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We consider a two-player game in which the first player (the Guesser) tries to guess,
edge-by-edge, the path that second player (the Chooser) takes through a directed
graph. At each step, the Guesser makes a wager as to the correctness of her guess
and receives a payoff proportional to her wager if she is correct. We derive optimal
strategies for both players for various classes of graphs, and we describe the Markov-
chain dynamics of the game under optimal play. These results are applied to the
infinite-duration Lying Oracle Game, in which the Guesser must use information
provided by an unreliable Oracle to predict the outcome of a coin toss.

1. INTRODUCTION

In this article we study a two-player zero-sum game in which Player I (the Guesser)
tries to guess, edge-by-edge, the path that Player II (the Chooser) takes through a
directed graph. At each step, the Guesser makes a wager as to the correctness of
her guess and receives a payoff proportional to her wager if she is correct. Optimal
strategies for both players are derived for various classes of graphs, and the Markov-
chain dynamics of the game are analyzed.

The Path Guessing Game studied here is a generalization of the Lying Oracle
Game [1,2]. In the Lying Oracle Game, an Oracle makes a sequence of n statements,
at most k of which can be lies, and a Guesser makes bets on whether the Oracle’s
next statement will be a lie or not. We will see that the Lying Oracle Game is equiv-
alent to our Path Guessing Game on a certain graph whose maximum outdegree is
2. Ravikumar [5] demonstrated a reciprocal relationship between the Lying Oracle
problem and the continuous version of Ulam’s Liar Game. In that game, a Questioner
tries to find a subset of smallest measure that contains an unknown number in [0, 1] by
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asking a Responder n questions about the number’s location in the interval. Again the
Responder may lie up to k times. Under optimal play, the measure of the Questioner’s
subset is the reciprocal of the Bettor’s fortune in the Lying Oracle Game. In [6], Rivest,
Mayer, Kleitman, Winklemann, and Spencer used this game to analyze binary search
in the presence of errors.

In addition to its intrinsic interest, the Path Guessing Game provides a context in
which new questions about the Lying Oracle Game can be asked and answered. For
instance, what are the optimal strategies for the infinite-duration Lying Oracle Game,
in which no block of n statements can contain more than k lies? Questions of this
sort are taken up in the last section of this article, after a general analysis of the Path
Guessing Game has been conducted.

To describe the Path Guessing Game precisely, let G = (V , E) be a directed graph
with vertex set V and edge set E . Call a vertex j ∈ V a terminal node if it has outdegree
0, and assume that each terminal node j has been assigned a positive value vj. Both
players know these values. At a typical stage of the game, the players are at some
nonterminal node i of the graph. The Guesser wagers some fraction w ∈ [0, 1] of
her current fortune F against the claim that she can guess which of the ni possible
successor nodes of i the Chooser will choose as the node to which the game next
moves. The Chooser, knowing w, chooses this successor node. If the Guesser guesses
correctly, then she receives a payoff of (ni − 1)wF from the Chooser. (The factor
ni − 1 weights the Guesser’s payoff by her odds against being correct in the “average
case.”) If she is wrong, she pays wF to the Chooser. The case ni = 1 is special because
the Guesser can always guess correctly. In this case we suppose that she can bet her
whole fortune and double it with certainty. Thus the Guesser’s fortune evolves via the
mapping

F �−→

⎧⎪⎨
⎪⎩

(1 + (ni − 1)w) F if ni ≥ 2 and the Guesser is correct

(1 − w) F if ni ≥ 2 and the Guesser is incorrect

2F if ni = 1.

(1)

Eventually, the game reaches some terminal node of the graph, say j, at which point
the the Guesser’s fortune is multiplied by vj, and the game is over. The goal of the
Guesser is to maximize her expected fortune, whereas the goal of the Chooser is to
minimize the Guesser’s expected fortune. Thus, the Chooser has an incentive to steer
the path through the graph to end at a node where vj is small. On the other hand, he
cannot be so naive as to steer the path with certainty toward the terminal node of least
value, since that will make it easy for the Guesser to make successful wagers along
the path. We are interested in the optimal strategies for the players in this game and
the dynamics of play under the optimal strategies.

Most of our notation is standard. Random variables and matrixes are denoted with
uppercase letters; constants and vectors are lowercase. We will write i → j to indicate
that there is a directed edge from node i to node j in the graph G. The outdegree
of vertex i will be denoted by n or ni. The symbol 1 will indicate either a vector or
matrix, all of whose entries are 1. The dimensions should be clear from the contex. For
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readability, the Guesser (Player I) will be consistently referred to as “she,” whereas
the Chooser (Player II) will be referred to as “he.”

2. THE GAME ONTREES

In this section we investigate the Path Guessing Game when the graph G is a tree.
First, we will consider the simple case when G is a fan (i.e., a tree of height 1, with
one root node and n terminal nodes). The results for this case will then be extended
to a general finite tree via a straightforward induction on the height of the tree.

Let G be a fan with n ≥ 2 leaves. We assume each leaf j has been assigned a
positive value vj. The players are initially located at the root node of G, and the
Guesser’s initial fortune is $1. The Chooser’s play consists of selecting the destination
node, so his strategy set is �c = { j : 1 ≤ j ≤ n}. The Guesser must choose both a
wager and a guess as to the destination node, so her strategy set is �g = {( j, w) : 1 ≤
j ≤ n and w ∈ [0, 1]}.

First, regard the wager w ∈ [0, 1] as given. Then the Path Guessing Game on G
is equivalent to a zero-sum game whose payoff matrix to the Guesser is given by

A =

⎛
⎜⎜⎜⎝

(1 + (n − 1)w) v1 (1 − w) v2 · · · (1 − w) vn

(1 − w) v1 (1 + (n − 1)w) v2 · · · (1 − w) vn
...

