automorphisms wy: a —
uau~!, where u belongs to the following sets:

(1) Os1(Js) = (L4 (ys = DILZ (L=2ig)) - (L4 (21 = DI oL —2y5)), s = 2,

(2) 142t Eoa(Js), 14+t Eao(Js), 14yt Eoa(Js) and 14yt Eao(Js), where t € N\ {0},
s=1,...,n—1and a € N°\ {0};

(3) 14+ (A —=1)Epo(Js), 1 + Eoa(Js) and 1 + Eqo(Js), where A € K*, s =1,...,n and
a € N°\ {0},

where FEgo(Js) = Hle(l — x:9i), Eoal(Js) := H;l(yf‘ — xiyf‘iﬂ) and Eo(Js) =
Hf:1(x?1 - x?iﬂyi)-
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1.2. The structure and main ideas of finding the generators for the groups
G, and S,

A first step is the following theorem.
Theorem 1.5 (Bavula [5,6]).

(1) S = K* x (1 + a,,)*, where the ideal a,, of the algebra S, is the sum of all the
height one prime ideals of the algebra S,,.

(2) The centre of the group S}, is K* and the centre of the group (1 + a,,)* is {1}.
(3) The map (1+ a,)* — Inn(S,,), u — w, Is a group isomorphism.

Theorems 1.3 and 1.5 reduce the problem of finding the group G,, to the problem of
finding the group of units (1 + a,)*. To save on notation, we often identify the groups
(14 ap)* and Inn(S,,) via u +— w,.

The polynomial algebra P, is a faithful S,,-module (see the example above), hence S,, C
Endg (P,). The ideals of the algebra S,, commute (I.J = JI) [4]. There are precisely n
height 1 prime ideals of the algebra S, say p1,...,pn. They are found explicitly in [4]
and they form a single G,-orbit. In particular, the ideals a, s := Zi1<___<ispi1 Ce P,
s = 1,...,n, are Gy-invariant ideals of the algebra S,,. The group (1 + a,)* has the
strictly descending chain of G,-invariant (hence, normal) subgroups

I+a,) " =1+ap1)" D D(I+a,s) D D(I+apn-1)"DL+a,n)"

Briefly, to prove results for the group (1 + a,)* we first prove similar results for the
subgroups (1 +a, )", s=1,...,n — 1, using a double induction on (n, s) starting with
(n,n—1) in the second part of the induction (the induction on s is a downward induction,
the group (1 4 a,,,)* is isomorphic to GL (K) and contains no essential information
about the overgroups, that is why we have to start with (n,n — 1)). The initial case
(n,n — 1) is the most difficult one. We devote the entire of § 3 to treating it.

The difficulty in finding the group (1 4 a,)* stems from two facts: (i) S;, & S, N
Autg (P,), i.e. there are non-units of the algebra S, that are invertible linear maps
in P,; and (ii) some units of the algebra S,, are products of non-units. To tackle the
second problem the so-called current groups ©,, s, s =1,...,n—1, are introduced. These
are finitely generated subgroups of (14 a,,)* generated by explicit generators and each of
the generators is a product of two non-units of S}, (they are even non-units of Endk (P,,)).
The current groups turn out to be the most important subgroups of (1 + a,)* in that
they control the most difficult parts of the structure of the group (1 + a,)*.

In dealing with the case (n,n—1), we use the Fredholm linear maps/operators and their
indices. This technique is not available in other cases, i.e. when (n, s) # (n,n—1), but the
point is that other cases can be reduced to the initial one but over a larger coefficient ring
(not a field). The indices of operators are used to construct several group homomorphisms.
The most difficult part of § 3 is to prove that the homomorphisms are well-defined maps
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(as their constructions are based on highly non-unique decompositions). As a result, the
group (1 + a,,)* is found explicitly to be given by (see Theorem 4.2)

(1 + an)* = 9;,1En,1@;’2En,2 e 9;,n71En,n717

where the sets ©;, ; C 0, ; and the groups E,, ; are given explicitly (see (2.22) and (4.3)).
As a consequence, we have explicit generators for the group (1+a,)* (see Theorem 4.5).

Theorem. The group (1 + a,)* is generated by the following elements:

1)
Ousto )= (1m0 TT (=) )-(140-1) T (1))

i€ J\max(J) keJ\j

where J runs through all the subsets of {1, ... ,n} that contain at least two elements,
j € J\max(J) and max(J) is the maximal number in J;

(2) 1+2tEo0(D), 1+ 2t Eno(1), 1+ yt Eoa(I) and 1 +y! Eyo(I), where I runs through all
the subsets of {1,...,n} such that |[I| = 1,...,n—1,t € N\{0},i & I, o € NI\ {0};

(3) 1+(A=1)Ego(I), 1+ Eoa(I) and 1+ E,o(I), where A € K*, I # () and o € N'\ {0}.

It is then easy to obtain explicit generators for the group G,, (see Theorem 4.6).

1.3. An analogue of the polynomial Jacobian homomorphism for the
group G,

For the polynomial algebra P, there is an important group homomorphism

Tt Po = Alttge_ag(Po) = K*, o+ det (3‘;5?))7 (1.1)
J

the so-called Jacobian homomorphism. Note that the Jacobian homomorphism is a deter-
minant. Each automorphism o € P, is a unique product o,g of an affine automorphism
oa € Aff,, and an element £ of the Jacobian group X, (see §5 for details), and the
Jacobian of ¢ is uniquely determined by its affine part, i.e. J(0) = J(cas). This prop-
erty uniquely characterizes the Jacobian homomorphism. There are two different ways of
defining the Jacobian homomorphism: by the explicit formula (1.1) or as a group homo-
morphism from P,,/[Pp, Pr] to K* that is defined naturally (i.e. as the determinant) on
the affine subgroup Aff,, of P,.

The group G, = S, X T™ x Inn(S,) has a similar structure to the group P,, where
aff, := S, x T" is an affine part of G,, and the group Inn(S,,) of inner automorphisms
plays the role of the Jacobian group. In §5, we introduce an analogue J,,: G,, — K* of
the Jacobian homomorphism using the second definition of the polynomial Jacobian map
as a guiding principle: the map J,, is a homomorphism J,,: G,,/[Gp, Gr] — K* such that
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on the affine group aff,, it is defined in exactly the same way as in the polynomial case.
For n > 2, the homomorphism J,, is unique (see Theorem 5.8) since (Corollary 5.5 (3))

G /|Gn, Gy = aff, /[afl,,, aff )| ~ Z/27 x K*.

But for n = 1,2, the homomorphism J,, is not unique. There are exactly two of them
since (see Corollary 5.5(3))

K* ifn=1,

G /|Gy Gy ~ aff,, /[aff,, aff,)] x
/l J = aff /{afly, aff,] {Z/QZ if n = 2.

More informally, for n = 1 the appearance of the second homomorphism, the so-called
exotic homomorphism J$*, has a connection with existence of the determinant (homo-
morphism) on the group GLo (K), but for n = 2 the exotic J§* is explained by the fact
that the current group ©s does not belong to the commutant [G3, G]. For n = 1, J; and
J$* are algebraically independent characters of the group Gy, but for n = 2, J3 = (J§¥)?
(see Theorem 5.8).

The proofs are based on finding explicitly the commutant [G,,G,] of the group G,
(see Theorem 5.4 (1)) and proving that (see Theorem 5.4 (2))

K* x K* ifn=1,
Gn/|Gn,Gn]l ~ S Z)27 x K* x 227 if n =2,
Z)2Z x K* ifn > 2.

The most surprising thing is that despite the fact that the algebra S,, is non-commutative,
non-Noetherian, of Gelfand-Kirillov dimension 2n (not n) and not a domain, the unique
homomorphism J,, ‘coincides’ with the polynomial Jacobian homomorphism 7, for the
polynomial algebra P,, (not Py,): for o € G,

Jn(0) = det <8g$i)), (1.2)

i.e. the homomorphism J, is the composition of the homomorphism
Gn — Autg_ag(Sn/a, ~ Ly,), o+ 3&:a+a, —o(a)+a,

where L, := K[z1,27",...,2Zn, 2, '] is the Laurent polynomial algebra (see (2.7)), and
the Jacobian map

Tt Autg_ag(Ln) = LY, 7 det (87(”)).
an
Proof of (1.2). Since G,, = aff,, x Inn(S,,) and the factor algebra S, /a, ~ L, is
commutative, the homomorphism (1.2) acts trivially on Inn(S,) (i.e. J,(Inn(S,)) = 1),
but on aff,, the map (1.2) acts exactly as in the polynomial case: for each element
s-tx € aff,,, where s € S,, and ¢\ € T™, J,,(s-tx) = sgn(s) - [[;—, \i, where sgn(s) € {+1}
is the sign/parity of the permutation s. O
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So, for each element o = sty -w, € G, = S, X T" X Inn(S,), where s € S, t) € T"
and w,, € Inn(S,,),

n

Jn(0) = sgn(s) - H i (1.3)

i=1
One may have noticed that J,(o) depends only on o(z1),...,0(z,), and the set
{z1,...,z,} is not a generating set for the algebra S,,. It is a trivial observation that an

algebra endomorphism is uniquely determined by its action on a set of algebra generators
but for the algebra S,,, an algebra endomorphism is uniquely determined by its action
on either of the sets {x1,...,2,} or {y1,...,yn} (Which are not algebra generating sets).

Theorem 1.6 (rigidity of the group G,, [7, Theorem 3.7]). Let 0,7 € G,,. Then
the following statements are equivalent.

(1) o=7.
(2) o(z1) =7(x1)y ... 0(xn) = T(TH).

(3) oyr) =7W1)s---»0(Yn) = T(Yn)-

2. The group (1 + a,)* and its subgroups

In this section, we collect some results without proofs on the algebras S,, that will be
used in this paper; their proofs can be found in [4]. Several important subgroups of the
group (14 a,)* are introduced. The most interesting of these are the current subgroups
On.s, s =1,...,n—1. They encapsulate the most difficult parts of the groups S}, and G,,.
This section sets the scene for proving the main results of the paper.

2.1. The algebra of one-sided inverses of a polynomial algebra

Clearly, S, = S1(1) ® - -- ® Sy(n) ~ SP", where S (i) := K {(x;,y; | yiz; = 1) ~S; and

Sn: @ Kxayﬂv

a,BEN"

where 2 := 2 -+ 2% = (ay,...,q), Yy’ = yfl ~oyPnand B = (By,...,Hn). In par-
ticular, the algebra S,, contains two polynomial subalgebras P, and Q,, := K[y, ..., Yn]
and is equal, as a vector space, to their tensor product P, ® @,,. Note also that the Weyl
algebra A, is a tensor product (as a vector space) P, ® K|[d1,...,Jdy,] of two polynomial
subalgebras.

