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Abstract The algebra Sn of one-sided inverses of a polynomial algebra Pn in n variables is obtained
from Pn by adding commuting left (but not two-sided) inverses of the canonical generators of the
algebra Pn. The algebra Sn is isomorphic to the algebra

K

〈
∂

∂x1
, . . . ,

∂

∂xn
,

∫
1
, . . . ,

∫
n

〉
of scalar integro-differential operators provided that char(K) = 0. Ignoring the non-Noetherian prop-
erty, the algebra Sn belongs to a family of algebras like the nth Weyl algebra An and the polynomial
algebra P2n. Explicit generators are found for the group Gn of automorphisms of the algebra Sn and
for the group S∗

n of units of Sn (both groups are huge). An analogue of the Jacobian homomorphism
AutK−alg(Pn) → K∗ is introduced for the group Gn (notice that the algebra Sn is non-commutative and
neither left nor right Noetherian). The polynomial Jacobian homomorphism is unique. Its analogue is
also unique for n > 2 but for n = 1, 2 there are exactly two of them. The proof is based on the following
theorem that is proved in the paper:

Gn/[Gn, Gn] �

⎧⎪⎨
⎪⎩

K∗ × K∗ if n = 1,

Z/2Z × K∗ × Z/2Z if n = 2,

Z/2Z × K∗ if n > 2.

Keywords: group of automorphisms; group generators; inner automorphisms; Fredholm operators;
index of an operator; semi-direct and exact products of groups

2010 Mathematics subject classification: Primary 16W20; 14E07; 14H37; 14R10; 14R15

1. Introduction

Throughout, ring means an associative ring with 1; module means a left module; N :=
{0, 1, . . . } is the set of natural numbers; K is a field and K∗ is its group of units; Pn :=
K[x1, . . . , xn] is a polynomial algebra over K;

∂1 :=
∂

∂x1
, . . . , ∂n :=

∂

∂xn

are the partial derivatives (K-linear derivations) of Pn; EndK(Pn) is the algebra of all
K-linear maps from Pn to Pn and AutK(Pn) is its group of units (i.e. the group of all the
invertible linear maps from Pn to Pn); the subalgebra An := K〈x1, . . . , xn, ∂1, . . . , ∂n〉 of
EndK(Pn) is called the nth Weyl algebra provided that char(K) = 0.
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Definition 1.1 (Bavula [4]). The algebra Sn of one-sided inverses of Pn is an algebra
generated over a field K of characteristic zero by 2n elements x1, . . . , xn, yn, . . . , yn that
satisfy the defining relations

y1x1 = 1, . . . , ynxn = 1, [xi, yj ] = [xi, xj ] = [yi, yj ] = 0 for all i �= j,

where [a, b] := ab − ba is the algebra commutator of elements a and b.

By the very definition, the algebra Sn is obtained from the polynomial algebra Pn

by adding commuting, left (but not two-sided) inverses of its canonical generators. The
algebra S1 is a well-known primitive algebra [10, Example 2, p. 35]. Over the field C of
complex numbers, the completion of the algebra S1 is the Toeplitz algebra, which is the
C∗-algebra generated by a unilateral shift on the Hilbert space l2(N) (note that y1 = x∗

1).
The Toeplitz algebra is the universal C∗-algebra generated by a proper isometry.

Example 1.2 (Bavula [4]). Consider a vector space V =
⊕

i∈N
Kei and two shift

operators on V , X : ei �→ ei+1 and Y : ei �→ ei−1 for all i � 0, where e−1 := 0. The
subalgebra of EndK(V ) generated by the operators X and Y is isomorphic to the algebra
S1(X �→ x, Y �→ y). By taking the nth tensor power V ⊗n =

⊕
α∈NnKeα of V we see

that the algebra Sn � S⊗n
1 is isomorphic to the subalgebra of EndK(V ⊗n) generated

by the 2n shifts X1, Y1, . . . , Xn, Yn that act in different directions. In particular, when
the field K has characteristic zero, V = P1 =

⊕
i∈N

Kei, ei := xi/i!, Y = d/dx and
X =

∫
: P1 → P1, xi �→ xi+1/i + 1 (the integration), the algebra S1 is isomorphic

to the algebra K〈d/dx,
∫

〉 of scalar integro-differential operators. By taking the nth
tensor power P⊗n

1 = Pn =
⊕

α∈NnKeα, eα =
∏n

i=1x
αi
i /αi!, and setting Yi = ∂/∂xi and∫

i
: Pn → Pn, xα �→ xix

α/(αi+1), we see that the algebra Sn is isomorphic to the algebra
K〈∂/∂x1, . . . , ∂/∂xn,

∫
1, . . . ,

∫
n
〉 of scalar integro-differential operators.

The algebra Sn is a non-commutative non-Noetherian algebra that is not a domain
either. Moreover, it contains the algebra of infinite-dimensional matrices. The Gelfand–
Kirillov dimension and the classical Krull dimension of the algebra Sn is 2n, but the
global dimension and the weak homological dimension of the algebra Sn is n [4].

1.1. Explicit generators for the group Gn

Let Gn := AutK−alg(Sn) be the group of automorphisms of the algebra Sn and let S∗
n

be the group of units of the algebra Sn. The groups Gn and S∗
n are huge, e.g. both of

them contain the group
GL∞(K) � · · · � GL∞(K)︸ ︷︷ ︸

2n−1 times

,

which is a small part of them. A semi-direct product semi∏m
i=1Hi = H1 � H2 � · · · � Hm

of several groups means that H1 � (H2 � (· · · � (Hm−1 � Hm) · · · )).
Theorem 1.3 (Bavula [7]).

(1) Gn = Sn � Tn � Inn(Sn).

(2) G1 � T1 � GL∞(K).
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In the theorem above, Sn = {s ∈ Sn | s(xi) = xs(i), s(yi) = ys(i)} is the symmetric
group, Tn := {tλ | tλ(xi) = λixi, tλ(yi) = λ−1

i yi, λ = (λi) ∈ K∗n} is the n-dimensional
algebraic torus, Inn(Sn) is the group of inner automorphisms of the algebra Sn (which
is huge) and GL∞(K) is the group of all the invertible infinite-dimensional matrices
of the type 1 + M∞(K) where the algebra (without 1) of infinite-dimensional matrices
M∞(K) := lim−→Md(K) =

⋃
d�1Md(K) is the injective limit of matrix algebras. Theo-

rem 1.3 is a difficult one (see the introduction of [7], where the structure and the main
ideas of the proof are explained).

The results of the papers [2,4–7] and of the present paper show that (when ignoring
non-Noetherian property) the algebra Sn belongs to a family of algebras like the nth
Weyl algebra An, the polynomial algebra P2n and the Jacobian algebra An (see [2,6]).
Moreover, the algebras Sn, An and An are generalized Weyl algebras. The structure
of the group G1 � T1 � GL∞(K) is another confirmation of the ‘similarity’ of the
algebras P2, A1 and S1. The groups of automorphisms of the polynomial algebra P2

and the Weyl algebra A1 were found by Jung [11], Van der Kulk [15]; and Dixmier [8],
respectively. These two groups have almost identical structure in that they are ‘infinite
GL-groups’ in the sense that they are generated by the algebraic torus T1 and by the
obvious automorphisms: x �→ x+λyi, y �→ y; x �→ x, y �→ y+λxi, where i ∈ N and λ ∈ K,
which are sort of ‘elementary infinite-dimensional matrices’ (i.e. ‘infinite-dimensional
transvections’). The same picture holds as for the group G1. In prime characteristic, the
group of automorphism of the Weyl algebra A1 was found by Makar-Limanov [12] (see
also [3] for a different approach and for further developments).

A next step in explicitly finding the group Gn and its generators is done in [5], where
explicit generators are found for the group G2 and the following theorem is proved.

Theorem 1.4 (Bavula [5, Theorem 2.12]). G2 � S2 � T2 � Z � ((K∗ �
E∞(S1))�GL∞(K) (K∗ �E∞(S1))), where E∞(S1) is the subgroup of GL∞(S1) generated
by the elementary matrices.

The aim of the present paper is to find explicitly the group Gn (see Theorem 4.2) and
its generators for n � 2. We show that these are given explicitly by the following theorem
(Theorem 4.6).

Theorem. Let Js := {1, . . . , s}, where s = 1, . . . , n. The group Gn = Sn�Tn�Inn(Sn)
is generated by the transpositions (ij) where i < j; the elements t(λ,1,...,1) : x1 �→ λx1,
y1 �→ λ−1y1, xk �→ xk, yk �→ yk, k = 2, . . . , n; and the inner automorphisms ωu : a �→
uau−1, where u belongs to the following sets:

(1) θs,1(Js) := (1+(ys −1)
∏s−1

i=1 (1−xiyi)) · (1+(x1 −1)
∏s

j=2(1−xjyj)), s = 2, . . . , n;

(2) 1+xt
nE0α(Js), 1+xt

nEα0(Js), 1+yt
nE0α(Js) and 1+yt

nEα0(Js), where t ∈ N\{0},
s = 1, . . . , n − 1 and α ∈ Ns \ {0};

(3) 1 + (λ − 1)E00(Js), 1 + E0α(Js) and 1 + Eα0(Js), where λ ∈ K∗, s = 1, . . . , n and
α ∈ Ns \ {0},

where E00(Js) :=
∏s

i=1(1 − xiyi), E0α(Js) :=
∏s

i=1(y
αi
i − xiy

αi+1
i ) and Eα0(Js) :=∏s

i=1(x
αi
i − xαi+1

i yi).
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1.2. The structure and main ideas of finding the generators for the groups
Gn and S∗

n

A first step is the following theorem.

Theorem 1.5 (Bavula [5, 6]).

(1) S∗
n = K∗ × (1 + an)∗, where the ideal an of the algebra Sn is the sum of all the

height one prime ideals of the algebra Sn.

(2) The centre of the group S∗
n is K∗ and the centre of the group (1 + an)∗ is {1}.

(3) The map (1 + an)∗ → Inn(Sn), u �→ ωu is a group isomorphism.

Theorems 1.3 and 1.5 reduce the problem of finding the group Gn to the problem of
finding the group of units (1 + an)∗. To save on notation, we often identify the groups
(1 + an)∗ and Inn(Sn) via u �→ ωu.

The polynomial algebra Pn is a faithful Sn-module (see the example above), hence Sn ⊂
EndK(Pn). The ideals of the algebra Sn commute (IJ = JI) [4]. There are precisely n

height 1 prime ideals of the algebra Sn, say p1, . . . , pn. They are found explicitly in [4]
and they form a single Gn-orbit. In particular, the ideals an,s :=

∑
i1<···<is

pi1 · · · pis
,

s = 1, . . . , n, are Gn-invariant ideals of the algebra Sn. The group (1 + an)∗ has the
strictly descending chain of Gn-invariant (hence, normal) subgroups

(1 + an)∗ = (1 + an,1)∗ ⊃ · · · ⊃ (1 + an,s)∗ ⊃ · · · ⊃ (1 + an,n−1)∗ ⊃ (1 + an,n)∗.

Briefly, to prove results for the group (1 + an)∗ we first prove similar results for the
subgroups (1 + an,s)∗, s = 1, . . . , n − 1, using a double induction on (n, s) starting with
(n, n−1) in the second part of the induction (the induction on s is a downward induction,
the group (1 + an,n)∗ is isomorphic to GL∞(K) and contains no essential information
about the overgroups, that is why we have to start with (n, n − 1)). The initial case
(n, n − 1) is the most difficult one. We devote the entire of § 3 to treating it.

The difficulty in finding the group (1 + an)∗ stems from two facts: (i) S∗
n � Sn ∩

AutK(Pn), i.e. there are non-units of the algebra Sn that are invertible linear maps
in Pn; and (ii) some units of the algebra Sn are products of non-units. To tackle the
second problem the so-called current groups Θn,s, s = 1, . . . , n−1, are introduced. These
are finitely generated subgroups of (1+an)∗ generated by explicit generators and each of
the generators is a product of two non-units of S∗

n (they are even non-units of EndK(Pn)).
The current groups turn out to be the most important subgroups of (1 + an)∗ in that
they control the most difficult parts of the structure of the group (1 + an)∗.

In dealing with the case (n, n−1), we use the Fredholm linear maps/operators and their
indices. This technique is not available in other cases, i.e. when (n, s) �= (n, n−1), but the
point is that other cases can be reduced to the initial one but over a larger coefficient ring
(not a field). The indices of operators are used to construct several group homomorphisms.
The most difficult part of § 3 is to prove that the homomorphisms are well-defined maps
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(as their constructions are based on highly non-unique decompositions). As a result, the
group (1 + an)∗ is found explicitly to be given by (see Theorem 4.2)

(1 + an)∗ = Θ′
n,1En,1Θ

′
n,2En,2 · · ·Θ′

n,n−1En,n−1,

where the sets Θ′
n,s ⊆ Θn,s and the groups En,s are given explicitly (see (2.22) and (4.3)).

As a consequence, we have explicit generators for the group (1+ an)∗ (see Theorem 4.5).

Theorem. The group (1 + an)∗ is generated by the following elements:

(1)

θmax(J),j(J) :=
(

1+(ymax(J)−1)
∏

i∈J\max(J)

(1−xiyi)
)

·
(

1+(xj−1)
∏

k∈J\j

(1−xkyk)
)

,

where J runs through all the subsets of {1, . . . , n} that contain at least two elements,
j ∈ J \max(J) and max(J) is the maximal number in J ;

(2) 1+xt
iE0α(I), 1+xt

iEα0(I), 1+yt
iE0α(I) and 1+yt

iEα0(I), where I runs through all
the subsets of {1, . . . , n} such that |I| = 1, . . . , n−1, t ∈ N\{0}, i �∈ I, α ∈ NI \{0};

(3) 1+(λ−1)E00(I), 1+E0α(I) and 1+Eα0(I), where λ ∈ K∗, I �= ∅ and α ∈ NI \{0}.