...
. . .

...
(1 − w) v1 (1 − w) v2 · · · (1 + (n − 1)w) vn

⎞
⎟⎟⎟⎠ .

Consider the mixed strategy p for the Chooser in which he visits a leaf node with a
probability that is inversely proportional to its value:

pT = 1∑n
j=1 v−1

j

(
v−1

1 , v−1
2 , . . . , v−1

n

)
T

, (2)

It is straightforward to verify that Ap = H1, where H = n/
∑

j v−1
j is the harmonic

mean of the values. This implies that if the Chooser adopts strategy (2), then the
Guesser’s expected fortune is equal to H regardless of which strategy she employs.
Next consider the mixed strategy q for the Guesser defined by

q = w−1p − n−1
(
w−1 − 1

)
1, (3)

where p is defined by (2). The vector q is nonnegative if and only if

w ∈ [wc, 1] , (4)

where wc is the critical wager defined by

wc = 1 − n min
j

pj. (5)

In this case it is easy to verify that qTA = H1T, implying that if the Guesser adopts (3),
then her expected fortune is again equal to H regardless of which strategy the Chooser
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employs. Moreover, it is straightforward to show that if the Chooser (Guesser) uses
a strategy other than (2) [(3), (4)], then the Guesser (Chooser) has a strategy that
increases (decreases) the Guesser’s expected fortune. Thus, when w ≥ wc, strategies
(2) and (3) constitute an equilibrium for the game with payoff matrix A. The value of
the game is H = qTAp.

Now, consider the game in which the Guesser chooses both her wager w and her
guess and the Chooser chooses the destination node j (knowing w). If the Guesser
were to choose w < wc, then the Chooser could use the strategy

pT = 1∑n
j=2 v−1

j

(
0, v−1

2 , . . . , v−1
n

)
T

,

where we have assumed without loss of generality that V1 is the maximum of all of the
values. With this strategy, it is easy to verify that the Guesser’s conditional expected
fortunes are now smaller than the harmonic mean of the values: Ap < H1. Thus, the
Guesser should always wager an amount greater than or equal to the critical wager wc.
We have proven that (2)–(4) characterize the optimal strategies for the Path Guessing
Game on a fan.

Now, let G be a finite rooted tree. Note that if play has progressed to the point
where the players are at a node i whose children are all leaves, then at that point they
are playing the game on a fan. If the outdegree of i is at least 2, the optimal strategies
are given by (2)–(4) and the value of node i is vi = Hi, the harmonic mean of the values
of the children of i. If the outdegree of i is 1, then the Guesser will double her fortune
at i, and so the value of node i is vi = 2vj, where j is the sole child of i. Likewise,
values can be assigned to all of the interior nodes of the tree, all the way up to the root.
Playing in accordance with these values is optimal, by a straightforward induction on
the height of the tree. These ideas are summarized in the following theorem.

Theorem 1 (Optimal Play on Trees): Let G be a finite rooted tree in which each leaf
node � has been assigned a positive value v�. Define the values of all the other nodes
i of G by

vi =
⎧⎨
⎩

2vj if ni = 1 and i → j

ni/
(∑

j:i→j v−1
j

)
if ni ≥ 2.

At a node i of outdegree ni ≥ 2, the optimal strategy for the Chooser is given by

pi,j =
{

v−1
j /

(∑
k:i→k v−1

k

)
if i → j

0 otherwise,

whereas the optimal strategies for the Guesser are characterized by

wi ∈ [wc, 1]

and

qi,j =
{(

nipi,j − (1 − w)
)
/(niwi) if i → j

0 otherwise,
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where wc is the critical wager defined by

wc = 1 − ni min
j:i→j

pi,j.

At a node of outdegree 1, the Guesser should wager everything and is guaranteed
to double her fortune. Under optimal play, the Guesser’s fortune F at the end of the
game satisfies E [F] = v0, where v0 is the value of the root node of the tree.

3. THE GAME ONTERMINATING GRAPHS

We will call a connected digraph in which every nonterminal node has a directed
path to some terminal node a terminating graph. In this section we assume that G is a
terminating graph with N vertices, in which each terminal node j has been preassigned
a positive value vj. We will derive optimal play in the Path Guessing Game on G by first
assigning appropriate values to the nonterminal nodes and then proving that playing
the game in accordance with these values is optimal.

Let s be a positive integer, and consider the truncated s-step game, which is
identical to the nontruncated game except that if the players have not reached a terminal
node by step s, the game is simply stopped. The s-step game can be completely
described by Nnt path trees, where Nnt is the number of nonterminal nodes of G. The
path tree corresponding to a nonterminal vertex i represents all the paths emanating
from i whose lengths are at most s. Terminal nodes in the original graph G will be
leaf nodes in the path trees. The nonterminal nodes that are reachable in s steps from
node i will also appear as leaf nodes in the path tree corresponding to i. For the path
trees in this truncated game, terminal nodes retain the values assigned to them in the
nontruncated game. Leaf nodes of the path trees that correspond to nonterminal nodes
are assigned the value of 1, in keeping with the idea that the game simply stops if one
of these nodes is reached. The s-step game is thus reduced to a game on the path trees
of length s, which can be solved by propagating the values up the path trees using
Theorem 1.