When n = 1, we usually drop the subscript ‘1’ if this does not lead to confusion. So,
S1 = K(z,y | yz = 1) = @, j5oKa"y’. For each natural number d > 1, let My(K) :=
@i,;iOK E;; be the algebra of d-dimensional matrices, where {E;;} are the matrix units,
and let

Moo (K) := lim Mg(K) = @ KE;j
4,jEN
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be the algebra (without 1) of infinite-dimensional matrices. The algebra S; contains the
ideal F':= (P, ;oK Eij, where

By i=a'yd — 2"yt i > 0. (2.1)

For all natural numbers i, j, k and I, E;; By = 6;,E4, where d;;, is the Kronecker delta
function. The ideal F' is an algebra (without 1) isomorphic to the algebra M., (K) via
Eij — EU For all ’L,j >0

vBij = Eiv1j, yBij =Eio1y (Boy=0), (2.2)
Eijx = Eij1, Eijy=Eijpn (Ei1:=0)

The algebra
Si=KozKz]|dyKly|® F (2.4)

is the direct sum of vector spaces. It follows that
Si/F ~Klz,o Y=L, xw—2z, y—az ' (2.5)

since yr =1, xzy =1 — Egp and Eyy € F.
The algebra S, = @);-,S1(i) contains the ideal

Fo=F" = B KEup,
a,FEN?

where

n
Eap = [[ Fap (i), Bas, (i) = afiy)t —agi iyl
=1

Note that EogFE,, = 63, Eq, for all elements «, 3,7, p € N, where dg, is the Kronecker

delta function; F,, = @;_, F (i) and F(i) := @, ;cnK Eg (i)
2.2. The involution n on S,,
The algebra S,, admits the involution
n:S, = Sn, iy, yi—x, =1,...,n.

It is a K-algebra anti-isomorphism ((ab) = n(b)n(a) for all a,b € S,,) such that n* = ids,,,
the identity map on S,,. So, the algebra S,, is self-dual (i.e. it is isomorphic to its opposite
algebra, n: S,, ~ S%). The involution 7 acts on the ‘matrix’ ring F,, as the transposition

TI(Eaﬁ) = E,Bow (26)

The canonical generators z;, y; (1 < 4, j < n) determine the ascending filtration
{Sh,<i}ien on the algebra S, in the obvious way (i.e. by the total degree of the gen-
erators): S, <; := EBIaHIBKinay,ﬁ’ where |a| = a1+ -+ an (Sn.<iSn.<j € Sn,<ij for
all i,j > 0). Then dim(S, <;) = (*52") for i > 0 and so the Gelfand-Kirillov dimension
GK(S,) of the algebra S, is equal to 2n. It is not difficult to show that the algebra S,
is neither left nor right Noetherian. Moreover, it contains infinite direct sums of left and

right ideals (see [4]). The proof of the following statements can be found in [4].
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e The algebra S,, is central, prime and catenary. Every non-zero ideal of S,, is an
essential left and right submodule of S,,.

e The ideals of S,, commute (IJ = JI); and the set of ideals of S, satisfy the
ascending chain condition (a.c.c.).

e The classical Krull dimension cl. Kdim(S,,) of S, is 2n.

e Let I be an ideal of S,,. Then the factor algebra S,,/I is left (or right ) Noetherian
if and only if the ideal I contains all the height 1 primes of S,,.

2.3. The set of height 1 primes of S,,
Consider the ideals of the algebra S,,:

p1:=F®S,-1, p2:=S1@F®S,_2,...,pn:=S,1@F.

Then Sn/pz = Sn—l ® (Sl/F) = Sn—l 02y K[l‘i7xi_1] and ﬂl 1P = H?:lpi = F®" = F,.
Clearly, p; Z p; for all 4 # j.

e The set H; of height 1 prime ideals of the algebra S, is {p1,...,pn}-

Let a, :=p1 + -+ + p,. Then the factor algebra
Sp/an =~ (S1/F)® ®sz, 7' = Kz, 27t a2, = Ly, (2.7)

is a Laurent polynomial algebra in n variables and so a,, is a prime ideal of height and
co-height n of the algebra S,,.

Proposition 2.1 (Bavula [4]). The polynomial algebra P, is the only (up to iso-
morphism) faithful simple S,-module.

In more detail, 5, P, ~ Sp /(37 oSn¥i) = @penn K21, 1:= 1+ 3" | S,y;; and the
action of the canonical generators of the algebra S,, on the polynomial algebra P, is given
by the rule

v x> % ifa; >0
Tk = 2T gk = ! ’ and  Eg, x 2% = 802",
. By Y
0 ifa; =0

where the set e; := (1,0,...,0),...,¢e, := (0,...,0,1) is the canonical basis for the free
Z-module Z". We identify the algebra S,, with its image in the algebra Endg (P,) of all
the K-linear maps from the vector space P, to itself, i.e. S,, C Endg (P,).

For each non-empty subset I of the set {1,...,n}, let S; := @, ;S1(i) == S|, where ||
is the number of elements in the set I, F; := @, ;F (i) ~ My (K), let a; be the
ideal of the algebra S; generated by the vector space P, F (i), i.e. aj := ;. F(i) ®
Spi- The factor algebra Ly := Sy/a; ~ Kla;, 1_1: i € I] is a Laurent polynomial
algebra. For elements o = (a)icr, 8 = (Bi)ier € N', let Eqp(I) := [1;c;Fa,p (i). Then
EQB(I)Egp(I) = (SggEap(I) for all a, 3,&,p € N,
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2.4. The G, -invariant normal subgroups (1 + a,_)* of (1 4 a,)*

We will often use the following two obvious lemmas.

Lemma 2.2 (Bavula [7]). Let R be aring and I, ..., I, be ideals of the ring R such
that I;1; =0 forall i # j. Leta=14+a1+ -+ an, € R, where a1 € I1,...,ay, € I,.

The element a is a unit of the ring R if and only if all the elements 1 + a; are units and,
in this case, a=! = (1+a1) (1 4+az)" - (1 +a,) "t

Let R be a ring, R* be its group of units, I be an ideal of R such that I # R and let
(14 I)* be the group of units of the multiplicative monoid 1 + I.

Lemma 2.3 (Bavula [7]). Let R and I be as above. Then
1) RPN (1L+1) = (1+ 1)
(2) (14 I)* is a normal subgroup of R*.

For each subset I of the set {1,...,n}, let p; := (\;c;b; and py := S,. Each p;
is an ideal of the algebra S, and p; = [[;c;pi- The complement to the subset I is
denoted by CI. For a one-element subset {i}, we write C'i rather than C'{i}. In particular,

Pci == Pofiy = mj#ipj-

For each number s = 1,...,n, let a, ¢ := lel:spl. By the very definition, the ide-
als a, s are Gp-invariant ideals (since the set H; of all the height 1 prime ideals of the
algebra S, is {p1,...,pn} and H; is a G,-orbit). We have the strictly descending chain
of G -invariant ideals of the algebra S,:

p =0p1 D0p2 D Dlpg D+ Dbpy =1Ly Daypyr :=0.

These are also ideals of the subalgebra K + a,, of S,,. Each set a, s is an ideal of the
algebra K + a, ; for all ¢ < s, and the group of units of the algebra K + a,, , is the direct
product of its two subgroups (see Lemma 2.3 (1))

(K +ans) =K* x (1+a,,)", s=1,....n.

The groups (K +a,,)* and (1 + a,, 5)* are G,-invariant. There is the descending chain
of G,-invariant (hence, normal) subgroups of (1 + a,)*:

I4+a)" " =14a,1) "D - D(1+a,s) D---
DI4+apn) " =0Q+F)" DA+ apn+1)" = {1}

For each number s = 1,...,n, the factor algebra

(K +ans)/tnsr1 =K@ @ br
[I|=s

contains the idempotent ideals p; := (pr + Gy 541)/0n 541 such that p;py; = 0 for all
I # J such that |I| = |J| = s.
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Recall that for a Laurent polynomial algebra L = K[z:!,... 2+, K (L) ~ L* (see
[1,13,14]),

GLo(L) =U(L) x Ex(L), (2.8)
where E (L) is the subgroup of GLoo (L) generated by all the elementary matrices {1+
aBij lae L, i,j €N, i%# j}and UL) = {p(u) :=uFEop+1—Ep | v € L*} ~ L*,
pu(u) <> u. The group E (L) is a normal subgroup of GL(L). This is true for an
arbitrary coefficient ring L.

By Lemma 2.2 and (2.8), the group of units of the algebra (K + a,s)/an s4+1 =:
K + a,, /0, 541 is the direct product of groups,

(K + an,s/an,s-i-l)*
=K*x [[(+p)" = K* x [] GLoo(Ler) ~ K™ x [ U(Ler) % Exo(Ler),
|1]=s |1]=s |1]=s

since (14 pr)* ~ (1 + M (Lcr))* = GLoo(Ler), where

Ler =Scr/acr = ®K[$i7$f1]
ieCI
is the Laurent polynomial algebra. In more detail, for each non-empty subset I of
{1,...,n}, let Z! := @D.ciZe;. 1t is a subgroup of Z" = @, Ze;. Similarly, NI =

@ieINei‘ By (28),
(1 +ﬁ])* = U(LC]) X EOO(LCI) = (U[(K) X XC’I) X EOO(LC'I)7 (29)
where

U(Ler) :=A{pr(u) :=uEop(I)+1—Eop(I) |u€ L&} ~ Ly, pr(u) < u,
Ly ={ M| e K*, a ez},
Ur(K) :={ur(\) :=AEp(I) + 1 —Epo(I) | A€ K*} =~ K",  pur(A) & A
Xor = {pr(z®) == 2 Eoo(I) + 1 = Ego(I) | a € Z°'}
~ 7T ~ s, pr(z®) < «a,

Eoo(Ler) = (14 aEas(I) | a € Log, o, €N a # B).

The algebra epimorphism ¢, s: K +a, s = (K 4+ ap5)/0n 541, @ — a + ay 541 yields
a group homomorphism of their groups of units (K + a5, s)* = (K + ap s/0n s4+1)*. The
kernel of this homomorphism is (1 + a,,_s41)*. As a result we have the exact sequence of
group homomorphisms:

| (4 @yg1) —— (K 4 8,0)" ———> (K + 8 /80011)"

CE T

(I+ans41)" K*x(1+a,,)" K™ x H|1|=3(1+ﬁ1)*
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which yields the exact sequence of group homomorphisms in which Z,, s := coker(¢y, s):

L= (14 anern)” = 1+ ang)” 25 JTA+80)" = [] GLoc(Ler) = Zas — 1.
[I|l=s [I|=s

(2.10)
For s = n the map 1, ,, is the identity map and so Z, ,, = {1}. Intuitively, the group Z, s
represents ‘relations’ that determine the image im(#,, ) as the subgroup of HI 1= S+
pr)*. We will see later that the group Z, , is a free abelian group of rank (sil) (see
Corollary 4.3). So, the image of the map v,  is large. Note that a,, 41 and p; (where
|I| = s) are ideals of the algebra K + a,, ;. By Lemma 2.3, the groups (1 + a,, s4+1)* and
(1+ps)* (where |I| = s) are normal subgroups of (1+ a, s)*. Then the subgroup 1, s of
(1+ay,,s)* generated by these normal subgroups is a normal subgroup of (14 a, 5)*. As
a subset of (1+a, s)*, the group 1,, ; is equal to the product of the groups (14 a,, s+1)*
and (14 pp)*, |I| = s, in arbitrary order (by their normality), i.e.