It is then easy to obtain explicit generators for the group Gn (see Theorem 4.6).

1.3. An analogue of the polynomial Jacobian homomorphism for the
group Gn

For the polynomial algebra Pn there is an important group homomorphism

Jn : Pn := AutK−alg(Pn) → K∗, σ �→ det
(

∂σ(xi)
∂xj

)
, (1.1)

the so-called Jacobian homomorphism. Note that the Jacobian homomorphism is a deter-
minant. Each automorphism σ ∈ Pn is a unique product ξσaff of an affine automorphism
σaff ∈ Affn and an element ξ of the Jacobian group Σn (see § 5 for details), and the
Jacobian of σ is uniquely determined by its affine part, i.e. J (σ) = J (σaff). This prop-
erty uniquely characterizes the Jacobian homomorphism. There are two different ways of
defining the Jacobian homomorphism: by the explicit formula (1.1) or as a group homo-
morphism from Pn/[Pn,Pn] to K∗ that is defined naturally (i.e. as the determinant) on
the affine subgroup Affn of Pn.

The group Gn = Sn � Tn � Inn(Sn) has a similar structure to the group Pn, where
affn := Sn � Tn is an affine part of Gn and the group Inn(Sn) of inner automorphisms
plays the role of the Jacobian group. In § 5, we introduce an analogue Jn : Gn → K∗ of
the Jacobian homomorphism using the second definition of the polynomial Jacobian map
as a guiding principle: the map Jn is a homomorphism Jn : Gn/[Gn, Gn] → K∗ such that
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on the affine group affn it is defined in exactly the same way as in the polynomial case.
For n > 2, the homomorphism Jn is unique (see Theorem 5.8) since (Corollary 5.5 (3))

Gn/[Gn, Gn] � affn /[affn, affn] � Z/2Z × K∗.

But for n = 1, 2, the homomorphism Jn is not unique. There are exactly two of them
since (see Corollary 5.5 (3))

Gn/[Gn, Gn] � affn /[affn, affn] ×
{

K∗ if n = 1,

Z/2Z if n = 2.

More informally, for n = 1 the appearance of the second homomorphism, the so-called
exotic homomorphism Jex

1 , has a connection with existence of the determinant (homo-
morphism) on the group GL∞(K), but for n = 2 the exotic Jex

2 is explained by the fact
that the current group Θ2 does not belong to the commutant [G2, G2]. For n = 1, J1 and
Jex
1 are algebraically independent characters of the group G1, but for n = 2, J2

2 = (Jex
2 )2

(see Theorem 5.8).
The proofs are based on finding explicitly the commutant [Gn, Gn] of the group Gn

(see Theorem 5.4 (1)) and proving that (see Theorem 5.4 (2))

Gn/[Gn, Gn] �

⎧⎪⎨
⎪⎩

K∗ × K∗ if n = 1,

Z/2Z × K∗ × Z/2Z if n = 2,

Z/2Z × K∗ if n > 2.

The most surprising thing is that despite the fact that the algebra Sn is non-commutative,
non-Noetherian, of Gelfand–Kirillov dimension 2n (not n) and not a domain, the unique
homomorphism Jn ‘coincides’ with the polynomial Jacobian homomorphism Jn for the
polynomial algebra Pn (not P2n): for σ ∈ Gn,

Jn(σ) = det
(

∂σ̄(xi)
∂xj

)
, (1.2)

i.e. the homomorphism Jn is the composition of the homomorphism

Gn → AutK−alg(Sn/an � Ln), σ �→ σ̄ : a + an �→ σ(a) + an,

where Ln := K[x1, x
−1
1 , . . . , xn, x−1

n ] is the Laurent polynomial algebra (see (2.7)), and
the Jacobian map

Jn : AutK−alg(Ln) → L∗
n, τ �→ det

(
∂τ(xi)
∂xj

)
.

Proof of (1.2). Since Gn = affn � Inn(Sn) and the factor algebra Sn/an � Ln is
commutative, the homomorphism (1.2) acts trivially on Inn(Sn) (i.e. Jn(Inn(Sn)) = 1),
but on affn the map (1.2) acts exactly as in the polynomial case: for each element
s · tλ ∈ affn, where s ∈ Sn and tλ ∈ Tn, Jn(s · tλ) = sgn(s) ·

∏n
i=1λi, where sgn(s) ∈ {±1}

is the sign/parity of the permutation s. �
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So, for each element σ = s · tλ · ωu ∈ Gn = Sn � Tn � Inn(Sn), where s ∈ Sn, tλ ∈ Tn

and ωu ∈ Inn(Sn),

Jn(σ) = sgn(s) ·
n∏

i=1

λi. (1.3)

One may have noticed that Jn(σ) depends only on σ(x1), . . . , σ(xn), and the set
{x1, . . . , xn} is not a generating set for the algebra Sn. It is a trivial observation that an
algebra endomorphism is uniquely determined by its action on a set of algebra generators
but for the algebra Sn, an algebra endomorphism is uniquely determined by its action
on either of the sets {x1, . . . , xn} or {y1, . . . , yn} (which are not algebra generating sets).

Theorem 1.6 (rigidity of the group Gn [7, Theorem 3.7]). Let σ, τ ∈ Gn. Then
the following statements are equivalent.

(1) σ = τ .

(2) σ(x1) = τ(x1), . . . , σ(xn) = τ(xn).

(3) σ(y1) = τ(y1), . . . , σ(yn) = τ(yn).

2. The group (1 + an)∗ and its subgroups

In this section, we collect some results without proofs on the algebras Sn that will be
used in this paper; their proofs can be found in [4]. Several important subgroups of the
group (1 + an)∗ are introduced. The most interesting of these are the current subgroups
Θn,s, s = 1, . . . , n−1. They encapsulate the most difficult parts of the groups S∗

n and Gn.
This section sets the scene for proving the main results of the paper.

2.1. The algebra of one-sided inverses of a polynomial algebra

Clearly, Sn = S1(1) ⊗ · · · ⊗ S1(n) � S⊗n
1 , where S1(i) := K〈xi, yi | yixi = 1〉 � S1 and

Sn =
⊕

α,β∈Nn

Kxαyβ ,

where xα := xα1
1 · · ·xαn

n , α = (α1, . . . , αn), yβ := yβ1
1 · · · yβn

n and β = (β1, . . . , βn). In par-
ticular, the algebra Sn contains two polynomial subalgebras Pn and Qn := K[y1, . . . , yn]
and is equal, as a vector space, to their tensor product Pn ⊗Qn. Note also that the Weyl
algebra An is a tensor product (as a vector space) Pn ⊗ K[∂1, . . . , ∂n] of two polynomial
subalgebras.

When n = 1, we usually drop the subscript ‘1’ if this does not lead to confusion. So,
S1 = K〈x, y | yx = 1〉 =

⊕
i,j�0Kxiyj . For each natural number d � 1, let Md(K) :=⊕d−1

i,j=0KEij be the algebra of d-dimensional matrices, where {Eij} are the matrix units,
and let

M∞(K) := lim−→ Md(K) =
⊕
i,j∈N

KEij
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be the algebra (without 1) of infinite-dimensional matrices. The algebra S1 contains the
ideal F :=

⊕
i,j∈N

KEij , where

Eij := xiyj − xi+1yj+1, i, j � 0. (2.1)

For all natural numbers i, j, k and l, EijEkl = δjkEil, where δjk is the Kronecker delta
function. The ideal F is an algebra (without 1) isomorphic to the algebra M∞(K) via
Eij �→ Eij . For all i, j � 0

xEij = Ei+1,j , yEij = Ei−1,j (E−1,j := 0), (2.2)

Eijx = Ei,j−1, Eijy = Ei,j+1 (Ei,−1 := 0). (2.3)

The algebra
S1 = K ⊕ xK[x] ⊕ yK[y] ⊕ F (2.4)

is the direct sum of vector spaces. It follows that

S1/F � K[x, x−1] =: L1, x �→ x, y �→ x−1, (2.5)

since yx = 1, xy = 1 − E00 and E00 ∈ F .
The algebra Sn =

⊗n
i=1S1(i) contains the ideal

Fn := F⊗n =
⊕

α,β∈Nn

KEαβ ,

where

Eαβ :=
n∏

i=1

Eαiβi
(i), Eαiβi

(i) := xαi
i yβi

i − xαi+1
i yβi+1

i .

Note that EαβEγρ = δβγEαρ for all elements α, β, γ, ρ ∈ Nn, where δβγ is the Kronecker
delta function; Fn =

⊗n
i=1F (i) and F (i) :=

⊕
s,t∈N

KEst(i).

2.2. The involution η on Sn

The algebra Sn admits the involution

η : Sn → Sn, xi �→ yi, yi �→ xi, i = 1, . . . , n.

It is a K-algebra anti-isomorphism (η(ab) = η(b)η(a) for all a, b ∈ Sn) such that η2 = idSn
,

the identity map on Sn. So, the algebra Sn is self-dual (i.e. it is isomorphic to its opposite
algebra, η : Sn � Sop

n ). The involution η acts on the ‘matrix’ ring Fn as the transposition

η(Eαβ) = Eβα. (2.6)

The canonical generators xi, yj (1 � i, j � n) determine the ascending filtration
{Sn,�i}i∈N on the algebra Sn in the obvious way (i.e. by the total degree of the gen-
erators): Sn,�i :=

⊕
|α|+|β|�iKxαyβ , where |α| = α1 + · · ·+αn (Sn,�iSn,�j ⊆ Sn,�i+j for

all i, j � 0). Then dim(Sn,�i) =
(
i+2n
2n

)
for i � 0 and so the Gelfand–Kirillov dimension

GK(Sn) of the algebra Sn is equal to 2n. It is not difficult to show that the algebra Sn

is neither left nor right Noetherian. Moreover, it contains infinite direct sums of left and
right ideals (see [4]). The proof of the following statements can be found in [4].
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• The algebra Sn is central, prime and catenary. Every non-zero ideal of Sn is an
essential left and right submodule of Sn.

• The ideals of Sn commute (IJ = JI); and the set of ideals of Sn satisfy the
ascending chain condition (a.c.c.).

• The classical Krull dimension cl.Kdim(Sn) of Sn is 2n.

• Let I be an ideal of Sn. Then the factor algebra Sn/I is left (or right ) Noetherian
if and only if the ideal I contains all the height 1 primes of Sn.

2.3. The set of height 1 primes of Sn

Consider the ideals of the algebra Sn:

p1 := F ⊗ Sn−1, p2 := S1 ⊗ F ⊗ Sn−2, . . . , pn := Sn−1 ⊗ F.

Then Sn/pi � Sn−1 ⊗ (S1/F ) � Sn−1 ⊗ K[xi, x
−1
i ] and

⋂n
i=1pi =

∏n
i=1pi = F⊗n = Fn.

Clearly, pi �⊆ pj for all i �= j.

• The set H1 of height 1 prime ideals of the algebra Sn is {p1, . . . , pn}.

Let an := p1 + · · · + pn. Then the factor algebra

Sn/an � (S1/F )⊗n �
n⊗

i=1

K[xi, x
−1
i ] = K[x1, x

−1
1 , . . . , xn, x−1

n ] =: Ln (2.7)

is a Laurent polynomial algebra in n variables and so an is a prime ideal of height and
co-height n of the algebra Sn.

Proposition 2.1 (Bavula [4]). The polynomial algebra Pn is the only (up to iso-
morphism) faithful simple Sn-module.

In more detail, SnPn � Sn/(
∑n

i=0Snyi) =
⊕

α∈NnKxα1̄, 1̄ := 1 +
∑n

i=1Snyi; and the
action of the canonical generators of the algebra Sn on the polynomial algebra Pn is given
by the rule

xi ∗ xα = xα+ei , yi ∗ xα =

{
xα−ei if αi > 0,

0 if αi = 0
and Eβγ ∗ xα = δγαxβ ,

where the set e1 := (1, 0, . . . , 0), . . . , en := (0, . . . , 0, 1) is the canonical basis for the free
Z-module Zn. We identify the algebra Sn with its image in the algebra EndK(Pn) of all
the K-linear maps from the vector space Pn to itself, i.e. Sn ⊂ EndK(Pn).

For each non-empty subset I of the set {1, . . . , n}, let SI :=
⊗

i∈IS1(i) � S|I|, where |I|
is the number of elements in the set I, FI :=

⊗
i∈IF (i) � M∞(K), let aI be the

ideal of the algebra SI generated by the vector space
⊕

i∈IF (i), i.e. aI :=
∑

i∈IF (i) ⊗
SI\i. The factor algebra LI := SI/aI � K[xi, x

−1
i : i ∈ I] is a Laurent polynomial

algebra. For elements α = (αi)i∈I , β = (βi)i∈I ∈ NI , let Eαβ(I) :=
∏

i∈IEαiβi(i). Then
Eαβ(I)Eξρ(I) = δβξEαρ(I) for all α, β, ξ, ρ ∈ NI .
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2.4. The Gn-invariant normal subgroups (1 + an,s)∗ of (1 + an)∗

We will often use the following two obvious lemmas.

Lemma 2.2 (Bavula [7]). Let R be a ring and I1, . . . , In be ideals of the ring R such
that IiIj = 0 for all i �= j. Let a = 1 + a1 + · · · + an ∈ R, where a1 ∈ I1, . . . , an ∈ In.
The element a is a unit of the ring R if and only if all the elements 1 + ai are units and,
in this case, a−1 = (1 + a1)−1(1 + a2)−1 · · · (1 + an)−1.