The propagation of the values for the s-step game can be summarized nicely
using a matrix approach. Let Nnt be the number of nonterminal nodes and let Nt be
the number of terminal nodes. Number the nodes so that the nonterminal nodes are
numbered first, followed by the terminal nodes. Consider first the path trees for a
1-step game on G. Let u0 denote the vector of the reciprocal values of the leaf nodes.
In keeping with our numbering convention, u0 is a partitioned vector of the form

u0 =
(

1
ut

)
, (6)

where 1 is the Nnt × 1 vector of ones and ut is the Nt × 1 vector containing the
preassigned reciprocal values of the terminal nodes of G. By Theorem 1, the reciprocal
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values of the Nnt root nodes of the path trees for the 1-step game are given by

u1 = Mu0,

where M is the N × N propagation matrix M = (mi,j : i, j ∈ V) defined by

mi,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if i is a terminal node and i = j

1/2 if ni = 1 and i → j

1/ni if ni ≥ 2 and i → j

0 otherwise.

. (7)

Inductively, the reciprocal values for the root nodes of the path trees for the s-step
game are given by

us = Msu0. (8)

Our first goal is to prove that lims→∞ us exists. In accordance with our numbering
convention, the partitioned form of the propagation matrix M is

M =
[

A B
0 I

]
, (9)

where A is Nnt × Nnt, B is Nnt × Nt, the zero submatrix is Nt × Nnt, and the identity
submatrix is Nt × Nt. It follows that the powers of M are of the form

Ms =
⎡
⎢⎣ As

(
s−1∑
i=0

Ai

)
B

0 I

⎤
⎥⎦ . (10)

The next lemma establishes that limiting values exist and are strictly positive and that
the limiting reciprocal value vector u satisfies Mu = u.

Lemma 1 (Limiting Values): Let G be a terminating graph and let M be the associated
propagation matrix defined by (7). Then lims→∞ Ms exists, with

lim
s→∞ Ms =

[
0 (I − A)−1B
0 I

]
, (11)

where A and B are the submatrixes defined by (9). In particular, the limiting recip-
rocal value vector u = lims→∞ Msu0 exists, satisfies Mu = u, and is strictly positive.
Partitioning the limiting reciprocal value vector consistently with the partition of M,

u =
(

unt

ut

)
, (12)

the limiting reciprocal values unt of the nonterminal nodes are related to the values
ut of the terminal nodes by

unt = (I − A)−1 But. (13)
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Proof: Note that if all of the eigenvalues of A were less than 1 in absolute value,
we would immediately conclude that lims→∞

∑s−1
i=0 Ai = (I − A)−1 and (11) would

follow. We claim that in fact all of the eigenvalues of A are strictly less than 1 in
absolute value. To see this, first observe that A is a nonnegative substochastic matrix,
so by the standard Perron–Frobenius theory of nonnegative matrixes (see [4], for
instance), the maximal eigenvalue r of A is nonnegative and less than or equal to 1
and |λ| ≤ r for any other eigenvalue λ of A. We claim that r < 1. Suppose, by way
of contradiction, that r = 1. Then there is an associated nonnegative eigenvector x,
which we may assume without loss of generality has been scaled so that its maximum
component is equal to 1. Now, the equation Ax = x along with definition (7) imply
the following:

1. If the nonterminal node i of G has outdegree 1 (i.e., ni = 1) and if the (sole)
child of i is a terminal node j, then xi = 0.

2. If the nonterminal node i has ni = 1 and if its (sole) child is a nonterminal
node j, then xi = xj/2.

3. If the nonterminal node i has ni ≥ 2, then

xi = n−1
i

∑
j∈J(i)

xj, (14)

where J(i) is the set of {nonterminal nodes j such that mi,j �= 0}.
Items 1 and 2 imply that entries of x corresponding to nonterminal nodes of outdegree
1 are all strictly less than 1. Now consider the remaining entries of x, which corre-
spond to nonterminal nodes i of outdegree 2 or more. Let di denote the distance from
nonterminal node i to the nearest terminal node. Item 1 says that if di = 1, then xi = 0.
Now, suppose di = 2. Then there is a directed edge from node i to some node j with
dj = 1. Thus, xj < 1, and therefore xi < 1 by (14) (since the cardinality of J(i) is at
most ni). So any nonterminal node i with di = 2 must have xi < 1. An easy induction
shows that any nonterminal node i that is at a finite distance from some terminal node
must have xi < 1. However, in a terminating graph, every nonterminal node is at a
finite distance from some terminal node. Therefore, xi < 1 for all nonterminal nodes
i, contradicting our scaling of x so that its maximum component was 1. Thus, r < 1
as claimed, and we have (11).

From (8) and (11) it follows that the limiting reciprocal value u = lims→∞ us

exists and satisfies

u =
[

0 (I − A)−1B
0 I

]
u0. (15)

Equation (13) follows immediately. Using (13) and (9), it is easy to see that the limiting
vector u is a right eigenvector of the propagation matrix, corresponding to the maximal
eigenvalue r = 1.

It remains to show that u > 0. We claim that no row of (I − A)−1 B consists
entirely of zeros. To see this, note that each nonterminal node i is connected to some
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terminal node k by a path inG of some length s > 0.The node j immediately preceeding
k in this path must be a nonterminal node. It follows that the i, j entry in As−1 is nonzero,
as is the j, k entry in B. Therefore, row i of As−1B cannot consist entirely of zeros.
Since (I − A)−1 B is a sum of such (nonnegative) terms, its ith row cannot consist
entirely of zeros either, establishing the claim. Now, the preassigned reciprocal value
vector ut is positive by assumption, so by (13) we conclude that unt is strictly positive.
This completes the proof of the lemma. �

Now, we turn to the full nontruncated game. The strategies associated with the
limiting values of Lemma 1 will be referred to as the limiting strategies for the game
on G. For the Chooser, the limiting strategy is

pi,j = Prob (Xt+1 = j | Xt = i)

=

⎧⎪⎨
⎪⎩

1 if ni = 1 and i → j

uj/
(∑

k:i→k uk
)

if ni ≥ 2 and i → j

0 otherwise,

(16)

where Xt denotes the vertex occupied by the players at time t. For the Guesser, the
limiting strategies are characterized by

wi

{
= 1 if ni = 1

∈ [wc, 1] if ni ≥ 2
(17)

and

qi,j = Prob (Gt+1 = j | Xt = i)

=

⎧⎪⎨
⎪⎩

1 if ni = 1 and i → j(
nipi,j − (1 − w)

)
/(niwi) if ni ≥ 2 and i → j

0 otherwise,

(18)

where Gt+1 is the Guesser’s prediction of where the Chooser will go on the next step
and wc is the critical wager at node i given by

wc = 1 − ni min
j:i→j

pi,j.