Yoo= []Q+p0)" L+ ana)". (2.11)
|I|=s

By Theorem 1.3 and Theorem 1.5, the group 7, s is a G,-invariant (hence, normal)
subgroup of S}. We will see that the factor group (1+a,, 5)*/7,, s is a free abelian group
of rank (Sil)s (see (4.5)).
By (2.9), the direct product of groups [ ;_ (14 pr)* = Xy, s x [}, s is the semi-direct
product of its two subgroups
Xps = [[ Xer =29 and [, = [] Ur(K) x Ex(Ler). (2.12)
[I|=s |I|=s

For each subset I of {1,...,n} such that |I| = s, Ur(K) X Ex(Scr) is a subgroup of
(1+pr)*, where

Ur(K) = {umr(A\) | A€ K*} =~ K*,  Ex(Sor) = (1+aEap(I) | a € Scr, a # 8 € NY),
(2.13)
where pr(A\) :== AEpo(I) + 1 — Ego(I). Clearly,

Yn.sloy iy Ur(K) = Ur(K),  pr(A) = pr(A),

and s (U1 (K) x Ec(Sor)) = Ur(K) % Eso(Lcr) for all subsets I with |I| = s. The
subgroup of (1+ a, )%,

s = ¢;,1S(Fn,8) =5t H (Ur(K) x Exs(Scr)) - (1+ an,s+1)*» (2.14)
|I|=s

is a normal subgroup as the pre-image of a normal subgroup. The upper script ‘set’
was added to indicate that this is a product of subgroups but in general not the direct

product. It is obvious that v, (I}, s) = I, and I}, s C T, 5. We will see that, in fact,
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I s =7, (see Theorem 4.4). Let A, 5 := (1 + a,,5)*/I% 5. The group homomorphism
¥n,s (see (2.10)) induces a group monomorphism

szs: Aps — H (1 +ﬁ[)*)/fn7s ~ X, s 7,(2)(n=s)

|I|=s

This means that the group A,, s is a free abelian group of rank less than or equal to
(") (n — s). In fact, the rank is equal to (;)s (see (4.4)).
For each subset I with |I| = s, consider the free abelian group Xt; := €D, ccrZ(J, I) ~

Z™°, where {(j,I) | j € CI} is its free basis. Let

X, .= P Xor =@ Pz, 1) =z,

|I|=s |I|=sj€CT
For each subset I, consider the isomorphism of abelian groups
Xer = Xep,  pr(zy) == x;Eq(I) +1— Ego(I) — (4, 1).
These isomorphisms yield the group isomorphism
X = Xy prles) = (o 1). (2.15)

Each element a of X, 5 is a unique product a = Hm:snjecj,uf(xj)"(j’”, where n(j,1) €
Z. Each element a’ of the group XJ, | is a unique sum a' = >, > com(i I) - (4, 1),
where n(j,I) € Z. The map (2.15) sends a to a’. To make computations more readable

we set ey := Foo(I). Then ere; = eryy.

2.5. The current groups O, , s=1,...,n—1

The current groups ©,, s are the most important subgroups of the group (1 + a,)*.
They are finitely generated groups and their generators are given explicitly. The adjec-
tive ‘current’ comes from the action of the generators on the monomial basis for the
polynomial algebra P,. If we visualize the algebra P, as a liquid and the monomials
{z*} as its atoms, then the action of the generators of the group ©,, s on the monomials
resembles a current (see (2.16)). The generators shift the liquid only on the faces of the
positive cone N = P,,. The generators of the groups 6,, ; are units of the algebra S,, but
they are defined as a product of two non-units. As a result the groups @,, s capture the
most delicate phenomena about the structure and the properties of the groups S} and
G,p.

For each non-empty subset I of {1,...,n} with s := |I| < n and an element i € CI,
let

X(Z,I) = ,U,[(Jil) = $1E00(1)+1—E00(I) and Y(Z,I) = /J,](yl) = yiEOQ(I)—i-l—Eoo(I).

Then Y (i, 1)X(i,I) = 1, kerY(i,1) = Poquiy and P, = im X(4,1)®Pc(ruiy, where
Peo1uiy = Klzjljecrui- As an element of the algebra Endg (P,), the map X (i, 1) is
injective (but not bijective) and the map Y (i, I) is surjective (but not bijective).
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Definition 2.4. For each subset J of {1,...,n} with |J| = s+ 1 > 2 and for two
distinct elements ¢ and j of the set J,

0i5(J) =Y (i, T\ )X (G, T\ ) € L+pri+png)" C(L+ays)"

The current group ©,, s is the subgroup of (1+a, 5)* generated by all the elements 6;;(.J)
(for all the possible choices of J, 7 and j).

In more detail, the element 6;;(.J) belongs to the set 1+ pj\; + p s ; and 0;;(J)" 1 =
0;i(J) € 1+ pypi + py,. This follows from the action of the element 6;;(.J) on the
monomial basis of the polynomial algebra P,,, where oo = (a1, ...,a,) € N,

P if 3k € J\ {i,j}: ax #0,
if Vk L Jf Qe = j j
0:;(J) % 2 = z® Ve e J\{ij}: ap =0, a; >0, a; >0, (2.16)
2% ifVke J\{i,j}:ar =0, a; >0, aj =0,

zote it Vke J\{i,j}: o =0, &, =0, a; = 0.

Alternatively, note that pp;(z;y;) = (1 —e) =1 —enen; = 1 — ey and
(using (2.2)) p\i(yi)es = (1+ (yi — Deng)es = eg + (yi — ey = e; — ey = 0. Then

Hij(J)Hﬂ( )= MJ\z(yz)/iJ\y(%) MJ\j(yj)MJ\i(xi)
= pni(Yi) - g (2595) - pave(@)
= ppni(yi) - (L —eg) - poilz:)
= p\i(Yivi)
= py\i(1)
=1.

By symmetry, 8;,(J)0;;(J) =1, i.e.
0:5(J) = 0;:(J)". (2.17)

Therefore, the unit 6;;(7) is the product of an injective map and a surjective map, neither
of which is a bijection.
Suppose that 4, j and k are distinct elements of the set J (hence |J| > 3). Then,

0:5(J)0ik(J) = ir(J). (2.18)
Indeed,

0:5 ()0 () = pni(yi) - g (@) g (Y) - k(@)
= pniYa) - g (2595) - Bk (@k)
(i) - (L —eg) - pow(zr)
(yz)MJ\k(Jik)
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For each number s = 1,...,n — 1 the free abelian group X;, ; admits the decomposition

Xhs = D)sj=s+1D ur=,sZ(j, I) and using it, for each subset J with |J| = s + 1, we
define a character (a homomorphism) x/;:

Xy X, , =~ Z, Z Z nj1(5, 1) = Z N1

|J/|=s+1 jUT=J’ Jul=J

/

n.s 1s the direct sum

Let max(J) be the maximal number of the set J. The group X

X, =K, &Y (2.19)

n,s n,s

of its free abelian subgroups

K.= [ ker())
| J]=s+1

- D D zZ(~(max(J), ] \max(J)) + (j, T\ j))
|J|=s4+1 jeJ\max(J)

~ Z(511)5’

n

Y, = @ Z(max(J),J \max(J)) = 2(5).
[J|=s+1

Consider the group homomorphism ¥y, .: (1+a, )" — X, ;, defined as the composition
of the following group homomorphisms:

Yn,s

1%,55 I4+aps) = A +ans)/IThs — 1+ ﬁl)*/fnys ~ X6 X’ms.
[I|=s
Then,
Vs (0i5(T)) = — (i, T\ i) + (4, T\ J)- (2.20)
It follows that
UJ:«L,S(@n,s) = K/n,s (221)

since, by (2.20), ¥, ((On,s) 2 K], ; (as the free basis for K;, ., introduced above, belongs
to the set ¥, ,(On,s)); again, by (2.20), vy, (On,s) € [ 5)=s41 ker(x)) = K, ..

Let H, Hy, ..., H,, be subsets (usually subgroups) of a group H. We say that H is the
product of Hy,...,H,, and write H = S“H;ilHi = H,---H,, if each element h of H is
a product h = hy - - - by, where h; € H;. We add the subscript ‘set’ (sometimes) in order
to distinguish it from the direct product of groups. We say that H is the ezact product
of Hy,...,H,, and write H = exaCtH;’ilHi = Hj Xex ++* Xex Hp, if each element h of H
is a unique product h = hq - - - h,, where h; € H;. The order in the definition of the exact
product is important.

The subgroup of (1 + a,, 5)* generated by the groups 0, s and I, s is equal to their
product @, sI, s, by the normality of I3, ;. The subgroup I, s of the group O, I, s is
a normal subgroup. Hence, the intersection ©,, ; N I}, s is a normal subgroup of &, ;.
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Lemma 2.5. For each number s =1,...,n—1 the group 6,, ;I, ; is the exact product

Qn,an,s = exact H H <9max(J),j(J)> : Fn,37

|J|=s+1j€J\max(J)

i.e. each element a € O, I, s is a unique product

a = H H emax(J),j(J)n(j7J) Y,

|J|=s+1j€J\max(J)

where n(j, J) € Z and vy € I, 5. Moreover, the group O, I, s is the semi-direct product

6n,sl_‘n,s — semi H H <6max(J),j(J)> X Fn,sy
|J|=s41 jeJ\max(J)

where the order in the double product is arbitrary and ‘semi’ indicates that this product
is semi-direct.

Proof. The lemma follows at once from (2.21) and the fact that the elements
Y5 (Omax(),j(J)) = —(max(J), J \max(J)) + (j,J \ j) form a basis for the free abelian
group K, .. O

For each number s = 1,...,n — 1 consider the subset of (1 + a, )%,

9;%5 = ot H H <9max(<l)¢j(J)>7 (222)

|J|=s+1j€J\max(J)

which is the exact product of cyclic groups (each of them is isomorphic to Z) since each
element u of O, , is a unique product

U = H H amax(J)J(J)n(LJ)a

|J|=s+1j€J\max(J)

S

where n(j,J) € Z (see Lemma 2.5). The order in the product is arbitrary but fixed.
By Lemma 2.5, Oy,./Op s N Ty = O T s/ Ty = K, | =~ Z0:41)% and so

[On.s,On,s) C Ihs. (2.23)
The next theorem is the pinnacle of finding the explicit generators for the groups S;,
and G,,.
Theorem 2.6. ¥, ((1+a,:)*) =1}, (On) fors=1,...,n—1.