Let R be a ring, R∗ be its group of units, I be an ideal of R such that I �= R and let
(1 + I)∗ be the group of units of the multiplicative monoid 1 + I.

Lemma 2.3 (Bavula [7]). Let R and I be as above. Then

(1) R∗ ∩ (1 + I) = (1 + I)∗.

(2) (1 + I)∗ is a normal subgroup of R∗.

For each subset I of the set {1, . . . , n}, let pI :=
⋂

i∈Ipi and p∅ := Sn. Each pI

is an ideal of the algebra Sn and pI =
∏

i∈Ipi. The complement to the subset I is
denoted by CI. For a one-element subset {i}, we write Ci rather than C{i}. In particular,
pCi := pC{i} =

⋂
j �=ipj .

For each number s = 1, . . . , n, let an,s :=
∑

|I|=spI . By the very definition, the ide-
als an,s are Gn-invariant ideals (since the set H1 of all the height 1 prime ideals of the
algebra Sn is {p1, . . . , pn} and H1 is a Gn-orbit). We have the strictly descending chain
of Gn-invariant ideals of the algebra Sn:

an = an,1 ⊃ an,2 ⊃ · · · ⊃ an,s ⊃ · · · ⊃ an,n = Fn ⊃ an,n+1 := 0.

These are also ideals of the subalgebra K + an of Sn. Each set an,s is an ideal of the
algebra K + an,t for all t � s, and the group of units of the algebra K + an,s is the direct
product of its two subgroups (see Lemma 2.3 (1))

(K + an,s)∗ = K∗ × (1 + an,s)∗, s = 1, . . . , n.

The groups (K + an,s)∗ and (1 + an,s)∗ are Gn-invariant. There is the descending chain
of Gn-invariant (hence, normal) subgroups of (1 + an)∗:

(1 + an)∗ = (1 + an,1)∗ ⊃ · · · ⊃ (1 + an,s)∗ ⊃ · · ·
⊃ (1 + an,n)∗ = (1 + Fn)∗ ⊃ (1 + an,n+1)∗ = {1}.

For each number s = 1, . . . , n, the factor algebra

(K + an,s)/an,s+1 = K ⊕
⊕
|I|=s

p̄I

contains the idempotent ideals p̄I := (pI + an,s+1)/an,s+1 such that p̄I p̄J = 0 for all
I �= J such that |I| = |J | = s.
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Recall that for a Laurent polynomial algebra L = K[x±1
1 , . . . , x±1

n ], K1(L) � L∗ (see
[1,13,14]),

GL∞(L) = U(L) � E∞(L), (2.8)

where E∞(L) is the subgroup of GL∞(L) generated by all the elementary matrices {1 +
aEij | a ∈ L, i, j ∈ N, i �= j} and U(L) := {μ(u) := uE00 + 1 − E00 | u ∈ L∗} � L∗,
μ(u) ↔ u. The group E∞(L) is a normal subgroup of GL∞(L). This is true for an
arbitrary coefficient ring L.

By Lemma 2.2 and (2.8), the group of units of the algebra (K + an,s)/an,s+1 =:
K + an,s/an,s+1 is the direct product of groups,

(K + an,s/an,s+1)∗

= K∗ ×
∏

|I|=s

(1 + p̄I)∗ � K∗ ×
∏

|I|=s

GL∞(LCI) � K∗ ×
∏

|I|=s

U(LCI) � E∞(LCI),

since (1 + p̄I)∗ � (1 + M∞(LCI))∗ = GL∞(LCI), where

LCI = SCI/aCI =
⊗
i∈CI

K[xi, x
−1
i ]

is the Laurent polynomial algebra. In more detail, for each non-empty subset I of
{1, . . . , n}, let ZI :=

⊕
i∈IZei. It is a subgroup of Zn =

⊕n
i=1Zei. Similarly, NI :=⊕

i∈INei. By (2.8),

(1 + p̄I)∗ = U(LCI) � E∞(LCI) = (UI(K) × XCI) � E∞(LCI), (2.9)

where

U(LCI) := {μI(u) := uE00(I) + 1 − E00(I) | u ∈ L∗
CI} � L∗

CI , μI(u) ↔ u,

L∗
CI = {λxα | λ ∈ K∗, α ∈ ZCI},

UI(K) := {μI(λ) := λE00(I) + 1 − E00(I) | λ ∈ K∗} � K∗, μI(λ) ↔ λ,

XCI := {μI(xα) := xαE00(I) + 1 − E00(I) | α ∈ ZCI}
� ZCI � Zn−s, μI(xα) ↔ α,

E∞(LCI) := 〈1 + aEαβ(I) | a ∈ LCI , α, β ∈ NI , α �= β〉.

The algebra epimorphism ψn,s : K + an,s → (K + an,s)/an,s+1, a �→ a + an,s+1 yields
a group homomorphism of their groups of units (K + an,s)∗ → (K + an,s/an,s+1)∗. The
kernel of this homomorphism is (1 + an,s+1)∗. As a result we have the exact sequence of
group homomorphisms:

1 �� (1 + an,s+1)∗ ��

=

��

(K + an,s)∗ ��

=

��

(K + an,s/an,s+1)∗

=
��

(1 + an,s+1)∗ K∗ × (1 + an,s)∗ K∗ ×
∏

|I|=s(1 + p̄I)∗
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which yields the exact sequence of group homomorphisms in which Zn,s := coker(ψn,s):

1 → (1 + an,s+1)∗ → (1 + an,s)∗ ψn,s−−−→
∏

|I|=s

(1 + p̄I)∗ �
∏

|I|=s

GL∞(LCI) → Zn,s → 1.

(2.10)
For s = n the map ψn,n is the identity map and so Zn,n = {1}. Intuitively, the group Zn,s

represents ‘relations’ that determine the image im(ψn,s) as the subgroup of
∏

|I|=s(1 +
p̄I)∗. We will see later that the group Zn,s is a free abelian group of rank

(
n

s+1

)
(see

Corollary 4.3). So, the image of the map ψn,s is large. Note that an,s+1 and pI (where
|I| = s) are ideals of the algebra K + an,s. By Lemma 2.3, the groups (1 + an,s+1)∗ and
(1 + pI)∗ (where |I| = s) are normal subgroups of (1 + an,s)∗. Then the subgroup Υn,s of
(1 + an,s)∗ generated by these normal subgroups is a normal subgroup of (1 + an,s)∗. As
a subset of (1 + an,s)∗, the group Υn,s is equal to the product of the groups (1 + an,s+1)∗

and (1 + pI)∗, |I| = s, in arbitrary order (by their normality), i.e.

Υn,s =
∏

|I|=s

(1 + pI)∗ · (1 + an,s+1)∗. (2.11)

By Theorem 1.3 and Theorem 1.5, the group Υn,s is a Gn-invariant (hence, normal)
subgroup of S∗

n. We will see that the factor group (1+ an,s)∗/Υn,s is a free abelian group
of rank

(
n

s+1

)
s (see (4.5)).

By (2.9), the direct product of groups
∏

|I|=s(1 + p̄I)∗ = Xn,s � Γ̄n,s is the semi-direct
product of its two subgroups

Xn,s :=
∏

|I|=s

XCI � Z(n
s)(n−s) and Γ̄n,s :=

∏
|I|=s

UI(K) � E∞(LCI). (2.12)

For each subset I of {1, . . . , n} such that |I| = s, UI(K) � E∞(SCI) is a subgroup of
(1 + pI)∗, where

UI(K) = {μI(λ) | λ ∈ K∗} � K∗, E∞(SCI) := 〈1+aEαβ(I) | a ∈ SCI , α �= β ∈ NI〉,
(2.13)

where μI(λ) := λE00(I) + 1 − E00(I). Clearly,

ψn,s|UI(K) : UI(K) � UI(K), μI(λ) �→ μI(λ),

and ψn,s(UI(K) � E∞(SCI)) = UI(K) � E∞(LCI) for all subsets I with |I| = s. The
subgroup of (1 + an,s)∗,

Γn,s := ψ−1
n,s(Γ̄n,s) = set

∏
|I|=s

(UI(K) � E∞(SCI)) · (1 + an,s+1)∗, (2.14)

is a normal subgroup as the pre-image of a normal subgroup. The upper script ‘set’
was added to indicate that this is a product of subgroups but in general not the direct
product. It is obvious that ψn,s(Γn,s) = Γ̄n,s and Γn,s ⊆ Υn,s. We will see that, in fact,
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Γn,s = Υn,s (see Theorem 4.4). Let Δn,s := (1 + an,s)∗/Γn,s. The group homomorphism
ψn,s (see (2.10)) induces a group monomorphism

ψ̄n,s : Δn,s →
∏

|I|=s

(1 + p̄I)∗)/Γ̄n,s � Xn,s � Z(n
s)(n−s).

This means that the group Δn,s is a free abelian group of rank less than or equal to(
n
s

)
(n − s). In fact, the rank is equal to

(
n

s+1

)
s (see (4.4)).

For each subset I with |I| = s, consider the free abelian group X′
CI :=

⊕
j∈CIZ(j, I) �

Zn−s, where {(j, I) | j ∈ CI} is its free basis. Let

X′
n,s :=

⊕
|I|=s

X′
CI =

⊕
|I|=s

⊕
j∈CI

Z(j, I) � Z(n
s)(n−s).

For each subset I, consider the isomorphism of abelian groups

XCI → X′
CI , μI(xj) := xjE00(I) + 1 − E00(I) �→ (j, I).

These isomorphisms yield the group isomorphism

Xn,s → X′
n,s, μI(xj) �→ (j, I). (2.15)

Each element a of Xn,s is a unique product a =
∏

|I|=s

∏
j∈CIμI(xj)n(j,I), where n(j, I) ∈

Z. Each element a′ of the group X′
n,s is a unique sum a′ =

∑
|I|=s

∑
j∈CIn(j, I) · (j, I),

where n(j, I) ∈ Z. The map (2.15) sends a to a′. To make computations more readable
we set eI := E00(I). Then eIeJ = eI∪J .

2.5. The current groups Θn,s, s = 1, . . . , n − 1

The current groups Θn,s are the most important subgroups of the group (1 + an)∗.
They are finitely generated groups and their generators are given explicitly. The adjec-
tive ‘current’ comes from the action of the generators on the monomial basis for the
polynomial algebra Pn. If we visualize the algebra Pn as a liquid and the monomials
{xα} as its atoms, then the action of the generators of the group Θn,s on the monomials
resembles a current (see (2.16)). The generators shift the liquid only on the faces of the
positive cone Nn ≈ Pn. The generators of the groups Θn,s are units of the algebra Sn but
they are defined as a product of two non-units. As a result the groups Θn,s capture the
most delicate phenomena about the structure and the properties of the groups S∗

n and
Gn.

For each non-empty subset I of {1, . . . , n} with s := |I| < n and an element i ∈ CI,
let

X(i, I) := μI(xi) = xiE00(I)+1−E00(I) and Y (i, I) := μI(yi) = yiE00(I)+1−E00(I).

Then Y (i, I)X(i, I) = 1, kerY (i, I) = PC(I∪i) and Pn = im X(i, I)⊕PC(I∪i), where
PC(I∪i) := K[xj ]j∈C(I∪i). As an element of the algebra EndK(Pn), the map X(i, I) is
injective (but not bijective) and the map Y (i, I) is surjective (but not bijective).
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Definition 2.4. For each subset J of {1, . . . , n} with |J | = s + 1 � 2 and for two
distinct elements i and j of the set J ,

θij(J) := Y (i, J \ i)X(j, J \ j) ∈ (1 + pJ\i + pJ\j)∗ ⊆ (1 + an,s)∗.

The current group Θn,s is the subgroup of (1+an,s)∗ generated by all the elements θij(J)
(for all the possible choices of J , i and j).

In more detail, the element θij(J) belongs to the set 1 + pJ\i + pJ\j and θij(J)−1 =
θji(J) ∈ 1 + pJ\i + pJ\j . This follows from the action of the element θij(J) on the
monomial basis of the polynomial algebra Pn, where α = (α1, . . . , αn) ∈ Nn,

θij(J) ∗ xα =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xα if ∃k ∈ J \ {i, j} : αk �= 0,

xα if ∀k ∈ J \ {i, j} : αk = 0, αi > 0, αj > 0,

xα−ei if ∀k ∈ J \ {i, j} : αk = 0, αi > 0, αj = 0,

xα+ej if ∀k ∈ J \ {i, j} : αk = 0, αi = 0, αj � 0.

(2.16)

Alternatively, note that μJ\j(xjyj) = μJ\j(1 − e{j}) = 1 − e{j}eJ\j = 1 − eJ and
(using (2.2)) μJ\i(yi)eJ = (1 + (yi − 1)eJ\i)eJ = eJ + (yi − 1)eJ = eJ − eJ = 0. Then

θij(J)θji(J) = μJ\i(yi)μJ\j(xj) · μJ\j(yj)μJ\i(xi)

= μJ\i(yi) · μJ\j(xjyj) · μJ\i(xi)

= μJ\i(yi) · (1 − eJ) · μJ\i(xi)

= μJ\i(yixi)

= μJ\i(1)

= 1.

By symmetry, θji(J)θij(J) = 1, i.e.

θij(J) = θji(J)−1. (2.17)

Therefore, the unit θij(I) is the product of an injective map and a surjective map, neither
of which is a bijection.