Let p = (
pi,j : i, j ∈ V

)
denote the transition probability matrix corresponding

to the Chooser’s limiting strategy (16). These are the transition probabilities for the
Markov chain that describes the players’ position in the graph as a function of time.
Strictly speaking, these probabilities only make sense if i is a nonterminal node.
However, we can think of each terminal node as having an attached loop leading back
to itself, with the understanding that all wagering and guessing stops as soon as the
players reach a terminal node. Then pi,i = 1 if i is a terminal node, which makes the
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Markov chain Xt well defined for all t. The end of actual play in the game is given by
the hitting time T of the chain to the set of terminal nodes:

T = min{t ≥ 0 : Xt is a terminal node}.
The next theorem gives the basic properties of the game under the limiting strategies.

Theorem 2 (Limiting Strategies): Let G = (V , E) be a terminating graph in which
each terminal node has been assigned a positive value. Let M be the propagation
matrix for G defined by (7) and let v = (vi : i ∈ V) be the vector of limiting values.
Then under the limiting strategies, the Chooser’s transition probability matrix P is
diagonally similar to the propagation matrix:

P = VMV−1, (19)

where V = diag(v) is the diagonal matrix of limiting values. Under the limiting strate-
gies, the game duration T is finite with probability 1, and the Guesser’s expected
fortune at the end of the game is equal to the value of the node at which play began:

E [FT | X0 = i] = vi. (20)

Proof: Because the vector u of limiting reciprocal values satisfies Mu = u, (16)
reduces to

pi,j = mi,j uj

ui
= mi,j vi

vj

for all i and j, and (19) follows. Because the limiting reciprocal value vector u is
strictly positive, it follows from (16) that pi,j > 0 whenever i → j in G. Therefore, the
hitting time T is finite with probability 1 under the limiting strategies.

For (20), note first that it is obviously true if i is a terminal node. If i is nonterminal,
then conditioning on the position of the players at time t = 1 gives

E [FT | X0 = i] =

⎧⎪⎪⎨
⎪⎪⎩

2E
[
FT | X0 = j

]
if ni = 1 and i → j∑

j:i→j

pi,jE
[
FT | X0 = i, X1 = j

]
if ni ≥ 2.

(21)

Now, in the second case we have

E
[
FT | X0 = i, X1 = j

]
= [

qi,j (1 + (ni − 1)wi) + (
1 − qi,j

)
(1 − wi)

]
E

[
FT | X0 = j

]
= (

wi
(
niqi,j − 1

) + 1
)

E
[
FT | X0 = j

]
= nipi,jE

[
FT | X0 = j

]
= vi

vj
E

[
FT | X0 = j

]
,
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so that (21) becomes

E [FT | X0 = i] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2E
[
FT | X0 = j

]
if ni = 1 and i → j

∑
j:i→j

mi,j
v2

i

v2
j

E
[
FT | X0 = j

]
if ni ≥ 2

(22)

This is recognized as the matrix equation

ζ = V 2MV−2ζ ,

where ζ(i) = E [FT | X0 = i]. So the vector z = V−2ζ satisfies Mz = z, and using the
partition in (9), we get

Aznt + Bzt = znt, (23)

where we have partitioned z consistent with the partition of M in (9). We know that for
terminal nodes i we have ζ(i) = vi, and it follows that zt = V−2

t
ζt = ut. Therefore,

the solution znt of (23) is znt = (I − A)−1 But, which equals unt by (13). Thus, z = u,
and ζ = V 2z = v. This completes the proof. �

As might be expected, the limiting strategies are in fact optimal for the game on
terminating graphs.

Theorem 3 (Optimal Play on Terminating Graphs): Let G be a terminating graph in
which each terminal node has been assigned a positive value. Then the limiting
strategies (16), (18), and (17) are optimal.

Proof: It is clear that we can restrict our attention to strategies that are purely posi-
tional, in the sense that at every time the players are at a given vertex i, they play the
same strategy. We will continue to use E to denote expected values under the limiting
strategies, whereas E∗ will denote expected values under general (but fixed) purely
positional strategies. Suppose both players are playing a purely positional strategy,
possibly different from the limiting strategies defined by (16), (18), and (17). Define
v∗(i) by

v∗(i) = lim sup
t→∞

E∗ [Ft|X0 = i] . (24)

Note that for terminal vertices i, v∗(i) equals the preassigned value Vi. We first claim
that if the players are playing optimally, then 0 < v∗(i) < ∞ for all nonterminal
vertices i. Indeed, v∗(i) > 0 because the Guesser can always elect to bet zero at every
vertex, whereas v∗(i) < ∞ because the Chooser can always elect to take the shortest
route from vertex i to a terminal vertex.