Rough sketch of the proof. The proof is rather long and is given in §4. We use an
induction on n (the case n = 2 was considered in [5]) and then, for a fixed n, we use a
second downward induction on s = 1,...,n — 1 starting with s = n — 1. The initial step
(n,s) = (n,n — 1) is the most difficult one. We spend the entire of §3 giving its proof.
The remaining cases, using double induction, can be deduced from the initial one (for
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different n’, i.e. when n’ runs from 1 till n). The key idea in the proof of the case (n,n—1)
is to use the Fredholm operators and their indices. Then, using well-known results on
indices, some (new) results on the Fredholm operators and their indices from [5], and
their generalizations obtained in §3, we construct several index maps (using various
indices of the Fredholm operators). The most difficult part is to prove that these maps
are well defined (as their constructions are based on highly non-unique decompositions).
Then the proof follows from the properties of these index maps. O

3. The groups (1 4+ a,,n—1)* and O, 1

In this section, the group (1 + @, ,—1)* is found (see Corollary 3.11). We mentioned
already in the introduction that the key idea in finding the group G, is to use indices of
operators. That is why we start this section by collecting known results on indices and
proving new ones. These results are used in many proofs that follow.

3.1. The index ind of linear maps and its properties

Let C be the class of all K-linear maps with finite-dimensional kernel and cokernel (such
maps are called the Fredholm linear maps/operators). So, C is the family of Fredholm
linear maps/operators. For vector spaces V and U, let C(V,U) be the set of all Fredholm
operators from V to U with finite-dimensional kernel and cokernel. So, we have the
disjoint union € =y, ,C(V,U).

Definition 3.1. For a linear map ¢ € C, the integer ind(p) := dimker(y) —
dim coker(yp) is called the index of the map .

For vector spaces V and U, let C(V,U); := {¢ € C(V,U) | ind(¢) = i}. Then C(V,U) =
UiezC(V,U); is the disjoint union and the class C is the disjoint union (J;.,C;, where
Ci :={p € C | ind(p) = i}. When V = U, we write C(V) := C(V,V) and C(V); :=
eV, V).

Example 3.2. Note that S; C Endg (P;). The map z° € Endg(P;) is an injection
wi‘thPl = (@;;BKxj) @ im(z?); the map y* € Endg (Py) is a surjection with ker(y?) =
@;_K=7. Hence,

ind(z") = —i and ind(y’) =i, i>1. (3.1)

Lemma 3.3 shows that C is a multiplicative semigroup with zero element (If the com-
position of two elements of C' is undefined we set their product to be 0). The next two
lemmas are well known (see [9, Lemmas A.2.4 and A.2.5]).

Lemma 3.3. Let v: M — N and ¢: N — L be K-linear maps. If two of the three
maps Y, ¢ and oy belong to the set C, then so does the third and, in this case,

ind(py) = ind(p) + ind(¥).

By Lemma 3.3, C(N, L);C(M,N); CC(M,L);4, for all i,j € Z.
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Lemma 3.4. Let

0 %1 Vs Vs 0
\L% itpz \LQ%
0 Uy U, Us 0

be a commutative diagram of K -linear maps with exact rows. Suppose that 1, p2, @3 € C.
Then

ind(ps2) = ind(p1) + ind(¢3).

Let V and U be vector spaces. Define Z(V,U) := {¢ € Homg (V,U) | dimim(p) < oo},
and when V' = U we write Z(V) := Z(V, V).

Theorem 3.5 (Bavula [5]). Let V and U be vector spaces. Then C(V,U);+Z(V,U) =
C(V,U), for all i € Z.

Lemma 3.6 (Bavula [5]). Let V and V' be vector spaces and let ¢: V. — V'
be a linear map such that the vector spaces ker(p) and coker(yp) are isomorphic. Fix
subspaces U CV and W C V' such that V = ker(p)®U and V' = W@ im(p) and fix an
isomorphism f: ker(p) — W (this is possible since ker(p) =~ coker(y) ~ W) and extend
it to a linear map f: V — V' by setting f(U) = 0. Then the map ¢ + f: V — V' is an
isomorphism.

Corollary 3.7.
(2) S+ F, CC(Py)o-

Proof. Both statements follow from Theorem 3.5 (since S C C(P,)o and F,, C
Z(P,)), but we give short independent proofs (that do not use Theorem 3.5).

(1) Since 1+ F,, ~ 1+ M (K), statement (1) is obvious.

(2) Let u € S;, and f € F,,. Then u™! f € F,,. By statement (1), the element 1+u~'f €
C(P,)o. Since u € C(P,)o, we have u+ f = u(l + u~1f) € C(P,)o, by Lemma 3.3.

O

3.2. The subgroup ©,, ,_1 of (1 + a,,,—1)* for n > 2

For each pair of indices ¢ # j, the element

Gij = 9”({1, ey n}) = <1+(yz_1) H Eoo(k)) . <1+(IJ—1) H Eoo(l)) S (1+an7n_1)*
k#i 1#j
is a unit and

0, = (1+ (y; — 1>HE00(1)) : <1+ (@ — 1)HEoo(k)) €(1+ann1), (32

1#£j ki
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i.e. Hi_jl = 0;;. This is obvious since

e ifa; >0 Vk#i: o =0,
0;j x % = x?ﬁl ifo; 20 VI#j:a1=0,

(03

T otherwise,

and

et ifa; >0 VEk#d: o =0,
9&1*‘%& = x?j_l ifa; >0 Vi#j:a =0,
x® otherwise.
Using the above action of the elements 6;; on the monomial basis for the polynomial
algebra P,, it is easy to show that the elements 6;; commute modulo (1+ F,)*; 0;10;; =

0, mod(1 + F,)* for all distinct elements ¢, j and k; and 9;3? *1 =" for all m > 1.
Recall that O, 1 is the subgroup of (1 + a, ,—1)* generated by the elements 6;;. It
follows from

x?‘ﬁl ifa; >0 Vk#i:a,=0,
<1+(yi—1)HEoo(k‘)>*9€°‘= 0 if a =0,
‘,Z:a

ki otherwise

that the map 1+ (yi — 1)[[;; Eoo(k) € Endk (F,) is a surjection with kernel equal to K
and so

ki

Similarly, it follows from

a;+1 . .
i fvi : =0
(1 + (z; — 1)HE00(1)> . = {ia V£ g o=0,

o .
- otherwise
l#j

that the map 1+ (z; — 1)[],.;Eo0(l) € Endg(Py) is an injection such that P, = K @
im(1 + (z; — D[], Eo00(l)) and so

ind <1 + (25— 1) HEOO(Z)) = 1. (3.4)

1#

We see that the unit §;; of the algebra S, is the product of two non-units having non-zero
indices of opposite sign (note that ind(6;;) = 0 and so the sum of the two indices is equal
to 0). Lemma 3.8 shows that this is a general phenomenon and so the group (1+aj, ,—1)*
is a sophisticated group in the sense that in producing units, non-units are involved.
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Lemma 3.8. Letu=1 —I—E 10 € (14+ay,n—1)*, where a; € pc;. Then the following
hold:

(1) 1+a; €C(P,) foralli=1,...,nand >, ind(1+a;) = 0;

(2) ifu=1+4Y"_, a;, wherea) € pc;, thenind(1+a;) =ind(1+aj}) foralli =1,...,n

Proof. (1) Since a; € p¢; for all ¢, we have a;a; € F,, provided that ¢ # j. It follows
that the elements f := u—(14a1)(1+az2) - - (14+ay) and f/ :=u—(1+az2) - (14+a,)(1+
a1) belong to the ideal F,,. By Corollary 3.7 (2), u— f,u— f" € C(P,)o. It then follows from
the equalities u— f = (1+a1)(14a2) - - (1+a,) and u— f' = (1+az)--- (1+a,)(14+a1)
that

im(1+ay) 2im(u— f) and ker(l+ay) C ker(u — f').

This means that 14+-a; € C(P,). By symmetry, 14-a; € C(P,) for all i. By Corollary 3.7 (2)
and Lemma 3.3,

0=ind(u) =ind(u— f) =ind(1+ay) - (1 +an) = Zind(l + a;).

i=1

(2) For each number 4, f; := aj—a; = =3, (a—a;) € pci(\pi = (j—1p; = Fy. Since
F, CZI(P,), we see that ind(1+a}) = ind(l—i—az—i—fl) ind(1+a;), by Theorem 3.5. O

By Lemma 3.8, for each number i = 1,...,n there is a well-defined map
indi: (14 anp-1)” =2, u=1+» a;ind(1+a;) (3.5)
j=1
(where a; € po; for i = 1,...,n) that is a group homomorphism

ind;(uu') = ind; <(1 + JXZ aj> (1 + g ak))

=ind(1 + a; + @} + a;a})

= ind((1 + a;)(1 + a;))

=ind(1 + a;) + ind(1 + a})

= ind;(u) + ind; (u")
since aja; € pc; for all j and aja), € F, for all j # k. Let Ky, ,,—1 be the kernel of the
group epimorphism

n—1
@indi:(1+ann O =zt @Zel,lJrZazr—)Zmd (1+a;) - e,
i=1
where a; € po; for i = 1,...,n. The restriction of the epimorphism to the subset
-1 = exaCtH?;f (0r,5) is a bijection since (by (3.3) and (3.4))

1

3
|

. e;j—eir1 ifj<n-—1,
lndi(ej,]q-l) = { ! = e
€n—1 if j=n—1.

=1
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Therefore,

n
(1+ay,1)" =0 Knn—1, whereCp 1= ﬂ ker(ind;), (3.6)

n,n—1"
=1

by Lemma 3.8 (1). So, K, ,—1 is a normal subgroup of the group (1+ @, n-1)*, ©@;,,,_1N
Krnn-1 = {1} and each element u of the group (1 + a, ,_1)* is a unique product vw for
some elements v € @], , 1 and w € Ky, ,—1. The subgroups (1 +pci)*, i =1,...,n, of
the groups (1+a, ,—1)* and (1+a,)* are normal and (1+pc;)* (1 +pc;)* = (1+F,)*
for all i # j. The product [T (1+pci)* :=={ur--un |w; € 1+pci)*, i=1,...,n}is
a normal subgroup of (1 + a, ,—1)* and (1 + a,)*. In fact, the order in the product can
be arbitrary (by normality). Clearly, [T, (1 + pci)* € Kpn—1. In fact, equality holds,
as the next proposition shows.