Suppose that i, j and k are distinct elements of the set J (hence |J | � 3). Then,

θij(J)θjk(J) = θik(J). (2.18)

Indeed,

θij(J)θjk(J) = μJ\i(yi) · μJ\j(xj)μJ\j(yj) · μJ\k(xk)

= μJ\i(yi) · μJ\j(xjyj) · μJ\k(xk)

= μJ\i(yi) · (1 − eJ) · μJ\k(xk)

= μJ\i(yi)μJ\k(xk)

= θik(J).
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For each number s = 1, . . . , n − 1 the free abelian group X′
n,s admits the decomposition

X′
n,s =

⊕
|J|=s+1

⊕
j∪I=JZ(j, I) and using it, for each subset J with |J | = s + 1, we

define a character (a homomorphism) χ′
J :

χ′
J : X′

n,s → Z,
∑

|J′|=s+1

∑
j∪I=J′

nj,I(j, I) �→
∑

j∪I=J

nj,I .

Let max(J) be the maximal number of the set J . The group X′
n,s is the direct sum

X′
n,s = K′

n,s ⊕ Y′
n,s (2.19)

of its free abelian subgroups

K′
n,s =

⋂
|J|=s+1

ker(χ′
J)

=
⊕

|J|=s+1

⊕
j∈J\max(J)

Z(−(max(J), J \max(J)) + (j, J \ j))

� Z( n
s+1)s,

Y′
n,s =

⊕
|J|=s+1

Z(max(J), J \max(J)) � Z( n
s+1).

Consider the group homomorphism ψ′
n,s : (1 + an,s)∗ → X′

n,s, defined as the composition
of the following group homomorphisms:

ψ′
n,s : (1 + an,s)∗ → (1 + an,s)∗/Γn,s

ψ̄n,s−−−→
∏

|I|=s

(1 + p̄I)∗/Γ̄n,s � Xn,s � X′
n,s.

Then,
ψ′

n,s(θij(J)) = −(i, J \ i) + (j, J \ j). (2.20)

It follows that
ψ′

n,s(Θn,s) = K′
n,s (2.21)

since, by (2.20), ψ′
n,s(Θn,s) ⊇ K′

n,s (as the free basis for K′
n,s, introduced above, belongs

to the set ψ′
n,s(Θn,s)); again, by (2.20), ψ′

n,s(Θn,s) ⊆
⋂

|J|=s+1 ker(χ′
J) = K′

n,s.
Let H, H1, . . . , Hm be subsets (usually subgroups) of a group H. We say that H is the

product of H1, . . . , Hm and write H = set∏m
i=1Hi = H1 · · ·Hm if each element h of H is

a product h = h1 · · ·hm, where hi ∈ Hi. We add the subscript ‘set’ (sometimes) in order
to distinguish it from the direct product of groups. We say that H is the exact product
of H1, . . . , Hm and write H = exact∏m

i=1Hi = H1 ×ex · · · ×ex Hm, if each element h of H

is a unique product h = h1 · · ·hm where hi ∈ Hi. The order in the definition of the exact
product is important.

The subgroup of (1 + an,s)∗ generated by the groups Θn,s and Γn,s is equal to their
product Θn,sΓn,s, by the normality of Γn,s. The subgroup Γn,s of the group Θn,sΓn,s is
a normal subgroup. Hence, the intersection Θn,s ∩ Γn,s is a normal subgroup of Θn,s.
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Lemma 2.5. For each number s = 1, . . . , n−1 the group Θn,sΓn,s is the exact product

Θn,sΓn,s = exact
∏

|J|=s+1

∏
j∈J\max(J)

〈θmax(J),j(J)〉 · Γn,s,

i.e. each element a ∈ Θn,sΓn,s is a unique product

a =
∏

|J|=s+1

∏
j∈J\max(J)

θmax(J),j(J)n(j,J) · γ,

where n(j, J) ∈ Z and γ ∈ Γn,s. Moreover, the group Θn,sΓn,s is the semi-direct product

Θn,sΓn,s = semi
∏

|J|=s+1

∏
j∈J\max(J)

〈θmax(J),j(J)〉 � Γn,s,

where the order in the double product is arbitrary and ‘semi’ indicates that this product
is semi-direct.

Proof. The lemma follows at once from (2.21) and the fact that the elements
ψ′

n,s(θmax(J),j(J)) = −(max(J), J \max(J)) + (j, J \ j) form a basis for the free abelian
group K′

n,s. �

For each number s = 1, . . . , n − 1 consider the subset of (1 + an,s)∗,

Θ′
n,s := exact

∏
|J|=s+1

∏
j∈J\max(J)

〈θmax(J),j(J)〉, (2.22)

which is the exact product of cyclic groups (each of them is isomorphic to Z) since each
element u of Θ′

n,s is a unique product

u =
∏

|J|=s+1

∏
j∈J\max(J)

θmax(J),j(J)n(j,J),

where n(j, J) ∈ Z (see Lemma 2.5). The order in the product is arbitrary but fixed.
By Lemma 2.5, Θn,s/Θn,s ∩ Γn,s � Θn,sΓn,s/Γn,s � K′

n,s � Z( n
s+1)s and so

[Θn,s, Θn,s] ⊆ Γn,s. (2.23)

The next theorem is the pinnacle of finding the explicit generators for the groups S∗
n

and Gn.

Theorem 2.6. ψ′
n,s((1 + an,s)∗) = ψ′

n,s(Θn,s) for s = 1, . . . , n − 1.

Rough sketch of the proof. The proof is rather long and is given in § 4. We use an
induction on n (the case n = 2 was considered in [5]) and then, for a fixed n, we use a
second downward induction on s = 1, . . . , n − 1 starting with s = n − 1. The initial step
(n, s) = (n, n − 1) is the most difficult one. We spend the entire of § 3 giving its proof.
The remaining cases, using double induction, can be deduced from the initial one (for
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different n′, i.e. when n′ runs from 1 till n). The key idea in the proof of the case (n, n−1)
is to use the Fredholm operators and their indices. Then, using well-known results on
indices, some (new) results on the Fredholm operators and their indices from [5], and
their generalizations obtained in § 3, we construct several index maps (using various
indices of the Fredholm operators). The most difficult part is to prove that these maps
are well defined (as their constructions are based on highly non-unique decompositions).
Then the proof follows from the properties of these index maps. �

3. The groups (1 + an,n−1)∗ and Θn,n−1

In this section, the group (1 + an,n−1)∗ is found (see Corollary 3.11). We mentioned
already in the introduction that the key idea in finding the group Gn is to use indices of
operators. That is why we start this section by collecting known results on indices and
proving new ones. These results are used in many proofs that follow.

3.1. The index ind of linear maps and its properties

Let C be the class of all K-linear maps with finite-dimensional kernel and cokernel (such
maps are called the Fredholm linear maps/operators). So, C is the family of Fredholm
linear maps/operators. For vector spaces V and U , let C(V, U) be the set of all Fredholm
operators from V to U with finite-dimensional kernel and cokernel. So, we have the
disjoint union C =

⋃
V,UC(V, U).

Definition 3.1. For a linear map ϕ ∈ C, the integer ind(ϕ) := dim ker(ϕ) −
dim coker(ϕ) is called the index of the map ϕ.

For vector spaces V and U , let C(V, U)i := {ϕ ∈ C(V, U) | ind(ϕ) = i}. Then C(V, U) =⋃
i∈Z

C(V, U)i is the disjoint union and the class C is the disjoint union
⋃

i∈Z
Ci, where

Ci := {ϕ ∈ C | ind(ϕ) = i}. When V = U , we write C(V ) := C(V, V ) and C(V )i :=
C(V, V )i.

Example 3.2. Note that S1 ⊂ EndK(P1). The map xi ∈ EndK(P1) is an injection
with P1 = (

⊕i−1
j=0Kxj) ⊕ im(xi); the map yi ∈ EndK(P1) is a surjection with ker(yi) =⊕i−1

j=0Kxj . Hence,
ind(xi) = −i and ind(yi) = i, i � 1. (3.1)

Lemma 3.3 shows that C is a multiplicative semigroup with zero element (If the com-
position of two elements of C is undefined we set their product to be 0). The next two
lemmas are well known (see [9, Lemmas A.2.4 and A.2.5]).

Lemma 3.3. Let ψ : M → N and ϕ : N → L be K-linear maps. If two of the three
maps ψ, ϕ and ϕψ belong to the set C, then so does the third and, in this case,

ind(ϕψ) = ind(ϕ) + ind(ψ).

By Lemma 3.3, C(N, L)iC(M, N)j ⊆ C(M, L)i+j for all i, j ∈ Z.
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Lemma 3.4. Let

0 �� V1 ��

ϕ1

��

V2 ��

ϕ2

��

V3 ��

ϕ3

��

0

0 �� U1 �� U2 �� U3 �� 0

be a commutative diagram of K-linear maps with exact rows. Suppose that ϕ1, ϕ2, ϕ3 ∈ C.
Then

ind(ϕ2) = ind(ϕ1) + ind(ϕ3).

Let V and U be vector spaces. Define I(V, U) := {ϕ ∈ HomK(V, U) | dim im(ϕ) < ∞},
and when V = U we write I(V ) := I(V, V ).

Theorem 3.5 (Bavula [5]). Let V and U be vector spaces. Then C(V, U)i+I(V, U) =
C(V, U)i for all i ∈ Z.

Lemma 3.6 (Bavula [5]). Let V and V ′ be vector spaces and let ϕ : V → V ′

be a linear map such that the vector spaces ker(ϕ) and coker(ϕ) are isomorphic. Fix
subspaces U ⊆ V and W ⊆ V ′ such that V = ker(ϕ)⊕U and V ′ = W⊕ im(ϕ) and fix an
isomorphism f : ker(ϕ) → W (this is possible since ker(ϕ) � coker(ϕ) � W ) and extend
it to a linear map f : V → V ′ by setting f(U) = 0. Then the map ϕ + f : V → V ′ is an
isomorphism.

Corollary 3.7.

(1) 1 + Fn ⊆ C(Pn)0.

(2) S∗
n + Fn ⊆ C(Pn)0.

Proof. Both statements follow from Theorem 3.5 (since S∗
n ⊆ C(Pn)0 and Fn ⊆

I(Pn)), but we give short independent proofs (that do not use Theorem 3.5).

(1) Since 1 + Fn � 1 + M∞(K), statement (1) is obvious.

(2) Let u ∈ S∗
n and f ∈ Fn. Then u−1f ∈ Fn. By statement (1), the element 1+u−1f ∈

C(Pn)0. Since u ∈ C(Pn)0, we have u + f = u(1 + u−1f) ∈ C(Pn)0, by Lemma 3.3.

�

3.2. The subgroup Θn,n−1 of (1 + an,n−1)∗ for n � 2

For each pair of indices i �= j, the element

θij := θij({1, . . . , n}) :=
(

1+(yi−1)
∏
k �=i

E00(k)
)

·
(

1+(xj−1)
∏
l �=j

E00(l)
)

∈ (1+an,n−1)∗

is a unit and

θ−1
ij =

(
1 + (yj − 1)

∏
l �=j

E00(l)
)

·
(

1 + (xi − 1)
∏
k �=i

E00(k)
)

∈ (1 + an,n−1)∗, (3.2)
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i.e. θ−1
ij = θji. This is obvious since

θij ∗ xα =

⎧⎪⎨
⎪⎩

xαi−1
i if αi > 0 ∀k �= i : αk = 0,

x
αj+1
j if αj � 0 ∀l �= j : αl = 0,

xα otherwise,

and

θ−1
ij ∗ xα =

⎧⎪⎨
⎪⎩

xαi+1
i if αi � 0 ∀k �= i : αk = 0,

x
αj−1
j if αj > 0 ∀l �= j : αl = 0,

xα otherwise.

Using the above action of the elements θij on the monomial basis for the polynomial
algebra Pn, it is easy to show that the elements θij commute modulo (1 + Fn)∗; θjkθij ≡
θik mod(1 + Fn)∗ for all distinct elements i, j and k; and θm

ij ∗ 1 = xm
j for all m � 1.

Recall that Θn,n−1 is the subgroup of (1 + an,n−1)∗ generated by the elements θij . It
follows from

(
1 + (yi − 1)

∏
k �=i

E00(k)
)

∗ xα =

⎧⎪⎨
⎪⎩

xαi−1
i if αi > 0 ∀k �= i : αk = 0,

0 if α = 0,

xα otherwise

that the map 1+(yi −1)
∏

k �=i E00(k) ∈ EndK(Pn) is a surjection with kernel equal to K

and so

ind
(

1 + (yi − 1)
∏
k �=i

E00(k)
)

= 1. (3.3)

Similarly, it follows from

(
1 + (xj − 1)

∏
l �=j

E00(l)
)

∗ xα =

{
x

αj+1
j if ∀l �= j : αl = 0,

xα otherwise

that the map 1 + (xj − 1)
∏

l �=jE00(l) ∈ EndK(Pn) is an injection such that Pn = K ⊕
im(1 + (xj − 1)

∏
l �=jE00(l)) and so

ind
(

1 + (xj − 1)
∏
l �=j

E00(l)
)

= −1. (3.4)

We see that the unit θij of the algebra Sn is the product of two non-units having non-zero
indices of opposite sign (note that ind(θij) = 0 and so the sum of the two indices is equal
to 0). Lemma 3.8 shows that this is a general phenomenon and so the group (1+an,n−1)∗

is a sophisticated group in the sense that in producing units, non-units are involved.
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Lemma 3.8. Let u = 1+
∑n

i=1ai ∈ (1+ an,n−1)∗, where ai ∈ pCi. Then the following
hold:

(1) 1 + ai ∈ C(Pn) for all i = 1, . . . , n and
∑n

i=1 ind(1 + ai) = 0;

(2) if u = 1+
∑n

i=1 a′
i, where a′

i ∈ pCi, then ind(1+ai) = ind(1+a′
i) for all i = 1, . . . , n.