Next, we claim that if the Chooser is playing optimally, then T , the hitting time
to the set of terminal states, must be finite with probability 1. To see this, suppose by
way of contradiction that P∗(T = ∞) > 0. Then there must exist a nonterminal vertex
i that is part of a strongly connected subgraph G∗ of G that can be visited infinitely

https://doi.org/10.1017/S0269964810000033 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964810000033


PATH GUESSING GAME WITH WAGERING 385

often by the players. Without loss of generality, there is an edge from i to a vertex j
not in G∗ that leads to some terminal node z and such that the Chooser’s probability
of selecting the edge from i to j is zero. (Otherwise, T would be finite with probability
1.) The outdegree ni of i is therefore at least 2. Consider the following strategy for the
Guesser: When at vertex i, the Guesser bets one-half of her fortune on the node k that
the Chooser is most likely to select; when at any other vertex in G∗, the Guesser bets
nothing. Because the Chooser goes from i to j with probability 0, the probability p∗

i,k
that he goes to the node k must satisfy

p∗
i,k ≥ 1

ni − 1
.

Therefore, the Guesser’s expected fortune after playing at vertex i (as a proportion of
her current fortune) are

1

2

(
1 − p∗

i,k

) +
(

1 + 1

2
(ni − 1)

)
p∗

i,k = 1

2

(
p∗

i,kni + 1
)

≥ 1

2

(
ni

ni − 1
+ 1

)

> 1.

Thus, the Guesser increases her fortune on average each time the players are at vertex
i. Since there is a positive probability this will happen infinitely often, v∗(i) as defined
by (24) will be infinite. However, this contradicts the claim proven earlier that v∗(i) is
finite if the Chooser is playing optimally. Therefore, the claim that P∗(T = ∞) = 0
is established.

Now that T is finite with probability 1, it follows that v∗(i) as defined by (24)
satisfies

v∗(i) = E∗ [FT |X0 = i] ,

provided that the players are playing optimally. Therefore, given that play starts at node
i, the game on G is equivalent to the game on the fan whose leaves have the values v∗(j),
where i → j. Optimal play in this game is given by Theorem 1. Since this is true for
each vertex i in G, the reciprocal value vector u∗ = (

u∗(i) : i ∈ V , u∗(i) = [v∗(i)]−1)
must satisfy Mu∗ = u∗, where M is the propagation matrix (7) for G. However, u∗
must agree with u, the reciprocal value vector for the limiting strategy, on the terminal
nodes, since the values of those are preassigned. It follows now from the proof of
Lemma 1 that the nonterminal values u∗

nt
must satisfy

u∗
nt

= (I − A)−1 But

and, therefore, u∗ = u. This completes the proof. �

For what terminating graphs G is the Path Guessing Game fair, in the sense that
the Guesser’s expected fortune at the end of the game is equal to the $1 with which
she started out?
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Theorem 4: Let G be a terminating graph. Then the Path Guessing Game on G is fair
if and only if each terminal node has a value of 1 and each nonterminal node has
outdegree at least 2.

Proof: The game will be fair if and only if the value of every node is 1. From (13), this
is equivalent to 1 = (I − A)−1 B1, and it follows from this that for each nonterminal
i, the ith row sum of A plus the ith row sum of B must equal 1. By the construction of
the propagation matrix, this can happen if and only if G has no nonterminal node of
outdegree 1. �

4. STRONGLY CONNECTED GRAPHS ANDTHE DISCOUNTED GAME

Let G = (V , E) be a strongly connected digraph on N vertices. The rules for the Path
Guessing Game on G are identical to those for a terminating graph, the only difference
being that there are no terminal nodes in a strongly connected graph.As in the previous
section, we will derive optimal play on G by considering the truncated game on G
obtained by the stopping the Path Guessing Game after s steps.

We are interested in the values of the root nodes of the path trees for the s-step
game, as s goes to infinity. Consider first the one-step game on G. Leaf nodes of the
path trees of height 1 are assigned the value 1, and by Theorem 1, values of the root
nodes of the path trees are given by

u1 = M1,

where u1 is the vector of reciprocal values, 1 is the vector of all ones, and M =(
mi,j : i, j ∈ V

)
is the N × N propagation matrix given by

mi,j =

⎧⎪⎨
⎪⎩

1/2 if ni = 1 and i → j

1/ni if ni ≥ 2 and i → j

0 otherwise,

(25)

where ni is the outdegree of vertex i. Inductively, reciprocal values for the root nodes
of the path trees for the s-step game are given by

us = Ms1.

In contrast to the case of terminating graphs, limiting values for the s-step game
might be infinite. For instance, if G is a 2-cycle, then vs(i) = 2s for i = 1, 2. However,
recall from Theorem 1 that optimal strategies depend only on the ratios of values. We
will be able to show that limiting ratios continue to exist in the strongly connected
case and that the corresponding strategies are optimal.

Toward this end, consider the following discounted game on the strongly con-
nected graph G: Play proceeds just as before, but after each payoff, the Guesser’s
fortune is multiplied by a fixed discount factor d ∈ (0, 1]. Intuitively, one can think
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of the discounted game as modeling a situation in which the real value of money is
decreasing with time, as in an inflationary economy. (In this case, the reciprocal of
the discount rate would be the inflation rate.) It is clear that optimal strategies for the
discounted game are the same as for the undiscounted game.

For the discounted 1-step game, the values of all the leaf nodes are d. Reciprocal
values are therefore 1/d, and so the reciprocal values of the root nodes in the discounted
game are

ũ1 = M
(
d−11

) = d−1M1.

Inductively, values for the root nodes of the path trees for the discounted s-step game
are

ũs = d−sM1, (26)

and the idea is to determine the value of the discount factor d that makes the limiting
reciprocal values finite and nonzero.

It turns out that the correct choice is to make the discount factor equal to the
largest positive eigenvalue of the propagation matrix M. Before proving this, we will
make one more assumption on the graph G. In addition to being strongly connected,
we will assume that G is aperiodic. For a strongly connected graph, aperiodicity means
that the greatest common divisor of the lengths of all the cycles in G is 1. (Note that
any strongly connected graph that contains a loop is aperiodic.) Aperiodicity rules
out certain cyclic phenomena that, although not unduly hard to characterize, serve
mainly to cloud the important issues. The next lemma collects the properties of the
propagation matrix M that we will need.