Proposition 3.9.
(1) ICn,n—l = Hlnzl(l + ch)*
(2)

(1 4 an,n—l)* — exact@'/n’n_1 . (H(l + pCz)*)

i=1

= (Ona) X - X (Oppn1) X (ﬁ(l +p0i)*).

=1

Proof. (1) It suffices to show that each element u =1+ " a; (where a; € p¢;) of
the group kC,, ,—1 is a product u; - - - u,, of some elements u; € (1+pe;)*. By Lemma 3.8,
14+ a1 € C(P,)o since u € K, —1. Fix a subspace, say W, of P, such that P, =
ker(1+a1) @ W and W = @, Kz®, where I is a subset of N*. By Lemma 3.6, we
can find an element f; € F, (since dimker(1 + a1) < oo, W has a monomial basis and
f1(W) = 0) such that uy ;=14 a; + f1 € Autg(P,). We claim that u; € (1 +pe1)*. It
is a subtle point since not all elements of the algebra S,, that are invertible linear maps
in P, are invertible in Sy, i.e. S}, & S, N Autg (P,), but (see [7])

(1+ F,)* = (14 F,) N Autg(P,).

The main idea in the proof of the claim is to use this equality. Similarly, for each i > 2,
we can find an element f; € F,, such that v; := 1+ a; + f; € Autg(P,). Then v :=
v Uy € Autg (Py), u = u1v + g1 and u = vuy + go for some elements g; € F,,. Hence,

upout=1— gllf1 and uwlou; =1-— uilgg,
andso 1 —giu=t,1 —u"tgs € (1+ F,)NAutg(P,) = (1+ F,)*. It follows that

uit=vu T (1 —giu) e (14po1)*
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since

1 1 -1

1=1—qgiu™ " =ujou " =ovu mod peo1.

This proves the claim. Clearly,

n
uy i=v+uytg €1 —I—chj,
j=2

where v € 1+ Z?:QPCj and ul_lgl € F,,. It then follows from the equality u = uw1v+g; =

ur(v+uytgr) = uul that uhy = uytu € (1+ Z?ﬂpcj)*. Repeating the same argument

for the element u) we find an element uy € (1 4+ pee)* such that uh = uy tuh € (1 +
" .pc;)*. Repeating the same argument again and again (or using induction) we find
3=3rCJ

elements u; € (1+ pc;)* and elements u} € (1+ 377, pcy)* such that uj = u by,

and hence u = ujuh = ugugul = -+ = ugus - - - Up, as required.

(2) Statement (2) follows from statement (1) and (3.6). O

For each number ¢ = 1,...,n the group of units of the monoid 1+ pe; =14 S1(i) ®
&, F () = 1+ Mo(S1(i)) is equal to (1 + pei)* = GLoo(S1(4)). This group contains
the semi-direct product Uc;(K) X Es(S1(4)) of its two subgroups, where

Uci(K) == {)\HEoo(j) +1- HEoo(j) ' A€ K*} ~ K*
J#i J#i
and the group Fo.(S1(7)) is generated by all the elementary matrices 1+ aFEy;(C1), where
ke Nt k£ E(Ci) = [1;2iEk;1;(j) and a € S1(i). We will see in Proposition 3.10
that the group (1 4 pe;)* coincides with the semi-direct product.

The set F), is an ideal of the algebra K + pc; = K(1 + pci), which is a subalgebra
of the algebra S,,, and (K + p¢c;)/Fn = K(1+pci/Fn) ~ K(1 4+ Mo (L;)), where L; :=
Klx;, ;'] ~ S1(i)/F(i) is the Laurent polynomial algebra. The algebra L; is a Euclidean
domain, and hence GLo (L;) = U(L;) X Ex(L;), where

() i= { ] Bonti) + 1~ [T En)

J# J#i

aELf}NL’{K*x{zzﬂmeZ}

and E(L;) is the subgroup of GLo(L;) generated by all the elementary matrices. This
statement follows from two facts: (i) every matrix over a Euclidean domain is conjugate
to a diagonal matrix and (ii) every diagonal matrix in GL., over an arbitrary ring, say L;,
is conjugate to a matrix in U(L;).

The group of units of the algebra (K + pe;)/F, is equal to K* x GLoo(L;) = K* %
(U(L;) X Eoo(L;)). The algebra epimorphism ¢¢;: K +pei = (K +pci)/Fn, a— a+ F,
induces the exact sequence of groups

1= (1+F)* = (1+pei)” 295 GLoo(L;) = U(L;) x Eoo(Ly), (3.7)
which yields the short exact sequence of groups

1= (1+ Fp)* = Uci(K) % Exo(S1(i)) — U(K) x Boo(L;) — 1, (3.8)
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N

since (14 F,,)* C E«(S1(4)), by Proposition 3.12 (1). Recall that Ug;(K) X Exo(S1(4))
(14 pei)*. In fact, equality holds.

Proposition 3.10. (1 + pci)* = Uci(K) X Ex(S1(7)) and the image im(ic;) =
U(K) X Ex(L;) is a normal subgroup of GLy(L;) for alli=1,...,n.

Proof. In view of the exact sequences (3.7) and (3.8), it suffices to show that the
image of the map 9¢; in (3.7) is equal to U(K) X Eo(L;), which is a normal subgroup
of GLo (L;). Since ¥ (Uci(K) X Ex(S1(2))) = U(K) x Ex(L;) and

(20 = U(K) % (o T] B + 1 - T Bl | m € 2.
J#i J#i
this is equivalent to showing that if ¢c;(u) = 27" [ [, Eo0(j) + 1 — [, E00(j) for some
element u € (14+pc;)* and an integer m € Z, then m = 0. Let u(m) := v;(m)[ [, ., Eoo(j)+

1 —[1;.iE00(j), where
it iftm >0,
vi(m) =

ylml if m <0.

Then u(m) € 1+ pe; and ei(u(m)) = Yei(u). Hence, u(m) = u+ f, for some element
fm € F,. Note that

u(1)™ if m >0,
u(m) =
u(=1)I"m if m <0
and, by (3.3) and (3.4), ind(u(m)) = —m. By Corollary 3.7 (2),
0 = ind(u) = ind(u + f,) = ind(u(m)) = —m
and so m = 0, as required. O

Combining Proposition 3.9 (1) and Proposition 3.10, we have the next corollary.

Corollary 3.11.

(I +apn-1)" =6} 1 Xex (Set H(l + pCi)*>

i=1

n

~ Oy e (Setil_[lUci(K)  BnfSa(0))

~ (Op1) X oo X (1) X (S"t HUCZ»(K) X Eoo(Sl(i))).

Using Corollary 3.11, we can write down explicit generators for the group (1+a, ,—1)*
(see Theorem 4.5 where explicit generators are given for all the groups (1 + a, 5)*). By
Proposition 3.10, the sequence (3.7) can be completed to the exact sequence of group
homomorphisms

) deg,,
15 (14 F)" = (1+pei) 295 QLo (L) —4 7,5 1, (3.9)

where deg,. (xf”]_[j#Eoo(j) +1- Hj¢iE00(j)) =m.
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For elements g and h of a group, [g, h] := ghg=th™1! is their group commutator.
Proposition 3.12.

(1) (14 F)* C Exo(S1(4)) for all i = 1,...,n, where E(S1(i)) is the subgroup of
(14+pci)* generated by all the elementary matrices 1+ aEq.3(C1), where a € S1(i),
a,8 € N1 and a # 3, and

Eap = Eop(Ci) := [ [Ea,s, ().

JF#i
(2) For alli # j, Ex(S1(i)) N Ex(S1(j)) = (14 F,)*. In particular, ();_, Eoo(S1()) =
(14 F,)*.
Proof. (1) In view of symmetry of the indices 1,...,n, it suffices to show that the

inclusion holds for, say, i = n, i.e. (1+ F,)* € Eo(S1(n)). Since (1 + F,,)* ~ GL(K),
the group (1 + F,)* is generated by two sorts of elements: a = 1 + AE,gEx(n), where
A€ K and (Oq, . ,Oén_l,k) #* (51, e ,ﬁn_l,l), and b = 1 + AEyg, where A € K \ {—1}
and E()() = H?:lEoo(’L').

First, let us show that a € Ex(S1(n)). If a # 3, then the inclusion obviously holds
since a = 1+ ()\Ekl(n))Eag and )\Ekl(n) €Sy (Z) Ifa=p4iea= 1+/\EaaEkl(n)7 then
necessarily k # [ since (a1,...,n_1,k) # (a1,...,a,_1,1). For each element v € N*~!
such that v # «, the elements 1 + E,, Exi(n) and 1 + AE o Eri(n) belong to the group
E(S1(n)) and so do their group commutators

[1 -+ Ea,yEkk(n), 1+ )\E'yozEk:l(2)] =1+ AEaaEkl(n)- (310)

Therefore, all the generators a belong to the group E(S1(n)).
It remains to prove that b € E.(S1(n)). In the 2 X 2 matrix ring M2(S;(n)) with
entries in the algebra S;(n) we have the equality, for all scalars A € K \ {—1},

2
z 0 (1 Amn> (1 0) <1 —Axn> 1 f;f;
n

I+Xx 0 1 AEqo(n)
= 1 1+ A . (3.11)
1+ 0 1

This can be checked by direct multiplication using the equalities y,x, = 1, x,yn =
1 — Eogo(n), ynEoo(n) = 0 and Ego(n)z, = 0 that hold in the algebra S;(n). If we
replace the matrix ring Ms(Sq(n)) = @:,j:OEijSI (n) by its isomorphic copy Mj :=
@}J:OeElj(n —1)S1(n), where

177 Eooi) ifn >3,
e =
1 ifn =2,

https://doi.org/10.1017/50013091514000303 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091514000303

The group of automorphisms 567

then the equality (3.11) can be seen as an equality in the ring MJ. In this case, the first
six matrices in the equality belong to the group Foo(S1(n)). Therefore, the last matrix

1 AEgo(n)
c= 1+ A
0 1

belongs to the group Eo(S1(n)) and as an element of the group Fo,(S1(n)) it can be
written as

c= eEoo(n — 1) (1 — ]_—I—L)\EOO( )) +1- eEoo(n — 1)

= 1+)\HE00 (1+ F,)*.

Since the map ¢: K\{—1} — K\ {=1}, A = —X/(1+)) is a bijection (¢! = ¢), all the
elements b belong to the group E(S1(n)). The proof of the first statement is complete.

(2) By statement (1), for all ¢ # 7,

(14+Fn)" € Eso($1(1))NE(S1(4)) € (14pci) " N(1+pe;)" = (1+pciNpe;)” = (14+F)"

and so statement (2) is obvious. O

4. The structure of the groups S} and G, and their generators

In this section a proof of Theorem 2.6 is given and the groups S, (1+a,)* and G,, and
their generators are found explicitly (see Theorems 4.1, 4.2, 4.5 and 4.6).