Proof. (1) Since ai ∈ pCi for all i, we have aiaj ∈ Fn, provided that i �= j. It follows
that the elements f := u−(1+a1)(1+a2) · · · (1+an) and f ′ := u−(1+a2) · · · (1+an)(1+
a1) belong to the ideal Fn. By Corollary 3.7 (2), u−f, u−f ′ ∈ C(Pn)0. It then follows from
the equalities u−f = (1+a1)(1+a2) · · · (1+an) and u−f ′ = (1+a2) · · · (1+an)(1+a1)
that

im(1 + a1) ⊇ im(u − f) and ker(1 + a1) ⊆ ker(u − f ′).

This means that 1+a1 ∈ C(Pn). By symmetry, 1+ai ∈ C(Pn) for all i. By Corollary 3.7 (2)
and Lemma 3.3,

0 = ind(u) = ind(u − f) = ind(1 + a1) · · · (1 + an) =
n∑

i=1

ind(1 + ai).

(2) For each number i, fi := a′
i−ai = −

∑
j �=i(a

′
j−aj) ∈ pCi

⋂
pi =

⋂n
j=1pj = Fn. Since

Fn ⊆ I(Pn), we see that ind(1+a′
i) = ind(1+ai +fi) = ind(1+ai), by Theorem 3.5. �

By Lemma 3.8, for each number i = 1, . . . , n there is a well-defined map

indi : (1 + an,n−1)∗ → Z, u = 1 +
n∑

j=1

aj �→ ind(1 + ai) (3.5)

(where ai ∈ pCi for i = 1, . . . , n) that is a group homomorphism

indi(uu′) = indi

((
1 +

n∑
j=1

aj

)(
1 +

n∑
k=1

a′
k

))

= ind(1 + ai + a′
i + aia

′
i)

= ind((1 + ai)(1 + a′
i))

= ind(1 + ai) + ind(1 + a′
i)

= indi(u) + indi(u′)

since aja
′
j ∈ pCj for all j and aja

′
k ∈ Fn for all j �= k. Let Kn,n−1 be the kernel of the

group epimorphism

n−1⊕
i=1

indi : (1 + an,n−1)∗ → Zn−1 =
n−1⊕
i=1

Zei, 1 +
n∑

i=1

ai �→
n−1∑
i=1

ind(1 + ai) · ei,

where ai ∈ pCi for i = 1, . . . , n. The restriction of the epimorphism to the subset
Θ′

n,n−1 := exact∏n−1
j=1 〈θn,j〉 is a bijection since (by (3.3) and (3.4))

n−1⊕
i=1

indi(θj,j+1) =

{
ej − ej+1 if j < n − 1,

en−1 if j = n − 1.
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Therefore,

(1 + an,n−1)∗ = exactΘ′
n,n−1 · Kn,n−1, where Kn,n−1 =

n⋂
i=1

ker(indi), (3.6)

by Lemma 3.8 (1). So, Kn,n−1 is a normal subgroup of the group (1+ an,n−1)∗, Θ′
n,n−1 ∩

Kn,n−1 = {1} and each element u of the group (1 + an,n−1)∗ is a unique product vw for
some elements v ∈ Θ′

n,n−1 and w ∈ Kn,n−1. The subgroups (1 + pCi)∗, i = 1, . . . , n, of
the groups (1+an,n−1)∗ and (1+an)∗ are normal and (1+pCi)∗⋂(1+pCj)∗ = (1+Fn)∗

for all i �= j. The product
∏n

i=1(1 + pCi)∗ := {u1 · · ·un | ui ∈ (1 + pCi)∗, i = 1, . . . , n} is
a normal subgroup of (1 + an,n−1)∗ and (1 + an)∗. In fact, the order in the product can
be arbitrary (by normality). Clearly,

∏n
i=1(1 + pCi)∗ ⊆ Kn,n−1. In fact, equality holds,

as the next proposition shows.

Proposition 3.9.

(1) Kn,n−1 =
∏n

i=1(1 + pCi)∗.

(2)

(1 + an,n−1)∗ = exactΘ′
n,n−1 ·

( n∏
i=1

(1 + pCi)∗
)

= 〈θn,1〉 � · · · � 〈θn,n−1〉 �
( n∏

i=1

(1 + pCi)∗
)

.

Proof. (1) It suffices to show that each element u = 1 +
∑n

i=1ai (where ai ∈ pCi) of
the group Kn,n−1 is a product u1 · · ·un of some elements ui ∈ (1+pCi)∗. By Lemma 3.8,
1 + a1 ∈ C(Pn)0 since u ∈ Kn,n−1. Fix a subspace, say W , of Pn such that Pn =
ker(1 + a1) ⊕ W and W =

⊕
α∈IKxα, where I is a subset of Nn. By Lemma 3.6, we

can find an element f1 ∈ Fn (since dim ker(1 + a1) < ∞, W has a monomial basis and
f1(W ) = 0) such that u1 := 1 + a1 + f1 ∈ AutK(Pn). We claim that u1 ∈ (1 + pC1)∗. It
is a subtle point since not all elements of the algebra Sn that are invertible linear maps
in Pn are invertible in Sn, i.e. S∗

n � Sn ∩ AutK(Pn), but (see [7])

(1 + Fn)∗ = (1 + Fn) ∩ AutK(Pn).

The main idea in the proof of the claim is to use this equality. Similarly, for each i � 2,
we can find an element fi ∈ Fn such that vi := 1 + ai + fi ∈ AutK(Pn). Then v :=
v2 · · · vn ∈ AutK(Pn), u = u1v + g1 and u = vu1 + g2 for some elements gi ∈ Fn. Hence,

u1vu−1 = 1 − g1u
−1 and u−1vu1 = 1 − u−1g2,

and so 1 − g1u
−1, 1 − u−1g2 ∈ (1 + Fn) ∩ AutK(Pn) = (1 + Fn)∗. It follows that

u−1
1 = vu−1(1 − g1u

−1)−1 ∈ (1 + pC1)∗
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since
1 ≡ 1 − g1u

−1 ≡ u1vu−1 ≡ vu−1 mod pC1.

This proves the claim. Clearly,

u′
2 := v + u−1

1 g1 ∈ 1 +
n∑

j=2

pCj ,

where v ∈ 1+
∑n

j=2pCj and u−1
1 g1 ∈ Fn. It then follows from the equality u = u1v+g1 =

u1(v + u−1
1 g1) = u1u

′
2 that u′

2 = u−1
1 u ∈ (1 +

∑n
j=2pCj)∗. Repeating the same argument

for the element u′
2 we find an element u2 ∈ (1 + pC2)∗ such that u′

3 := u−1
2 u′

2 ∈ (1 +∑n
j=3pCj)∗. Repeating the same argument again and again (or using induction) we find

elements ui ∈ (1 + pCi)∗ and elements u′
i ∈ (1 +

∑n
j=i+1pCj)∗ such that u′

i = u−1
i−1u

′
i−1,

and hence u = u1u
′
2 = u1u2u

′
3 = · · · = u1u2 · · ·un, as required.

(2) Statement (2) follows from statement (1) and (3.6). �

For each number i = 1, . . . , n the group of units of the monoid 1 + pCi = 1 + S1(i) ⊗⊗
j �=iF (j) � 1 + M∞(S1(i)) is equal to (1 + pCi)∗ � GL∞(S1(i)). This group contains

the semi-direct product UCi(K) � E∞(S1(i)) of its two subgroups, where

UCi(K) :=
{

λ
∏
j �=i

E00(j) + 1 −
∏
j �=i

E00(j)
∣∣∣∣ λ ∈ K∗

}
� K∗

and the group E∞(S1(i)) is generated by all the elementary matrices 1+aEkl(Ci), where
k, l ∈ Nn−1, k �= l, Ekl(Ci) :=

∏
j �=iEkj lj (j) and a ∈ S1(i). We will see in Proposition 3.10

that the group (1 + pCi)∗ coincides with the semi-direct product.
The set Fn is an ideal of the algebra K + pCi = K(1 + pCi), which is a subalgebra

of the algebra Sn, and (K + pCi)/Fn = K(1 + pCi/Fn) � K(1 + M∞(Li)), where Li :=
K[xi, x

−1
i ] � S1(i)/F (i) is the Laurent polynomial algebra. The algebra Li is a Euclidean

domain, and hence GL∞(Li) = U(Li) � E∞(Li), where

U(Li) :=
{

a
∏
j �=i

E00(j) + 1 −
∏
j �=i

E00(j)
∣∣∣∣ a ∈ L∗

i

}
� L∗

i = K∗ × {xm
i | m ∈ Z}

and E∞(Li) is the subgroup of GL∞(Li) generated by all the elementary matrices. This
statement follows from two facts: (i) every matrix over a Euclidean domain is conjugate
to a diagonal matrix and (ii) every diagonal matrix in GL∞ over an arbitrary ring, say Li,
is conjugate to a matrix in U(Li).

The group of units of the algebra (K + pCi)/Fn is equal to K∗ × GL∞(Li) = K∗ ×
(U(Li)�E∞(Li)). The algebra epimorphism ψCi : K +pCi → (K +pCi)/Fn, a �→ a+Fn

induces the exact sequence of groups

1 → (1 + Fn)∗ → (1 + pCi)∗ ψCi−−→ GL∞(Li) = U(Li) � E∞(Li), (3.7)

which yields the short exact sequence of groups

1 → (1 + Fn)∗ → UCi(K) � E∞(S1(i)) → U(K) � E∞(Li) → 1, (3.8)
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since (1+Fn)∗ ⊆ E∞(S1(i)), by Proposition 3.12 (1). Recall that UCi(K)�E∞(S1(i)) ⊆
(1 + pCi)∗. In fact, equality holds.

Proposition 3.10. (1 + pCi)∗ = UCi(K) � E∞(S1(i)) and the image im(ψCi) =
U(K) � E∞(Li) is a normal subgroup of GL∞(Li) for all i = 1, . . . , n.

Proof. In view of the exact sequences (3.7) and (3.8), it suffices to show that the
image of the map ψCi in (3.7) is equal to U(K) � E∞(Li), which is a normal subgroup
of GL∞(Li). Since ψCi(UCi(K) � E∞(S1(i))) = U(K) � E∞(Li) and

U(Li) = U(K) ×
{

xm
i

∏
j �=i

E00(j) + 1 −
∏
j �=i

E00(j)
∣∣∣∣ m ∈ Z

}
,

this is equivalent to showing that if ψCi(u) = xm
i

∏
j �=iE00(j) + 1 −

∏
j �=iE00(j) for some

element u ∈ (1+pCi)∗ and an integer m ∈ Z, then m = 0. Let u(m) := vi(m)
∏

j �=iE00(j)+
1 −

∏
j �=iE00(j), where

vi(m) :=

{
xm

i if m � 0,

y
|m|
i if m < 0.

Then u(m) ∈ 1 + pCi and ψCi(u(m)) = ψCi(u). Hence, u(m) = u + fm for some element
fm ∈ Fn. Note that

u(m) =

{
u(1)m if m � 0,

u(−1)|m| if m < 0

and, by (3.3) and (3.4), ind(u(m)) = −m. By Corollary 3.7 (2),

0 = ind(u) = ind(u + fm) = ind(u(m)) = −m

and so m = 0, as required. �

Combining Proposition 3.9 (1) and Proposition 3.10, we have the next corollary.

Corollary 3.11.

(1 + an,n−1)∗ = Θ′
n,n−1 ×ex

(
set

n∏
i=1

(1 + pCi)∗
)

� Θ′
n,n−1 ×ex

(
set

n∏
i=1

UCi(K) � E∞(S1(i))
)

� 〈θn,1〉 � · · · � 〈θn,n−1〉 �
(

set
n∏

i=1

UCi(K) � E∞(S1(i))
)

.

Using Corollary 3.11, we can write down explicit generators for the group (1+an,n−1)∗

(see Theorem 4.5 where explicit generators are given for all the groups (1 + an,s)∗). By
Proposition 3.10, the sequence (3.7) can be completed to the exact sequence of group
homomorphisms

1 → (1 + Fn)∗ → (1 + pCi)∗ ψCi−−→ GL∞(Li)
degxi−−−→ Z → 1, (3.9)

where degxi
(xm

i

∏
j �=iE00(j) + 1 −

∏
j �=iE00(j)) = m.
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For elements g and h of a group, [g, h] := ghg−1h−1 is their group commutator.

Proposition 3.12.

(1) (1 + Fn)∗ ⊆ E∞(S1(i)) for all i = 1, . . . , n, where E∞(S1(i)) is the subgroup of
(1+pCi)∗ generated by all the elementary matrices 1+aEαβ(Ci), where a ∈ S1(i),
α, β ∈ Nn−1 and α �= β, and

Eαβ := Eαβ(Ci) :=
∏
j �=i

Eαjβj (j).

(2) For all i �= j, E∞(S1(i)) ∩ E∞(S1(j)) = (1 + Fn)∗. In particular,
⋂n

i=1E∞(S1(i)) =
(1 + Fn)∗.

Proof. (1) In view of symmetry of the indices 1, . . . , n, it suffices to show that the
inclusion holds for, say, i = n, i.e. (1 + Fn)∗ ⊆ E∞(S1(n)). Since (1 + Fn)∗ � GL∞(K),
the group (1 + Fn)∗ is generated by two sorts of elements: a = 1 + λEαβEkl(n), where
λ ∈ K and (α1, . . . , αn−1, k) �= (β1, . . . , βn−1, l), and b = 1 + λE00, where λ ∈ K \ {−1}
and E00 :=

∏n
i=1E00(i).