Lemma 2: Let G be a strongly connected aperiodic digraph, with associated propa-
gation matrix M given by (25). Then we have the following:

1. M has a positive maximal eigenvalue r, with the property that any other
eigenvalue λ of M satisfies |λ| < r.

2. There are strictly positive right and left eigenvectors x and y respectively
associated with the maximal eigenvalue r.

3. The right and left eigenspaces of M associated with r (and containing x and
y, respectively) each have dimension 1.

4. No other eigenvector of M is positive.

5. The maximal eigenvalue r satisfies 1
2 ≤ r ≤ 1.

Proof: Since G is strongly connected and aperiodic, it follows that M is irreducible
and primitive, and properties 1 through 4 follow from the standard Perron–Frobenius
theory of nonnegative matrixes (see [4], for instance). Property 5 follows from the
fact that all of the row sums of M are between 1

2 and 1. �

We are now in a position to prove that limiting values exist and are strictly positive
for the discounted game.
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Lemma 3 (Limiting Values for the Discounted Game): Let G be a strongly connected
aperiodic digraph, with associated propagation matrix M given by (25). Let r be the
maximal eigenvalue of M, with associated positive right and left eigenvectors x and
y, respectively. Then we have

lim
s→∞ r−sMs = xyT

xTy
, (27)

where the limit is a strictly positive matrix. Moreover, the limiting reciprocal value
vector ũ for the discounted game (with discount factor d = r) given by

ũ = lim
s→∞ r−sMs1 = xyT

xTy
1 (28)

is a positive right eigenvector of M corresponding to r:

Mũ = rũ. (29)

Proof: Equation (27) is easily derived from Lemma 2 and the Jordan canonical form
for M (see [3], for instance). Equation (28) follows directly from (26) and (27). Finally,

Mũ = M lim
s→∞ r−sMs1

= r lim
s→∞ r−(s+1)Ms+11

= rũ,

and ũ is positive because both x and y are. �

From this point onward, when we refer to the “discounted game,” it is understood
that the discount factor is the maximal eigenvalue of M. Additionally, for ease of
notation we drop the tilde and simply use u to refer to the limiting reciprocal values
for the discounted game.

Turning to the nontruncated infinite duration game, we now explore strategies
corresponding to the limiting values. For the Chooser, the transition probabilities are

pi,j = Prob (Xt+1 = j | Xt = i)

=

⎧⎪⎨
⎪⎩

1 if ni = 1 and i → j

uj/
(∑

k:i→k uk
)

if ni ≥ 2 and i → j,

0 otherwise,

(30)

whereas the Guesser has guessing probabilities

qi,j = Prob (Gt+1 = j | Xt = i)

=

⎧⎪⎪⎨
⎪⎪⎩

1 if ni = 1 and i → j

pi,j−βpi,min

1−niβpi,min
if ni ≥ 2 and i → j

0 otherwise,

(31)
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and wagers

wi =
{

1 if ni = 1

1 − niβpi,min if ni ≥ 2
(32)

when at node i. Here again β is arbitrary in (0, 1], and pi,min is the probability of the
vertex least likely to be chosen by the Chooser:

pi,min = min{pi,j : j ∈ V , i → j}.
We will refer to the strategies given by (30)–(32) as the limiting strategies for the

players. The next theorem gives the basic properties of the game under the limiting
strategies.

Theorem 5 (Limiting Strategies): Let G = (V , E) be a strongly connected aperiodic
graph. Let M be the propagation matrix for G defined by (25). Let r be the maximal
eigenvalue of M and let v = (vi : i ∈ V) be the vector of limiting values. Then under
the limiting strategies (30)–(32), the Chooser’s transition probability matrix P is
diagonally similar to the propagation matrix:

P = 1

r
VMV−1, (33)

where V = diag(v) is the diagonal matrix of limiting values. Under the limiting
strategies, the Guesser’s fortune satisfies

lim
t→∞ rtE [Ft | X0 = i] = c vi, (34)

where c is a positive constant that depends only on G.

Proof: Because the limiting reciprocal value vector u satisfies Mu = ru, (30)
reduces to

pi,j = 1

r

mi,j uj

ui
= 1

r

mi,j vi

vj

for all i and j, and (33) follows.
For (34), start by considering a vertex i whose outdegree ni is at least 2. Then for

any adjacent vertex j, we have

E
[
F1 | X0 = i, X1 = j

] = (1 + (ni − 1)wi) qi,j + (1 − wi)
(
1 − qi,j

)
= wi

(
niqi,j − 1

) + 1

= ni
(
pi,j − βpi,min

) − (
1 − niβpi,min

) + 1

= nipi,j

= 1

r

vi

vj
.
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Therefore,

vi = E
[
F1 | X0 = i, X1 = j

]
r vj. (35)

In fact, (35) holds for vertices i of outdegree 1 as well. To see this, note that if i has
outdegree 1 and i → j, then by (25) and Mu = ru we see that

vi = 2rvj.

However, since i has outdegree 1, F1 = 2 with probability 1, so in fact the last equation
is equivalent to (35). Thus, (35) holds for all vertices i and j such that i → j. Now,
using the Markov property, we have

E [Ft | X0 = i] =
∑

j

E
[
Ft | X0 = i, X1 = j

]
pi,j

=
∑

j

E
[
F1 | X0 = i, X1 = j

]
E

[
F ′

t−1 | X0 = j
]

pi,j

=
∑

j

1

r

vi

vj
E

[
Ft−1 | X0 = j

]
pi,j

=
∑

j

1

r2

v2
i

v2
j

mi,jE
[
Ft−1 | X0 = j

]
The matrix form of this equation is

ζt = r−2V 2MV−2ζt−1.

where ζt(i) = E [Ft | X0 = i]. Since ζ0 = 1, we have

ζt = r−2tV 2MtV−21, (36)

and so by Lemma 3,

lim
t→∞ rtζt = r−tV 2MtV−21

= V 2 xyT

xTy
V−21.