Proof of Theorem 2.6. To prove the theorem we use induction on n. The initial
step when n = 2 follows from Corollary 3.11 as in this case there is only one option,
(n,s) = (2,1). So, let n > 2 and suppose that the theorem holds for all pairs (n/,s’),
s = 1,...,n — 1, such that n’ < n. For the number n, we use a second downward
induction on s = 1,...,n —1 starting with s = n — 1. In this case, i.e. (n,s) = (n,n— 1),
the theorem holds as it follows from Corollary 3.11. So, let s < n — 1 and suppose that
the statement is true for all pairs (n,s’) with s = s+ 1,...,n — 1. For each number
i=1,...,n the algebra S¢; ® K (x;) is isomorphic to the algebra S,_; but over the field
K (x;) of rational functions. By the induction on n, the theorem holds for the algebra
Sci ® K(x;). In order to stress that we consider the algebra S¢; over the field K (x;)
rather than K we add the subscript ‘C%’ to all the notation introduced for the algebra
Sci but over the field K. For example, a,_1,c; ® K(x;) stands for the ideal a,_1 s of
the algebra S¢; but over the field K (z;), etc.

For each number i = 1,...,n and for each number s = 1,...,n — 2 the composition of
the two algebra homomorphisms

S, — S /pl_SCl®K[az“ T, ]—>SCZ®K($1)
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induces the group homomorphism (1+a, s)* = (1+a,—-1,s,c; ® K (2;))*. This homomor-
phism yields the commutative diagram where all the maps are obvious (and natural):

(]- + an,s)* (]- + anfl,s,Ci & K(xz))*
(1+an,s)" (1+an1.s0i ® K(2:))
Fn,s anl,s,Ci
"L’n,s '(/;n—l,s,c"i

Hm:%l +p)T o5

Fn,s

ensi [T (14 proi ® K(x:))*
anl,s,Ci

A
~ Xn-150i = X5 15,01

where [[' := ITir: j11=s, sgry and the map @n o0 X5, o = X7 | o, is given by the rule

(U, 1) ifi¢g Uy,
0 otherwise.

@n,s,i((j’ I)) = {

This is obvious. By the induction on n, we have the equality 1;, | , c;((1 + @n—1,50i ®
K(xi))*) = ¥;,_1 ¢ ci(On-1,50i) for each s = 1,...,n — 2. Then, by the commutative
diagram above,

Sﬁn,s,i@[};,s((l +an,s)") C 7/’%—1,3,01’((1 +an—15,00 ® K(2))") = Qp;—l,s,Ci(@n—l,S,Ci)-
(4.1)
It follows from the definition of the map ¢y, s ; that

<)071,S,1'(Y;1,s) c Y;7,71,5,6‘1" (42)

Summarizing, for each i = 1,...,n, by (2.19) and (2.21), there is the map

o~ ) 7 / Y /
Prs,i- Xn,s - wms(@’ms) D Yms - Xn—l,s,Ci - wn—l,&Ci(@n—la&Ci) D Yn—l,&Ci

satisfying (4.1) and (4.2). The group homomorphism

n

n

L ! /

Pn,s = H‘pn,s,z- Xn,s — Hxn—l,s,Ci
=1 1=1

is a monomorphism since it has trivial kernel: ker(y, s) = ®{Z(j,I) | Vi € T U j}, where
the pairs (j, 1) in the direct sum are such that ¢ € T U j for all ¢ = 1,...,n (see the
definition of the map ¢, s;), i.e. IUj = {1,...,n}, but the number of elements in the
set TUjis s+1<n—141=n,a contradiction. This means that ker(y, s) = 0. Let
u € (1 +a,,)* Then ¢, ((u) = a+ b for unique elements a € ¢, (O, ) and b € Y], ..
By (4.1) and (4.2), ¢ns,i(b) =0 foralli=1,...,n, i.e. ¢, s(b) =0 and so b = 0 since
the map ¢, s is a monomorphism. This proves that ¢}, [((1 + a55)*) = ¥n,s(On,s). By
induction, the theorem holds. The proof of Theorem 2.6 is complete. O
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For each number s = 1,...,n—1, consider the following subsets of the group (1+a, s)*:
Ensi= ] Ur(K) x Ex(Scr) and Pno:= [] (1+p0)", (4.3)
|I|=s |I|=s

the products of subgroups of (1 + a,_s)* in an arbitrary order that is fixed for each s.
Theorem 4.1.

(]-) (]- + an)* = @n,lpn,l = Qn,lEn,lenQEn,Z"‘Qn,nflEn,nfl' MOI‘GOVGI’, for s =
1

s, —1,

(1 + an,s)* = @n,an,s = @n,s]En,s@n,s+lEn,s+1 T Qn,n—lEn,n—L

(2) (1 + a’ﬂ)* = Qn,lTn,l = @n,lpn,len,Q}P}nQ"'@n,n—lpn,n—b MOI’GOV@I‘, for s =
1,...,n—1,

(1 + an,s)* = @n,sTn,s = @n,spn,sen,s+1pn,s+l te @n,nflpn,nfl-

Proof. (1) By Theorem 2.6 and Corollary 3.11,

(I+ans)" =Onslhns
=0 [] Ui(K) x Ex(Scr) - (14 ane-1)”
1]=s
=60, sE,s(1+ay5-1)"
=0 sEp sOns—1En s—1(1 + ay, s_2)"
= OnsBns Onm o o(l+tpn 1)

= Qn,sEn,s@n,erlEn,erl T @n,’I’L*l]ETL,’ﬂfl'
(2) Since (14 ay,,6)* =Op slns C O sTns C (14 ay)*, we see that

(1 + an,s)* = Qn,sTn,s

= Qn,s (]- + PI)* : (]- + an,sfl)*
[I|=s
= @n sIPn s(l + an,s—l)*

) )

= Qn S]P)n,s@n,s—lpn,s—l(l + an,s—Q)*

s

= Qn S]Pn,s T 871,77,721[])71,7172(]- + an,nflyk

= Qn,spms@n,s—klpn,s-&-l e @n,n—lpn,n—la

by Corollary 3.11. |

Using Lemma 2.5, we can strengthen Theorem 4.1.
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Theorem 4.2.

(1) A +an)* = 60,,1E.10;,5En2---6;, . Ey 1. Moreover, for s = 1,...,n — 1,
(1 + amS)* = Q;L,S]Ems@;z,erlEn,s-i-l T Qg,n—lEnm—l'

(2) A+ ay)" = 6,,1P,10], 5Pn2---0;, . 1Py 1. Moreover, for s = 1,...,n — 1,
(1+ans)* = Q;L,SPH,SQ;1§+1PMS+1 s Q;L,n—lpn,nfb

Proof. The statements follow from Lemma 2.5, (2.22) and Theorem 4.1: repeat the
proof of Theorem 4.1 replacing ©,, ; by @), , everywhere for all ¢. (]

n,t

By Theorem 4.1 (1) and Lemma 2.5, the group A, ; is a free abelian group of rank

(SL)S fors=1,...,n—1:

An,s = (1 + an,s)*/Fn,s = @;L,spn,s/[’n,s = H H <9max(J),j> = Z(Szl)sv
|J|=s+1 jeJ\max(J)
(4.4)

where the double product is the direct product of groups.
Corollary 4.3. 2, , ~ Y] =~ z(:4) for s = 1,...,n—1 (see (2.10)).

Proof. Recall that ¢y, (1 +a,,)") = 95, ;(Ons) (see Theorem 2.6), X, . = K|, . @

n,s n,s

Y7, s and ¢, (O ) =K, ¢, by (2.21). Then

z L= (1 +p1)"
T s (T4 an6)*)
- H|I\:s(1 + ﬁf)*/Fn,S
T Yns((L4an.0)*)/Tns
Xs
4o (L4 an)*)
K..0Y,, K,, &Y,
T U6 T K,
~ Y;%S ~ 7).

O

Theorem 4.4. 1, = I, s for all s = 1,...,n. In particular, the groups I, s are
Gp-invariant (hence, normal) subgroups of S}, (since 1, s are too).

Proof. Since T, , = Iy, = (1+F,)*, we can assume that s # n. By Theorem 4.1 and
Lemma 2.5, (14+a,5)" =Op sIns = 9;,5['”,5 fors=1,...,n—1 and the last product is
exact. Since I', s € 1), 5, we have the equality (1+a, s)* = 6,, [Ty s. So, in order to show
that the equality I', s = 7}, s holds, it suffices to prove that ©;, ;N 7T, s = {1}. To prove
this equality, first we use an induction on n > 2 and then, for a fixed n, we use a second
downward induction on s = 1,...,n — 1, starting with s = n — 1. For n = 2, there is a
single option to consider, (n,s) = (2,1). In this case the equality holds by Corollary 3.11.
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Let n > 2 and suppose that equality holds for all pairs (n’, s) with n’ < n. For (n,n —1),
the equality is true by Corollary 3.11. Suppose that s < n—1 and that the equality holds
for all pairs (n,s’) with s’ = s +1,...,n — 1. Suppose that @;, ;N7 # {1}. We seek
a contradiction. Choose an element, say u, from the intersection such that v # 1. Then
the element u is a unique product u = H|J|:s+1HjeJ\max(J)emax(J),j(J)n(j"])v where
n(j,J) € Z. Since u # 1, n(j,J) # 0 for some pair (j,J). Since |J| = s + 1 < n, the
complement C'J of the set J is a non-empty set. Let f be the composition of the obvious
algebra homomorphisms
Sn = Sn/ Y pi~S;® Leys = Sy @ Qo
ieCJ

where Q¢ is the field of fractions of the Laurent polynomial algebra Lo y. The alge-
bra S; ® Q¢ is isomorphic to the algebra Ssy; but over the field Q¢y. Let (9;+17st
and Is41,5, be the corresponding 9{94»1,5 and Is41,s for the algebra S; ® Qcy ~
SS+1 ® QCJ (OVGI‘ the field QCJ)~ Since f(Fn,s) c Ferl,s.,Jv f(QéL,s) - 9{9-{—1,5,.] U =
erJ\maX(J)GmaX(J)’k(J)”(k"]) U, where U := [[,c,;Uni(Qcs) € I'sy1,6,5, using the
induction on n, the inclusion f(u) € f(©), ;)N f(I's) yields n(j,J) = 0, a contradiction.
Therefore, @], ;N 7T, s = {1} and the statements of the theorem hold. O

By (4.4) and Theorem 4.4,
(1+ tns)* Lo = (1 + )" /Ty = 2505, (4.5)
The next theorem gives explicit generators for the groups S7, (14 a,)* and (1 + a, 5)*.
Theorem 4.5.
(1) The group (1 + a,)* is generated by the following elements:
(@) Omax(),;(J), where j € J\max(J) and |J| =2,...,n;
(b) 1+$§EQQ(I), 1+$§Ea0(l), 1+nyOo¢(I) and 1+nyao(I), where t € N\{O},
i€, |I|=1,...,n—1and a € N\ {0};
(¢) 1+ (AN —1)Eg(I), 1 4+ Epo(I) and 1 + Eno(I), where A € K*, I # () and
a € NI\ {0}.
(2) For s=1,...,n—1, the group (1+ a,)* is generated by the following elements:
(a) Omax(),;(J), where j € J\max(J) and |J| =s+1,...,n;
(b) 1+ 2tEoa(I), 1 +2tEao(I), 14yl Eoa(I) and 1+ yt Eqo(I), where t € N\ {0},
igl, |I|=s,...,n—1and a € N\ {0};
(¢c) 1+ (AN=1)Ep(I), 1 + Eoo(I) and 1 + Eo(I), where A € K*, |I| = s,...,n
and o € NI\ {0}.
For s = n, the group (1 + a,,)* = (14 F,)* is generated by the elements 1 +
(A= 1)Ep(I), 1 + Ego(I) and 1 + E4o(I), where A € K*, I = {1,...,n} and
a e N"\ {0}.
(3) The group S}, = K* x (1+ a,)* is generated by the elements from statement (1)
and K*.
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Proof. (1) Statement (1) is a special case of statement (2) when s = 1.