First, let us show that a ∈ E∞(S1(n)). If α �= β, then the inclusion obviously holds
since a = 1+(λEkl(n))Eαβ and λEkl(n) ∈ S1(i). If α = β, i.e. a = 1+λEααEkl(n), then
necessarily k �= l since (α1, . . . , αn−1, k) �= (α1, . . . , αn−1, l). For each element γ ∈ Nn−1

such that γ �= α, the elements 1 + EαγEkk(n) and 1 + λEγαEkl(n) belong to the group
E∞(S1(n)) and so do their group commutators

[1 + EαγEkk(n), 1 + λEγαEkl(2)] = 1 + λEααEkl(n). (3.10)

Therefore, all the generators a belong to the group E∞(S1(n)).
It remains to prove that b ∈ E∞(S1(n)). In the 2 × 2 matrix ring M2(S1(n)) with

entries in the algebra S1(n) we have the equality, for all scalars λ ∈ K \ {−1},⎛
⎝ 1 0

− yn

1 + λ
1

⎞
⎠(1 λxn

0 1

)(
1 0
yn 1

)(
1 −λxn

0 1

)⎛⎝1
λ2xn

1 + λ
0 1

⎞
⎠

=

⎛
⎝1 + λ 0

0
1

1 + λ

⎞
⎠
⎛
⎝1 − λE00(n)

1 + λ
0

0 1

⎞
⎠ . (3.11)

This can be checked by direct multiplication using the equalities ynxn = 1, xnyn =
1 − E00(n), ynE00(n) = 0 and E00(n)xn = 0 that hold in the algebra S1(n). If we
replace the matrix ring M2(S1(n)) =

⊕1
i,j=0EijS1(n) by its isomorphic copy M ′

2 :=⊕1
i,j=0eEij(n − 1)S1(n), where

e :=

{∏n−2
i=1 E00(i) if n � 3,

1 if n = 2,
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then the equality (3.11) can be seen as an equality in the ring M ′
2. In this case, the first

six matrices in the equality belong to the group E∞(S1(n)). Therefore, the last matrix

c =

⎛
⎝1 − λE00(n)

1 + λ
0

0 1

⎞
⎠

belongs to the group E∞(S1(n)) and as an element of the group E∞(S1(n)) it can be
written as

c = eE00(n − 1)
(

1 − λ

1 + λ
E00(n)

)
+ 1 − eE00(n − 1)

= 1 − λ

1 + λ

n∏
i=0

E00(i) ∈ (1 + Fn)∗.

Since the map ϕ : K \{−1} → K \{−1}, λ �→ −λ/(1+λ) is a bijection (ϕ−1 = ϕ), all the
elements b belong to the group E∞(S1(n)). The proof of the first statement is complete.

(2) By statement (1), for all i �= j,

(1+Fn)∗ ⊆ E∞(S1(i))∩E∞(S1(j)) ⊆ (1+pCi)∗∩(1+pCj)∗ = (1+pCi∩pCj)∗ = (1+Fn)∗

and so statement (2) is obvious. �

4. The structure of the groups S∗
n and Gn, and their generators

In this section a proof of Theorem 2.6 is given and the groups S∗
n, (1 + an)∗ and Gn and

their generators are found explicitly (see Theorems 4.1, 4.2, 4.5 and 4.6).

Proof of Theorem 2.6. To prove the theorem we use induction on n. The initial
step when n = 2 follows from Corollary 3.11 as in this case there is only one option,
(n, s) = (2, 1). So, let n > 2 and suppose that the theorem holds for all pairs (n′, s′),
s′ = 1, . . . , n′ − 1, such that n′ < n. For the number n, we use a second downward
induction on s = 1, . . . , n− 1 starting with s = n − 1. In this case, i.e. (n, s) = (n, n − 1),
the theorem holds as it follows from Corollary 3.11. So, let s < n − 1 and suppose that
the statement is true for all pairs (n, s′) with s′ = s + 1, . . . , n − 1. For each number
i = 1, . . . , n the algebra SCi ⊗ K(xi) is isomorphic to the algebra Sn−1 but over the field
K(xi) of rational functions. By the induction on n, the theorem holds for the algebra
SCi ⊗ K(xi). In order to stress that we consider the algebra SCi over the field K(xi)
rather than K we add the subscript ‘Ci’ to all the notation introduced for the algebra
SCi but over the field K. For example, an−1,s,Ci ⊗ K(xi) stands for the ideal an−1,s of
the algebra SCi but over the field K(xi), etc.

For each number i = 1, . . . , n and for each number s = 1, . . . , n − 2 the composition of
the two algebra homomorphisms

Sn → Sn/pi � SCi ⊗ K[xi, x
−1
i ] → SCi ⊗ K(xi)
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induces the group homomorphism (1+an,s)∗ → (1+an−1,s,Ci ⊗K(xi))∗. This homomor-
phism yields the commutative diagram where all the maps are obvious (and natural):

(1 + an,s)∗ ��

��

(1 + an−1,s,Ci ⊗ K(xi))∗

��
(1 + an,s)∗

Γn,s

��

ψ̄n,s

��

(1 + an−1,s,Ci ⊗ K(xi))∗

Γn−1,s,Ci

ψ̄n−1,s,Ci

��∏
|I|=s(1 + p̄I)∗

Γ̄n,s
� Xn,s � X′

n,s

ϕn,s,i ��
∏′(1 + p̄I,Ci ⊗ K(xi))∗

Γ̄n−1,s,Ci
� Xn−1,s,Ci � X′

n−1,s,Ci

where
∏′ :=

∏
{I : |I|=s, i �∈I} and the map ϕn,s,i : X′

n,s → X′
n−1,s,Ci is given by the rule

ϕn,s,i((j, I)) =

{
(j, I) if i /∈ I ∪ j,

0 otherwise.

This is obvious. By the induction on n, we have the equality ψ′
n−1,s,Ci((1 + an−1,s,Ci ⊗

K(xi))∗) = ψ′
n−1,s,Ci(Θn−1,s,Ci) for each s = 1, . . . , n − 2. Then, by the commutative

diagram above,

ϕn,s,iψ
′
n,s((1 + an,s)∗) ⊆ ψ′

n−1,s,Ci((1 + an−1,s,Ci ⊗ K(xi))∗) = ψ′
n−1,s,Ci(Θn−1,s,Ci).

(4.1)
It follows from the definition of the map ϕn,s,i that

ϕn,s,i(Y′
n,s) ⊆ Y′

n−1,s,Ci. (4.2)

Summarizing, for each i = 1, . . . , n, by (2.19) and (2.21), there is the map

ϕn,s,i : X′
n,s = ψ′

n,s(Θn,s) ⊕ Y′
n,s → X′

n−1,s,Ci = ψ′
n−1,s,Ci(Θn−1,s,Ci) ⊕ Y′

n−1,s,Ci

satisfying (4.1) and (4.2). The group homomorphism

ϕn,s :=
n∏

i=1

ϕn,s,i : X′
n,s →

n∏
i=1

X′
n−1,s,Ci

is a monomorphism since it has trivial kernel: ker(ϕn,s) = ⊕{Z(j, I) | ∀i ∈ I ∪ j}, where
the pairs (j, I) in the direct sum are such that i ∈ I ∪ j for all i = 1, . . . , n (see the
definition of the map ϕn,s,i), i.e. I ∪ j = {1, . . . , n}, but the number of elements in the
set I ∪ j is s + 1 < n − 1 + 1 = n, a contradiction. This means that ker(ϕn,s) = 0. Let
u ∈ (1 + an,s)∗. Then ψ′

n,s(u) = a + b for unique elements a ∈ ψ′
n,s(Θn,s) and b ∈ Y′

n,s.
By (4.1) and (4.2), ϕn,s,i(b) = 0 for all i = 1, . . . , n, i.e. ϕn,s(b) = 0 and so b = 0 since
the map ϕn,s is a monomorphism. This proves that ψ′

n,s((1 + an,s)∗) = ψn,s(Θn,s). By
induction, the theorem holds. The proof of Theorem 2.6 is complete. �
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For each number s = 1, . . . , n−1, consider the following subsets of the group (1+an,s)∗:

En,s :=
∏

|I|=s

UI(K) � E∞(SCI) and Pn,s :=
∏

|I|=s

(1 + pI)∗, (4.3)

the products of subgroups of (1 + an,s)∗ in an arbitrary order that is fixed for each s.

Theorem 4.1.

(1) (1 + an)∗ = Θn,1Γn,1 = Θn,1En,1Θn,2En,2 · · ·Θn,n−1En,n−1. Moreover, for s =
1, . . . , n − 1,

(1 + an,s)∗ = Θn,sΓn,s = Θn,sEn,sΘn,s+1En,s+1 · · ·Θn,n−1En,n−1.

(2) (1 + an)∗ = Θn,1Υn,1 = Θn,1Pn,1Θn,2Pn,2 · · ·Θn,n−1Pn,n−1. Moreover, for s =
1, . . . , n − 1,

(1 + an,s)∗ = Θn,sΥn,s = Θn,sPn,sΘn,s+1Pn,s+1 · · ·Θn,n−1Pn,n−1.

Proof. (1) By Theorem 2.6 and Corollary 3.11,

(1 + an,s)∗ = Θn,sΓn,s

= Θn,s

∏
|I|=s

UI(K) � E∞(SCI) · (1 + an,s−1)∗

= Θn,sEn,s(1 + an,s−1)∗

= Θn,sEn,sΘn,s−1En,s−1(1 + an,s−2)∗

= Θn,sEn,s · · ·Θn,n−2En,n−2(1 + an,n−1)∗

= Θn,sEn,sΘn,s+1En,s+1 · · ·Θn,n−1En,n−1.

(2) Since (1 + an,s)∗ = Θn,sΓn,s ⊆ Θn,sΥn,s ⊆ (1 + an,s)∗, we see that

(1 + an,s)∗ = Θn,sΥn,s

= Θn,s

∏
|I|=s

(1 + pI)∗ · (1 + an,s−1)∗

= Θn,sPn,s(1 + an,s−1)∗

= Θn,sPn,sΘn,s−1Pn,s−1(1 + an,s−2)∗

= Θn,sPn,s · · ·Θn,n−2Pn,n−2(1 + an,n−1)∗

= Θn,sPn,sΘn,s+1Pn,s+1 · · ·Θn,n−1Pn,n−1,

by Corollary 3.11. �

Using Lemma 2.5, we can strengthen Theorem 4.1.
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Theorem 4.2.

(1) (1 + an)∗ = Θ′
n,1En,1Θ

′
n,2En,2 · · ·Θ′

n,n−1En,n−1. Moreover, for s = 1, . . . , n − 1,
(1 + an,s)∗ = Θ′

n,sEn,sΘ
′
n,s+1En,s+1 · · ·Θ′

n,n−1En,n−1.

(2) (1 + an)∗ = Θ′
n,1Pn,1Θ

′
n,2Pn,2 · · ·Θ′

n,n−1Pn,n−1. Moreover, for s = 1, . . . , n − 1,
(1 + an,s)∗ = Θ′

n,sPn,sΘ
′
n,s+1Pn,s+1 · · ·Θ′

n,n−1Pn,n−1.

Proof. The statements follow from Lemma 2.5, (2.22) and Theorem 4.1: repeat the
proof of Theorem 4.1 replacing Θn,t by Θ′

n,t everywhere for all t. �

By Theorem 4.1 (1) and Lemma 2.5, the group Δn,s is a free abelian group of rank(
n

s+1

)
s for s = 1, . . . , n − 1:

Δn,s := (1 + an,s)∗/Γn,s = Θ′
n,sΓn,s/Γn,s �

∏
|J|=s+1

∏
j∈J\max(J)

〈θmax(J),j〉 � Z( n
s+1)s,

(4.4)
where the double product is the direct product of groups.

Corollary 4.3. Zn,s � Y′
n,s � Z( n

s+1) for s = 1, . . . , n − 1 (see (2.10)).

Proof. Recall that ψ′
n,s((1 + an,s)∗) = ψ′

n,s(Θn,s) (see Theorem 2.6), X′
n,s = K′

n,s ⊕
Y′

n,s and ψ′
n,s(Θn,s) = K′

n,s, by (2.21). Then

Zn,s =

∏
|I|=s(1 + p̄I)∗

ψn,s((1 + an,s)∗)

�
∏

|I|=s(1 + p̄I)∗/Γ̄n,s

ψn,s((1 + an,s)∗)/Γ̄n,s

�
X′

n,s

ψ′
n,s((1 + an,s)∗)

�
K′

n,s ⊕ Y′
n,s

ψ′
n,s(Θn,s)

=
K′

n,s ⊕ Y′
n,s

K′
n,s

� Y′
n,s � Z( n

s+1).

�

Theorem 4.4. Υn,s = Γn,s for all s = 1, . . . , n. In particular, the groups Γn,s are
Gn-invariant (hence, normal) subgroups of S∗

n (since Υn,s are too).