To see that the limit is a multiple of the limiting value vector V , denote G =
r−2V 2MV−2, so that

ζt = Gt1. (37)

Note that G has the same pattern of zero and nonzero entries as M and, hence, is
irreducible and primitive. We claim that 1/r is the maximal eigenvalue of G and that
the limiting value vector V is an associated eigenvector. To see this, first observe that

GV = r−2V 2MV−2v = r−2V 2Mu = r−2V 2ru = r−1v,

so that 1/r is indeed an eigenvalue of G, with associated eigenvector v. To see that
1/r is the maximal eigenvalue of G, note that if (λ, x) is any eigenpair for G, then
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Gx = λx implies that M(V−2x) = r2λ(V−2x), so that r2λ is an eigenvalue of M, with
associated eigenvector V−2x. However, r is the maximal eigenvalue of M, so we
must have

∣∣r2λ
∣∣ ≤ r, which implies |λ| ≤ 1/r, which means that 1/r is the maximal

eigenvalue of G. Now, since G is primitive with maximal eigenvalue 1/r, it follows
that rtGt1 converges to some multiple of the associated eigenvector v. By (37) this
means that

lim
t→∞ rtE [Ft | X0 = i] = c vi.

This completes the proof. �

Because G is strongly connected and aperiodic, the random walk on G that arises
from the limiting strategies is ergodic and has a unique invariant measure μ. Under
this invariant measure, the discounted fortune process

Dt = rtFt (38)

is stationary. Let Eμ [·] denote the expectation operator under the invariant measure
(i.e., assuming that the initial position X0 of the players has distribution μ). The
steady-state fortunes defined by

ηj = Eμ

[
Dt | Xt = j

]
, j ∈ V ,

represent the Guesser’s average discounted fortune when located at vertex j. By sta-
tionarity, they do not depend on t. The next theorem characterizes the invariant measure
and steady-state fortunes.

Theorem 6: Let G be a strongly connected aperiodic graph with propagation matrix
M and associated maximal eigenvalue r. Then the invariant measure μ for the position
process (Xt : t ≥ 0) from the limiting strategies is the entrywise product of appro-
priately scaled right and left eigenvectors x and y respectively of M associated
with r:

μ = 1

xTy
(xiyi : i ∈ V) . (39)

The steady-state fortunes are of the form

Eμ

[
Dt | Xt = j

] = c
μj

vj
, (40)

where c is a constant that depends on G.

Proof: The invariant measure μ satisfies pTμ = μ. However, P = r−1VMV−1, so
the invariant measure must satisfy MTVμ = rVμ. By primitivity, Vμ = cy, where y
is the (unique) left eigenvector of M correponding to r. Thus,

μ = cV−1y = c (uiyi : i ∈ V) ,

and (39) follows because the reciprocal value vector u is a right eigenvector of M.
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For (40), by conditioning on the position of the players at time t − 1, one sees that

Eμ

[
Dt | Xt = j

] =
∑
i:i→j

vi

vj
Eμ [Dt | Xt = i] pi,j =

∑
i:i→j

1

r

v2
i

v2
j

mi,jEμ [Dt | Xt = i] .

The matrix form of this equation is

rηT = ηTV 2MV−2,

where ηj = Eμ

[
Dt | Xt = j

]
. By the primitivity of M we have V 2η = cy, and (40)

now follows. �

Theorem 7 (Optimal Play on Strongly Connected Graphs): Let G be a strongly con-
nected aperiodic graph. Then the limiting strategies (33), (31), and (32) are optimal
for the infinite-duration Path Guessing Game on G.

Proof Sketch: As in the proof of Theorem 3, we can restrict attention to purely
positional strategies. For any choice of purely positional strategies by the Players,
there will exist some discount factor d such that the limits

lim
s→∞ dtE [Ft | X0 = i] = v�

i

exist and are nonzero. For this choice of strategies, the discounted game starting at node
i is therefore equivalent to the game on the fan with root node i, whose leaves are the set
of vertices j such that i → j in G and with vertex j having the value d v�

j . By the results
of Section 2, the players are playing optimally if and only if Mu� = du�, where u� is the
vector of reciprocals of the entries of v�. However, M is irreducible and primitive, so
its only positive eigenvector is the reciprocal value vector u of Lemma 3. Thus, u∗ = u,
and it follows that the optimal strategies are the same as the limiting strategies. �

For what strongly connected aperiodic graphs G is the Path Guessing Game fair,
in the sense that the Guesser’s expected fortune at the end of the game is equal to the
$1 with which she started out?

Theorem 8: Let G be a strongly connected aperiodic graph. Then the Path Guessing
Game on G is fair if and only if each vertex of G has outdegree at least 2.

Proof: If each vertex has outdegree 2 or more, then the propagation matrix M is
stochastic, implying that r = 1 and u = 1, and it follows from (36) that the game
is fair: E [Ft | X0 = i] = 1 for all i ∈ V . On the other hand, if there exists a vertex
i of outdegree 1, then M is strictly substochastic and in fact the ith component of
M1 equals 1/2. By primitivity there exists an integer t0 > 0 such that Mt0 is strictly
positive. It follows that that all of the components of Mt0+11 are strictly less than
one and, hence limt→∞ Mt1 = 0. Therefore, the maximal eigenvalue r of M must
be strictly less than 1, therefore, the Guesser’s expected fortune under optimal play
grows without bound. �
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5. THE LYING ORACLE GAME

In this section we apply the previous results to the Lying Oracle Game. As described
in [1], this is a two-player game between an Oracle and a Bettor. The game is based
on a sequence of n tosses of a fair coin. The Oracle has perfect foreknowledge of each
toss but might choose to lie to the Bettor in up to k of the n tosses. Before each toss,
the Bettor privately writes down a guess as to whether she thinks the Oracle will lie or
tell the truth on this toss. The Bettor also announces a wager on her guess. The Oracle
then announces his (possibly mendacious) prediction. Finally, the coin is tossed and
the outcome is recorded. If the Bettor is correct, she wins the amount of her wager;
if she is incorrect, she loses the amount of her wager. Play continues in this fashion
until the n of tosses are completed.