(2) The statement is obvious for s = n (by (4.6), (4.7) and (4.8), where I = {1,...,n}).
So,let s=1,...,n—1. By Theorem 4.2 (1), the group (1+a, s)* is generated by the sets
O, and E,, ¢, where ¢t = 1,...,n — 1. Each element of any of the sets O, , is a product
of elements from (a). Recall that E,, ;, := [];_,Ur(K) x Ex(Scr). Each element of any
of the groups Uj(K) is a product of elements from (c). For each ¢ = 1,...,n, the algebra
S1(i) is the direct sum GB].?IKyg OK® @Dleg @ F (i) (see (2.4)). By a straightforward
computation,

[+ aBap(I),1+ bEg (I)] = 1+ abEa- (1) (4.6)

for all a,b € Scr and distinet «, 3,7 € NI, where [u,v] = wvu~lv~! is the (group)
commutator of elements v and v. In this paper the commutator stands for the group
commutator (unless it is stated otherwise). For all A € K*, I with |I| = s,...,n and
o e N\ {0},

(1+ A =1)Ew))- (14 Eoa(D)- (1+ A =1)Ew(I))" =1+ XEw(), (4.7
(1+ A =1)Ew()™" - (1+ Eao(I)) - (1 + (XA = 1) Ego(1)) = 1+ AEao (). (4.8)

It follows from (4.6), (4.7) and (4.8) that each element of each of the sets Foo(Scy) is a
product of elements from (b) and (c). The proof of statement (1) is complete.

(3) Statement (3) is obvious. O

The next theorem presents explicit generators for the group G,,.

Theorem 4.6. Let J; := {1,...,s}, where s = 1,...,n. The group G,, = S,, X T"
Inn(S,,) is generated by the transpositions (ij), where i < j; the elements t(y 1, 1y: ¥1 —
Az1, y1 = AN Yyi, xR = Tk, Yk — Yk, K = 2,...,n; and the inner automorphisms wy,
where u belongs to the following sets:

(1) es,l(Js): §=2,...,n;

(2) 142t Eoo(Js), 1+t Eao(Js), 1+ 4t Eoa(Js) and 14yt Eoo(Js), where t € N\ {0},
s=1,...,n—1and o« € N*\ {0};

(3) 1+ (A=1)Eg(Js), 1 + Eoa(Js) and 1 + E,o(Js), where A € K*, s =1,...,n and
a € N°\ {0}.

Proof. The group G,, = S,, x T" x Inn(S,,) (see Theorem 1.5 (3)) is generated by its
three subgroups S,,, T" and Inn(S,,) = {w, | v € (14 a,)*}. The transpositions generate
the symmetric group S;,. Then, by conjugating,

1tn1. (1) P =t4q  1x1. 1 (X\isin the ith position),
(77 ’) (7777’ 7)

we obtain generators for the torus T™. Similarly, by conjugating the elements of the sets
(1), (2) and (3) (i.e. using swy,s™' = wy(y) for all s € S,,), we obtain all the elements
from the sets (a), (b) and (c) of Theorem 4.5 when we identify the groups Inn(S,) and
(14 ay,)* via w, <> v. Now the theorem is obvious. O
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5. The commutants of the groups G,, and S,,, and an analogue of the
Jacobian homomorphism

In this section the groups [G,G,] and G, /[G,,G,] are found (see Theorem 5.4) and
they are used to show the uniqueness of an analogue J, (see (1.2)) of the Jacobian
homomorphism for n > 2, and in finding the exotic Jacobians Jo* for n = 1,2.

5.1. The groups [G,,Gy] and G, /[Grn, Gn]

The subgroup of a group G generated by all the commutators [a, b] := aba , Where
a,b € G, is called the commutant (or the commutator subgroup) of the group G and is
denoted either by [G, G] or GV, The commutant is the least normal subgroup G’ of G
such that the factor group G/G’ is abelian. If ¢: G — H is a group homomorphism, then
o([G,G]) C [H, H]. If, in addition, the group H is abelian, then [G, G] C ker(¢). To find
the commutant of a group is a technical process, especially if the group is large. In the
next two easy lemmas we collect patterns that appear in finding the commutant of the
group G,,. Their repeated applications make arguments short.

71b71

Lemma 5.1.

(1) The commutant [A x B, A x B] of a skew product A x B of two groups is equal
to [A, A] x ([A, B] - [B, B]), where [A, B] is the subgroup of B generated by all the
commutators [a,b] := aba™'b for a € A and b € B. Hence, BN[Ax B,Ax B] =
[A, B] - [B, B] and

Ax B A B

~

[AxB,AxB]  [AA " [AB] B B

(2) If, in addition, the group B is a direct product of groups [[;~,B; such that
aB;a™' C B, for all elements a € A and i = 1,...,m, then [A x B,A x B] =
(A, Al x [T, ([A, Bi][Bi, Bi)).

Proof. (1) Note that [a,b] = w,(b)b~!, where w,(b) = aba™!. For a € A and b,c € B,
cla,b] = cwq (b)b™?
= wq(we-1(c)b)( (e)b) twa-1(c)bb™!
(€)b)(wa-1()0) ™" - wa-1(c)

= [a,wq-1(€)b] - we-1(c).

Wa—1
= wa(we-1(c)b)(wg—1

It follows from these equalities (when, in addition, we choose ¢ € [B, B]) that the sub-
group of B that is generated by its two subgroups, [A, B] and [B, B], is equal to their
set theoretic product [A, B][B, B] := {ef | e € [4, B], f € [B, B]}. Then the subgroup of
C :=[A x B, A x B] that is generated by its three subgroups [4, 4], [4, B] and [B, B] is
equal to the right-hand side, say R, of the equality of statement (1). It remains to prove
that C' C R. This inclusion follows from the fact that, for all a;,as € A and by,by € B,

[a1b1, azbs] = wa, ([b1, @2])wayas ([b1, b2])[a1, azlwa, ([a1, b)), (5.1)
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which follows from the equalities [ab, c] = w,([b, c])[a, ] and [a,b] 1 = [b, a]:

[albl,asz] = wal([bl, Cl252])[a1, 0252]
= ([azba, a1]wa, ([agba, b1])) "
= (Wa, ([b2, a1])[az, a1]wa, (Way ([b2, b1])[az, b1])

= wq, ([b1, @2])waya, ([b1, b2])[a1, azlwa, ([a1, ba)).

(2) By statement (1), it suffices to show that [A4, [];~,B;] = [[i~,[A, B;]. The general
case follows easily from the case in which m = 2 (by induction). The case m = 2 follows
from (5.1), where we put by =1, a; € A, as € By and by € Bs. O

Lemma 5.2.

(1) Let ¢: G — H be a group epimorphism such that ker(¢) C [G,G]. Then [G,G] =
o~ ([H, H]).

(2) Let N be a normal subgroup of a group such that N C [G, G] and the factor group
G/N is abelian. Then N =[G, .

Proof. (1) Since ¢ is an epimorphism with ker(¢) C [G, G], it follows that the inclu-
sion ¢~Y([H, H]) C |G, ] is obvious. Then the composition of the group epimorphisms
G % H — H/[H, H] and the fact that the group H/[H, H] is abelian yield the opposite
inclusion p~([H, H]) 2 [G, G].

(2) Applying statement (1) to the group epimorphism ¢: G — G/N we get state-
ment (2): [G,G] = ¢~ ([G/N,G/N]) = ¢~ (e) = ker(yp). O

For all transpositions (ij) € S, and elements ¢y, .\, € T",
69 0] = ot at ot 52)

where the elements \; 1)\j and /\j_l)\i are in the ith and jth place, respectively.

Lemma 5.3. For each natural number n > 2, [S, x T" S, x T"] = [S,, S,] x T7,
where T} := {t(x, ..,y € T" [ T[;1m i = 1}

Proof. Let R and L be the right-hand side and the left-hand side of the equality,
respectively. By Theorem 5.1 (1), (5.1) and (5.2), R 2 L. To prove the reverse inclusion,
consider two group epimorphisms:

"2 Sn x T" — K*a (O—,t(kl,.“,)\n,)) — H)‘m
=1
P: Sy x T = S, x T"/T" ~ S, (0,t)) — 0.

Then R C ker(y) = S, x T and R C ¥~ 1([Sn, Sn]) = [Sn, Sn] X T, and hence R C
(Sn x TT) N ([Sp, Sy] X T™) = L, as required. O
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Let J be a subset of the set {1,...,n} that contains at least two elements, let i and j
be two distinct elements of the set J and let A € K*. By multiplying out, we see that
(recall that py(z;) = 2;E0(l) +1 — Ego(l))

HJ\i(yz')eJ\j = GJ\jMJ\i(l’z') AV (5.3)
pni(yi)es = esppni(xi) =0, (5.4)
(@) =1—ey, (5.5)
espng(A) = pni(Nes = Aey. (5.6)
Note that (where A € K*)
(055 (), g (N)] = s (A7) (5.7)

since (by direct computations, consider the four cases as in (2.16))

Al ifVk e J:a, =0,

(0%

[9ij(J)7MJ\j(>\)] * % = {

T otherwise.