Proof. Since Υn,n = Γn,n = (1+Fn)∗, we can assume that s �= n. By Theorem 4.1 and
Lemma 2.5, (1+an,s)∗ = Θn,sΓn,s = Θ′

n,sΓn,s for s = 1, . . . , n−1 and the last product is
exact. Since Γn,s ⊆ Υn,s, we have the equality (1+an,s)∗ = Θ′

n,sΥn,s. So, in order to show
that the equality Γn,s = Υn,s holds, it suffices to prove that Θ′

n,s ∩ Υn,s = {1}. To prove
this equality, first we use an induction on n � 2 and then, for a fixed n, we use a second
downward induction on s = 1, . . . , n − 1, starting with s = n − 1. For n = 2, there is a
single option to consider, (n, s) = (2, 1). In this case the equality holds by Corollary 3.11.
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Let n > 2 and suppose that equality holds for all pairs (n′, s) with n′ < n. For (n, n−1),
the equality is true by Corollary 3.11. Suppose that s < n−1 and that the equality holds
for all pairs (n, s′) with s′ = s + 1, . . . , n − 1. Suppose that Θ′

n,s ∩ Υn,s �= {1}. We seek
a contradiction. Choose an element, say u, from the intersection such that u �= 1. Then
the element u is a unique product u =

∏
|J|=s+1

∏
j∈J\max(J)θmax(J),j(J)n(j,J), where

n(j, J) ∈ Z. Since u �= 1, n(j, J) �= 0 for some pair (j, J). Since |J | = s + 1 < n, the
complement CJ of the set J is a non-empty set. Let f be the composition of the obvious
algebra homomorphisms

Sn → Sn/
∑

i∈CJ

pi � SJ ⊗ LCJ → SJ ⊗ QCJ ,

where QCJ is the field of fractions of the Laurent polynomial algebra LCJ . The alge-
bra SJ ⊗ QCJ is isomorphic to the algebra Ss+1 but over the field QCJ . Let Θ′

s+1,s,J

and Γs+1,s,J be the corresponding Θ′
s+1,s and Γs+1,s for the algebra SJ ⊗ QCJ �

Ss+1 ⊗ QCJ (over the field QCJ). Since f(Γn,s) ⊆ Γs+1,s,J , f(Θ′
n,s) ⊆ Θ′

s+1,s,J · U =∏
k∈J\max(J)θmax(J),k(J)n(k,J) · U , where U :=

∏
l∈JUJ\l(QCJ) ⊆ Γs+1,s,J , using the

induction on n, the inclusion f(u) ∈ f(Θ′
n,s)∩f(Γn,s) yields n(j, J) = 0, a contradiction.

Therefore, Θ′
n,s ∩ Υn,s = {1} and the statements of the theorem hold. �

By (4.4) and Theorem 4.4,

(1 + an,s)∗/Υn,s = (1 + an,s)∗/Γn,s � Z( n
s+1)s. (4.5)

The next theorem gives explicit generators for the groups S∗
n, (1 + an)∗ and (1 + an,s)∗.

Theorem 4.5.

(1) The group (1 + an)∗ is generated by the following elements:

(a) θmax(J),j(J), where j ∈ J \max(J) and |J | = 2, . . . , n;
(b) 1+xt

iE0α(I), 1+xt
iEα0(I), 1+ yt

iE0α(I) and 1+ yt
iEα0(I), where t ∈ N \ {0},

i �∈ I, |I| = 1, . . . , n − 1 and α ∈ NI \ {0};
(c) 1 + (λ − 1)E00(I), 1 + E0α(I) and 1 + Eα0(I), where λ ∈ K∗, I �= ∅ and

α ∈ NI \ {0}.

(2) For s = 1, . . . , n − 1, the group (1 + an,s)∗ is generated by the following elements:

(a) θmax(J),j(J), where j ∈ J \max(J) and |J | = s + 1, . . . , n;
(b) 1+xt

iE0α(I), 1+xt
iEα0(I), 1+ yt

iE0α(I) and 1+ yt
iEα0(I), where t ∈ N \ {0},

i �∈ I, |I| = s, . . . , n − 1 and α ∈ NI \ {0};
(c) 1 + (λ − 1)E00(I), 1 + E0α(I) and 1 + Eα0(I), where λ ∈ K∗, |I| = s, . . . , n

and α ∈ NI \ {0}.

For s = n, the group (1 + an,n)∗ = (1 + Fn)∗ is generated by the elements 1 +
(λ − 1)E00(I), 1 + E0α(I) and 1 + Eα0(I), where λ ∈ K∗, I = {1, . . . , n} and
α ∈ Nn \ {0}.

(3) The group S∗
n = K∗ × (1 + an)∗ is generated by the elements from statement (1)

and K∗.
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Proof. (1) Statement (1) is a special case of statement (2) when s = 1.

(2) The statement is obvious for s = n (by (4.6), (4.7) and (4.8), where I = {1, . . . , n}).
So, let s = 1, . . . , n−1. By Theorem 4.2 (1), the group (1+an,s)∗ is generated by the sets
Θ′

n,t and En,t, where t = 1, . . . , n − 1. Each element of any of the sets Θ′
n,t is a product

of elements from (a). Recall that En,t :=
∏

|I|=tUI(K) � E∞(SCI). Each element of any
of the groups UI(K) is a product of elements from (c). For each i = 1, . . . , n, the algebra
S1(i) is the direct sum

⊕
j�1Kyj

i ⊕K⊕
⊕

j�1Kxj
i ⊕F (i) (see (2.4)). By a straightforward

computation,
[1 + aEαβ(I), 1 + bEβγ(I)] = 1 + abEαγ(I) (4.6)

for all a, b ∈ SCI and distinct α, β, γ ∈ NI , where [u, v] = uvu−1v−1 is the (group)
commutator of elements u and v. In this paper the commutator stands for the group
commutator (unless it is stated otherwise). For all λ ∈ K∗, I with |I| = s, . . . , n and
α ∈ NI \ {0},

(1 + (λ − 1)E00(I)) · (1 + E0α(I)) · (1 + (λ − 1)E00(I))−1 = 1 + λE0α(I), (4.7)

(1 + (λ − 1)E00(I))−1 · (1 + Eα0(I)) · (1 + (λ − 1)E00(I)) = 1 + λEα0(I). (4.8)

It follows from (4.6), (4.7) and (4.8) that each element of each of the sets E∞(SCI) is a
product of elements from (b) and (c). The proof of statement (1) is complete.

(3) Statement (3) is obvious. �

The next theorem presents explicit generators for the group Gn.

Theorem 4.6. Let Js := {1, . . . , s}, where s = 1, . . . , n. The group Gn = Sn � Tn �
Inn(Sn) is generated by the transpositions (ij), where i < j; the elements t(λ,1,...,1) : x1 �→
λx1, y1 �→ λ−1y1, xk �→ xk, yk �→ yk, k = 2, . . . , n; and the inner automorphisms ωu,
where u belongs to the following sets:

(1) θs,1(Js), s = 2, . . . , n;

(2) 1+xt
nE0α(Js), 1+xt

nEα0(Js), 1+yt
nE0α(Js) and 1+yt

nEα0(Js), where t ∈ N\{0},
s = 1, . . . , n − 1 and α ∈ Ns \ {0};

(3) 1 + (λ − 1)E00(Js), 1 + E0α(Js) and 1 + Eα0(Js), where λ ∈ K∗, s = 1, . . . , n and
α ∈ Ns \ {0}.

Proof. The group Gn = Sn � Tn � Inn(Sn) (see Theorem 1.5 (3)) is generated by its
three subgroups Sn, Tn and Inn(Sn) = {ωv | v ∈ (1 + an)∗}. The transpositions generate
the symmetric group Sn. Then, by conjugating,

(1i)t(λ,1,...,1)(1i)−1 = t(1,...,1,λ,1,...,1) (λ is in the ith position),

we obtain generators for the torus Tn. Similarly, by conjugating the elements of the sets
(1), (2) and (3) (i.e. using sωvs−1 = ωs(v) for all s ∈ Sn), we obtain all the elements
from the sets (a), (b) and (c) of Theorem 4.5 when we identify the groups Inn(Sn) and
(1 + an)∗ via ωv ↔ v. Now the theorem is obvious. �
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5. The commutants of the groups Gn and Sn, and an analogue of the
Jacobian homomorphism

In this section the groups [Gn, Gn] and Gn/[Gn, Gn] are found (see Theorem 5.4) and
they are used to show the uniqueness of an analogue Jn (see (1.2)) of the Jacobian
homomorphism for n > 2, and in finding the exotic Jacobians Jex

n for n = 1, 2.

5.1. The groups [Gn, Gn] and Gn/[Gn, Gn]

The subgroup of a group G generated by all the commutators [a, b] := aba−1b−1, where
a, b ∈ G, is called the commutant (or the commutator subgroup) of the group G and is
denoted either by [G, G] or G(1). The commutant is the least normal subgroup G′ of G

such that the factor group G/G′ is abelian. If ϕ : G → H is a group homomorphism, then
ϕ([G, G]) ⊆ [H, H]. If, in addition, the group H is abelian, then [G, G] ⊆ ker(ϕ). To find
the commutant of a group is a technical process, especially if the group is large. In the
next two easy lemmas we collect patterns that appear in finding the commutant of the
group Gn. Their repeated applications make arguments short.

Lemma 5.1.

(1) The commutant [A � B, A � B] of a skew product A � B of two groups is equal
to [A, A] � ([A, B] · [B, B]), where [A, B] is the subgroup of B generated by all the
commutators [a, b] := aba−1b for a ∈ A and b ∈ B. Hence, B ∩ [A � B, A � B] =
[A, B] · [B, B] and

A � B

[A � B, A � B]
� A

[A, A]
× B

[A, B] · [B, B]
.

(2) If, in addition, the group B is a direct product of groups
∏m

i=1Bi such that
aBia

−1 ⊆ Bi for all elements a ∈ A and i = 1, . . . , m, then [A � B, A � B] =
[A, A] �

∏m
i=1([A, Bi][Bi, Bi]).

Proof. (1) Note that [a, b] = ωa(b)b−1, where ωa(b) = aba−1. For a ∈ A and b, c ∈ B,

c[a, b] = cωa(b)b−1

= ωa(ωa−1(c)b)(ωa−1(c)b)−1ωa−1(c)bb−1

= ωa(ωa−1(c)b)(ωa−1(c)b)−1 · ωa−1(c)

= [a, ωa−1(c)b] · ωa−1(c).

It follows from these equalities (when, in addition, we choose c ∈ [B, B]) that the sub-
group of B that is generated by its two subgroups, [A, B] and [B, B], is equal to their
set theoretic product [A, B][B, B] := {ef | e ∈ [A, B], f ∈ [B, B]}. Then the subgroup of
C := [A � B, A � B] that is generated by its three subgroups [A, A], [A, B] and [B, B] is
equal to the right-hand side, say R, of the equality of statement (1). It remains to prove
that C ⊆ R. This inclusion follows from the fact that, for all a1, a2 ∈ A and b1, b2 ∈ B,

[a1b1, a2b2] = ωa1([b1, a2])ωa1a2([b1, b2])[a1, a2]ωa2([a1, b2]), (5.1)
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which follows from the equalities [ab, c] = ωa([b, c])[a, c] and [a, b]−1 = [b, a]:

[a1b1, a2b2] = ωa1([b1, a2b2])[a1, a2b2]

= ([a2b2, a1]ωa1([a2b2, b1]))−1

= (ωa2([b2, a1])[a2, a1]ωa1(ωa2([b2, b1])[a2, b1])−1

= ωa1([b1, a2])ωa1a2([b1, b2])[a1, a2]ωa2([a1, b2]).

(2) By statement (1), it suffices to show that [A,
∏m

i=1Bi] =
∏m

i=1[A, Bi]. The general
case follows easily from the case in which m = 2 (by induction). The case m = 2 follows
from (5.1), where we put b1 = 1, a1 ∈ A, a2 ∈ B1 and b2 ∈ B2. �

Lemma 5.2.

(1) Let ϕ : G → H be a group epimorphism such that ker(ϕ) ⊆ [G, G]. Then [G, G] =
ϕ−1([H, H]).

(2) Let N be a normal subgroup of a group such that N ⊆ [G, G] and the factor group
G/N is abelian. Then N = [G, G].

Proof. (1) Since ϕ is an epimorphism with ker(ϕ) ⊆ [G, G], it follows that the inclu-
sion ϕ−1([H, H]) ⊆ [G, G] is obvious. Then the composition of the group epimorphisms
G

ϕ−→ H → H/[H, H] and the fact that the group H/[H, H] is abelian yield the opposite
inclusion ϕ−1([H, H]) ⊇ [G, G].

(2) Applying statement (1) to the group epimorphism ϕ : G → G/N we get state-
ment (2): [G, G] = ϕ−1([G/N, G/N ]) = ϕ−1(e) = ker(ϕ). �

For all transpositions (ij) ∈ Sn and elements t(λ1,...,λn) ∈ Tn,

[(ij), t(λ1,...,λn)] = t(1,...,1,λ−1
i λj ,1,...,1,λ−1

j λi,1,...,1), (5.2)

where the elements λ−1
i λj and λ−1

j λi are in the ith and jth place, respectively.

Lemma 5.3. For each natural number n � 2, [Sn � Tn, Sn � Tn] = [Sn, Sn] � Tn
1 ,

where Tn
1 := {t(λ1,...,λn) ∈ Tn |

∏n
i=1λi = 1}.

Proof. Let R and L be the right-hand side and the left-hand side of the equality,
respectively. By Theorem 5.1 (1), (5.1) and (5.2), R ⊇ L. To prove the reverse inclusion,
consider two group epimorphisms:

ϕ : Sn � Tn → K∗, (σ, t(λ1,...,λn)) �→
n∏

i=1

λi,

ψ : Sn � Tn → Sn � Tn/Tn � Sn, (σ, tλ) �→ σ.

Then R ⊆ ker(ϕ) = Sn � Tn
1 and R ⊆ ψ−1([Sn, Sn]) = [Sn, Sn] � Tn, and hence R ⊆

(Sn � Tn
1 ) ∩ ([Sn, Sn] � Tn) = L, as required. �
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Let J be a subset of the set {1, . . . , n} that contains at least two elements, let i and j

be two distinct elements of the set J and let λ ∈ K∗. By multiplying out, we see that
(recall that μI(xj) = xjE00(I) + 1 − E00(I))

μJ\i(yi)eJ\j = eJ\jμJ\i(xi) = eJ\j − eJ , (5.3)

μJ\i(yi)eJ = eJμJ\i(xi) = 0, (5.4)

μJ\j(xjyj) = 1 − eJ , (5.5)

eJμJ\j(λ) = μJ\j(λ)eJ = λeJ . (5.6)

Note that (where λ ∈ K∗)

[θij(J), μJ\j(λ)] = μJ(λ−1) (5.7)

since (by direct computations, consider the four cases as in (2.16))

[θij(J), μJ\j(λ)] ∗ xα =

{
λ−1xα if ∀k ∈ J : αk = 0,

xα otherwise.