The Lying Oracle Game has been shown to have a reciprocal relationship with
the continuous version of Ulam’s search problem [5], which has been used as a model
of binary search in the presence of errors [6]. In Ulam’s search problem, a questioner
is searching for a number in the interval [0, 1] chosen by a responder. The questioner
asks the responder n questions about the number’s location in the interval, but the
responder can lie up to k times. The questioner seeks to find a subset of smallest
measure that contains the chosen number, whereas the responder seeks to maximize
the measure of that subset. Under optimal play, the measure of the questioner’s subset
is the reciprocal of the Bettor’s fortune in the Lying Oracle Game. In spite of this
striking result, it is unknown whether there is any type of formal equivalence between
these two games [5].

The Lying Oracle Game can be generalized in several ways. In [2] the authors
consider the game when the coin is not fair. The “at most k lies in n tosses” rule can
be generalized to a set of arbitrary “lying patterns.” Here, we make the point that the
original Lying Oracle Game (with a fair coin) can be seen as a special case of the Path
Guessing Game. Moreover, the results from the previous sections can be used to derive
optimal play in the Lying Oracle Game when the number of coin tosses is infinite.

Example 1: Consider the game Gn,1 in which the Oracle can lie at most one time in
any block of n predictions. The graph for the game is shown in Figure 1, where the
edge labels specify where the players move depending on whether the Oracle tells the
truth or lies. The players are located initially at vertex 1.

Note that since the outdegree of each vertex is 2 or less, our payoff rule (1)
coincides with the payoff rule for the Lying Oracle Game. The propagation matrix is
M = 1

2 A, where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1
1 0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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FIGURE 1. The game Gn,1.

The maximal eigenvalue of M is r = 1
2λ, where λ = λ(n) is the largest positive

solution of

0 − det (λI − A) = λn − λn−1 − 1.

The row sums of A tell us that λ ∈ [1, 2], and it is not hard to show that as n approaches
infinity, λ decreases to 1 monotonically. Thus, r approaches 1/2, as we would expect.
The right eigenvector of M corresponding to r is

x = (
λn−1, 1, λ, λ2, . . . , λn−3, λn−2

)
,

and the left eigenvector corresponding to r is

y = (
λn−1, λn−2, λn−3, . . . , λ, 1

)
.

The Oracle’s optimal strategy at node 1 (the only nontrivial node) is

p1,1 = λ−1, p1,2 = λ−n.

In other words, the Oracle tells the truth at node 1 with probability λ−1 and lies with
probability 1 − λ−1 = λ−n. Note that as n increases without bound, the probability
that the Oracle tells the truth when he is at node 1 approaches 1:

lim
n→∞ p1,1 = lim

n→∞ λ−1 = 1.

The Bettor’s minimum risk (w = wc) optimal strategy is

q1,1 = 1, q1,2 = 0,

w1,1 = w1,2 = λ−1 − λ−n.
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Under optimal play, the players perform a random walk through the graph, with
invariant measure

μ = 1

λn + n − 1
(λn, 1, 1, . . . , 1) .

Observe that the fraction of time that the Oracle lies under optimal play is

μ2 = 1

λn + n − 1
,

which increases to 1/n as n approaches infinity. Thus, under optimal play, the Oracle
lies slightly less often than the rules allow.

We remark that if the Oracle’s set of allowed “lying patterns” can be expressed
in the form of a finite set of finite forbidden patterns—sequences of truths and lies
that the Oracle must avoid—then the Lying Oracle Game (with a fair coin) is equiv-
alent to the Path Guessing Game on a certain finite graph. All games in which the
Oracle can lie at most k times in any block of n statements fall into this class, and
as such, they can be analyzed using the results of Section 4. Our approach also leads
to new variants of the Lying Oracle Game in which the Oracle is allowed to end the
game under certain conditions, rather than after a specified number of tosses. For
instance, we can consider a game in which the Oracle can lie at most k times in any
block of n tosses and can stop the game after any toss on which he told the truth. In
these games, the Guesser tries to predict whether the Oracle will lie, tell the truth,
or stop the game. Such games correspond to a Path Guessing Game on a terminating
graph.

Example 2: Consider the game G∗
n,1 in which the Oracle can lie at most one time in

any block of n tosses and can stop the game on the first round or after any round on
which he told the truth. The terminating graph representing this game is shown in
Figure 2.

There are n nonterminal nodes and one terminal node. Using the results of
Section 3, we find that under optimal play, the probability pi,n+1 that the Oracle stops
the game from node i is given by

pi,n+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2n − 1

3
(
2n−1 + 2n−2 − 1

) if i = 1

0 if i = 2
2n − 1

2n+1 − 2i−2 − 2
if 3 ≤ i ≤ n.

It is easy to show that if n and i go to infinity concurrently such that i/n approaches
x ∈ (0, 1), then pi,n+1 approaches 1/2. We also have p1,n+1 approaching 4/9 as n
approaches infinity. Thus, even for large n, the game duration is likely to be very
short.
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FIGURE 2. The game G∗
n,1 from Example 2.
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