Alternatively, using the equalities (5.3), (5.4), (5.5) and (5.6), we can show directly that
(5.7) holds:

[gij(J)a:uJ\j()‘)]

= 0;5(J) (N0 (T (A

= pni(Wi) - g @) e (W5) - i (@) g (A7)

= pni (i) - g (2595) - g ) - (@) (A

= pi(yi) - (1= eg) g A) - (@) (A (by (5.5)
= (14 (A= Dppa(yi)enjpni(x:)) '.UJ\j(Ail) (by (5.4)
=1+ A =1D(en; —e)pni(@) - (A (by (5.3))
=14+ A =D(eny —en) - pn;(AH (by (5.3)
= (N + (1= Neg) - ppg (M) =14 (1 =X)A"tes  (by (5.6)
=1+ =Dey=ps\7h.

By taking the inverse of both sides of (5.7) and using the fact that [a,b]™! = [b, a], we
have the equality

[0\ (A), 035 ()] = ps(N). (5.8)
Let J be a subset of the set {1,...,n}. If i and j are distinct elements of the set J (hence,
|J| > 2), then, for all elements s € S,,,

SW0,(1)8 T = W0, 000 (s(D)s (5.9)

[(ij)7w9ij(«])] = W, ;(J)-2- (510)
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The equality (5.9) is obvious and the equality (5.10) follows from (5.9) and (2.17):

[(ij)7w0ij(-])} = (Z])WGzJ(J)(Z])ilwe_?j(J)
= W, (N)Wh5()
= Wi ()71 Wi ()

= Woi;(J)-2-

If ¢, j and k are distinct elements of the set J (hence, |J| > 3), then

[(ik), wo,; ()] = Wori (7)- (5.11)

In more detail,

[(ik), wo,; ()] = (iK)wo,, ) (1K) wy ) )
= Wor; (N)W,: () (by (5.9) and (2.17))
= Woy,;(J) (by (218))

By (5.11), if n > 2, then the current group ©,, belongs to the commutant [G,,, G], but
for n = 2 this is not true (see Theorem 5.4 (1)) and this is the reason for existence of the
exotic ‘Jacobian’ homomorphism J§*.

Let Gij = 91]({1,]}) and /J,j(/\) = p*{j}(/\)a where A € K*. Then

[t(l,...,l )\171,...,1)7(“}91']'] = wl‘j(/\qj_l)7 (512)

where the scalar \; € K* is in the ith position. In more detail,

[t W05 ] = W 0 i) Yot = Yy 0505075 T Y00

Theorem 5.4. Let 0 := 012({1,2}) and let Ny := {w, | u € (§?) - 721 Ur(K)
E[(SC[)} g GQ. Then
(1)
{wy |u € Ex(K)} ifn=1,

(G, Gr] = ¢ T x Na ifn =2,
[Sny Sn] X T? x Inn(S,,) ifn > 2;

K* x K* ifn=1,
Gn/|Gn,Gp]l ~ S Z)27 x K* x 227 ifn =2,
Z)27 x K* ifn > 2.
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Proof. Recall that (14 a,)* ~ Inn(S,), v <> w, (see Theorem 1.5 (3)). To save on
notation we identify these two groups by the isomorphism above. Then G,, = S,, x T" x
Inn(S,) =5, x T” x (1 + a,)*.

We first prove the case in which n = 1. By [7, Theorem 4.1],

GioT'x (1+F)" =T x (UK) X Exo(K)) = (T! x U(K)) X Ex(K).

Since [Ex(K), Ex(K)] = Ex(K) (hence, Ex(K) C [G1,G1]) and the factor group
G1/Ex(K) ~ T! x U(K) is abelian, by Lemma 5.2 (2), [G1,G1] = {wu | u € Ex(K)}.
Hence, G1/[G1,G1] ~T! x U(K) ~ K* x K*.

Let n > 2. Note that Eo(Scr) = [Ex(Scr), Foo(Scr)] C [Gr, Gy] for all non-empty
subsets I of the set {1,...,n}. It follows from (5.8), (5.11) and Theorem 4.2 (1) that

(1 + an,Q)* g [Gna Gn]

We now prove the case of n = 2. By (5.10), 2 € [G2, Ga]. By (5.12), 721 Ur(K) x
E((Scr) C [Ge,G2]. By Theorem 4.2 (1) and (2.10),

Gy = Ga/(1+a22)" = Sy x T2 (0) x [[ Ur(K) x Er(Ley).
[I]=1

Note that for the group commutator [(12),wy] = wg-2 (by (5.10)) and, for all elements
ty € T2,

[t)\,WQ] EwMZ()\fl)Nl(/\z) mod (1-|—Cl2’2)*.

Indeed,

R R e WL
= Yz (AT 1)0p1 (A2)0~?

= Yhaa (AT (X2)00-1

= Y (AT D (A2) mod (1 + ‘12,2)*-

It follows that the group N := (62) x 1 7=1Ur(K) x Ef(Lcy) is a normal subgroup of
G, N C [Go,G3] and Gy /N =~ (S5 x T?) x ((0)/(6?)). By Lemma 5.3, [G2/N,Gy/N] =
[Sy x T2, Sy x T?] = T%. Then, by Lemma 5.2 (1) and Proposition 3.12 (1), statement (1)
follows. Then, by Lemma 5.1 (1),

Gy G2/N T ()

=3 = ~ Sy X =5 X ~to ~ Ty X K* X L.
[G2,Ga] ~ [Go/N,Gy/N] — 727 T2 7 (2) — ? 2

Finally, we prove the case in which n > 2. By Theorem 4.2(1), (1 + a,1)* =
On1En1 0 1En 1. By (5.11), O, C [Gy,Gy] for all s =1,...,n — 1. By (5.8),
E,s C [Gn,Gy] for all s = 2,...,n — 1 and, by (5.12), E,,1 C [G,,Gy]. Therefore,
(1+an1)* C [Gn, Gp]. Then the factor group Gy, := G,,/(1+ a,,1)* is isomorphic to the
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group S, x T". By Lemma 5.3, [Gy,, Gy,] = [Sn, Sn] x T} and statement (1) follows, by
Lemma 5.2 (1). By Lemma 5.2 (1),

~__——" ~ — ~7 K*.
(GGl = (GGl ~ 1S 8] “ Ty =2

The proof of the theorem is complete. O

Recall that aff,, := S, x T™.

Corollary 5.5.

(1)

Inn(s,) K* ifn=1,
nn(S, .
Inn(S,) N [Gn,Gn] — Lz ifn=2,
0 ifn > 2.
(2)
aff, K* ifn=1,
[aHTLyaHn] B Zo x K* ifn > 1.
(3)
K* ifn=1,
G,  affy " Inn(S,) o affy 7 ifn—o
(G Grl ~ [affn,affn] ~ Inn(S,) N [Gn, Gn]  [aff,, affn] 2 BR=4
0 ifn > 2.

Proof. (1) We keep the notation of the proof of Theorem 5.4 (in particular, we identify
the groups Inn(S,,) and (1 + a,)*), as above. For n = 1, Inn(S;) = U(K) X Eo(K) and
[G1,G1] = Ex(K) (see Theorem 5.4 (1)) and the statement follows.

For n = 2, by Theorem 5.4 (1), Inn(S,,)/ Inn(S,) N [Gn, Gy] == (0)/(0?) ~ Z.

For n = 3, by Theorem 5.4 (1), Inn(S,,) C [Gy, Gy].

(2) For n = 1, aff; = T! and statement (2) is obvious. For n > 1, statement (2) follows
from Lemma 5.3: aff,, /[aff,,, aff,,] =~ (S, /[Sn, Sn]) x (T"/TV) ~ Zs x K*.

(3) Since G,, = aff,, x Inn(S,,), the first isomorphism follows from Lemma 5.1 (1) and
then the second isomorphism follows from statement (1). O

5.2. An analogue of the polynomial Jacobian homomorphism

We keep the notation of the introduction. We want to find an analogue of the
polynomial Jacobian homomorphism (1.1) for the algebra S,. The algebra S,, is non-
commutative and non-Noetherian, with trivial centre, i.e. Z(S,,) = K [4, Proposition 4.1],
and there are no obvious ‘partial’ derivatives for the algebra S,,. So, in order to find the
analogue, we first define the Jacobian homomorphism in invariant group-theoretic terms,
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i.e. we select natural properties/conditions that uniquely determine 7. Then, for the
algebra S,, the conditions obtained uniquely determine an analogue of the Jacobian
homomorphism for n > 3 but for n = 1,2, where there are exactly two of them.

The group P, = X, Xex Aff, is an exact product of its two subgroups, where Aff,, :=
{040: x— Ax+a| AeGL,(K), a € K"} is the affine group and

Y, i={o € P, |o(x;) =x; mod(xy,...,2,)% i=1,...,n}

is the Jacobian group, where (z1,...,2,) is the maximal ideal of the polynomial alge-
bra P,. Recall that an exact product means that each element o € P, is a unique product
0 =§-04,, where 04, € Aff,, and £ € X,. Indeed, 0: x — a + A(x + ---), where the
three dots mean higher terms, and so o = {04 4, where {: x — 2 + ---. The Jacobian
homomorphism 7, is determined by its restriction to the affine subgroup, since J,(§) =1
for all £ € X, (trivial), and

jn(g) = jn(UA,a) = det(A) (513)

The group G,, = S, x T" X Inn(S,,) has a similar structure to the group P,. The subgroup
aff,, ;== S, x T™ is an affine part of the group G,, and the subgroup Inn(S,,) plays the
role of the Jacobian subgroup X, due to the following corollary.

Corollary 5.6 (Bavula [7, Corollary 5.5]).
Inn(S,) = {0 € G, | o(z;) = z; modp;, o(y;) = y; modp; Vi}.

Definition 5.7. An analogue J, of the polynomial Jacobian homomorphism 7, is
a group homomorphism J,,: G,, — K* that acts on the affine subgroup aff,, as in the
polynomial case (i.e. it sends the affine automorphism to its Jacobian).

There is at least one such map that is given in (1.2) and (1.3).
Theorem 5.8.
(1) Forn > 2 the analogue J,, of the polynomial Jacobian homomorphism 7, is unique

and given in (1.2) and (1.3).

(2) Forn = 1,2 there is another one J&*, the so-called exotic Jacobian homomorphism,
given by the following rule.

(a) Forn=1,0=1ty w, € Gy =T x {w, | v € (1+ F)*}, where t, € T* and
u € (1+ F)* ~ GLoo(K), and J$*(0) = A - det(u). The homomorphisms J;
and J§* are algebraically independent characters of the group Gj.

(b) Forn =2, 0 = stywg:& € Go, where s € So, ty € T?, i € {0,1} and £ € Na,
J$(0) = (—=1)"sgn(s)\1 \2. Note that (J§¥)? = J3.

Proof. (1) Statement (1) follows from the fact that G, /|G, G,] ~ aff,, /[aff,,, aff ;]
(see Corollary 5.5 (3)).

(2) Statement (2) follows from Corollary 5.5 (3). O
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