Alternatively, using the equalities (5.3), (5.4), (5.5) and (5.6), we can show directly that
(5.7) holds:

[θij(J), μJ\j(λ)]

= θij(J)μJ\j(λ)θji(J)μJ\j(λ−1)

= μJ\i(yi) · μJ\j(xj)μJ\j(λ)μJ\j(yj) · μJ\i(xi)μJ\j(λ−1)

= μJ\i(yi) · μJ\j(xjyj) · μJ\j(λ) · μJ\i(xi)μJ\j(λ−1)

= μJ\i(yi) · (1 − eJ) · μJ\j(λ) · μJ\i(xi)μJ\j(λ−1) (by (5.5))

= (1 + (λ − 1)μJ\i(yi)eJ\jμJ\i(xi)) · μJ\j(λ−1) (by (5.4))

= (1 + (λ − 1)(eJ\j − eJ)μJ\i(xi)) · μJ\j(λ−1) (by (5.3))

= (1 + (λ − 1)(eJ\j − eJ)) · μJ\j(λ−1) (by (5.3) and (5.4))

= (μJ\j(λ) + (1 − λ)eJ) · μJ\j(λ−1) = 1 + (1 − λ)λ−1eJ (by (5.6))

= 1 + (λ−1 − 1)eJ = μJ(λ−1).

By taking the inverse of both sides of (5.7) and using the fact that [a, b]−1 = [b, a], we
have the equality

[μJ\j(λ), θij(J)] = μJ(λ). (5.8)

Let J be a subset of the set {1, . . . , n}. If i and j are distinct elements of the set J (hence,
|J | � 2), then, for all elements s ∈ Sn,

sωθij(J)s
−1 = ωθs(i)s(j)(s(J)), (5.9)

[(ij), ωθij(J)] = ωθij(J)−2 . (5.10)
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The equality (5.9) is obvious and the equality (5.10) follows from (5.9) and (2.17):

[(ij), ωθij(J)] = (ij)ωθij(J)(ij)−1ω−1
θij(J)

= ωθji(J)ωθij(J)−1

= ωθij(J)−1ωθij(J)−1

= ωθij(J)−2 .

If i, j and k are distinct elements of the set J (hence, |J | � 3), then

[(ik), ωθij(J)] = ωθki(J). (5.11)

In more detail,

[(ik), ωθij(J)] = (ik)ωθij(J)(ik)−1ω−1
θij(J)

= ωθkj(J)ωθji(J) (by (5.9) and (2.17))

= ωθki(J) (by (2.18)).

By (5.11), if n > 2, then the current group Θn belongs to the commutant [Gn, Gn], but
for n = 2 this is not true (see Theorem 5.4 (1)) and this is the reason for existence of the
exotic ‘Jacobian’ homomorphism Jex

2 .
Let θij := θij({i, j}) and μj(λ) := μ{j}(λ), where λ ∈ K∗. Then

[t(1,...,1,λi,1,...,1), ωθij
] = ωμj(λ−1

i ), (5.12)

where the scalar λi ∈ K∗ is in the ith position. In more detail,

[t(1,...,1,λi,1,...,1), ωθij ] = ωμj(λ−1
i yi)μi(xj) · ωθ−1

ij
= ωμj(λ−1

i )θijθ−1
ij

= ωμj(λ−1
i ).

Theorem 5.4. Let θ := θ12({1, 2}) and let N2 := {ωu | u ∈ 〈θ2〉 ·
∏

|I|=1UI(K) �
EI(SCI)} ⊆ G2. Then

(1)

[Gn, Gn] =

⎧⎪⎨
⎪⎩

{ωu | u ∈ E∞(K)} if n = 1,

T1
1 � N2 if n = 2,

[Sn, Sn] � Tn
1 � Inn(Sn) if n > 2;

(2)

Gn/[Gn, Gn] �

⎧⎪⎨
⎪⎩

K∗ × K∗ if n = 1,

Z/2Z × K∗ × Z/2Z if n = 2,

Z/2Z × K∗ if n > 2.
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Proof. Recall that (1 + an)∗ � Inn(Sn), u ↔ ωu (see Theorem 1.5 (3)). To save on
notation we identify these two groups by the isomorphism above. Then Gn = Sn � Tn �
Inn(Sn) = Sn � Tn � (1 + an)∗.

We first prove the case in which n = 1. By [7, Theorem 4.1],

G1 � T1 � (1 + F )∗ � T1 � (U(K) � E∞(K)) = (T1 × U(K)) � E∞(K).

Since [E∞(K), E∞(K)] = E∞(K) (hence, E∞(K) ⊆ [G1, G1]) and the factor group
G1/E∞(K) � T1 × U(K) is abelian, by Lemma 5.2 (2), [G1, G1] = {ωu | u ∈ E∞(K)}.
Hence, G1/[G1, G1] � T1 × U(K) � K∗ × K∗.

Let n � 2. Note that E∞(SCI) = [E∞(SCI), E∞(SCI)] ⊆ [Gn, Gn] for all non-empty
subsets I of the set {1, . . . , n}. It follows from (5.8), (5.11) and Theorem 4.2 (1) that

(1 + an,2)∗ ⊆ [Gn, Gn].

We now prove the case of n = 2. By (5.10), θ2 ∈ [G2, G2]. By (5.12),
∏

|I|=1UI(K) �
EI(SCI) ⊆ [G2, G2]. By Theorem 4.2 (1) and (2.10),

Ḡ2 := G2/(1 + a2,2)∗ � S2 � T2 � 〈θ〉 �
∏

|I|=1

UI(K) � EI(LCI).

Note that for the group commutator [(12), ωθ] = ωθ−2 (by (5.10)) and, for all elements
tλ ∈ T2,

[tλ, ωθ] ≡ ωμ2(λ−1
1 )μ1(λ2) mod (1 + a2,2)∗.

Indeed,

[tλ, ωθ] ≡ ωμ2(λ−1
1 )θμ1(λ2)ωθ−1

≡ ωμ2(λ−1
1 )θμ1(λ2)θ−1

≡ ωμ2(λ−1
1 )μ1(λ2)θθ−1

≡ ωμ2(λ−1
1 )μ1(λ2) mod (1 + a2,2)∗.

It follows that the group N := 〈θ2〉 �
∏

|I|=1UI(K) � EI(LCI) is a normal subgroup of
Ḡ2, N ⊆ [Ḡ2, Ḡ2] and Ḡ2/N � (S2 � T2) × (〈θ〉/〈θ2〉). By Lemma 5.3, [Ḡ2/N, Ḡ2/N ] =
[S2 � T2, S2 � T2] = T2

1. Then, by Lemma 5.2 (1) and Proposition 3.12 (1), statement (1)
follows. Then, by Lemma 5.1 (1),

G2

[G2, G2]
� Ḡ2/N

[Ḡ2/N, Ḡ2/N ]
� S2 × T2

T2
1

× 〈θ〉
〈θ2〉 � Z2 × K∗ × Z2.

Finally, we prove the case in which n > 2. By Theorem 4.2 (1), (1 + an,1)∗ =
Θ′

n,1En,1 · · ·Θ′
n,n−1En,n−1. By (5.11), Θ′

n,s ⊆ [Gn, Gn] for all s = 1, . . . , n − 1. By (5.8),
En,s ⊆ [Gn, Gn] for all s = 2, . . . , n − 1 and, by (5.12), En,1 ⊆ [Gn, Gn]. Therefore,
(1 + an,1)∗ ⊆ [Gn, Gn]. Then the factor group Ḡn := Gn/(1 + an,1)∗ is isomorphic to the
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group Sn � Tn. By Lemma 5.3, [Ḡn, Ḡn] = [Sn, Sn] � Tn
1 and statement (1) follows, by

Lemma 5.2 (1). By Lemma 5.2 (1),

Gn

[Gn, Gn]
� Ḡn

[Ḡn, Ḡn]
� Sn

[Sn, Sn]
× Tn

Tn
1

� Z2 × K∗.

The proof of the theorem is complete. �

Recall that affn := Sn � Tn.

Corollary 5.5.

(1)

Inn(Sn)
Inn(Sn) ∩ [Gn, Gn]

�

⎧⎪⎨
⎪⎩

K∗ if n = 1,

Z2 if n = 2,

0 if n > 2.

(2)
affn

[affn, affn]
�
{

K∗ if n = 1,

Z2 × K∗ if n > 1.

(3)

Gn

[Gn, Gn]
� affn

[affn, affn]
× Inn(Sn)

Inn(Sn) ∩ [Gn, Gn]
� affn

[affn, affn]
×

⎧⎪⎨
⎪⎩

K∗ if n = 1,

Z2 if n = 2,

0 if n > 2.

Proof. (1) We keep the notation of the proof of Theorem 5.4 (in particular, we identify
the groups Inn(Sn) and (1 + an)∗), as above. For n = 1, Inn(S1) = U(K) � E∞(K) and
[G1, G1] = E∞(K) (see Theorem 5.4 (1)) and the statement follows.

For n = 2, by Theorem 5.4 (1), Inn(Sn)/ Inn(Sn) ∩ [Gn, Gn] � 〈θ〉/〈θ2〉 � Z2.
For n = 3, by Theorem 5.4 (1), Inn(Sn) ⊆ [Gn, Gn].

(2) For n = 1, aff1 = T1 and statement (2) is obvious. For n > 1, statement (2) follows
from Lemma 5.3: affn /[affn, affn] � (Sn/[Sn, Sn]) × (Tn/Tn

1 ) � Z2 × K∗.

(3) Since Gn = affn � Inn(Sn), the first isomorphism follows from Lemma 5.1 (1) and
then the second isomorphism follows from statement (1). �

5.2. An analogue of the polynomial Jacobian homomorphism

We keep the notation of the introduction. We want to find an analogue of the
polynomial Jacobian homomorphism (1.1) for the algebra Sn. The algebra Sn is non-
commutative and non-Noetherian, with trivial centre, i.e. Z(Sn) = K [4, Proposition 4.1],
and there are no obvious ‘partial’ derivatives for the algebra Sn. So, in order to find the
analogue, we first define the Jacobian homomorphism in invariant group-theoretic terms,
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i.e. we select natural properties/conditions that uniquely determine J . Then, for the
algebra Sn, the conditions obtained uniquely determine an analogue of the Jacobian
homomorphism for n � 3 but for n = 1, 2, where there are exactly two of them.

The group Pn = Σn ×ex Affn is an exact product of its two subgroups, where Affn :=
{σA,a : x �→ Ax + a | A ∈ GLn(K), a ∈ Kn} is the affine group and

Σn := {σ ∈ Pn | σ(xi) ≡ xi mod(x1, . . . , xn)2, i = 1, . . . , n}

is the Jacobian group, where (x1, . . . , xn) is the maximal ideal of the polynomial alge-
bra Pn. Recall that an exact product means that each element σ ∈ Pn is a unique product
σ = ξ · σA,a, where σA,a ∈ Affn and ξ ∈ Σn. Indeed, σ : x �→ a + A(x + · · · ), where the
three dots mean higher terms, and so σ = ξσA,a, where ξ : x �→ x + · · · . The Jacobian
homomorphism Jn is determined by its restriction to the affine subgroup, since Jn(ξ) = 1
for all ξ ∈ Σn (trivial), and

Jn(σ) = Jn(σA,a) = det(A). (5.13)

The group Gn = Sn�Tn�Inn(Sn) has a similar structure to the group Pn. The subgroup
affn := Sn � Tn is an affine part of the group Gn and the subgroup Inn(Sn) plays the
role of the Jacobian subgroup Σn due to the following corollary.

Corollary 5.6 (Bavula [7, Corollary 5.5]).

Inn(Sn) = {σ ∈ Gn | σ(xi) ≡ xi mod pi, σ(yi) ≡ yi mod pi ∀i}.

Definition 5.7. An analogue Jn of the polynomial Jacobian homomorphism Jn is
a group homomorphism Jn : Gn → K∗ that acts on the affine subgroup affn as in the
polynomial case (i.e. it sends the affine automorphism to its Jacobian).

There is at least one such map that is given in (1.2) and (1.3).

Theorem 5.8.

(1) For n > 2 the analogue Jn of the polynomial Jacobian homomorphism Jn is unique
and given in (1.2) and (1.3).

(2) For n = 1, 2 there is another one Jex
n , the so-called exotic Jacobian homomorphism,

given by the following rule.

(a) For n = 1, σ = tλ · ωu ∈ G1 = T1 � {ωv | v ∈ (1 + F )∗}, where tλ ∈ T1 and
u ∈ (1 + F )∗ � GL∞(K), and Jex

1 (σ) = λ · det(u). The homomorphisms J1

and Jex
1 are algebraically independent characters of the group G1.

(b) For n = 2, σ = stλωθiξ ∈ G2, where s ∈ S2, tλ ∈ T2, i ∈ {0, 1} and ξ ∈ N2,
Jex
2 (σ) = (−1)i sgn(s)λ1λ2. Note that (Jex

2 )2 = J2
2.

Proof. (1) Statement (1) follows from the fact that Gn/[Gn, Gn] � affn /[affn, affn]
(see Corollary 5.5 (3)).

(2) Statement (2) follows from Corollary 5.5 (3). �
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8. J. Dixmier, Sur les algèbres de Weyl, Bull. Soc. Math. France 96 (1968), 209–242.
9. W. Fulton, Intersection theory (Springer, 1984).

10. N. Jacobson, Structure of rings, revised edn, American Mathematical Society Collo-
quium Publications, Volume 37 (American Mathematical Society, Providence, RI, 1968).
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